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Introduction 

Let M be a compact Riemannian manifold and M its universal covering. In 
[7] Manning introduced the volume growth rate 2 of M defined by: 

2=  lira l logvolBr(p)  
r ~ + - s  1" 

where pc  M and Br(P) denotes the ball with center p and radius r. He proved 
that this limit exists and is independent of p. In fact the relation between the 
growth of the function vol Br(P), the curvature of M and its fundamental group 
had already been considered by several authors (Milnor [10], Margulis [9], 
Dinaburg [2]). The constant 2 and ~ ( M )  can be related as follows: Let N be 
a fundamental domain of M and let G={g6~l(M)lgNc~N+O }. Milnor 
proved in [10] that G is a generator of ~t(M). Define the growth rate e of 
~I(M) with respect to the generator G as lim k -1 logN(k) where N(k) is the 

k ~ + o o  k 

number of elements of 7zI(M ) which can be written in the form l~ gi, gi ~G, 

1 _<i_< k. This limit always exists and depends on G. However, the fact that ~ is 
zero or positive is independent of the generator [10]. In the second case we 
say that 7~1(M) has exponential growth. Then, if d t and d 2 denote the minimum 
and maximum distances between the sets N and U{gNIgNc~N=O}, the 
following inequality holds: 

_<2_<--. 
d 2 -  - d l  

These inequalities were essentially proved by Dinaburg [2] and Milnor [10] 
respectively. In particular 2 > 0  if and only if ~I(M) has exponential growth. In 
[7] Manning related the dynamics of the geodesic flow (p: R • TM~-~ TM~ to 
2 in the following way: If  htop((p) denotes the topological entropy of ~o: 

h~o~(~) >__ ~ (1) 
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and 
h,op(~0 ) --2 (2) 

if the manifold has non positive sectional curvature. In fact his proof holds 
without any change for the more general case of manifolds without focal 
points and, with some alterations, it can be extended to Riemannian manifolds 
whose geodesic flow is Anosov. It is then natural to ask whether (2) holds for 
manifolds without conjugate points�9 This class of manifolds obviously contains 
the manifolds without focal points and, by a result of Klingenberg [6], ma- 
nifolds whose geodesic flow is Anosov. The main objective of this work is to 
give a positive answer to this question under some mild regularity assumptions 
on the Riemannian structure: 

Theorem I. htop(fp)= 2 if M has no conjugate points and its Riemannian metric is 
HOlder C 3. 

Manning's proof of (2) uses the hypothesis on the curvature of M only to 
insure that if 7i: [a, b] ~AT/, i=  1, 2 are geodesic arcs, then: 

d(? 1 (t), 72(0) <d(y~(a), y2(a)) q- d(2l(b),  72(b)). (3) 

This property is also true for manifolds without focal points (see [5] for a 
proof). When the geodesic flow is Anosov it is not difficult to prove, using the 
results of Eberlein [3] on the behaviour of Jacobi vector fields for these 
manifolds, that (3) holds if we multiply its second member by a certain uniersal 
constant independent of the geodesic arcs. This modified version of (3) is 
enough to prove (2) applying the same method used by Manning. As far as we 
know no simple modification of (3) holds for manifolds without conjugate 
points, but it can be expected that the essential geometric meaning of (3), 
namely that geodesic arcs do not spread apart more than their endpoints, is in 
some weaker form true. Our proof of Theorem I follows a different method�9 
We shall use Przytycki's inequality for the topological entropy [14]. Let N be 
a compact boundaryless manifold and let ~p: R x N - ~ N  be a HOlder C l flow. 
Przytycki's inequality states that: 

�9 1 log ~ H(Ox~0,) ̂  [I d2o(X) ht~176 <t  h+m~ t N 

where 
(Dx~Pt) ̂  : (T~N) ^ ~(Tq,~x)N) ^ 

denotes the linear map induced by Dx~pt on the exterior algebra of the tangent 
space TxN and 2 o is the Lebesgue measure on N. If N = T M ~  and (p is the 
geodesic flow we shall prove that: 

lim -1log ~ /[(Ux~ot) Al]d2o(x)<2 
t ~  + c~ t T M I  

which together with (1) implies: 

�9 I 

ht~ =,  l i m  t l ~  [ ~+~ k [l(D~q~ l] d)oo(X)=2. 
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The limit in Przytycki's inequality had already been considered by Shub and 
Sacksteder [16] in connection with the Entropy Conjecture and has interesting 
geometrical connotations. 

