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Summary. This article analizes the convergence of the Galerkin method 
with polynomial splines on arbitrary meshes for systems of singular integral 
equations with piecewise continuous coefficients in L 2 on closed or open 
Ljapunov curves. It is proved that this method converges if and, for scalar 
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solution, we provide error estimates for equidistant and for special nonuni- 
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Introduction 

Singular integral equations arising from numerous boundary value problems in 
aerodynamics, elasticity and thermoelasticity, electromagnetics, vibration 
theory and many other fields of engineering have the form 

x(z) dz+SK(t,z)x(z)dz=y(t), ter, (0.1) c(t) x(t)+d(t)rcz" ! z - t  r 

see e.g. Anderssen [2], Kupradse [11], Michlin, PrtiBdorf [12], Muskhelishvili 
[13] and Parton, Perlin [15]. In this equation F is a closed or open plane 
curve, c, d, K and y are given functions (in general matrix - or vector-valued 
and discontinuous), x is the unknown function and the first integral is defined 
as a Cauchy principal value. 

In many practical computations with Eq. (0.1) one uses spline approxi- 
mations for the unknown function x on F. The two most popular discretization 
schemes are the Galerkin and collocation methods. If F is a closed curve and c 
and d are continuous functions, then convergence and error estimates for 
Galerkin and collocation methods using smooth polynomial splines follow 
from recent studies by Arnold, Saranen, Stephan and Wendland in [4, 23, 27], 
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by Nedelec in [14] and by Elschner, Schmidt and the authors in [8, 16, 17, 19, 
21, 22, 24, 25, 26] (see also the surveys just given by Elschner, Pr6gdorf [18] 
and by Wendland [29]). Convergence results on the spline collocation method 
in the space L 2 for Eq. (0.1) with piecewise continuous coefficients c and d have 
most likely been first obtained by the authors in [19]. They were then general- 
ized by Schmidt in [-25]. For F a finite interval, convergence and error analysis 
for Galerkin's method with (smooth as well as weighted) splines has recently 
been developed by Elschner [9] for the case of continuous c and d such that 
Re {c(t)+d(t)} >0  on F. The special case where K is real-valued, c - 1  and d is 
purely imaginary has earlier been considered by Thomas [28]. 

It is the aim of this paper to give a convergence and error analysis for the 
spline Galerkin method in the space L 2 if c and d are piecewise continuous 
matrix functions and Eq. (0.1) is strongly elliptic (in the sense of the subsequent 
definition). For sake of brevity, all results of this paper are proved for the case 
K - 0 ,  since they easily extend to the complete equation (0.1). (see, e.g. [10]). 

We now introduce several notational conventions. ~m(m~N) denotes m- 
dimensional complex Euclidean space with the usual scalar product 

Ix, y]: = ~ x i Yl, ~/x, y ~ C ' ,  
i = l  

x =(x 1 . . . .  , xm) r, Y=(Yl  . . . .  , Ym) r" 

II?" • " stands for the set of all complex-valued m x m matrices. 
Let F be a closed or open oriented plane Ljapunov curve having a regular 

parametrization 
F:={ t=7(s ) : s~[O,  1]}, 7: [0, 1 ] ~ ;  

for F closed, we assume 7(0)=7(1 ). By L2(F, IIY') we denote the Hilbert space of 
all square Lebesgue-integrable ~"-valued functions on F with scalar product 

( f  g):= ~ If( t) ,  g(t)] ]dtl, V f, geL2(E ~").  
ir 

The symbol PC(F, ~" •  designates the space of all 112"• functions a 
on F which are piecewise continuous in the following sense: for each t s F  the 
finite limits a ( t + 0 ) : =  lim a(z) (with respect to the orientation of F) exist and 

"~t-+ 0 

a is discontinuous at most at a finite number of points t~F. C(F,, C"  • m) is the 
subspace of all continuous C m • functions on F. 

In L2(F, ~m) we consider singular integral operators of the form 

A = aP r + bQ r (0.2) 

with coefficients a, bePC(F,, II~ r" • Here Pr and Qr denote the operators 

Pr: = 1/2(I + Sr), Qr: = 1/2(I - St), 

I the indentity operator and S r the Cauchy singular operator 

x(z) dz(t~F).  (Srx)(t): = 1~hi ! z _~  
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That  Ae~(L2(F ,  Cm)) (see [12]) is well established and the opera tor  defined by 
the left-hand side of Eq. (0.1) with K - 0  has the form (0.2), where a = c + d  and 
b=c -d .  

We call opera tor  A=aPr+bQr strongly elliptic 1, if there exist a compact  
opera tor  Te~(L2(F ,  ~m)) and an invertible function OePC(F, flAre• discon- 
t inuous at most  at the points of discontinuity of a and b, such that  A = O(A o 
+ T), where A o has a positive real par t  - i.e. 

Re(Aof,  f )>e( f , f ) ,  V feL2(F, ~") 
with e(const) >0.  

In [20] we have shown that  A is strongly elliptic if and only if 

VteF:3b(t+_O) -1 and 3CeC"•  ReC(b-la)(t+O)>O. (B) 

(If F=(c~, fl) is an open curve, then condit ion (B) need only be satisfied f rom 
the right or from the left, according as we consider c~ or fl respectively.) In 
L e m m a  1.2 further condit ions equivalent to (B) for special cases are for- 
mulated.  

N o w  let {to=~(So), tl=7(Sl),. . . , tN=7(SN)}c_F(O=So<Sl<...SN=I) be a 
given set of points  such that  a and b are continuous on F \ { t  o . . . . .  tN}. A 
sequence {Ak}ke N (Ak={O.~, ank} , k  O k k < . . .  k __ . . . .  = a o < a  ~ a , k - 1  ) of part i t ions of 
[0, 1] is called admissible if {s o . . . .  , su} C_Ak(keN ) and if 

hA :=max{a~+l--a~li=O, 1 . . . . .  n k - - 1 } ~ 0  ( k ~  oo). 

