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1. Introduction 

The Richardson extrapolation to the limit is a common way of increasing the 
accuracy of low order finite difference schemes applied to ordinary as well as to 
partial differential equations. Its success depends on the presence of asymptotic 
error expansions of the type 

uh(z ) = u(z) + ~ h2ke(k)(z) + o(h2"), (1.1) 
k=l 

in mesh points z, where the coefficients e(k~(z) are independent of the mesh size 
parameter h. For elliptic equations in more than one dimension the derivation of 
such expansions usually relies on some kind of discrete maximum principle 
satisfied by the difference operator; see, e.g., [13, 1], and the literature cited there. 
Recently, it has been shown in [-6, 7], and [8] how one can obtain error expansions 
for the Ritz projection method applied to the Dirichlet problem 

- d u = f  in f2, u=b on Of 2, (1.2) 

on a convex polygonal domain f2 C R 2. For linear finite elements on a uniform 
triangulation there holds 

uh(z ) -- u(z) + h2etl)(z) + Rh(z; u), (1.3) 

in nodal points z, where Rh(z;u)=O h31n~ , provided the solution u is 

sufficiently smooth. The proof uses finite element techniques and, therefore, also 
applies to some cases where no strict maximum principle is available. 

* The work of the second author was partially supported by the Gesellschaft f'tir Mathematik und 
Datenverarbeitung (GMD) 
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In the present paper we improve and extend the basic result (1.3) in several 
respects. The remainder term is shown to be globally of the order O(h mint4"z +~/,ol), 
where o9 ~ [n/3, n) is the maximum interior angle of 0f2. In the interior of O the 
order is at least O(h4). In order to allow for more flexibility in approximating 
general polygonal domains, we also consider triangulations which are only 
piecewise uniform with respect to some macro-triangulation. Then, the expan- 

sion(1.3)remains valid with a remainder term of the order O (h"  In ~) ,  in the nodal 

points having positive distance from the vertices of the macro-triangles. Finally, in 
the case of a curved boundary we show that extrapolation may increase the order 

O (h3 lnh),  at least in the interior offL These theoretical results of the scheme to 
\ . - /  

are confirmed by some numerical tests which are reported in Sect. 6. 
The key to our results is an exact representation formula for the error 

(u - uh) (z) given in [7]; since this source is not generally available the argument is 
repeated in Sect. 2 in full detail. The estimates of the remainder terms are based on 
sharp D-error estimates for discrete Green functions which are proven in the 
Appendix by using the methods of [4], and [9]. 

The presence of the asymptotic expansion (1.3)justifies the use of Richardson 
extrapolation to the limit h = 0, for increasing the second-order accuracy of linear 
finite elements at least to order three, or four. For  example, let Th be a (locally) 
uniform triangulation of a smoothly bounded domain and let the triangulation 
Th/2 be generated from T h by dividing each triangle as usual into four congruent 
subtriangles. Then the known error behavior of linear finite elements, 

uh(z) = u(z) + O (hZ ln h) , 

for z e f2, may be improved to 

~(4uh/2--Uh)(z)=u(z)q-O(h31n~), 

for interior nodal points z belonging to T h. A similar result can also be obtained for 
the approximation of the gradient Vu. 

In the following, LP(O), 1 < p__< ~ ,  and H'(O), H~(O), W re'p(12), m e N, are the 
usual Lebesgue and Sobolev spaces, respectively. The symbol c is used for a generic 
positive constant which may vary with the context but is always independent of the 
mesh size h. 

2. Error Representation on a General Triangulation 

We consider the model Dirichlet problem 

- A u = f  in t2, u=b on 012, (2.1) 

where 12 is a bounded Lipschitz domain in R z, and f and b are smooth functions. 
For  the following, the solution of (2.1) is assumed to be sufficiently smooth, say 
u ~ C2"(~), for some n ~ 1. 
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Let Th= {K} be a finite regular tr iangulation of f2 of width h with all its 
boundary  vertices on 3ft. Here, the term "regular" means that the triangles K �9 T h 
meet only in entire c o m m o n  sides or in vertices, and that  each K �9 T h contains a 

circle of radius ch and is contained in a circle of radius l-h, with a constant  c 
C 

independent of  K and h. Below, we shall most ly consider "uniform" triangulations, 
generated by a set of  three direction vectors. Corresponding to Tn, we define the 
following finite element spaces 

S h = {O h �9 C(~'~h) lV h linear on each K �9 Th}, 

S~149 on ~?f2h}, Q h = U { K  �9 Th}. 

The Ritz projection u h �9 Sh of the solution u of (2.1) is determined by the condit ions 
uh(P) = b(P), for nodal points P �9 0~2, and 

Y VuhVqOhdX = f f tphdx,  for all rph �9 S O . (2.2) 
f~h ~h  

We shall compare  u a with the piecewise linear interpolant ihU �9 S h of U. To this end, 
for any fixed z �9 f2 h, let gT, �9 S o be the discrete Green function defined by 

f VrPhVv~dx=~Oh(Z), for all q ) h e S  0 . (2.3) 

In the following we suppress the subscript z. Since u a -  ihU �9 S ~ there holds 

P3 

(uh--iau)(z)= ~ ~7(ua--ihu)VghdX= ~ V(u--ihu)Vghdx= Y~ Ik, (2.4) 
~dh ~Qh K ~ Th 

(If K qt f~, u is thought  to be smoothly extended to all of  ~x.2.) 

Let K �9 Th be an arbi t rary fixed triangle. We use the notat ion A for its area, and 
Pi(i = 1,2, 3) for its vertices in counter-clockwise ordering. 

n 2 

t 2 

where 

PI 

t~ n~ 

S I 

t 3 S 3 P2 

n 3 

Fig. 1. Si side of K opposite to Pi, hi length of Si, nl outer normal unit vector along Si, ti tangent unit 
vector along Si, D i directional derivative along S, N i nodal basis function, Ni(Pj)=6~: 

Ik = S V(U--ihu)" VghdX = ~ (U--ihu)n" Vghds. 
K 3K 
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Lemma 1. On the triangle K,  there holds 

3 

VNI=O , 
i = 1  

V N i = -  n i ( i=1 ,2 ,3) ,  

2A 2A 
t i+l .n i  = hihi+a, t~ .n i+~-hihi+~ 

where the index i+ 1 is used mod(3). 

(2.5) 

(2.6) 

(i= 1,2, 3), (2.7) 

3 

Proof  (2.5) follows from Y. N i - 1  on K. Since Ni(Pj)=6i j ,  there holds D i N i - O  
i = 1  

and, consequently, VNi =-Hi-Xni ,  where H i denotes the height of P~ over S i. 
Hence, observing A = �89 we obtain (2.6). Finally, in view of the relations 
H1 =h2 coso~ and cosco=t2.n 1, there holds A =�89  which implies the 
first identity in (2.7) for i=  1. The others follow similarly. [] 

We split It: as follows 

3 

IK = Z IX), IX ) = S (u - ihu )n  i �9 Vgnds. 
i= 1 Si 

On $1, we have, using (2.5) and (2.6), 

3 
nl " VOh ==- ~, gh(Pi)nl " VNi 

i = 1  

={gh(PO-gh(P2)}nx"  17N1 + {gh(P3)--gn(Pz)}nl " VN3 

=-- -- h3D3ghn~ �9 VN1 + hlDlohnx �9 17N3 

hah3 {D3gh--nx " n3Dlgh} . (2.8) 
- -  2A 

Further, by the Euler-MacLaurin formula, there holds 

YI--I. 