We now consider the problem of finding estimates for the metric entropies 
h,(~o) where /, is a q)-invariant probability on TM~.  Let us recall the main 
results of Oseledec theory [11] which are fundamental for this kind of prob- 
lems. Consider a C ~ flow qo: I R x N ~ N ,  where N is a compact boundaryless 
manifold. It follows from Oseledec's results that there exists a total probability 
Borel set A c N  (i.e. such that /~(X)=0 for any (p-invariant probability/x on N) 

a unique splitting T:,N such that at each x e A there exists 
= E"(x) | E"(x) G E'~(x) satisfying: 

Moreover the limit: 

1 
lim - log  H(DxG)vll =0  v e U ( x ) ,  

t~+_~  t 

lim 1 log I[(DxG)vll <0  v e ES(x), 
t~_+~  t 

lira l log I](O~e&) vH > 0 veE"(x) .  
t ~ •  t 

1 
X(x)= lira logldet(DxG)/SI (4) 

exists and is independent of S, for any x e A  and any subspace 
E U ( x ) ~ S c E " ( x ) @ E " ( x ) .  The importance of Z(x) is that if /1 is a ~0-invariant 
probability measure on N (Ruelle [15]): 

h.(~0) =< S zd~ (5) 
N 

and if p is H61der C 1 and/x is absolutely continuous with respect to Lebesgue 
measure (Pesin [12]): 

h,(qo) = ~ zd# (6) 
N 

We shall try to estimate the metric entropies of the geodesic flow using these 
formulas. If (p, v)e T M  1, denote by E(p,v) the subspace of TpM orthogonal to v 
and by K(p, v): E(p, r)* ~ the linear map defined by K(p, v) w =Rp(V, w) v where 
Rp is the curvature tensor of M at p. The 

(7+u2+ 

A solution of the Ricatti equation is 

Ricatti equation of M is: 

K =0. (7) 

a function that to each ( p , v ) e T M  1 
assigns a self adjoint linear map U(p,v): E(p,v).--,such that if r,: TpM---, Tw)M 
denotes the parallel transport along the geodesic with initial condition (p,v) 
then the limit 

1 
U(p, v) =lim -('c;- 1 o U (G(p, v)) o -c t - U (p, v)) 

t~Ot 



378 A. Fre i re  and  R. Mafi6 

exists for all (p, v)E TM 1 and satisfies: 

(J(p, v) + U2(p, v) + K(p, r) = O. 

The results of Green in [4] can be reformulated as saying that if M has no 
conjugate points (7) has measurable solutions and any solution is bounded. 
There is a close relationship between solutions of (7) and invariant subbundles 
of the tangent flow Top: R • T(TMO-~ T(TMO, as we shall explain in Sect. I. 

The function Z and the solutions of the Ricatti equation are connected by 
the following result: 

Theorem II. I f  M has no conjugate points there exists a measurable solution U + 
of the Ricatti equation such that the equality: 

1 r 
Z(x)= lim w~tr(U+o~ot(x))dt 

"I'~ + ~  I 0 

holds for a total probability set of points x in TM v 

Then, by (5) and the ergodic theorem: 

h,(q~)< S tr U + d/~ (8) 
TM1 

and if the Riemannian metric is H61der C 3 and 2 o denotes the Lebesgue 
measure of TM 1, by (6): 

h~o(q~)= ~ tr U + d2 0. (9) 
TM1 

Using (8) and (9) some interesting estimates for the metric entropies of ~0 can 
be obtained. Consider the space of bounded measurable functions that to each 
(p ,v )eTM 1 associate a self adjoint linear map A(p,v) of E(p,v) and identify 
two such functions which coincide #-a.e. In this space we can define an inner 
product: 

( U , V ) =  ~ trUVdla. 
TMt 

Then Cauchy-Schwarz's inequality implies: 

trUV=<( 5 trU2dl*)l/2( 5 trV2dl,) 1/2 
TMI TMI TM 

and equality holds if and only if U is a scalar multiple of K Then (8) implies 

h.(~o)<( j trU+2d~)~/2( ~ trl2dtO ~/2 
TMI TMI 

=(n--1)1/2( ~ trU+2dlO 1/2 
TM~ 

where n = dim M. The ~p-invariance of # implies 

tr ~)+ d/~=O. 
TM~ 
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Then, integration of (7) with respect to /2 yields 

t r U + 2 d #  = -  ~f t r K d y .  
TM1 TM1 

But ( n - 1 ) - ~ t r K ( 0 )  is the Ricci tensor Ric(0). Hence, we have proved the 
following Corollary: 

Corollary ii.1. (F M has no conjugate poims: 

h,,((D)=<(tl-1)(- ~ RicdtO 1/2 
T M I  

for any qo-invariant probability y on T M  1. I f  the equality holds, the sectional 
curvatures at points ~]the support OJ'lJ are constant. 

When g is the Lebesgue measure 2 o on TM~ and 21 is the Lebesgue 
measure on M (normalized in order to have f i o ( T M O = 2 1 ( M ) = l )  we have the 
following result: 

Corollary I1.2. I f  M has m~ conjugate points and S(p) denotes the scalar curva- 
ture at p ~ M :  

h~. . (q))<(n-1)(-  ~ Sd)~l) 1/2 
T M ~  

and the equality holds if and only if M has constant sectiomd curvatures. 