Let PSd(A k, C) (deN)  denote the space of all q)sPC(F,, 112) such that  qoo 7 is (d 
-1) t imes cont inuously differentiable on [0, 1 ] \{ s  0 . . . .  , ss} and the restriction 
of ~oo7 to [a~,a~+~] is a polynomial  of degree not  exceeding d - i.e. the 
functions ~oePSe(A k,~)  are splines with maximal  smoothness  at 
a~eAk\{S o . . . .  ,sN} and with no smoothness  condit ion at s i ( i=0  . . . . .  N). 
PSd(Ak, if2 m) stands for the space of vector-valued functions f 
= ( f l  . . . . .  fm)ePC(F,, if2 m) having components  fjePSd(A k, ~). Obviously,  
PSo(dk, II~ "n) is the space of step functions. 

The Galerkin  me thod  for the equat ion A x = y  may now be formulated as 
follows: Find xdkePSd(Ak, if2 m) satisfying 

(Ax~ ,  (p)=(y, ~o) (V (p~PSd(Ak, flY")). (0.3) 

We say that the Galerk in  method  with respect to the admissible sequence 
{Ak}k~ ~ is convergent  for the opera tor  A, if (0.3) is uniquely solvable for 
sufficiently large k and if xnk converges to x = A - l y  in L2(F,C ") for any 
yeL2(l ., ff~m). 

We proceed in this paper  as follows. In Sect. 1 we examine the Galerk in  
me thod  (0.3) with respect to any admissible sequence {Ak}k~ ~ for the opera tor  
A defined by (0.2). By means  of the discrete c o m m u t a t o r  property ,  given in 
L e m m a  1.1, it is proved that  this method  is convergent  in L2(F, ~ ' )  if A is 
strongly elliptic and invertible. In the special case F = ( 0 ,  1), m =  1 and a, b~C 

1 See Stephan and Wendland [27], who introduced this concept in case of smooth functions 
O,a,b 
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[0, 1], Theorem 1.1 yields a result of Elschner ([9], Theorem 3.1). In Sect. 2 we 
show that strong ellipticity of A is necessary for the Galerkin method to be 
convergent, provided the partitions are equidistant and m= 1. For continuous 
coefficients a and b and a closed curve F, this fact was established in [24] by 
means of a different technique. As a corollary to our proof, which is based on 
certain localization techniques and on the method of associated operators (see 
[19]), we obtain that the strong ellipticity of A is sufficient for the stability of 
the collocation method with piecewise linear splines. Section 3 deals with 
estimating the error of the Galerkin method (0.3) by means of utilizing the 
complete asymptotics of the solutions of (0.1) which has been established in 
[9]. We show for instance, that an asymptotic order of convergence of 
O(n/-a-l) can be achieved on special nonuniform partitions. This fact was 
obtained in [28] and [9] by using weighted continuous splines on nonuniform 
meshes for continuous coefficients a and b and F=(0 ,  1). 

All results of Sects. 1 and 2 are valid for singular integral operators of the 
form Pra+Qrb;  one need only to take the adjoints of the operators a*P r 
+b*Qr .  

1. The Convergence of the Galerkin Method 
for Strongly Elliptic Operators 

Let PA~ denote the orthogonal projection of L2(F, IE m) onto PSa(Ak, ~") .  Then 
(0.3) is equivalent to 

PA~APa~xj~ =P~y .  

Lemma 1.1. I f  {Ak} is an admissible sequence of  partitions and f~PC(F ,  ~E m • 
is continuous on F \ { t o ,  t I . . . . .  tN} , then 

[1( I -P~)fP~kII ~ O(k ~ ~ )  

[IPak f ( I  -Pa~)N ~ O(k ~ oo). 

Proof, We only need to prove I I ( I -P~) fpa~l l~O,  since the other assertion 
follows by taking the operator adjoints. 

implies 
f =  (fi))~, j= t ePC(F,  II~ '~ • m) 

(I - P~) f P~ = ((I - Pa~) fo  P~)~, j=l, 

where PAk in the entries of the last matrix are the orthogonal projections of 
L2(F, II2) onto PSa(A k, ffJ). Therefore, we have to prove II(I-P~k)fP~I[-- ,0 for 
the case m = 1 only. 

Now we introduce a new scalar product in La(F, ~) by 

1 

(f, g)~:= ~ (fo 7)(s)(go y)(s) ds. 
0 
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Clearly, the norms Ilfll =(f,f)l/2 and ] l f l l l=( f , f ) { /2  are equivalent, and thus it 
suffices to show I[( I -Pa~)fPaf i l - - ,O,  where I1"111 denotes the operator norm 
corresponding to the norm I1"11~ in L2(F, 112). Let Pax be the orthogonal pro- 
jection of LZ(F, ff2) onto PSe(A k , r  corresponding to ( ' , ')1. Since 
sup IlPaxII x < oe, we obtain (see [1]) 

k 

IL(I --PAx)fea~gll i = I1 fPax g -PAx(fPa~g)ll* 

< C H(fPA~ g)-Pa~(fPaxg)lll 

= C I l ( l - P ~ )  fP~xPAxgll~, 

where C is a positive constant. Consequently, we only have to show 
I1(I--PAx)N-O~II1-+0. Hence, we may assume F =  [0, 1]. 

Let f i ( i = O  . . . . .  N - l )  be the function vanishing on [0, 1]\[s i ,  si+l] and 
equal to f on [sl, s~+l], and pi be the orthogonal projection onto the subspace Ax 
of all functions f e P S e ( A  k, IF.) vanishing on [0, 1] \[s l ,  si+ 1]. Thus 

N--1 

( I -Pax) fPA~ = Z (I -P]x)f' ' P]x' 
i=O 

and we only need to demonstrate I[(I-Ua,)fiPjxII---+0 (i=O . . . . .  N - l ) .  We may 
therefore assume: f e C ( [ 0 , 1 ] , ~ )  and Pax is the orthogonal projection of 
L2([0, 1], ~2) onto Sd(A k, II~). Sd(Ak, 117) is the subspace of all feL2([0,  1], ~2), 
which are ( d - l )  times continuously differentiable and coincide with a poly- 
nomial of degree not exceeding d on every interval [a~, a~+ t] ( i= 0 . . . . .  n k -  1). 

We set 
a k_ ~: = - 1/2 r (a] - ako) (r = 1, 2 . . . .  , d) 

and 
r k k a,,x+, . k  ' =  1 + 1/2 (a.x - o ' , x _  1) ( r =  1, 2 . . . . .  d). 