(u-ihu)ds= Z Pkh~ ~ ~ D~kuds+h~" ~ Ms)D~"uds, (2.9) 
St  k = l  Sl  St 

where flk(k = 1, . . . ,  n -  1) are certain constants independent of h~, and 8,  ~ C~(Sa) 
c~C2(Sx). Combining (2.8) and (2.9), we obtain the identities 

12 ) = n 1 �9 VO, i ( u -  ihu)ds 
St  

n - I  

= h,h3 {D3gh- n~. n3D~g~} E P~h~ ~ ~ D~uds 
2A k = 1 S~ 

hlh3 ~ fl,(s)DZ"uds. + - -2A { O 3 9 n - n l  "n3Dlon}hZ"s~ 

The following considerations concern the case n > 2. 
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Lemma 2. For v ~ CX(K), there holds 

hi ~ vds-h3  ~ vds= hxhEh3 S D2vdx. 
ss s~ 2A x 

Proof. By the theorem of Gauss, there holds 

D 2 v d x =  ~ t 2 � 9  ~ t 2 �9 nlvds+ ~ t 2 �9 navds, 
K OK $1 S3 

and hence, observing (2.7), 

D2vdx = -- _ _  
K 

2A ~ vds + 2A ~ vds. 
hlh2 sl ~ ss 

[] 

We apply (2.11) to the integrals S D2kuds in (2.10), to obtain 
$1 

2A D39hk=, ~" flkh2k ~ ssl D2kuds- D2 D2kudx 

hlh3 n- 1 
2A nt'naDlgh Z fig hEk ~ DEkuds 

k=l S1 

hlh3 
+ ~ {Dagh--nl" naDlgh}h 2" ~ fln(s)D2nuds 

$1 

,-1 ~h2k+2 h2k+lh3 
= ~ D39hD2kuds - 

= kZ1  flk ( ~ 2 A - -  $3 2A 

h2k + 21~ In "] 
1 . ~ 2 " 3  ~ D39hD2D~kudx~ 

h2n+ l h3 
+ - -  ~ ft.(s) {D39h--n 1 �9 n3Otgh}D2"uds. 

2A sl 

- - n l  "na S Dlgh D2kuds 
$1 

For the area integrals there holds, in view of (2.7), 

D a g h D 2 D 2 k u d x  = - -  
K 

ghDaD2D2kudx + ~ t3 " nlghDED2~uds 
K St 

+ ~ t3" n2ghD2D2kuds 
$2 

2k 2A . ghD3D2D1 udx + ~ J ghD2D2kuds 
K tt l t t3 $;1 

2A S ghD2 D2kuds. 
h2h3 s2 

(2.11) 
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Inserting this into the above equation for I~ ) eventually gives us the identity (valid 
for n__>l) 

n /a 2k + 1 
'~1 { flk-T~ hi I DaghD~kuds--hanl "n3 I D,ohD~kuds 

k = 1 $3 $1 

-h2 I ghDzD~kuds+ h, ; ghO2D2kuds~ 
S~ S2 ) 

n - 1  h2k + 2/a /~ 
'~i '~2'~3 " + X flk ~ ~ghD3D2D~ kudx 

h~ n+ lh 3 ~ fin(s) (D3gh--na " n3D,gh} D2nuds. 
+ 2A s~ 

The corresponding identities for I~ ) and I~ ) are obtained from (2.12) by shifting the 
indices 1, 2, 3--*2, 3, 1, and 1, 2, 3~3,  1, 2, respectively. The representation 

3 
Uh(Z)=ihU(Z)+ ~ Z I~ ) (2.13) 

K e T h  i = 1 

contains all the information we will need about the behavior of the discretization 
error uh -  u. 

3. Error Expansion on a Uniform Triangulation 

In the following, let s be a convex polygonal domain and T h a uniform 
triangulation generated by the tangential unit vectors t 1, t2, and t 3. We shall 
evaluate the error representation (2.13) for this special situation. To this end, let h 
be some mesh size parameter with 0 < h < h  o < 1, and let A=~h z and hi=2ih 
(i = 1, 2, 3). 

? 

t2 pl S 3 P2~/ p t 3 

Fig. 2 

t~ 

If the identity (2.12) for I~ ) and its analogues for I~), I~  ) are summed up for all 
triangles K e Tn, the following simplifications occur. 
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(i) All line integrals in the first sum of the type 

Digh...ds, ~ gh."ds 
Si Si 

over interior sides Si are cancelled, since D~=-D~. The remaining boundary 
integrals also vanish since 9h = 0 on 8f2. 

(ii) The area integrals combine to 

n - - 1  

E~")(z; u)= )Z h2ke~hk)(z; U), 
k = l  

where 

e~k)(z; U)= [ i~= l udx 

(iii) The remainder terms add up to 

R~")(z; u )=h  2" ~ 2~'+121+2 q~i(z; u), 
i =  1 2= 

where 

~i(z; u)= Y~ ~ ft,(s) {Di+eg~h--ni .ni+2Dig~,}D2nuds, 
K~Th Si 

and the indices are used mod(3). Taking again into account that Di= -D~, and 
that gh = 0 on ~f2, the sums 4~i(z; u) reduce to 

4)i(z; u)= Y~ ~ fl.Di+Eg~D~"uds. 
KETh Si 

Let Pm denote the space of all polynomials of degree less or equal m. From the 
above observations we immediately obtain the following result. 

Lemma 3. I f  u ~ Pz, + 1, then there holds 

n-1 
Uh(Z)=ihU(Z)q- E h2ke(k)(g; U), for z~f2. (3.1) 

k = l  

As a particular consequence of Lemma 3 we see that on a three-directional 
triangulation the Ritz projection of a cubic polynomial coincides with its 
interpolant. 

Next, we state the basic result of this section. 