To prove this corollary denote by 2 2 the Lebesgue measure on the ( , - 1 ) -  
dimensional sphere of R" and recall the equality: 

1 , 
( A  x, x )  d2 e (x) = ,  2 e (S ' -  1) tr A. (10) 

S n  I 

Moreover, if (p,v)c T M  1 and {x 1 .... , x ,  1} is an orthonormal basis of E(p,v): 

l n - -  1 

Ric (p, ~;) = , 1 ]  i~1 (Rp(v, xi) r, xi). 

Then i f / l :  TpM* -~ is defined by 

l n -  1 

A t; . . . . .  2 Rp(xi, l,).'C i 
I I-- l i= 1 

we have: 
Ric (p, v) = (A v, v) 

and then by (10) and setting x, ,=v: 

Ric(p,v)d22(v)= )~2(S"-l);1-_ls~_ .= (Rp(2rJ"~ci)xi,xj) 
S ~, 1 1 i= 

=~2(s" ')s(p), 
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Then:  
1 

rMl y R i c d 2 ~  S " - x ) ~ ( s - - ~  ~ Ric(p'v)d22(v))d21(P)=M ~Sd21" 

The p roof  is now completed using Corol lary  II.1. 
Another  easy corol lary of Theorem II is the following lower bound  for 

h~o(qO ) when the curvature  of  M is negative: 

Corollary 11.3. I f  M is H61der C 3 and all its sectional curvatures are negative: 

h~o(qo)>(n- 1)l/2 ~ (-- Ric) 1/2 d2 o. 
TM] 

Moreover the equality holds if and only if the sectional curvature is constant. 

This inequality was proved in the 2-dimensional  case by  Mann ing  [8] and 
its p roof  is based on essentially the same method.  P. Sarnak also obta ined  
weaker  forms of Corollaries II.2 and II.3 for manifolds of negative curvature  
[173. We shall use the following s t ronger  version of Theo rem lI: when M has 
negative curvature  then there exists a measurable  solution U of the Ricatti  
equat ion satisfying the s ta tement  of  the theorem and such that  there exists 
c > 0  such that  (U(O)x , x )>c  ]ixll 2 for every OeTM1,  xeE(O). In Sect. If, after 
proving Theorem II  we shall show that  the solution of the Ricatti  equat ion  
constructed in its p roof  satisfies this extra condi t ion if M has negative curva- 
ture. In  part icular  it follows that  the function det U + is bounded  away from 
zero and then log det U + is integrable. Moreover  

d 
~ ( l o g  det U + (~o,(0)))lt= o = tr [)(0) U - l ( 0 )  

= - tr U + ( 0 ) -  tr K (0) U + ~(0). 

In tegrat ing with respect to 2 o we obtain,  by the q~-invariance of 2o: 

t r U  + d 2 o = -  ~ t r K U  +-'d2 o. 
TM1 TMI 

Now observe that  if A and B are positive self adjoint  maps  of a Hilber t  space: 

tr AB < ( t r  A2) ~/2 (tr B2) ~/2 < tr A tr B. (11) 

In part icular  tr AB = tr A tr B implies that A is a scalar mult iple  of  B. F r o m  this 
p roper ty  and Cauchy-Schwarz ' s  inequali ty we obtain:  

(-trK)t/Zd)~o = ~ (-trKU+-lu+)l/2d)~o 
TM1 TM1 

< ~ ( t r ( - K U  +-l))~/2(tr U~)~/Zd2o 
TM~ 

<(  ~ t r ( - K U  + ')d2o)~/2( ~ tr U +d)oo) ~/2 
TM1 TM1 

= ~ trU+d2o=hxo(q). (12) 
TM1 
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Replacing t rK  by ( n - l ) R i c  the inequality of the corollary is proved. If the 
equality holds we must have: 

t r ( - K U  + ' U + ) = t r ( - K U  + 1)trU+ a.e. 

Then there exists a measurable function 2: TM1--,R such that K U + - ~ = f i U  + 
a.e. But if the first and last terms of (12) coincide we must also have that 
t r ( _ K U  + 1) is a constant scalar multiple of tr U +.Since - K U + - ' = - F ~ U  + this 
implies that fi is constant curvature. The converse property is well known. 

We didn't find any significant lower estimates for metric entropies but we 
conjecture that for manifolds without conjugate points either hxo(~0)>0 or M is 
fiat. Replacing h;.o(q 0 by htop(qO ) we obtain a weaker conjecture that is by 
Theorem I equivalent to the question of whether the fundamental group of a 
non fiat manifold without conjugate points has exponential growth. For non 
flat manifolds without focal points it is known that hxo(q~)>0 (Pesin [13]). In 
particular )~=htop(q0)_>_hxo((p)>0 and the fundamental group has exponential 
growth. This property had already been proved by Avez [1]. 