A base {~i}7~ -~ of Se(A k, tl2) can now be given as follows (see [6]): 

g(s ,  t).. = ( s - t ) ~ +  

a*{- 'a  k k " t) (t~ [0, 1]) ,/,,,(t)= = ( d l / g ~ l / ( 4 + , , + ,  - ~, ~ , . . . . .  o , + , , + , ,  

wherein g(a/k,..., ai+a + k  , ; t )  represents the divided difference of g(s,t) at 
o 'k 'o"k i+l '  " ' ' '  O'i+d+l'k It is well known that ~ > 0  and ~k i has support 
[a~, a~+d+ 1] (see [6]). Moreover, there exists a positive constant D such that 

nk--1 ~li <=/nx-l  ) nu-1 
D -1 i__~_,{ i D i=~d~il]l i (1.1) 

(see [7]). We obtain 

< f ~ 'dr  f (  ak){'  , fi=~_a {'tp' .= _ .= _ - P a ~ f  Ed{ , tP ,  

k where f(a~): = f (0 )  (i = - d ,  - d  + 1, .. . ,  - 1). For  t~[a~, aj+ 1], 

(1.2) 
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nk--1 nk - I  I [ j + l  ~li( t ) 
f(t)=~_a{,r E f(af)~,t~,(t) = E ( f ( t ) - f (a f ) )r  

i= -d i=j-d 
j + l  

aco(f, dhA k) E [r [l~i(t)[ 
i=j-d 

~co(f, dhAu);~la[~i, O i ( t ) _  (1.3) 

with co(f, 6)-'--sup { [ f (q ) - f ( t2 ) [ ]q ,  ta~[O, 1], It I --t21 <6}  (modulus of con- 
tinuity). (1.1) and (1.3) yield 

fi=~_d~i ~t i -  f (a~) ~i dh~) , ~,al~i [ 

nk-- 1 
<co(f'dhA~)D2 i-~-d ~iqji 

and (1.2) implies 

nk-1 ~ti < D2 co(f,  i~_ld~i~li. (I --PA~) fi=~_ ~ i = dha~ ) 

Since hdk ~ 0, the proof is completed. 

Remark. Lemma 1.1 was independently given in [16, 17] and in [3] for the 
case of smooth functions f In these papers however, the authors considered 
arbitrary Sobolev norms instead of L2-norms and consequently the partitions 
were assumed to be regular. (See also [25], where a detailed proof of the 
aforementioned result is given for the case of Sobolev norms.) The idea of the 
proof presented above is based on the method of derivation of Lemma 4.1 in 
[21]. 

Corollary 1.1. I f  {Ak} is admissible, then P~ converges strongly to I - i.e. P~k ~ I. 

Proof Consider g=(gl ,  g2 . . . . .  gm)~ C(F, (E m) and set 

. - -  m C(/~ •rn x m), h = ( 1  . . . . .  1)E: C(F~ [I~m). f" --(gi 6i)i,j= t e 

Lemma 1.1 implies ( I - P ~ ) g = ( I - P ~ ) f P ~ h ~ O  and further P A ~ I ,  since 
sup IIe~l/<oo. 

It is now rather simple to prove 

Theorem 1.1. I f  {Ak} is an arbitrary admissible sequence of partitions and A 
=aPr+bQreLp(L2(F,,ffY')) is invertible and strongly elliptic, then the Galerkin 
method with respect to the sequence {Ak} is convergent for A. 

Proof Since P n ~ I ,  the Galerkin method is convergent if and only if the 
approximate operators PdAPn~ are stable - i.e. 

IIPa~APa~r (Vq)ePSa(Ak,(Em), V k=>ko), 

where C is a positive constant and koeN (see, e.g. [10]). The strongly elliptic 
operator A admits the representation A= O A o + T, where O ePC(F,, r  • is 
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cont inuous on F \ { t  o . . . .  , tu}, Re A o > 0 and T is compact .  L e m m a  1.1 yields 

P~k O-'P~kPAk OP~k = -P~k O-I ( I -P~)OP~k  +P~, 

[]P~ O-  '(I -P~)  OP~k][ ---,0. 

Thus PA~OPA~ are stable. Fur the rmore  R e A o > 0  implies that  the opera tors  
Pj~ A 0 P~ are also stable. The stability of the opera tors  

P~kAP~=(P~, OP~)(P,~AoP~,)+ P~k O(i - P ~ ) A o P ~  + P~TP~k 

follows from L e m m a  1.1 and the fact that  T is compac t  (see, e.g. [10]). 
In the following two cases, condit ion (B) may be easily verified. 

Lemma 1.2. [22, 20], 

a) I f  m=l ,  then (B) holds at z~F if and only if b(z +_O)~O and 

/f 

V #e l0 ,  1]: {#(b-'a)(z+O)+(1-g)(b-~a)(z-O)}(:~(-o~,O]. (1.4) 

b) I f  a and b are continuous at zeF, then condition (B) holds at z if and only 

V #e l0 ,  1]: det (#a(z)+(1 - # )  b(z))#O. 

2. A Necessary Condition for the Convergence of the Galerkin method. 
A Collocation Method 

k k k In this section we assume all part i t ions to be equidistant - i.e. ~ri+ 1 - c r i - e j + ~  
-~r  k (V i , j=O .. . .  , n k - l ) .  Actually, there exist admissible sequences of equidis- 
tant  part i t ions In particular,  we can choose for a given set {t o . . . . .  tN}c_F a 
regular paramet r iza t ion  ~ such that  7(i/N)=ti and thus get an admissible 
sequence of equidistant parti t ions 

Ak:= {~rko:=O, a~ := l /kN,  ak 2:= 2/kN, ..., ak =1}. 

Now let us consider the Galerkin  method  (0.3) for the singular opera tor  A. 

Theorem 2.1. Let m = 1 and a, b~PC(F, if2). I f  {Ak} is an admissible sequence of 
equidistant partitions and the Galerkin method with respect to this sequence is 
convergent for A =aPr + bQrs~(LZ(F,, ~)), then A is strongly elliptic. 

Before we prove  Theorem 2.1, we introduce the same notat ions as in [19] 
for the collocation method,  and we construct  to this end a base of 
PSd(A k, ~m)(m >_-- l). On every interval (si, si+x) ( i = 0  . . . . .  N - l )  the demen t s  of 
this base differ f rom the functions ~ of Sect. 1 by at most  a constant  factor, 
however, because our  part i t ions are equidistant,  we can use the representat ion 
of [5], Sect. 4.2. 