Theorem 1. I f  u~ C2"+~(O), for some e>O. Then, there holds 

n--1 
Uh(Z ) = ihu(z ) + Y~ h2ke~hk)(z; U) + R~")(z; u), (3.2) 

k = l  

where the remainder term is uniformly of  the order 0 h 2n In ~ if e = O, and O(h 2n) if 
~>0. 
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Proof. In view of the foregoing discussion, it remains to estimate the quantities 

�9 ~(z; u ) :  ~ ~ fl,Di+zghD~"uds. 
KeTh Si 

To this end, we use the regularized Green function ~ = ~z e H~(f2)c~HZ(f2) defined 
in the Appendix. In view of the relation 

S 17qgh" I79dx = q~h(Z), for all q~h ~ S~ 

the function 9h ~ S~ may be considered as the Ritz projection of 9. 
For ~ we have the estimate (valid on a general regular triangulation) 

HV(~--gh),,L. +hl, V2~, lz l=O(hlnh) .  (3.3) 

uniformly for z~12; see [4] and the Appendix. Since 0~H2(O), on a uniform 
triangulation there holds 

Z I fl.O,+zOO~"uds= Z I fl.0,+29 O2"uds. (3.4) 
K~Th Si SiCODh Si 

In view of (3.4), we conclude that, for u ~ C2"(0), 

Iq'~(z;u)l <c E ~ [V(#--oh)lds+c ~ IVglds. (3.5) 
Ke Th OK OOh 

Hence, by a trace theorem, 

I~i(z; u)[ < c{h- a II 17(~- 0~)IIL1 + II V291IL~} �9 (3.6) 

This clearly implies the desired representation (3.2), for e = 0. 
Next, let u ~ C 2" § ~(0), for some ~ > 0. In order to remove the logarithm, we 

have to treat the remainder terms ~(z;  u) more carefully. Let p e P2, be the 2n-th 
order Taylor polynomial of u, at the point z, satisfying 

]D?"(u-p)(x)l<clx--z] ~, for xe l2 .  (3.7) 

In view of Lemma 3, there holds 

n--1  
uh(x ) = ihu(x) + ~ h2ke~hk)(x ; U) + R~")(X; u -- p). (3.8) 

k = l  

We shall use the weight function 

a(x) = az(X ) = ( I x -  z] 2 + tc2h2) 1/2 , 

where the parameter x > 1 is chosen sufficiently large such that 

max ~max a(x)/min a(x)~ < c, (3.9) 
K c T a ( x E K  [ x ~ K  k 
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uniformly for z ~ f2; for further properties of a(x) see the Appendix. Then, in view of 
(3.4) and (3.7), there holds 

I~ , (z;u-p) l<c Y'. [. a~lV(~-gn)lds+e ~ a~lV~lds. (3.10) 
K ~ Th OK ~g2h 

Using again a trace theorem and observing (3.9), we conclude from (3.10) that 

I~(z ;  u-p)l~c(h-lllcrq7(~-gh)ll, ,  + IIG~V2~IIL~-t-~llcr~- I VglIL~}. (3.11) 

Then, observing that llo -~- 2 IlL, < C, the assertion follows from the estimates 
8 

tl~' +~/2V(,j--gh) llL2 <Ch, (3.12) 

IIcr ~/2 V~71tL2 -4- IIo a + ~/2 VZ~711L= ~ c, (3.13) 

which are proven in the Appendix. [] 

Next, we want to derive asymptotic expansions for the error un-u,  with 
coefficients e (k) independent of h. To this end, we shall need more information 
about the regularity to be expected for the solution u of the Dirichlet problem (1.2) 
on a polygonal domain. Since s is convex, u ~ H2(f2). Further, u is smooth on 
interior domains f2 o C C t2. At the corner points zj the regularity may be reduced 
depending on the corresponding interior angles coj. Let (r j, 0j) denote local polar 
coordinates at zj. Then, u admits a representation of the form (see [12]) 

u = ~, ?jsj + a, (3.14) 
J 

wheresffi,  Oj)=r~/ Jsin .OJ , forcoj# ~ ,and~eC2+~(~)wi thsomee>O. In the  

special case (oj = 2 '  one has 

~ 2 , sj(rj, Oj)=r~(lnrjsin2Oj+Ojcos2Oj+ ~sin Oj) 

near the corner points zj. 
On a general regular triangulation of ~, there hold the convergence estimates 

Ilu_uhlIL~=[O(hX+~),, for 0 < ~ < 1 ,  (3.15) 

/ O ( h 2 1 n h ) ,  for ~ = 1 ,  

for u ~ C 1 +~(~); this may be proven, for instance, by the methods of [4, 9]. If the 
triangulation is uniform, we obtain the following 

Corollary 2. I f  u ~ C 2 + ~(~), for some e > O, then there holds 

Ilu- uhllL~o = O ( h 2 )  �9 (3.16) 
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This directly follows from Theorem 1, with n = l ,  and the interpolation 
estimate 

[lu- ihUllL~ = O(h2), (3.17) 

for u ~ W 2' ~163 For the weak solution of (1.2), there holds 

Ilu--uhllL~o)---- O(h2), (3.18) 

on any subdomain f2 o C O having positive distance from the corner points of 0f2. 
This local result also follows from the proof of Theorem 1, if one multiplies the 
Taylor polynomial p of u at the point z e s o by some smooth cut-off function ;(, 
separating f2 o from the corner points of 0f2, and observes that u eH2(f2) 

C 2 + e(o(.~ s u p p  (Z))- 
For a uniform triangulation with rectangular triangles the above logarithm 

free error estimate has been proven in [5], and earlier by finite difference methods 
in [2]. The estimate (3.18) even holds true if the triangulation is only required to be 
uniform in some subdomain containing f2 o. As a further by-product of Theorem 1 
we obtain the following super convergence result. 

Corollary 3. I f  u ~ C 4 + ~( 0), for some e > O, and if the uniform triangulation consists 
of equi-lateral triangles, then there holds 

(u - uh) (z) = O(h'), (3.19) 

uniformly in nodal points z E f2. 

On the equi-lateral triangulation we have 

21=22=23,  DI +D2+D3=O, 

and consequently, e~ 1)= 0. Then, the result (3.19) follows from (3.2), with n = 2. In 
this special situation the finite element scheme may be interpreted as a fourth- 
order Hermitian finite difference approximation on the equi-lateral triangular 
mesh; see [-3; Chap. V]. 

For the following, we denote by g=g~ the Green function of problem (1.2) 
corresponding to a point z ~ s and set 

212223 wtk)(x; U)= ~ f l k D 1 D 2 D 3  ~ 2[k+ lD2k- lu(x). 
i=1 

Lemma 4. The coefficients e{h k~ in the representation (3.2) are the Ritz projections of 
the functions 

etk)(z; U)= S wtk)(x; u)gZ(x) dx , 
f~ 

which are the solutions of the Dirichlet problem 

- A v = w  tk~ in f2, v=0  on dr2. (3.20) 

Proof. The assertion is an easy consequence of the symmetry of the Green 
functions, 9~(x)= gX(z) and 9~(x)= 9~(z). [] 
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Combining Lemma 4 with Theorem 1, we obtain the following basic expan- 
sion result. 

Theorem 2. Let u e C4+~(0), for some e>0.  Then, there holds 

uh(z) = u(z) + h2ett)(z; u) + O(h 4) (3.21) 

in nodal points z e f2 having positive distance from the corner points of Of 2. I f  the 

maximum interior angle ~o of Of 2 differs from 2' then 

Uh(Z ) = U(Z) + h2e~ u) + O(h mint4' 2 + ~/~ol) (3.22) 

holds uniformly in nodal points z e f2. 