I. P r o o f  o f  Theorem I 

Suppose that 7: It--+ M is a geodesic arc parametrized by arc length and that 
for each t~lR we give a linear map V(t): E(7(0), ~(O))--+E(3,(t), ~(t)). We define 
the derivative of V as the linear map" 

defined by: 

(0 

D V )  D(V( t )w)  
D t  (t) w=- Dt 

For each O ~ T M  1 let Y0(t): E(O)~E(~p~(O)), tElR, be the solution of the Jacobi 
equation: 

2 Yo] 
- D ~  ] (t)= - K ((p,(O)) Yo(t) (1) 

with initial condition" 
Yo(o) = o, 

( DY~ 
Dt ] 

Then for all 0e  T M  1 and veE(O), the Jacobi perpendicular vector field d along 
the geodesic determined by 0 with initial conditions J(0)=0,  (DJ/Dt)(O)=v is 
given by J(t)=Yo(t)v.  It is well known that for all p ~ M  the derivative of the 
exponential map expp: TpM--+M is given by the expression: 

1 
(D,~ expp) w = t  Y~P' ~ w (2) 
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where t>0 ,  v e T p M  has 41vq[= 1 and weE(p ,v) .  Then: 

1 
det (D,, expp) = t ~ _  ~ det Y~v,,,)(t). (3) 

Moreover, if Sp= {we  T~MIIIwll = 1}, it follows from (3) that 

(i det ,4, 
If 0e  T M  1 and t + 0  define the linear map U0(t): E(q~,(0))~---,by: 

Uo(t)=(DYo  \ Dt ] (t) Yo(t)- 

Since M has no conjugate points Y0(t) is an isomorphism for all 0e  T M  1 and t 
20.  Hence Y0(t) -1 exists and Uo(t ) is well defined. Moreover Uo(t ) is self 
adjoint. A proof of this elementary fact can be found in Green [4] or directly 
checked by the reader, observing that the derivatives of the functions of t 
(UoX(t)v,w) and (v, Uo( t ) - lw)  coincide and these functions converge to 0 if 
t ~ 0. Green also proved in [4] that there exists A > 0 such that 

II go(t)ll < A (5) 

for all O e T M  1 and t > l .  To prove Theorem I we shall need the following 
lemmas. The first one is a slightly improved version of Manning's proof of the 
existence of the growth rate 2. 

Lemma 1.1. For every e > 0  there exists C~>0 such that." 

vol Br(p) < C~, exp ()~ + e)r 

for ever), r > 0 and p e M.  

Proof. Choose a fundamental domain N of M. Let a=diam(]~).  Then 
Br(q)~B~+,(p) for every p and q in N and all r>0.  Therefore 
volB~(q)<volBr+~(q). Fix p e N  and choose r0>0  such that volB~(p)<exp(2 
+e)r  if r > r  o. Then if q e N :  

vol Bfiq) < vol B~ + ~(p) < exp (2 + c) a. exp (2 + c) r. (6) 

Since for every q e ] ~  there exists q~'eN with volB~(q)=volB~(q')  for all r>0 ,  
the inequality (6) holds for all q e M  and every r > r  o. Putting C~=max {exp(2 
+ e) a, max {exp ( - ( 2  + e) r) vol B ~(q) l O < r < r o, q e M } } the lemma is proved. 

The second lemma is much more delicate and we shall give its proof only 
after completing the demonstration of Theorem I: 

Lemma 1.2. There exists C > 0  such that: 

i](D0qot ) A II ~ C Idet Y0(t)l 

for every O e T M  1 and t with ]t]>l.  
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Then, by Przytycki's inequality and Lemma 1.2: 

h(~o)_<lim sup 1 log ~ ][(D~G) ~ ][d2o(X ) 
- -  t ~  + x. t T M 1  

_-<limsupllog ~ Idet Y~(t)ld2o(x). 
t ~ +  ~c t T M t  

Since det Y~(t)+O for all x e T M ~  and t>O it follows that det Y~(t) has constant 
sign. Then the definition of U~(t) implies: 

d d 
di Met Y~(t)[ = ~ ( d e t  Yx(t))=tr U~(O det Y~(t) 

=t r  U~(t)Idet Y~(t)l 
and 

By (5): 

By (4): 

1 
h(qo)=<limsup-log ~ (Idet Y~(1)l 

t ~ + ~ .  t T M I  

t 

+ ~ tr Ux(s ) tdet Y~(s)] ds)d2o(X ). 
1 

1 
h(qo) < lim sup • log ~ (n - 1) A j Idet Y~(s)l ds) d2o(X ) 

t - ,  + or t T M a  1 

=lim sup~_+~ t l ~  ~- Idet Yx(s)lds)d2o(X) 

= lira sup log S .[ ~ Idet g~,,,,,)(s)l ds dv d;t~ (p). 
t ~ c Z '  M S p  I 

1 
h((p)_<lim supS-log y (vol Bdp) -  vol B~(p))d2~ (p) 

- -  t - ~  4 - : c  t M 

1 
=lira sup log y vol B,(p)d21(p). 

