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Introduction 

It is a classical Diophantine problem to determine which integers are the area 
of some right triangle with rational sides. The main result of this paper 
is the following. 

oo 

Theorem. Let formal power series in the variable q be given by g = q [ I ( 1  
l oo 

--qS")(1--q~6") and, for each positive integer t, 0,= ~ qt,2. Set gO2=~ a(n)q" 
--<70 1 

and gO 4= b(n) q". 
I 

(a) I f  a(n) 4= 0, then n is not the area of any right triangle with rational sides. 
(b) I f  b(n)+O, then 2n is not the area of any right triangle with rational 

sides. 

The power series g0 2 and g0 4 are the q-expansions of certain modular forms 
of weight 3/2. It would follow from some current conjectures in the theory of 
elliptic curves that the converses of statements (a) and (b) are true for square- 
free positive integers n (see Sect. 3). 

In this introduction we will briefly recall the history of the problem and the 
connections to elliptic curves, as well as giving a description of the methods of 
the paper. 

Let ~ be the set of areas of right triangles with rational sides. This is a 
subset of (Q*)+, and consideration of similar triangles shows that it is a union 
of cosets of (Q.)2. Classically, an integer in ~f was called a congruent number, 
and Dickson [9, Chap. XVI] traces the question of whether a given number is 
congruent back to Arab manuscripts and the Greeks prior to that. The 
positive integers not in ~f are called noncongruent numbers, a terminology we 
will use unless confusion with ideal theoretic congruence might result. 
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From the Pythagorean formula it is clear that the rational number D is the 
area of a rational right triangle with hypotenuse h if and only if (h/2) 2 -t- D are 
both rational squares. Hence D is in cg if and only if the simultaneous 
Diophantine system 

U 2 + D / ) 2  = w 2 

u 2 - -  D / ) 2  = Z 2 ( 1 )  

has a rational solution (u, v, w, z) with v 4= 0. Geometrically, the two quadrics in 
p3 given by (1) intersect in a smooth quartic in p3 which contains the point 
(1, 0, 1, 1). The intersection is thus an elliptic curve over Q and projection from 
(u, v, w,z)=(1,0,  1, 1) to the plane z = 0  gives a birational isomorphism with a 
plane cubic curve E ~ having Weierstrass form y Z = x 3 - - D Z x .  The points on the 
space curve with v = 0  correspond to the points where y = 0  and the point at 
infinity on E D. It is easy to see by reducing modulo primes that these points on 
ED(Q) are precisely those of finite order. Thus we arrive at the well-known 
result that D is the area of a rational right triangle if and only if the group 
ED(Q) of rational points o n  y2 = X 3  _O2x is infinite. 

In making explicit the relation of the elliptic curve E ~ to rational right 
triangles, D. Zagier has pointed out to me that it is more convenient to use the 
natural system of quadrics 

a2 + b2 =c 2 

a b = 2D t 2 (1') 

in place of (1). This leads directly to a plane cubic when the first equation is 
parameterized by (a, b, c)=(c(1-22)/(1 + 22), 2c2/(1 +22), c) and these values are 
used in the second quadric. This yields D( t ( l+22) / c )2=2-23 ,  which upon 
multiplication by D 3 and setting x = - D 2  and y=D2t (1  +22)/c gives y2=x3 
- D 2 x .  A rational solution (x,y) of this equation with y +0 ,  corresponds to a 
right triangle with sides 1(O 2 -- X2)/y[, [2D x/y[, ](D 2 + x2)/y[. 

There are several known criteria for an integer D to be noncongruent, all of 
which seem to be equivalent to proving by means of a 2-descent on E ~ that 
the group of rational points is finite. References [1, 9, 12, and 15] contain 
samples of these results. For example, 1 and primes congruent to 3 modulo 8 
are not the area of any rational right triangle. The smallest integer in cg is 5; it 
is the area of the right triangle with sides 9/6, 40/6, 41/6 discovered by 
Fibonacci, among others. Investigations have been undertaken by making a 
computer search for solutions to the original Diophantine system and tabulat- 
ing the results [1, 2]. The most recent tabulations and references can be found 
in [26]. Numerical evidence from such calculations suggested to the authors of 
[1] that all positive integers congruent to 5, 6, or 7 modulo 8 should be 
congruent numbers. Stephens [21] observed that this would follow from a 
weak form of the conjecture of Birch and Swinnerton-Dyer and asserted that 
the method of Heegner points could be applied to prove that primes congruent 
to 5 or 7 modulo 8 or twice primes congruent to 3 modulo 8 are in fact the 
areas of rational right triangles. B. Gross has informed me that refinements of 
these methods show that a positive integer with at most two prime factors 
which is congruent to 5, 6, or 7 modulo 8 is the area of a rational right 
triangle. 
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The fact that there exist modular forms of weight 3/2 such that the non- 
vanishing of the d th Fourier coefficient implies that Ed(Q) is finite follows from 
several recent theorems. First, the L-series of the elliptic curve E: y2 = x  3 _ x  is 
the Mellin transform of the image ~0 of some form of weight 3/2 (and in fact of 
several) under the correspondence of Shimura [18]. Second, the main theorem 
of Waldspurger [25] shows that the square of the n th coefficient of a suitable 
form of this type is a multiple of L(E d, 1) for d equals n or 2n. Finally, the 
result of Coates-Wiles [7] shows that if L(E d, 1)=t=0, then Ed(Q) is finite. 