Proof. By Theorem 1, we have 

Uh(Z) = ihu(z) + h2e~l)(z; u) + O(h 4) 

= ihu(2 ) q- h 2e(1)(z ; u) + h 2 {eth x)(z ; u) - el l)(z; u)} + O(h4). 

By Lemma 4, e~ ~) is the Ritz projection of the function e (1) satisfying 

- A e  (x)=w ~1) in /2, e ~1)=0 on Ol2. 

In view of the representation (3.14), we may conclude that e(a)~ C t +'(~) with 

�9 -- -- - 1 ,  for <~o<rc, and e(1)EC2+~(O) with some e>0,  for n zc ~o ~- ~ = < o ~ < ~ .  

Hence, by the error estimates (3.15) and (3.16), 

II e(l)("; u) - e(hl)(. ; u)II L~ -- o (  hmlnl2' ~/ml), 

which implies (3.22). The local expansion (3.21) follows in the same way by the local 
error estimate (3.18). [] 

. 
The case ~o = ~ is somewhat exceptional since here the regularity of e (~) is 

determined by local compatibility of the data. If 

21)]'223 fllD1D2D 3 ~ 23Diu(P~) = 0 (3.23) 
4~ 2 i= 1 

in the corner points, then e~)~C2+~(~), and (3.22) carries over to that case; 

otherwise the remainder term is of the reduced order O h ln~ . Condition (3.23) 

may always be satisfied by local modification of the data f,  b. 
A more careful analysis of the difference e~ ~)- e (~) yields an extended expansion 

of the form 

uh(z)=u(z)+h2etl)(z; u)+h4e~2)(z; u)+O(hmin[6'4+~/~ (3.24) 
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in interior nodal points z, where 

g2)(Z, U) ---- e(2)(z, U) -~- e(1)(z; e(1)( �9 ; u)).  

We skip the very technical details. 
Finally, we like to emphasize the fact that the proofs of our expansion results 

do not rely on any kind of discrete maximum principle, in contrast to most of the 
related results for finite difference schemes. In fact, the triangulations Tn are 
allowed to consist of triangles with obtuse angles in which case the discrete 
analogues of the model problem (1.2) are not of monotone type. This implies that, 
by a simple coordinate transformation, our results in a certain sense carry over to 
the case of a more general elliptic operator 

z 01 
A = -  ~ a U 

~,j= 1 OxiOxj 

with constant coefficients, which is not necessarily separable. 

4. Error Expansion on a Pieeewise Uniform Triangulation 

Let the polygonal domain f2 be subdivided into a finite number of macro-triangles 
f2 t/), and let Th ~ be uniform triangulations of the f2 ~/), such that Th = ~ Th t/) is a 
regular triangulation of f2. 

Summing the identity (2.12) for I~ ), and its analogues for I~ ), I~), separately for 
K ~ Th ~ we obtain the following. 

(i) The line integrals of the type 

Dig h. . . d s ,  ~ g h . . . d s ,  
St St 

over interior sides S~ in f2 u) are calcelled. The contributions from sides S~ C 0f2 t/) 
add up to 

flk ~. (.]2k + 2 
I~k'J)(z*~ U) = ~ i=l l "~i+1 Ftl D,gnD2k+ 1 u d s  

_ 2~k + i 2i + zni �9 ni + 2 ~ DighD~ ku ds 
rt 

J'~k+12i+l I ghDi+ nZk-  ~_- -  ~Zk+Z } - -  �9 l~.i UUa-I- ~i+ 2 S ghDiD~k+ 2 udS , 
r i  r~ 

where 2~ = 2~ ), ~ = ao), D i = D~ ) are the characteristic quantities of the triangulation 
Th (i), and ~ = ~t/) is the part of Of 2 (/) corresponding to the direction t~ ). 

(ii) The area integrals and the remainder terms combine to 

n - 1  
E~"'J)(z; u)= Z hZ%~km(z; U) 

k=l 



Error Expansion for Finite Elements 23 

and 

3 R(n'J)(z; u) =hE" Z 2z"+lZi+z r u) 
i= 1 2~ 

where the quantities e~h k' J)(z; u) and ~iU)(z; u) are of the same form as e(hk)(z; U) and 
�9 i(z; u), respectively, but now corresponding to the triangulation Th (j) of f2 (j). 

Using the above notation, we introduce the functions 

e(hk)(z; U)= Z {e(hk'J~(z; U)+ I-Jg'J)(z; U)}, 
J 

and 

g~')(z; u) = Z g~"'J)(z; u). 
J 

Then, there holds the error representation 

n - 1  
uh(z) = ihu(z) + Z hZke(hk)(z ; U) + R(,")(z; U). (4.1) 

k = l  

Analogously to the preceding section we define the continuous coefficients 
etk)(z; U), etk'i)(Z; U), and Ltk'J)(z; u) by replacing Oh by g in the terms e(nk'J)(z; u), and 
/2g'J)(z; u). With this notation we have the following. 

Theorem 3. Let u ~ C4 +~(0), for some e>0.  Then there holds 

Uh(Z)=U(z) + h2 e'l)(z ; u) + O ( h41nl ) , (4.2) 

in nodal points z ~ f2 havin9 positive distance from the vertices of the macro- 
triangulation. 

We note that the expansion (4.2) even holds in nodal points on the macro-edges 
where the triangulation is not uniform. 

Proof From the proof of Theorem 1 we directly see that the remainder term in (4.1) 
is again of the order 

R~2)(z; u)=O(h41n~)  (4.3) 

uniformly for z e f2, ifu s C4(I]). Indeed, the only difference to the case of a globally 
uniform triangulation is that now, on the right hand side in (3.4), the sum has to be 
extended over all edges Sie U dO t/). 

J 
In view of (4.3), it remains to estimate the difference e (1)- e~ 1). First, we consider 

the area integral Vn= 5Z e~l'J)('; u)e Sn which is again the Ritz projection of the 
J 

function v = ~ e"'J)('; u). Clearly, v is the solution of the Dirichlet problem (3.20) 
J 

with a right hand side w ~ LZ(g2) being piecewise C ", w e C~(~7~). From this one may 
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infer that v e H2(~2) and piecewise C 2 + e, V ~ C 2 + e(~~(J)\B(J)), where B r denotes some 
neighborhood of the vertices of f2 t/~. Since the triangulation T h matches the macro- 
edges, we obtain, by a standard argument, that 

Y~ {e(l'J)(z; u)-e~l'J)(z; (4.4) 

for points z ~ ~2\B (j). 
Next, we compare the terms Eh~'J)(z; u) and L(~'J)(z; u). That means that we 

have to consider line integrals over macro-edges F~ of the type 

S Di(gh--g) D2uds and S (gh-g)Di+lD2uds. 
r l  r~ 

Let us fix some macro-edge F i with end points P, Q. Then, integration by parts 
yields 

r~ ri 

Hence, it remains to estimate quantities of the form 

(g--gh)~pds and (9--9h) (P), 
r 

where F is a macro-edge, P an interior macro-vertex, and ~p stands for the trace of a 
C 1 § ~-function. 