Let ai=a~=i/n ( i = 0  . . . .  ,n), n=n k and ti=7(sl) , s i=kjn  ( i = 0  . . . . .  N). We 
denote the characteristic functions of  [sl, si+l] and [ - 1 , 0 ]  by Xi and H 
respectively and further, / /d+l  stands for the (d+ l ) - fo ld  convolut ion of H. 
Thus the space Sa(Ak, I~) (see Sect. 1) has the base 

t~j(s):=Hd+ l(ns--j) (j= 1 . . . .  , n+d). 
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For t=V(S ) set 

~01 (t): = (Zo ~ 0(s), ~2(t): =(Zo ~9(s )  . . . . .  ~ok, +d(t): = (Zo 0k~ +d)(s), 

~o~,+d+ 1(0: = (xl ~ 1 +  0(s), 

(Pkl +d+ 2(t) : =  ()(1 I~kl + 2)(8)' " ' ' '  (Pk2+ 2d( t ) : =  ()(1 ~k2+d)(S)' 

% + j~ + 1 (t).. = % q~k, + ,)(s),  % + i~ + 2 (t)= = % ~ + 2)(s) . . . . .  

q)kN-, + (N--1)d +1 (t) : =  0(N--1 ~/~kN- :t + 1)(S), 

q~k~- ~+ ( u -  1)~+ 2 (t): = ( z u -  1 q~k~-i + 9 ( 0  . . . . .  

~~ ud(t)" =(Zu- 1 ~,+a)(s) �9 (2.1) 

Every function q)~PSa(Ak, ~m) admits a representation 

n+Nd 
(P = E r q)i' r C{~m 

i=1 

and there exist suitable positive constants D1, D 2 such that out of (1.1) follows 

" + ~  I /n+Nd \1/2 n+Nd ][ 

with I~il:= [~i, ~i] 1/2 
We now fix z=7(~)6F and derive the subsequent necessary condition at 

point z (see Lemma 2.2). Using this condition, we shall obtain that condition 
(B) is necessary if m = l .  Moreover, for m>=l and d=0,  we get a stability 
condition for a certain collocation method. 

Inequality (2.2) allows us to identify the operators of ~C#(PSd(Ak, ~m)) with 
matrices over finite dimensional Euclidean spaces. For this purpose, we in- 
troduce associated operators analogously to [19]. Let 12(cm) be the Hilbert 
space of the following sequences: 

12(117m): = {~  : = {{~}~~176 -oo [ ~ 1 1 7 " ,  ll~ll < 00} ,  

11r r (~, r ] ) :=  ff] r~s, t/s]. 
$= _oo 

We introduce projections P, Q, PkeSe(/2OEm)) by 

{~0 ~ if s > 0  
P ~ : = ~ '  ~ : =  if s<0 ,  

Q:=I -P. 

For an i=i(g, k) (i~{0, 1 . . . .  , n}) and a j=j(a, k) (j~{0 . . . . .  N}), we have a~[i/n, 
(i+ 1)/n) and kj<i<kj+ 1. We set 

~ j '~  if -(i+jd)<_s<_(n-i)+(U-j)d-1 
P ~ r  ~s . .=  - _ 

0 otherwise 
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and define 
Ek: i m p  k ~ PSe(A,, tE"), 

Ek ~: = V n  {~-(i+je)(P1-4-- ~ - ( i +  jd)+ 1 ~02 A t ' ' "  

~- ~0 q)i-l- jd+ 1 -~ ~ 1 q)i-l- jd+ 2 "~- ""  "~- ~(n--i)+tN-- j ) d -  1 q)n+ Nd}" 

(Thus Pk, Ek are chosen in such a manner that E~-l(pi+ja+l={3i, o}i~_o~; 
however, (Pi+~d+l is an element of the base of PSd(AR, 112"), the support of 
which contains z = y(~r).) To every operator B k ~ ( P S d ( A  k, ~")) we associate the 
operator Bk ~ = E~- 1 Bk Ek~ ~ (im PR), which can be identified with 

If the Galerkin method converges, then the operators 

Ak : = Pak AP~k ~ 5fl (PS a (A k, 112m)) 

are stable. By (2.2) the same fact holds for the sequences {~]k} and ~* {A k }, where 
/]* denotes the adjoint operator in ~(lZ(Cm)). Hence the strong limit of {.4k}, 
the adjoint of which is the strong limit of ~* {A k }, is invertible. 

Now we examine the limit of {'~k}" The convergence of {4*} is derivable in 
the same way. We set 

c.. = 1/2(a+b), d.'= 1~2(a-b), Ck: =P~ cPd~, dk'.=PA dP~, Sk:=P~ SrPdk. 

Then, by Lemma 1.1, {'4k} has the same limit as {Bu:=~k+JkSk}. 

Lemma 2.1. (i) For ae(O, 1) the following statements are valid: 
a) {Ck} converges strongly to (c(z + O) P + c(z --0) Q + T1), where T 1 sL, e(l 2 (112")) 

is compact. 
b) {Sk} converges strongly to (C(p)+ T2), where Tze~'(12(C')) is compact 

and C(p) denotes the operator of convolution generated by the following function 
(see [19]): 

sign (r + 1/2) 
(s + 2rrc)2(a+ 1) fEZ p(s): = (ss[0, 2~]). 

1 
2 (s+2r~)2(a+l) rEZ 

(ii) For or=0 or tr= 1 the following statements are valid: 
c) {Ck} converges strongly to (c(z) P + 7"1) or (c(z) Q + T O, where T 1 e ~ ( i m  P) 

and T l e ~ ( i m  Q) are compact respectively. 
d) {Sk} converges strongly to (PC(p)P+T2) or (QC(p)Q+T2), where 

T 2 e ~ ( i m P  ) and T2e&~ Q) are compact respectively. 

Proof. We prove (i). Assertion (i!) is demonstrated analogously. 
Let ~re(0, 1) and denote by w(c, h) the modulus of continuity of co7: 

w(c, h): =sup {Ic(7(x)) -c(7(y))I [ x, ye[0,  1], I x - y l  <h, siC[x, y]U= 1 . . . . .  N)}. 