Given e>0  and taken C~>0 with the property of Lemma 1.1 we obtain: 

1 
h((p)<l imsup-log S C~exp(2+~:)td)~ =2+r  

= t ~  + :z~ t M " 

Since c is arbitrarily small the theorem is proved. 
Now we shall prove 1.2. For its proof, as well as for the proof of Theorem 

II that we shall give in the next section, the crucial step is the following 
lemma: 

Lemma 1.3. There exists B > 0  such that: 

/I Yo(t) .ll >= U 4rL'll 

for all O~ TM I, It]~= 1 and roE(O). 
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Proof Define Ko=SUp{I[K(O)II[OETMI} and A ' = 3 - 1 K o + A + I ,  where A is 
given by (5). Fix a C ~ function ~: R~ -~ such that ~(0)=1 and ~ ( t )=0  for 
it[> 1. Define: 

1 

c= ~ (lO"Ol+KoO2)dt 
--1 

and choose B satisfying 

O<B<(A'C)  --~. (7) 

Suppose that I[Yo(T)vll<BllvH for some O~TM1, v e E  o and ITl>l .  Assume 
that T > 1 (the other case follows applying the same method). Let 7: R--* M be 
the geodesic with initial condition 0 and J the perpendicular Jacobi vector 
field with initial conditions J(0)=0,  (DJ/Ot)(O)=v. Then J(t)=Yo(t)v and 
IIJ(T)II <BairN. On the space s r of continuous piecewise C 2 perpendicular 
vector fields along the arc y / I -  1, T +  l] that vanish at the endpoints define the 
index form: 

IT(V,W) ~ ( D ~ ( t ) + K ( q ) , ( O ) )  V, 

where AI(DV/Dt ) denotes the jump of the function DV/Dt at the discontinuity 
t i. Following Klingenberg [6] define an element Je (2  7 by J ( t )=0  for 
- l<_t_<0,  J(t)=J(t) for 0_<t_<r and J ( t ) = ( T + l - t ) r ~ J ( T )  for T<_t<_r+l,  
where ~tr: T~(r)M--, T~(t)M denotes the parallel transport along ?. Then: 

T+L 

IT(J,J)= -- ~ ( T +  1 - 0  2 (K(~ot(O))r~.J(T)) dt 
T 

But (OJ/Dt)(T)= Uo(T)J(T ). Then, since T_>_ 1, (5) implies 

dr- (T),J(T) <=AilJ(T)IIZ<AB 2. 

Then: 
IT(J, J)<= �89 o I)J(T)]I 2 + (A + 1) B 2 <= A'B 2. 

Define Z ~ O r by Z(t) = t~(t) ~'o((PJ/Dt)(O)) for ltl _-< 1 and Z(0 = 0 otherwise. It is 
easy to verify that: 

I r (J  , Z) = - II(DJ/Dt)(O)H 2 = _ 1, 
1 

IT(Z , Z)=  - ~ (~"(t) O(t) + O2(t) (K(~pt(0)) ~to(DJ/Dt)(O), 
--1 
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Then,  if ;~ e IR : 

I T ( Z - - 2 j  , Z- . ; , j )<= C + 2)~ +)~2 A'B 2. 

Since 4 - 4 A '  CB 2 > 0  (because B was chosen satisfying (7)) this polynomial  in 2 
has two real roots. Therefore I T ( Z - - 2 J ,  Z - 2 J ) < 0  for some value of ;o, thus 
proving the existence of conjugate points in the arc 7 / [ -  1, T +  1]. 

Now we are ready to prove 1.2. Consider  the vector  bundle F on TM~ 
whose fiber F o over 0 is the subspace of To(TM~) or thogonal  to the vector  field 
associated to the geodesic flow. It is well known that  F is invariant  under  the 
derivative DO, of the flow G.  Consider  also the vector bundle G on TM~ 
whose fiber G 0 over 0 is E(O)x E(O). If t+ lR define the vector  bundle isomor-  
phism ~,: G~-~as follows: if ( v , w ) e G  o let J be the Jacobi  vector  field a long the 
geodesic determined by 0, with initial condit ions J ( 0 ) = v ,  (DJ/Dt)(O)=~v. Set 
G(c ,w)=(J( t ) , (Da/Dt ) ( t ) ) .  The t ransformat ions  t), define a flow of vector  
bundle i somorphisms covering %. In [3] Eberlein proved that there exists a 
vector  bundle i somorphism H:  G--+F, covering the identity and isometric in 
each fiber, such that  

H o ~t =( (DG) /F)  ~ H 

for all t e  R. Therefore:  

H(t~,/Go)A ]] = [I((DoG)/F ) A I] 
and since : 

I[((Vo%)/ F)" I[ = [](Do(&) " II 
we obtain : 

H(6,/Go) ^ 1] = H(Do%) ^ I]. 