In the Appendix, Lemma A3, we prove the local estimate 

(9--gh) (P)= O (hZ ln ~) , (4.5) 

for points P ~ f2, having positive distance from z, and from the corner points of Of 2. 
Further, we prove the "negative norm" estimate 

~r(g-gh)~pds=O(h21nh), (4.6) 

for any straight line F C t2 consisting of edges of the triangulation, where ~p is the 
trace ofa C x +'-function,,and dist(z, {P, Q}) > 0. Combining the estimates (4.6) and 
(4.5) implies that 

LO,J'(z; u)-~,J ' (z;  u )=O(h2 ln l ) ,  (4.7) 
\ n/  

for points z e f2\U B t/~. This completes the proof. [] 
J 

We note that the expansion (4.2) extends to all nodal points z along the 
1 

boundary 0t2 with the reduced order O (h  3 In ~ )o f t he  remainder term. Tosee this, 
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we replace the estimate (4.6) by 

(0 - gh)~P ds < c H V(g - Oh)H L,, (4.8) 
F 

and use a result from [4] (see also the Appendix), 

,,V(g--gh)[{L~ = O ( h l n ~ ) ,  (4.9) 

which holds uniformly for z e 12, on a general regular triangulation. In the estimate 
(4.4), we remain with the order O(h), uniformly for z e f2, since v ~ H2(y2). This 
together with (4.3) clearly implies the desired result. 

As a by-product of Theorem 3 we obtain some information concerning the best 
possible order of convergence of linear finite elements. Let the macro-triangulation 
have only one interior vertex, P, and, using the notation of Sect. 2, let the edges be 
numbered such that P = P~) for every f2 t/) containing P. Then, from the proof of 
Theorem 3, we see that 

uh(z) = u(z) + hZo~(P) ~, Ei(P) + O(h2), (4.10) 
J 

where 

2~ [(22D2u -- 21,~3nl �9 n3Dlu) -- (23D3 u - ),22tn2 �9 nlDzu)] (P). Ej(P)-= 4 2 3 2 4 2 3 2 

Consequently, if 

X Ei(P) 4: O, 
J 

the error in the nodal point z = P behaves asymptotically not better than 

uh(P) =u(P) + O (h2 ln h)  , (4.11) 

g~(P) > c In 1. This proves that, in general, the Ritz projection onto since linear 

finite elements does not allow for a better convergence estimate than (3.15), even if 
u is arbitrarily smooth; for a further discussion of this point we refer to [9] and [5]. 

5. Error Expansion on a Smoothly Bounded Domain 

Let us finally consider the error representation on a domain f2 with a smooth 
boundary al2. In general it is no longer possible to subdivide 12 by a piecewise 
uniform triangulation. Instead, let f2 ~ be an interior polygonal domain satisfying 
max dist(x,O~ and let the triangulation T h be uniform in f2 ~ On 
xeOl2 
B o h=Oh\Oh, the triangulation is only assumed to be regular in the usual sense. 
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Analogously to the preceding sections we have to discuss the terms in the error 
representation formula (2.13). 

(i) As noted in Sect. 3, all line integrals in (2.13) not belonging to the remainder 
are cancelled on edges interior to f2 ~ Therefore, we have the contribution 

zJ~)(:; u)= Z'zJ~.J)(z; u), 
J 

where L] ,i) is defined as in Sect. 4, but now the index j refers to every triangle 
separately. The sum Z '  extends over all triangles containing the edges ~ C BhU Of 2 ~ 

(ii) The sum over the area integrals in (2.13) results in an integral over Oh, 

K~Th 4~ 2 i=1 

= S ghOk(U) dx .  

Since the characteristic quantities Di, 2~, and a will be different for every K ~ Bh, the 
functions Dk(U) are only piecewise smooth near the boundary. 

If we again define the function e(k)(z; U) by replacing gh by g in the coefficient 

ep(z; u) = ~)(z; u) + L~)(z; u), 

we obtain the following local error expansion. 

Theorem 4. For u ~ C4(0), there holds 

uh(z)=u(z)+h~e(X)(z; u)+O(h31n h) (5.1) 

uniformly in interior nodal points z ~ f2 o C C f2. 

Proof. From the proof of Theorem 1 we see again that the remainder term 
R~Z)(z; u) is of the order 

R~2)(z; u ) = O ( h ' l n l ) ,  (5.2) 

uniformly for z e Oh. In the present case of a locally uniform triangulation the sum 
on the right hand side in (3.4) has to be extended over all edges F~ C Bh = Oh\f2 ~ 
Since Bh has width O(h), we may conclude that 

! lVglds<c{h-l S lVOldx+ ~ IV'~Idx}<cI[V'~IIL,, 
StCBh Bh Bh 

which again leads to the crucial estimate (3.6). 
Hence, it remains to estimate the difference e(~)(z; u)-e~)(z; u). For the area 

integrals we again use the fact that e[~)(z; u) is the Ritz projection of 

gDa(u)dx, 
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which is the solution of the problem 

-Av=D~(u) in f2, v - 0  on Of 2. 

As noted above, Dl(u) is merely bounded. Hence, we may use a result from [4], 
Satz 2, 

(7 ][U--UhlIL~ <Ch 2 ln~ [IAUllL=, 

to obtain 

II~tha)('; U)--~<%; U)IIL~ ~thX)('; U)-- LgOa(u)dx L~ 

+O(h21n~) =O(hZ(lnl)2). (5.3) 

Next, we consider the line integrals collected in L ~l)(z; u ) -  L~ i)(z; u). Let P~, Qi 
denote the endpoints of the line segments F~. Using integration by parts, we obtain 

L~l)(z; u ) -  ~hl)(Z; U)= Z '  S (g-gh)D3uds+ Z'(g--gh)O2ulCe~ �9 (5.4) 
ri ri ri 

In Z '  all contributions over the edges in BhwSf2 ~ are added up, and Dku contains 
ri 

appropriate combinations of k-th order directional derivatives of u. The first term 
on the right hand side again admits a global estimate. By a trace theorem we have 

[ (g-gh)D3uds <-c S ]V(g--gh)ldx=O hln (5.5) 
Bh 

uniformly for z ~ ~2; for the Ll-estimate for the Green function see the Appendix. 
For the last term in the identity (5.4) we can only prove a local result. Using the 
pointwise estimate 

[(gz-97,)(x)l=O(h21n~), for [x-z[>c, 

proven in the Appendix, we obtain 

1 ~'(9-gh)D2ul~=O(h21n-h)card{P,~Bh}=O(hlnh). (5.6) 

The combination of the error contributions (5.3), (5.5), and (5.6) gives us the desired 
result. [] 

We note that, of course, the definition of the error coefficient e ~l)(z; u) depends 
on the triangulation Th through the geometry of the boundary B h which may 
change with the mesh size h. In order to use the expansion (5.1) for Richardson 
extrapolation, we construct a refinement Th:2 of Th by, first, subdividing each 
triangle K e Th into four congruent subtriangles and, then, projecting the new 
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nodal points on OI2 h onto the curved boundary 0f2. For this special refinement, we 
have 