Further, G k is the following matrix, which will be identified with the corre- 
sponding operators in imP k or 12(C"): 

~](n-i)+(N--j)d-  1 Gk:-~(n(~Os+i+ja+l, (Pr+i+jd+lH . . . . .  (i+jd) " 
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Writing down the matr ix  of  c k corresponding to the base {~o~}, we obtain 

~ ( n - i ) + ( N - j ) d -  1 
Ck ~- G~ 1 (n (C(Pr+i+jd  + 1, @s+i+ jd+ i n s  . . . .  (i+jd) 

An easy computa t ion  yields (choose any a',+i+jd + l e supp  q~r+i+~d+ 1) 

[,,~ . ' ~ [ r  ~]~(n--i)+(N-j)d--I  G k _ I _ O ( w ( c ,  l / n ) )  (2.3) Ck = G~ 1 tVr, s ~',Ur+i+ jd+ 1]Hs, r= - ( i +  jd) 

where O(w(c, I/n)) denotes a matrix,  whose opera tor  n o r m  is major ized by a 
constant  mult iple of w(c, 1/n). This term thus becomes negligible in our  further 
considerations. Inequali ty (2.2) leads to 

O~-2(~ Iffsl2) < n(y, ~s ~0s, ~ ~, ~P,)< O l Z ( ~  [~l 2) 

D2 2 [l{r 112 <({~s}, ak{~s})<D; 2 H{~s} II 2. 

Hence, G k is invertible and {G~}, {G~-I} are uniformly bounded.  
N o w  let u, vzZ ,  d<lu l ,  I v l < m i n { l i - k ~ l - d l s = O ,  . . . , N ;  ks#i} ,  u l = u + d ,  v 1 

= v + d  for u, v < 0  and i=kj .  For  u, v > 0  or i#k~,  we set u~=u ,  v~=v.  If i # k j  
or u > 0, then 

~Ou+i+jd+ 1 = ( P k j + j d + ( i - k j + u +  1) = Z j l f f k j + ( i - - k j + u +  1) = Iffi+ut+ 1" 

If i = kj and u < 0, then 

( r  l + u + d + l  

=X j -  1 d)g~_ ~+(i-kj_,+,+d+ n = (li+~+ 1, 
therefore, 

(Gk),, ~ = n(cP~+i+jd+ 1, ~Ou+i+jd+ 1) 
1 

= , ,  S 0,+o,+ ~(s) ,~,+o, + ~(s)Ir ds 
0 

= ~ Hd+ l(S --(i + u 1 + 1)) Hd+ I(S --(i +V 1 + 1)) ]~'(s/n)l ds. 

Consequently,  (Gk),, ~ = 0 for u" v < 0 and by holding u and  v fixed, we obtain 

lim (Gk)~, ~= [7' (a)] ~ H d+ l (s --(u 1 --vl) ) Ha+ l (s) ds 
k ~  

= 1~,(0.)1 ~ e - i ( u l - V l ) S  IFFIa+ l(s)l ads, (2.5)  

where FHd+ ~ denotes the Four ier  t ransform of Ha+ 1. This  means 

FH~+~ = (1 /~ - )~ (en )  "+ ~, 

(Fll)(s) = 2 1 / ~ -  sin s/2 e_i.s/2, 
S 

(sins/2~2(d+ 1) 
IFHd+ 1 (S)l z = 1/2g \ s ~ 2 - - !  " 
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Substituting the last equat ion in (2.5) yields 

2~ 

lim (Gk),, ~ = 1/2~z ~ e - i (" ' -~)~ ((s)ds, 
k~oo 0 

1 
~(s): = 4 tn + 1)lT'(tr)[ (sin s/2) 2r 1)rzZ ~ (S d- 2r~z) 2td+ 1), 

lira (Gk),, ~ = 0 (for u- v < 0). 
k~c~ 

For  lul, Ivl<d, we compute  lim(Gk),, v in an analogous way. Thereby we have 
in Eq. (2.5) the produc t  of Ha+ 1 with some characteristic function instead of 
Fld+ 1. Since only ( 2 d + l )  diagonals of G k have non-zero elements, one easily 
concludes that  G k converges strongly to  ( C ( ( ) + T 3 )  , where TaE~(12(~m)) is a 
suitable opera tor  of finite range. The appearance  of opera to r  T 3 is explained by 
the fact that  (2.5) does not hold for i=k j  and [ul, Iv l<d ;  however  T 3 = 0  if 
i#: kj. Out  of sup II Gk 1 I[ < oe and G k ~ (C(() + T3) follows that  G~- 1 converges 

k 

strongly to (C( ( -1 )+T4) ,  where Y4u~fl(lZ(~m)) is compact .  Now a) is an easy 
consequence of (2.3). 

For  d < l u[, ]vl < min  {Li - k,I - d [ s = 0, . . . ,  N;  k~ + i} we obtain analogously 
to (2.3) and (2.5) 

~.-O+~N-~)d- 1 Sk = G~- 1Dk D k : ~ ( Y l ( S F ~ g r + i + j d + l , ~ O s + i + j d + l H  . . . . .  (i+jd) , 

lim (Dk),,, ~ = IT'(a)[ ~ ( S ~ l / ] d +  1 (" --(~)1 -- Ul))(S)/-/d+ 1(S) ds 
k~oe F. 

= - lT ' (a) l  ~ e -i("~-~)~ IFIla+ l(s)l 2 signs ds 

2n 

= 1/2~ ~ e -i~"'-~)~ O(s)ds, (2.6) 
0 

where 
sign (r + 1/2) 

0(s): = - 4 ~d+ 1)[•'(0")[ (sin s/2) 2(a+ 1)~ (s -4- 2r~z) 2(a+ 1)" 
r~Z 

The techniques of the proofs of L e m m a  3.1 and L e m m a  2.3 in [19] show that  
Dt + C(9) for i # k j  (i.e., zr  o . . . . .  tu}) and 

Dk-- . (PC(O)P+QC(O)Q+PC(OOQ+QC(O2)P+Ts)  for i=kj ,  

where 01(s):=eid*O(s), 02(s)=e-ias0(s). The finite range opera to r  T 5 appears  
here, since (2.6) does not hold for i=k~ and lul, Ivl<d. For  i=k j  and [u[, Ivl<d 
we have a formula  analogous to (2.6), where again a product  of He+ 1 with 
some characteristic function appears  instead of Ha+ 1. Now PC(01)Q =PC(O)Q 
+PC(03) Q, where 

03 (s) = ( e ia~ - 1) O(s). 