Hence our p rob lem is now to find C > 0  satisfying 

H(G/Go ) A I] < C Idet Yo(t)l 

for all [ t [>l ,  O + T M  1. From now on we shall consider the case t > l .  The case 
t < - 1 follows applying the same methods.  Write graph Uo(t) 
= {(u, Uo(t ) u) �9 G+,(o>l u e E (G  (0))}. The definitions of  G and Uo(t ) imply: 

~b,({0} x E(O)) = graph Uo(t ) (8) 

for all r ~ l ( .  In part icular :  

O_t({0} x E(G(O)) ) = g r a p h  U,p~(ot ( - t). (9) 

Consider  the splittings: 

G0=({0 } x g(o)) | graph Ur (10) 

Go,(0)=({0} • E(G(O)) ) | graph Uo(t). (11) 

Observe  that  by (8) and (9) OjC, o sends the factors in the first decompos i t ion  
onto  those of the second. Moreover  if u~E(G(0) ) :  

0 _,(o, u) = (L~<o)(-t) . ,  u+,<o>(- t) L~(o>(- t) u). 
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Then, if t > l "  

IIg' ,(0, u)][ => I[ Y~(ol(-t)ull >=B Ilull. 

This inequality, together with (9), implies: 

]l(Ojgraph U~(ol(-t))]] <=B '. (12) 

We can always assume B < 1. Then (12) and the observation above about how 
~ transforms the splitting (10) in the splitting (11), implies' 

II(@t/Go) AII ~ B  (n--l)]l(i//t/{0 } X E(O)) All. (13) 

Moreover, if re,: Go,(o)~E(%(O)) is the canonical projection onto the first 
factor, we have: 

re, o ( ~ , / ( { 0 }  • e ( 0 ) )  = v,,(t) 

which means: 
~0t/({0 } • E(O))= (rcjgraph Uo(t) ) - Io  Y0(t). (14) 

But (5) implies that if t > 1' 

H(~r,/graph Uo(t))-'l[ =(1 + I{ Uo(t)l[2) 112 __<(1 + A2) 1;2. (15) 

Hence (13), (14) and (15) imply: 

[l(~h,/Go) ~ I[ <= B-("-  1)( 1 § A2) ~;2 tl Yo(t) ~ II- 

Now the problem has been reduced to finding A' > 0  satisfying 

]r Yo(t) A [I <A'{det Yo(t)t 

for every O e T M  1 and t > l .  Observe that IIY0(t)AI] is the 
Idet Yo(t)/SI where S varies in the set of all the subspaces of E(O). Choose S such 
that II g0( t )  A tl =ldet  Yo(t)/St. With respect to the splittings E(O)=S | S • E(%(O)) 
= Yo(t)S| • Yo(t) can be written in the form 

\0 I Y2J" 
Then: 

]det Y~I =ldet  Yo(t)/S{ = I[ Yo(t) ~ I[ 
and 

[det Y0(t)l = tdet )1111det Y21 = ]det Y21 II Yo(t) ~ II. 

From Lemma 1.3 it follows that:  

[IYtv+ Y3wH 2+ I] Y2wH 2 >=B2(llvl124- Ilwll 2) 

for all v~S,  w ~ S ' .  Take v= - y - 1  Y3w. Then YlV+ Y3w=0 and: 

I1Y2wl l2>n2( I ]v l l2+  IIwlI2)>B 2 Ilwll 2. 

maximum of 
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Then the image by Yz of the unit ball of S • contains a ball of radius B. This 
means  that:  

Idet Y21 ~ B'~ 

where k = d i m  S. Hence:  

I1 l~0(t) ~ II = tdet Y2I- ~ Idet Y0(t)l < B  -k Idet Yo(t)t. 

II. P r o o f  o f  T h e o r e m  II 

First recall the construct ion due to Green  [4] of solutions of  the Ricatti 
equat ion of M (Eq. (7) of the Introduction).  If O E T M  1 and s e l R  let Yo.~(t) be 
the solution of the Jacobi  equat ion (Eq. (1) of  Sect. I) such that  Yo.~(s)=O, 
Y0,,(0)=l. In [4] Green  proves that  lira Yo,,(t) exists for all O e T M  1 and t e n  

s ~ - -  , 3 c  

(see also Eberlein [3], Sect. 2). He also shows that  defining: 

Y,+ ( t )= lim Yo,~(t) (1) 

we obtain a solution of Jacobi  equat ion such that det Yo + (t)+O. Moreover  it is 
proved in [4] and [3] that  (DYo'/Dt)(t)= lim (DYo,s/Dt)(t). Then, if we define 

DYo~ 
U,(0) = D[o (0), 

U + (0) = D~I+  (0) 
t) f 

we obtain 

(2) 

(3) 

(4) U + (0)= lira U~(0). 