�89 =U(Z)+ {e")(z; U, Th/z)--e(1)(z; u, Th)} 

+ O ( h 3 1 n ~ )  �9 (5.7) 

The difference of the two error coefficients vanishes up to the contributions from 
the boundary strips Bh/z and Bh, respectively. There are three different groups of 
terms which remain to be estimated: 

1. area integrals of the form 

E ~ gD~D2D3 udx-  E ~KgD~D2D3udx 
K~TI~/2 4~ 2 K KETh 4~ 2 

where Th' = {K ~ Th, K C Bh}, 
2. line integrals of the form 

~ 4 4  24+1 
E ~ $ DigD~+x uds-  E $ D,gD~+luds, 

where Sh = {F~, F~ C B~\0flh}, S~/z = {~ ~ Sh/2, Fi C w {F ~ Sh} }, 
3. line integrals of the form 

~. ~ DigD~+ ,uds. 

In the boundary strip Bhl 2 tWO adjacent triangles do not necessarily form an 
accurate parallelogram. However, integrals of the form 

J Diy{(ti+ 1" V)2u-(ti+ 1" V)Zu} ds 
ri 

over edges Fi ~ Sh/z\S'h/2 are of order O(h2), since (see Fig. 2) ti+ x + t~+ 1 = O(h), by 
the construction of Th/2. By arguments of this type one easily sees that 

e(1)(z; u, T~/2)-e(1)(z; u, Th)= O(h), 

which, in view of (5.7), yields the extrapolation formula 

�89 { 4Uh/z(Z) -- Uh( Z) ) = U( z) + O ( h31n l ) , (5.8) 

in interior nodal points z belonging to Th. 
The fact that we cannot obtain the expansion in Theorem 4 uniformly for all 

nodal points z ~ f2 resembles the well known result for finite difference schemes 
that only a boundary approximation of sufficiently high degree will lead to a global 
expansion; see, e.g., [13!. 
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6. Numerical Tests 

For verifying the theoretical results of this paper, we have solved the model 
problem (1.2) on several triangular domains, and on the unit square using various 
piecewise or locally uniform triangulations. 

(1) fir) (Ill) 
3 w 

03= -- t ~ = ~ r ~  t o = ~  

o 1 o 1 o i 

(Iv) (v) 

o 3. o 

Fig. 3 

(vl) 

/ \ / U  
o 

The above figures show the coarsest triangulation, To, corresponding to the 
mesh size h = ho. From To, the refined triangulations T~, for i > 1, are constructed by 
successive decomposition of each triangle into four congruent subtriangles of size 
h i = 2 -  lh. In the case (VI) the triangulations T~ are kept uniform up to a boundary 
strip of width hi. The data f,  b have been chosen such that the solution u is always a 
polynomial. Although our numerical results cannot be considered as exhaustive, 
they are certainly representative for the case of a smooth solution. The errors 
e i = 1 2 - - u h ,  , for i>  O, and the extrapolated errors 

Ei = �89 + 1 - e i ) ,  ~i = 2t~5 (64ei + 2 - -  20ei+ 1 + ei), 

have been evaluated at the indicated points P. The following tables show the 
corresponding error quantities ~i = leil, gi --[Eil, ~ = IFil, and the approximate orders 
of convergence mi, r~i, r~i, which are calculated according to the formula mi = (lnai 
- I n  ~+ 1)/ln 2. The theoreticaUy predicted orders of convergence are listed as moo. 
We note that the error behavior shown in the Tables 1-6 is representative for all 
nodal points belonging to the coarser meshes. 

Table 1. u ( x , y ) =  ~ - ( x  2 - x +  1) 0; 2 - y +  1), P =  (1/4, 1/4) 

i t;~ ms ~i m, gi ~i 

0 2.0 ( -3)  1.962 1.7 ( - 5 )  3.776 1.9 ( -7 )  5.532 
1 5.1 ( -4)  1.989 1.3 (--6) 3.930 4.2 ( -9 )  5.837 
2 1.3 ( -4)  1.997 8.3 ( - 8 )  3.981 7.3 (-11)  5.952 
3 3.2 ( -5)  1.999 5.3 ( - 9 )  3.995 1.2 (-12)  
4 8.0 ( -6)  2.000 3.3 (--10) 
5 2.0 ( -6)  m| m~o=4 m| 
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Table 2. u ( x , y ) =  16(x 2 -x)(y2 _y), p =  (1/4, I/4) 

H. Blum et al. 

0 6.5 (--2) 1.895 1.6 (--3) 3.154 8.7 (--5) 4.076 
1 1.7 (--2) 1.955 1.8 (--4) 3.493 5.1 (--6) 4.762 
2 4.5 (--3) 1.984 1.6 (--5) 3.768 1.9 (--7) 5.142 
3 1.1 (--3) 1.995 1.2 (--6) 3.906 5.4 ( - 9 )  
4 2.8 (--4) 1.999 8.0 (--8) 
5 7.1 ( - 5 )  mo~=2 m~o=4 m~ =5.3 

Table 3. 

i e i m i 

u (x ,y )  = 162(x 2 -x )2(y2-y)  2, P =  (1/2, [/-3-/4) 

0 8.3 ( - 4 )  4.037 
1 5.1 ( - 5 )  4.008 
2 3.2 ( - 6 )  3.996 
3 2.0 ( - 7 )  3.971 
4 1.3 ( - 8 )  3.887 
5 8.5 ( - 1 0 )  m~ =4 

Table 4. u(x,y)=16(x2-x) (y2_y) ,  P = ( I / 2 ,  1/2) 

i el ml el/h 2 eJ(h 2 In l/h,) 

1 7.7 ( - 2 )  0.913 0.309 0.445 
2 4.1 (--2) 1.432 0.656 0.473 
3 1.5 (--2) 1.610 0.972 0.465 
4 5.0 ( -  3) 1.698 1.274 0.460 
5 1.5 ( - 3 )  1.752 1.571 0.453 
6 4.6 ( - 4 )  1.866 0.449 

Table 5. u(x, y) = 16(x z - x) (y2 _ y ) ,  p = (7/16, 3/8), Q = (7/8, 3/4) 

1 4.5 ( - 2 )  1.907 1.0 ( - 3 )  3.679 1.7 ( - 5 )  5.323 
2 1.2 ( - 2 )  1.972 7.8 ( - 5 )  3.889 4.2 ( - 7 )  6.065 
3 3.1 ( - 3 )  1.993 5.3 ( - 6 )  3.975 6.2 ( - 9 )  6.283 
4 7.7 ( - 4 )  1.998 3.4 ( - 7 )  3.995 8.0 ( -11 )  
5 1.9 ( - 4 )  2.000 2.1 ( - 8 )  
6 4.8 ( - 5 )  moo=2 m ~ 4  m ~ ?  