Since 03 is a 2n-periodic and cont inuous function on l / ,  the opera to r  PC(03)Q 
is compact .  Consequently,  we obtain  DR~(C(O)+T6), where T6~Sf(12(l12m)) is 
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compact. In any case, we have derived Sk=G~-IDk~(C(p)+T2) for a suitable 
compact Tze~(12(ll?")), and the proof of Lemma 2.1 is complete. 

After defining 

A~:=P(c(z +O)+d(z +O) C(p))+g(c(z-O)+d(z-O)  C(p)) (z~F), 

B':=P(c(z +O)+d(z +O) C(p))P (z=?(O)), 

C~:=Q(c(z-O)+d(z-O) C(p))Q (z=~(1)), 

Lemma 2.1 yields AkO(A~+ T) for a~(0, 1), .,~k~(B*+ T) for a = 0  and .4R~(C ~ 
+ T )  for a = l ,  where T is compact. If further zr o . . . . .  iN} or d=0,  then the 
proof of Lemma 2.1 yields T=0.  The limit of {Ak} established above and the 
considerations preceeding Lemma 2.1 lead to 

Lemma 2.2 (i) Let F be a closed curve. I f  the Galerkin method with respect to an 
admissible sequence of equidistant partitions {Ak} converges for the operator A, 
then the operators A~(z~F) are Fredholm operators with index 0. 

(ii) Let F be open. I f  the Galerkin method with respect to an admissible 
sequence of equidistant partitions {Ak} converges for the operator A, then the 
operators AT(')(a6(0, 1)), B r(~ C ~(1) are Fredholm operators with index O. 

(iii) I f  in addition m = l  or d=0,  then the operators A ~, B ~, C ~ of (i), (ii) are 
invertible. 

Proof of Theorem 2.1. Let m=  1. If the Galerkin method converges, then 
Lemma 2.2 implies that operators A~(z~F) or A r(~) (aE(0, 1)), B ~(~ C ~(~) are 
invertible. Now one shows analogously to the proof of Corollary 4.2 in [19] that 
(1.4) is satisfied. Thus the strong ellipticity follows via Lemma 1.2. 

Finally, we consider the collocation method described in [19]. Assume F 
closed and Ak:={O=a o, ax=l/k,  a2=2/k . . . . .  a k = l  } (k=n). We seek a piece- 
wise linear approximation xa~ of the solution x of Ax-=y satisfying 

Now define 

(Ax~k)(?(j/k)) =y(y(j/k))(j =0 . . . . .  k - 1). 

[ 7 (0-7( (J-  1)/k) 

~)(~, (s)): = [ ~, (U  + 1) /k )  - ~, (s) 

if s~[(j-1)/k,j/k] 

if s~[j/k, (j+ 1)/k] 

otherwise 

(2.7) 

k - 1  

and K~f:= ~ f(?(j/k))~k~ k). Obviously, tvj~'/'(k)~k-l,i=o is a base of the space 
j = o  

SI(Ak, IF.") of all piecewise linear (linear in t =  ?(s)) functions subordinate to A k 
and K k is the interpolation projection onto this subspace. Equations (2.7) are 
equivalent to 

KkAXak=KkY. 

In [19] we proved that if A is invertible and the operators KkAlgx(Ak, ~") 
are stable, then xa~(k~oo) converges to the solution x of A x = y  for all 



On Spline Galerkin Methods for Singular Integral Equations 111 

continuous right-hand sides y. We also gave a necessary and sufficient con- 
dition for stability of the aforementioned convergence scheme (see Theorem 4.1 
in [19]). We now state 

Corollary 2.1. Let a ,b~PC(F,  figm• I f  the invertible operator A = a P  r 
+bQr~oSf(L2(F, fig~)) is strongly elliptic, then the approximate operators 
K kA  [ ~l (dk, figr~) of the collocation method (2.7) are stable. 

Proof. By Theorem 1.1, the Galerkin method with respect to any admissible 
sequence of equidistant partitions converges for A. Therefore, Lemma 2.2 
implies the invertibility of the operators A~(d =0). However, operators A~(d=0) 
coincide with the associated operators A~ of Theorem 4.1 in [19]. Theorem 4.1 
of [19] yields Corollary 2.1. 

3. The Asymptotical Order of Convergence 

For smooth curve F, let HS(F) (stiR, s>O) be the usual Sobolev space of order 
s on E By H ~ ...,tN(F) we denote the sum HS[to, t l ] O . . . O H S [ t N _ l ,  tN], where tO, 

[ti, ti+l] is the arc on F with the end points ti, ti+ 1. 
For e an arbitrary positive number satisfying ~<max (s i - s  i_ 1) (i= 1 . . . .  , N), 

we choose the partitions A k such that 

, = ,  . . . . .  

- \~vd  I 3 

AkC~[O,e)={(N-kf~ j e N }  c~ [0, ~) 

Ak~( l - - e ,  1 ] = { 1 - - ( ~ f  ~ j e l N } ~ ( 1 - e ,  1], (3.1) 

where fl~(fli>l) is a given real number and NkeN. In addition assume Nk--)oe 
(k ~ oo) and the existence of a positive constant C with 

h~k<Cl/Nk,  C-1N<=nkNCNk .  (3.2) 

If fl; = 1 ( i=0 . . . . .  N), then equidistant partitions satisfy (3.1) and (3.2). 
For  functions a, bePC(F,, fig) continuous on F\{ to ,  ..., tN}, we set 

1 (a(tj+O) b( t j -O)]  
~cj: = ~  In \a ( t j -O)  b(t j+O)]'  

where In denotes the continuous branch of the logarithm in f ig \ ( -  o% 0] which 
takes real values on the positive real axis. Further, if F is open, set a(t o - 0 )  
= b(t o - 0 )  = a(t x + O) = b(t N + O) = 1. 