Moreover  it is easy to check that  

Y,,,,,,~.~ ,,(t) = ~, , ,( t  + h) ~0.~1(/7) . 
Then 

~,+,,~o)(1) = ~+ (t + h) Yo + '(10 
and 

, D Yo + , 
U- ((p,,(0))= Dt (h) Yo + (h) 

for all h~lR. From this it follows that  U + is a solution of the Ricatti  equat ion 
of M. F r o m  (4) follows that  it is measurable  (because E(0)  is cont inuous  on 0) 
and from L e m m a  2 of [4] (or [3] Sect. 6) it is bounded.  We shall prove  that  
this solution satisfies Theorem 1I. 

Given O e T M  1 and s e ~  define 

Vo.~ = graph U~(O)= {(x, Us(O)x)lxeE(O)} 

V 0 = graph U + (0). 
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From (4) it follows that: 

Vo= lim Vo, s. 

We claim that: 
0_s({0} x E(qOs(O)) ) = Vo, ~. (5) 

To prove this take veE((p~(O)) and let J(t) be a Jacobi perpendicular vector 
field along the geodesic 7(0 with initial condition (7(0), ~;(0))=(Ps(0) such that 
J(0)=0, (DJ/Dt)(O)= v. The by the definition of r 

t)_ ~(0, v) = (J ( - s), (D J /Dt) ( - s)). 

Consider the Jacobi vector field J ( t ) = J ( t - s )  along the geodesic ~ ( t ) = 7 ( t - s  ). 
Then f ( s )=0  and J (O)=J( - s ) .  Hence: 

o r  

Then 

f ( t )  = Y0,s(t) J (  - s) 

J( t )=  Yo,s(t + s) J ( -  s). 

( ~ t  ) ( - s ) = ~ ( O ) J ( - s ) = U s ( O ) J ( - s )  

which means by the definition of V0. s that: 

~,_s({0}  • E(~os(0))) ~ vo,s. 

The equality now follows from the fact that both members have the same 
dimension�9 

By Oseledec's theory there exists a total probability Borel set A c M such 
that for every x~A  there is a unique splitting Gx=ES(x) |  such 
that: 

1 
lira --log I I ~ v l l = O  v~ec(x), 

t ~ + o v  t 

1 
lira log ]lr v~E"(x), 

t ~ •  

lim -llog IIr <0 veEr(x) 
t~_+c~ t 

and for every subspace EU(x)~ScE"(x)OEC(x)  the limit 

�9 1 
Z(x) = h m  t log (det (r (6) 

exists and is independent of S. 
We claim that for any (p-invariant probability ff on M the following 

properties hold for kt-a.e. OcA: 

E"(O) c V o ~ E"(O) @ Ec(O), (7) 

Z(0) lira 1 i U+ = tr ((p,(0)) dt. (8) 
r~+o~ T o 
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From (8) follows Theorem II because it is easy to prove, using the isomor-  
phism H:  G ~ F defined in Sect. I, that  the function Z associated to the linear 
flow r  coincides with that  associated to the linear flow D q ) : N  
x T(TM1) --* TM l. 

To prove the second inclusion in (7) observe that  if wE(O): 

t),(O,t,)=(Yo(t)v, [Dt~) v), 

Then L e m m a  1.3 implies that  (0, v)~E~(O) if v4~0. Hence 

E*(O) a({O} x E(0))= {0}. 

Therefore  for every OeA there exist a subspace T(O)cE'(O)| and a linear 
m a p  L(0): T(O)~ E~(0) such that 

{0} • E(O)=graph L(O). 

Given  , ;>0  take a compac t  subset K c A  with # ( K ) >  1-~: and satisfying: 
a) sup {ILL(0)III0~K} < + oo. 
b) There  exists T > 0 a n d 0 < { < l < ~ < {  t such that:  

IL ~,,/E ~(o) Ik <= ~', 

II~,- 1/(EU(O) @ E~(O))H < 8 

for every O~K, t> T. 
Then,  if O~A: 

V0, , = 0,~({0) x E(q~ s(0))) = Os(graph L(q) s(O))) 
= graph (0s ~ L(~0 ~(0)) o (0_ ffL(O))). 