Table 6. u(x,y)= 16(x2--x)(y2-y), P=(I/2, I/2) 

i e~ m/ ~/ ~ 

0 4.0 (--2) 1.891 1.0 (--3) 
1 1.1 (--2) 1.974 6.9 (--5) 
2 3.1 (--3) 1.985 1.1 (--5) 
3 7.7 (--4) 1.992 1.4 (--6) 
4 1.9 (--4) 1.995 2.2 (--7) 

3.917 
2.649 
2.948 
2.666 
m o ~ 3  
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The tests I and II confirm the local O(h 4) result in Theorem 2 and also indicate 
that an extended expansion of the form (3.24) may be valid. In test III, we see the 
O(h 4) super convergence of the error ei which has been predicted in Corollary 3. 

Test IV is intended to clarify the question for the optimal order of the pointwise 
convergence discussed at the end of Sect. 3. Although, the triangulation involves a 
considerable symmetry, the numerical results clearly show the logarithmic 

error behavior, 0 h21n-~; for this particular configuration there holds 

2 El(P) = -- 4Au(P).  O. 
J 

Test V supports the result of Theorem 3 that the expansion (4.2) holds true with 
4 1 

aremainder term ofthe order O (h  ln ~), even in nodal points on themacro-edges 

where the uniformity of the mesh is disturbed. 
Finally, test VI stands as a model for the case of a smoothly bounded domain in 

so far as the uniformity of the mesh is perturbed in a boundary strip of width O(h). 
Further, it is guaranteed that the presence of the corners of dr2 does not effect the 
desired order of the error expansion, since u is chosen such that the compatibility 
condition (3.23) is satisfied. The quantities e i, in Table 6, refer to the absolute errors 
on the meshes T~ which are kept uniform up to a boundary strip of width h~. The 
extrapolated quantities gi are computed from e~ and from the errors e~+ 1 on the 
meshes T/+ 1 which are obtained from T~ by subdividing each triangle into four 
congruent subtriangles yielding a boundary strip of width 2h~ § 1. Hence, e~+ 1 may 
slightly differ from e~ § 1 which corresponds to the mesh T~ § 1- The results listed in 

Table 6 show that our local O(ha lnh )e s t ima te  for the remainder term in the 
\ . - /  

expansion (5.1), Theorem 4, is sharp. Further, a comparison of the orders n~ for a 
sequence of points approaching the boundary indicates that the expansion cannot 
be extended up to the boundary. 

Appendix 

In the following it is generally assumed that the domain f2 C ~x- 2 is polygonal and 
convex, and that the triangulation Th = {K} off2 is regular in the sense of Sect. 2 but 
not necessarily uniform. However, the results presented below remain valid with 
minor changes in the case of a curved boundary, t~OeC 2+~, provided the 
boundary approximation is of the order O(h2). Since most of the argument used in 
this section is fairly standard now in the error analysis of the finite element method, 
we will suppress some of its technical details. 

Corresponding to an arbitrary fixed point zeKz,  K z e T  h, let 
g=g~ W l ' 2 - e ( ~ c ~ )  be the Green function for problem (1.2) and gh=g~eS ~ its 
discrete analogue defined by (2.3). Further, we introduce a so-called regularized 
Green function 9= ~ze H~(f2)c~H2(f2) as the solution of the problem 

- A ~ = S  in I2, 9 = 0  on ~t2. (A.1) 
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Here, 6 =  ~ E C~(Kz) is an approximation to the Dirac functional in z, satisfying 
IVk~l<ch -2-k, k>O, and (see [9]) 

S qJhgdX = fPh(z) for all Oh S S O. (A.2) 
f2 

Clearly, Oh may be interpreted as the Ritz projection of 9. Corresponding to the 
point z, we define the weight function 

ff(x)=(lx--zlz-.Ftc2h2)l/2, ~ > 1 ,  

which approximates the distance function Ix -z l  and satisfies 

[vka(x)l<Cal-k(x)<c(xh)l-k,  k > l . (A.3) 

The parameter x may be chosen sufficiently large such that 

max ~max a(x)/min a(x)~ < c, (A.4) 
K~Th [ x~K / xcK J 

uniformly for z ~ f2. 

Lemma A1. For any f ixed e > O, there holds 

(! IIa"/zV01IL=+ IIa~+~/EV2911L2<c + e2 j , (A.S) 

( l h e ' ~  1/2 
Ilffl+e/2[7Off--~th)[lL2<C - F ~ )  h, (A .6 )  

uniformly for z ~ Q, if x is chosen sufficiently large independent of h and e. 

Proof. From [9], formula (2.18), we obtain the result 

I a2+~IV(O-gh)lZdx<ch21 a2+~lV2912dx, (A.7) 
t2 I2 

for e > 0, which holds for any function ~ e H~(I2)c~HE(f2), if x is chosen sufficiently 
large. Moreover, a standard argument leads to the a priori estimate 

c ~a az +"l~Zdx + cez I a ~- zlol2dx, (A.8) I {o*1 v~l ~ + a ~ +'1V~l ~ } dx <= j 
f/ o 

for e>0 ;  see formula (3.6) in [9]. Then, observing that 

19(x)l = ~a V#Vo"dy = 5aSo"dy _-<c{lln~r(x)l + 1}, (A.9) 

and I~<ch -=, we find that 

This dearly implies the assertion. [] 
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Taking e = In in (A.5) and (A.6), and observing that II ~ -  2 IlL' _-< c ln h,  we 

may obtain the following estimates, for the limit case e = 0, 

[]VgHL2"~-[I Vz~I[L, = O ( l n l ) ,  (A.11) 

,]V(~--gh)]]L,=O(hln~), (A.12) 

uniformly for z e s We note that these results, (A.11) and (A.12), have been proven 
in [-4], Satz B4 and Satz 1, for the case of a smoothly bounded domain. 

Next, we will derive the local error estimates for the Green function O" used in 
the proof of Theorem 3. These estimates are essentially not new, but for our 
particular situation no explicit proof is apparent to us in the literature; for related 
results we refer to [10] and [11]. 

As a further result from [4], Satz 3, we note that 

[, V(o--gh)][L~ = O (h ln ~) , (A.13) 

uniformly for z ~ s In order to prove the local error estimates, we need some 
technical preliminaries. 

In [-9] it has been shown that the Ritz projection of H~(O) onto S O is bounded 
with respect to the norm of W l' ~o(O), namely 

]]uhl[w,,~ < c  ]]ullw . . . .  (A.14) 

for u e Ho~(f2)n W ~' ~~163 if s is a convex polygonal domain. This result remains 
valid also for a curved boundary 0f2 e C z +~. In the following we shall use a local 
version of (A.14) which may be proven by combining the methods of [9] with a 
suitable localization technique (see, e.g., [11]); for the sake of brevity we skip the 
fairly standard argument. Note that in the estimate (A.14) and in its local analogue 

presented below, no factor In h occurs. 