Theorem 3.1. Let {Ak} satisfy (3.1) and (3.2), a, b e l l  t'+2 ...... tN(F) (re~N), 1 /2+r  
+ Re xi < s < 3/2 + r + Re ~c i ( i=0  . . . . .  N), A =aPr + bQr be invertible in L2(F,, fig) 
and strongly elliptic. I f  y~Hto ..... t,;(F), x = A - l  y and x~k is the solution of  (0.3), 
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then 
LI x ~  - x  ]lL~tr, ~) < Co(1/ng)U( In rig) ~, 

where C O is a constant and 

p: =min  {s, d+  1, ill(Re ~ +  1/2) [ i=0  . . . . .  N}, 

{~ /2 /f s>=d+l and m i n { f l i ( R e K i + l / 2 ) , i = O  . . . . .  S } = d + l  
v ". = otherwise. 

For simplicity sake, we shall prove Theorem 3.1 for the following special case 
only (see Theorem 3.3). Let F=(0,  1), a, beC[O,  1]. Thus instead of the "criti- 
cal" points {t~li=0 . . . .  , N} we have merely the "critical" points {to=0 , tN= 1}. 
We now follow the ideas developed in I-9]. First we determine the asymptotic 
behavior of x = A- 1 y at 0 and 1. From the proofs in [9], Sect. 2, we conclude 

Theorem 3.2. Assume a,b~H'+2(O, 1) (reN), A=aP(o, 1)+bQ(o, 1) invertible in 
L2((0,1),C) and y~HS(0,1), where R e K i + l / 2 + r < s < R e ~ c i + 3 / 2 + r  (i=0,1). 
Then the function x = A -  1 y has the representation 

X( t )=Xo( t )+U ~ ~ ~ O~m, stm(lnt) s 
m=O s = 0  

+(1--t) ~ ~ ~ tim, sO-t)m(ln( 1 - t ))  ~, 
m=O s=O 

where xo~HS(O, 1) and ~ . . . .  flm,~e~. 

If X4, is the solution of (0.3) and x =A-1  y, then 

IIx - x ~ll <= C tlx - P~kxll .  (3.3) 

(See, e.g., [10].) Thus the proof of Theorem 3.1 for the immediately preceeding 
special case requires only estimating II(I-P~) x[]. 

Lemma 3.1 (see, e.g., [9]). I f  xoeHS(O, 1), then there exists a constant C such 
that 

[I (I - Pak) Xo I1L2(r, r < C(1/nk) min(s" d + 1). 

For further estimates, we need the quasi-interpolant Q~k introduced by 
de Boor [7], 

nk-- 1 "l / ( T i  +d+ 1 --O'i  
Q4~g := Z 2 , (g )0 , [ /  ~ -  , 

i=- -d  

where ~ is defined as in Sect. 1 and 

d 

2i(g).'= ~ (-1)a-J~la-J)(zl)g(J)(zl) (i = - d  . . . . .  nk--1), 
j=o 

O,i(t ): =(t  --~i+ 1)"" (t --~i+a) " 1/a !, 

zle(cri, t~i+a+ 1)n [1/2t71, 1]. 

The operator Qa~ is a projection onto Sa(Ak, ~E). 

(3.4) 



On Spline Galerkin Methods for Singular Integral Equations 113 

Lemma 3.2. For any (d + 1)-times continuously differentiable function f on (0, 1), 
the estimate 

6"t+ 1 

S I f -Qz~ f l2<C(a i+a+l -a i -d -O  2(a+1)+1 max If(d+ 1)(t)12 
q z tq[Gi-d bG1+d+l] 

( i = 0  . . . . .  n ~ -  1) 

holds, where C is a constant independent o f f  and n k. 

(3.5) 

Proof. For te[al, ai+l] ,  we obtain 

f ( t ) -  ~ fo)(ai) (t-al)J < j = 0  ~ .  = C((7i+ l --ffi) (d+ l),~t",,max~,+ ,1 Iftd+ l)(t)[ 

in particular, 

~';' f(t)  ~, ~ 2  --Gi) 2(d+ 1)+ 1 [f(a+l)(t)12 - f~ dt <= C(ai+ 1 max . 
tri j=  0 t~[a,, a, + 1] 

(3.6) 
On the other hand, 

Q~f ( t )  ( d ) Yd f(~)(ai) (t_ai)j = Qz~ ~ f(J)(ai) ( ' -al)J -f (t) 
j=-'o J ! -j= o J ! 

=~i-i+ l I a f(J~(al) ~( t )  

and (1.1) yields 

~ ~=o (t-ai)~ Q~ f ( t )  2 fti)(al) dt 
~, j J! 

C (O'i+d+ 1 2 f(J)(O'i) (" -O'i)j 2. 
- ~ = i - a  j=o J! f 

a ( t--O'i)  j 
Setting g ( t ) = f ( t ) -  ~ fu)(ai) ~ . ,  we obtain 

j=O 

[g(J)(TS)[  ~ C ( o ' i + d +  1 - - O ' i - - d -  1) d +  1 - j  m a x  If(d+ 1)(t)l 
te[ai - d -  1, a~ +d+ I] 

and 

Ico~a-J)(L)t < C(ai+d+ 1 --ai-a- 0 j (s = i - d  ....  , i+ 1). 

Therefore, by means of (3.4) we have 

12~(g)[ < C(ai+d+ 1 --ai-d- 1) a+ 1 max I f  (d+ 1)(t)[. 
[ 5[O't d l , G i + d + l ]  

From the last inequality and (3.7) we obtain 

(3.7) 
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'~'~' a ( t - a i )  j Qn~f(t) 2 f~ j!  dt 
a~ j= 0 

~2(d+ 1 )+1  If(a+ 1)(012 N C(tTi+a+ 1 - - a i - d -  1) m a x  
te[eft - a -  1, ~ + a + 1] 

which together with (3.6) implies (3.5). 

Lemma 3.3. Let {Ak} satisfy (3.1) and (3.2) and f(t)'.=t~+ir (~, f l~. . ,  ~> 
-1 /2 ,  rr Then there exists a constant C such that 

][ (I --P~) f I1 L~<(O, ~), C) < I1 ( I  - -  QA,,)  f I[ L~((o, a), r 

1]P~ ~)(ln nk)r if f lo (~+�89  1 
n k / 

_-<C - -  (lnnk) 2'+~ if f l o ( a + � 8 9  
\ n  k / 

n k !  