If  O~K take a sequence s , - ~ - o o  such that  (p~,(O)EK. Then by proper ty  (a): 

[10~,, o L ( ( o  s,(0)) o (0 ,fie(o))[] < ~~- {s, sup I] g(O)II. 
O e K  

But ~ " { ~ " ~ 0  if n-~ + oo. Then:  

Vo= lim Vo.~ = T(O)~E"(O)q)E~(O) 
n ~  + cz; 

therefore the second inclusion in (7) is satisfied by any OeK. Since # ( K ) >  1 - e  
and ~: is arbi t rary  this inclusion holds for a.e. OeA. 

To prove the first inclusion of (7) consider the splitting: 

Go= V~ + Vo ~ 

for 0aA. Since V 0 is O<invariant, with respect to this splitting 0, can be wri t ten 
in block form: 

/ B,(O) / 
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Now recall that if Jl(t), J2(t) are perpendicular  Jacobi vector fields of M it is 
known that: 

D J2 t) \ / J  t, DJx (t)l 
( J l ( t ) ,  D - t - (  / - - ~  2 ( )  U l  

is constant  in t. This means that the vector bundle isomprphism J:  G~ -~ 
covering the identity and acting on the fibers G o as: 

J(v, w ) = ( -  w, v) 
satisfies: 

(JO, u, O,v) = (Ju ,  v) 

for all u, veGo, telR, OeM. This means that 

t~*JO,=J 
for all t, or: 

A,(O) = Bt ~- 1(0) 

for all OeA, telR. Since VocE"(O)OU(O): 

lira -llog I[B*-l(O)wll = lira -llog IIA,~(O)wN _>_0 
t~_+.z~ t t~+os f 

for all weV~. Then it is easy to see for all weVo• 

lim l l o g  IIB21(O)wH >0. (9) 
t~•  t 

Now suppose that E"(O)r V o. Take O+veE"(O), v~V o. Then v=w+ z, O@weVo • 
z e V  0. Moreover :  

O-t(U) =B? 1(0) w At- u t 
for some 

Then '  

and by (9): 

u, e v,~_ 9 ) .  

I[~_~(v)ll ~ liB? l(0)wll 

1 
lim Clog []0_t(v)[I > 0  

t~ + ,~o t 

contradict ing veE"(O). 
Finally we shall prove (8). Let no: Vo--'E(O) be the restriction to VotE(O) 

x E(O) of the canonical  projection onto  the first factor. Then:  

Therefore:  
~o 1(v) = (v, Uo + (v)). 

sup [Ino 'H < + or. 
OeA 

(lo) 
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Moreover  it is easy to check tha t '  

for all 0eA, t e N .  F rom (10, (1 1) and L e m m a  1.3 we conclude that:  

(11) 

l 
lim - log det (@/V0) = lim 1 log det Yo + (t) 

t ~ + ~  t t ~ +  t, t 

1'  DYo ~ 1' 
=,  ~lim+ ~ t !  tr Y o ~ ( s ) ~ ( s ) d s =  ~ ~lim+ ~ ~-! tr U+(%(s))ds. 

This equality, together  with (6) and (7) implies (8) for #-a.e. OeV. 

Remark I. When M has negative sectional curvatures  there exists c > 0  such 
that  <g+(o)v,v>>cllvll 2 for all O~TM~, veE(O). To prove this set A 
= s u p  { II U + (O)IIIO~TMa} and take 6 > 0 such that  for any perpendicular  Jacobi  
vector  field J with IIJ(0)l l=l  and ]i(DJ/Dt)(O)II<RA then HJ(t)ll>�89 for 
-6-<t<_O. Then, given O~TM~, it follows that  

II ~+ (t)vll >�89 Ilvll 

for all OeTMI, vEE(O), -~<t-<O. Then (1) and (1) imply that given OeTM~ 
there exists C > 0  such that  if - s_>  C: 

II ~,,~(0 v II _->�89 Ilvll 

for every - 5 < t - - < 0  and roE(O). Fix any vaE(O) and define: 

' ,(0 = < 5 .~(0  v, L. , ( t )  v>. 
Then" 

H e nce: 

u (s) = t~(s) = O, 

a (0) = 2 < U~(O)v, ~,>. 

0 

< v~(o) ~, t~> = �89 .f ii(,')dr. 
s 

Choose  k > 0 satisfying ( K (x) w, w> < - k II w II 2 for all x e TM 1 and we E(x). It is 
easy to verify that:  

iiir) > k uir). 
Then, if - s > C: 

0 0 

< v  (o)~,, ~,>> ~ k .[ ,(,.)J,.='~k j < ~,.~(r) ~,, ro.~(r)~'>d," 
s s 

0 

> l k  S <r,,..~(r)~, roA,')~>d,'>'~,~k Ilrll ~. 
- 6  

Therefore  < U + (0) v, v> > lim <Us(O)v,v>>8--16kllv[I 2. 
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