Lemma A2. Let 0 o C f2 and t2~ = (x E f2ldist(x, 12o) < d}, for some d > O. Then, for 
sufficiently small h, there holds 

c 
Iluhll wl,oO<~o~ ~ c llull w,,~c~g)-4- ~ ( IlulIL2 + h llulIH,) , (A.15) 

for u ~ n~(a)c~ w ' ,  ~(o~). 

We use this result in deriving local error estimates for the generalized Green 
function #Y corresponding to some point y ~ I2. Let f2 o C f2 be such that for some 
fixed d > 0 ,  s has positive distance from y and from the corner points zj of af2. 
Then, ~Y e H2(f2)n W 2' ~176 with norms 

hll~lln~+ 1l~TYllw2,~<~g~ c, (A.16) 
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uniformly for yEl2. Applying the bound (A.15) for the Ritz projection of 
ihtff y - -  gh  y U S 0, we obtain 

I[ ~ '  - g~l[ w l, ~o(o0) < call Y - ihg y l[ re,, co(og) 

+ c .{  J l# ' -  ihY IJL2 + h J l# ' -  i h # ' l l . , } ,  

and, consequently, in view of (A.16), 

]10 y-g~ilW~,o~(.o)--< Cdh. (i.17) 

This result is the key to the following. 

Lemma A3. For the Green function gZ, there holds 

(gZ-g~) (y) =O (h21nl  ) , (A.18) 

in points y ~ t2 having positive distance from z, and from the corner points of gf2. 

Proof. Let zj, j=  1 . . . . .  m, be the corner points of 812. The Green function gZ may be 
split as follows 

gZ(x) = s(~ + ~ ~jst/)(x), (n.19) 
j = l  

0 1 2 s~ n-- Oj~ Z1 the "singular" where s ( ) - 2n In ~ ~ C +"(s and are 
- \ c o j  / 

functions introduced in (3.14), multiplied by some cut-off functions ;(j, such that 
s U) = 0, j = 1 . . . . .  m, on 012. Let s~ ~ be the corresponding Ritz projections. We shall 
estimate the errors s ~~ s(h ~ and s (j)- s~ = 1 . . . . .  m, separately. 

Let y e g2 be any point with positive distance from z, and from the corner points 
zj. Using the regularized Green function ~ ,  we obtain by a simple calculation that 
(see [4], or [9]) 

( s -  sh) (y) = I V( s -  ihs) I7(~r- g[)dx + O(h2) , (A.20) 

where the notation s stands for any of the "singular" functions s t~ or s tJJ. We start 
with the case s = s t~ Let B, be a circle with positive radius and center in z, such that 
dist(y, B~) > 0, and dist(zj, B~) > 0. Then, we have 

V(s - i; s) V(~ - g[) dx < c II V(s - i; s)[11.| V(~ - g~)ILL', 
D\Bffi 

oJn~ V(s -- i~ s) e (~ - -  gYh) dx < c [1V(s-- i h s)[I L' II V(# ~ -  g~)IIL.~(~B=), 

where i f  s E S ~ is some modified interpolant taking care of the singularity of s = s (~ 
at z. For  the interpolation error one finds 

,[V(s-i~s),lL| [,V(s--i~s),IL, = O ( h l n l ) .  (A.21) 
\ n /  
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Further, from (A.17), setting O o = f2~Bz, and from (A.12), with z replaced by y, it 
follows that 

['V(gr--g~)[IL=,O~B.)=O(h), ['V(~--g~)IIL, = O ( h l n h ) .  

Combining the above estimates yields 

(S-- Sh) (Y) = O ( h21n ~) , (A.22) 

for s = s ~~ Now, let Bj be a circle with positive radius and center in zs, such that 
dist(y, B~) > 0. Then, by an analogous argument as used above, we obtain (A.22) for 
s = s u). This completes the proof of (A.18). [] 

The following lemma contains a non-standard negative norm error estimate, 
for the Green function. 

Lemma A4. Let FCO be a straight line consisting entirely of edges of the 
triangulation Th, and let lp be the trace of a C 1 + ~-function on F, for some ~ > O. Then, 
there holds 

I(#Z-g~)lpds=O h21n~ , 
F 

provided z has positive distance from the end points of F. 

Proof. We continue using the notation of the proof of Lemma A3. Let y ~ F, not 
necessarily bounded away from the corner points zs. Then, for s = s ~ j = 1 . . . .  , m, 
the identity (A.20) takes the form 

(s - -  sh) (y)  = ~ V(s--ihS)V(~-grh)dx+ch2(lY--Zjl~/~J-2+l}. (A.24) 
o 

With the weight function ay(x) = (Ix - yl2 + x2h2)1/2 satisfying (A.3) and (A.4), there 
holds 

Using (A.4), we find by a straightforward calculation that 

<chOn~)t/2(ly-z~l'/ '~,-z+l),  

and by Lemma A2, choosing there ~ = l n ~  , 

/ / 1\~/2\ (f aJllZ(r }. 
\o J \ \ t~l  I 
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We insert the last three estimates into (A.24), and obtain 

2 1 n / t o . -  2 I(s-sh)(y)l<ch ln~{ly-z j l  , +1}.  (A.25) 

Integrating in (A.25) for y e F yields 

[s- shlds= O (hZ lnl  ) , (A.26) 
F 

for the "singular" functions s = s ~ j = 1, ..., m. 
Next, we set s = s ~~ Since z has positive distance from the end points P, Q of F, 

there exist circles Bp, BQ with positive radii and centers in P and Q, respectively, 
such that z r BvuBQ. Then, we may use the estimate (A.22), for y ~ Fc~(BewBQ) , to 
obtain 

I Is-shlds=O(h21n~). 
Fn(BpuBQ) 

(A.27) 

In view of (A.27), we can assume without loss of generality that the function ~p in 
(A.23) vanishes in a neighborhood of the endpoints P, Q. Under this assumption, 
we shall complete the prove of(A.23) by using a duality argument. Let v e Ho~ (f2) be 
the solution of the auxiliary problem 

S VqWvdx= S~o~pds, for all ~oeH~(I2). (A.28) 
t2 F 

Clearly, v e Hz(12\F)n W 2' ~ ), for any subdomain f2 o C f2 having positive 
distance from the corner points of dr2. Let Vh e S O be the Ritz projection of v. Since F 
is aligned with the edges of the triangulation, we have the global L2-estimate 

I[v - vhllL2 + hi[ v -  VhI[H1 = O(h2), (A.29) 

and, according to (A.15), the local L~-estimate 

I1 v(v- vD IlL~o)= O(h). (A.30) 

One can justify setting q~ = s - s h  in (A.28), to obtain 

I(s--sh)~pds= I V(s-sh)Vvdx= I V(s-i[s)V(v-vh)dx, (A.31) 

where i[seS ~ is some modified interpolant of s. Then, using (A.29), (A.30), 
together with the estimates (A.21), for the interpolation error, we arrive at the 
desired negative norm result 

(s-sh)lpds=O(hZln~), 
F 

for s = s ~~ This completes the proof of (A.23). [] 
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