(3.8) 

Proof Considering Lemma 3.2, sup if(d+1)(0 I< ~ and lai+~+, 
-a~_ a_ ~[<= C 1/n k we can easily see that t<~, ~1 

1 

[f  --QA~ f[2 <= C 1/n~ ~d+ 1) 

Consequently, we may assume without loss of generality ~= 1 (see (3.1)) - i.e., 
al = ffk = (i/nk)PO (i = 0, 1 . . . . .  nk). 

Let i__>2(d+1). This implies 

(r 1 - - a i - d - -  1) ~ C(i/nk) ~~ ~ 1/nk, 

max If  (d+ a)(t)l < C(i/nk)~~ 1)(ln i)~(ln nk) ~ + C 
t e [ ~ i -  d -  l ,  a i  + d + l ]  

and Lemma 3.2 yields 

1 nk 

I f -Qakf[2<= C ~ (1/nk)z(a+l)+l(i/nk) (p~ 
az(a+ L) i= 2(d+ 1) 

�9 {(i/nk) 2~~ 1)(ln i)2~(ln nk) 2" + 1}, 

Q2(!+, [f  _Qd~f l z ) l / z  < [(1/nk)tJ~ l/E)(lnnk)r 
= Cl(1/nk)a+ 1(1 n rig)Z,+ 1/2 

( (1/nk) a+ l(ln rig) :r 

For i < 2(d + 1), we have 

]o~a-J)(zs)[ _<_ C(1/nk)P~ "J, [fU)(zs)] ~ C(1/nk)~~ nk) ~. 

if r i o ( a + l / 2 ) < d + l  

if f l o ( ~ + l / 2 ) = d + l  (3.9) 

if f l o ( ~ + 1 / 2 ) > d + 1  
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Now, (3.4) and (1.1) together yield 

a2(a+ 1) 2(d+ 1) 

IQakfl2 <(aa(d+ l)--ao) ~ l)%(f)l z< C(1/nk)#~ l)(ln nk)z% 
0 s=O 

whereas 

IQ~ f l  ~ C(1/nk) e~ '/2)(ln nk)% 
\ 0 

(3.10) 

[2,!+1, y/2 
[fl 2 < C(1/nk)l~~ l/2)(lnng) r. (3.11) 

Finally, (3.8) follows from (3.9), (3.10) and (3.11). 
An immediate consequence of Theorem 3.2, (3.3), Lemma 3.1 and Lemma 

3.3 is the following special case of Theorem 3.1. 

Theorem 3.3. Let  a, b ~ Hr + 2 ( O, t ) ( r ~ N), A = a P~ o, 1) + b Q( o, 1) be invert ib l e in 
L2((0, 1), C) and strongly elliptic, y~H~(0, 1), where Re ~:i+ 1 / 2 + r < s < R e ~ % + 3 / 2  
+r  (i=0, 1), and {dk} satisfy (3.2) and the second and third formula of  (3.1). I f  x 
= A -  1 y and xak denotes the solution o f  (0.3), then 

II x ~k - x II L 2~o, a ), c) 5 C ( 1 / n O  ~ (in nk) v, 

where C is a constant and 

#'.= rain {s, d + 1, flo(Re tr o + 1/2), fl, (Re xl + 1/2)} 

{~ /2 /f s > d + l  and min{ f lo(Re~:o+l /Z) , f l l (Re~: l  + l / Z ) } = d + l  
v: = otherwise. 

Remark. Theorems 3.2 and 3.3 remain true for operators A=Pm, a)a+Q~o, 1)b 
and functions ysH~(O, 1) satisfying 

y(k)(O)=y(k)(I)=O, k=0,  1 . . . . .  I s -  1/2]. 

Similarly, Theorem 3.1 can be proved for operators A = P r a + Q r b  and func- 
tions yeHS(F). 

4. A Numerical Example 

Let us consider the equation 

' x(t) 
x(s) - 1/n [ dt  = 1 

2 a t - s  

which has the exact solution 

1 (1--s~ lj4 
x ( s ) = ~  \ l + s !  " 

(4.1) 
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Using Galerkin's  method we determine a piecewise constant  approximate so- 
lution for x (i.e. d = 0). 

If  we set a - 1 - i ,  b-= 1 + i, then the integral operator  A defined by the left 
hand side of  (4.1) takes the form (0.2). Obviously, A is strongly elliptic (see 
Lemma 1.2) and with the notations of Sect. 3 we have 

Re ~o = - 1/4, Re ~c 1 = 1/4. 

Thus, according to Sect. 3 we set 

o ' / =  - 1  + rig~-- ~ , a,,~_ j : =  1 -- nk/~  , j = 0 . . . . .  nk/2, 

Ak ' =  (ao . . . . .  % } .  

By exact computa t ion  of system (0.3) we obtain the following results. 

Table 1 

nk = 2k [Ix~ -- X II L2 
In IIx~--xllL=--ln [Ix~k , --XblL2 

2 0.470 
4 0.337 -0.48 
8 0.196 -0.78 

16 0.107 -0.87 
32 0.057 -0.92 
64 0.029 -0.95 

Inn k - Inn k_ 

If  the logari thmic error In [IXA--XlIL2 is considered as a function of l n n  k, 
then the last table shows that the slope of this function tends to - 1 .  This fact 
confirms Theorem 3.3 which asserts IIx~--XlIL2 ~ 1/n, .  In the next table we will 
compare  the Galerkin approximat ion with the true solution at interior points. 

Table 2 

t~[ - 1, 1] xa~(t ) XA,(t ) Xa.(t  ) x( t )  

-0.95 1.099 1.696 1.775 1.773 
--0.8 1.099 1.308 1.202 1.224 
-0.5 1.099 1.034 0.950 0.930 

0.5 0.515 0.526 0.535 0.537 
0.8 0.354 0.404 0.411 0.408 

In  his paper  [28] Thomas  implemented and applied Galerkin's method to 
the same equation. By augmenting the space of piecewise linear functions on 
[ - 1 + 6  o, 1-(51] with the singular functions ( l + s )  ~~ on [ - 1 , - 1 + 6 o ]  and 
( l - s )  ~' on [ 1 - 6 1 ,  1], he formed a new trial space and obtained a better 
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approximation. This modification could be useful also in calculation with 
splines of higher order. The reader can readily verify the same asymptotical 
order of convergence for the modified method. 

Acknowledgement. The authors would like to thank A. Pomp for the realization of the com- 
putations summarized in the tables of Sect. 4. 
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