When forms having the above properties are found, they provide an ef- 
ficient way to prove that certain numbers are not areas of any rational right 
triangle. Conjecturally, it reduces the problem of determining if D is in cs to an 
algebraic computation involving O(D 3/2) steps. For  example, the coefficient a(n) 
is the number of triples of integers (x, y, z) such that 2x 2 + y2 + 32z 2 = n minus 
one-half the number of triples such that 2x 2 + y 2 +  8z 2 =n.  

The first section of the paper considers the Shimura correspondence and 
determines forms of weight 3/2 giving rise to the modular form q~ with L-series 
L(E, s). In the second section the calculations necessary to apply Waldspurger's 
results are carried out, and the values of L(E d, 1) are computed. This may be 
compared with the calculations of [3]. The third section applies these results 
to the problem of congruent numbers. A table of square free noncongruent 
integers less than 1000 is given. Conjecturally, any square free integer less than 
1000 not in that table is the area of some rational right triangle. The compari- 
son of the results here with the conjecture of Birch and Swinnerton-Dyer gives 
a formula for the conjectural order of the Tate-Shafarevitch group of E d. The 
final section discusses the proof of some classical criteria for noncongruent 
numbers from the results of previous sections. 

1. The Curve y~ = x 3 -  D 2 x and Forms  of  Weight 3/2 

The elliptic curve ED: y Z = x 3 - D 2 x  has complex multiplication by Z[i] ,  and 
the L-function L(EI, s) is the Mellin transform of the unique normalized 
newform 4~ of weight 2, level 32 and trivial character. Thus the L-series of E ~ 
is the Mellin transform of the form q~| where Zo is the quadratic Dirichlet 

character corresponding to Q(]/D). The curve E = E  l is the curve 32A of 
Table 1 of [4]. It is isogenous to Xo(32 ), and L(E, s) = ~ z(a) N a-S for a weight 
1 Hecke character )~ of Q(i). Some coefficients of the q-expansion of q~ are 
tabulated in [4, Page 117]; they are easily computed from X or by counting 
points over Fp. The expansion begins q5 = q -  2q 5 - 3 q9 -t- 6q 1 a + 2q 1 v + .. . .  

Shimura has shown in [18] that i f f  is a cusp form of weight k/2, for k > l  
odd, which is an eigenform for Hecke operators T(p 2) with eigenvalue 2p, for 
all primes p, then there exists a form of weight k - 1  which is an eigenform 
with eigenvalue 2p for T(p) for all p. This is called the Shimura map from cusp 
forms of half integer weight k/2 to forms of weight k -  1. The effect of this map 
is to square the corresponding characters. From [10, w we see that the 
form q5 of weight 2 giving the L-series L(E, s) is the image of at least one form 
of weight 3/2 with quadratic character X. Further, it is established there that if 
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f is of weight 3/2 and is orthogonal to the forms of the type ~ O(m)mq t'2 
m = l  

which have the same level and character as f, then the image of f under the 
Shimura map is a cusp form. Contrary to the assertion of [10, Page 120], the 
modular form 4' of level 32 is not the image of a form of weight 3/2, level 64 
with quadratic character. For, from the dimension formulas of [8], we see that 

the space of such forms with trivial character is spanned by ~ ~b(m)mq m2 
m = l  

where ~ is of conductor 4, while the space of such forms with nontrivial qua- 
dratic character is zero. The situation is more favorable for forms of weight 3/2 
and level 128. From [8] the dimension of the space of modular forms of weight 3/2, 
level 128 and fixed quadratic character is 3. This is the same as the dimension 
of the space of forms of weight 1/2 with level 128 and quadratic character, 
which suggests constructing such weight 3/2 forms by multiplying forms of 

weight 1/2 by a weight 1 form g. Let Or= ~ q tm2. This is a modular form of 
- o o  

weight 1/2, level 4t and character Zt. By the results of Serre-Stark [17], 
{02, 0 s, 032 } is a basis for forms of weight 1/2, level 128 and character Z2. The 
set {01, 04,016 } is a basis for the analogous space with trivial character. The 
next theorem gives a weight one form g of level 128 and character g-2 which 
enables the weight 3/2, level 128 spaces to be analyzed completely. This 
method is computationally simpler than constructing the weight 3/2 forms via 
theta-functions of ternary quadratic forms. 

Theorem 1. There exists a unique normalized newform g of weight 1, level 128 
and character Z- 2. The q-expansion of this form is 

g = ~ ( -  1)"+"q(4m+l)2+t6"2=~ ( -  1)"q~4m+ 1)~+S"2, where (m,n) is in Z •  

Proof Suppose that such a form g exists. Then g, g@z2, g |  g |  will 
also be normalized newforms of level 128 with the same character [19]. They 
are not all independent, for multiplication by 01 gives forms of weight 3/2 and 
level 128 with character Z2, which lie in a space of dimension 3. Since the 4 
newforms above are dependent, it must be true that g = g |  for some nontri- 
vial quadratic character Zt of conductor dividing 8. We wish to show that the 
Dirichlet series associated to g is the Artin-L-series of a two-dimensional 
irreducible Artin representation which is induced from a character of an index 
two subgroup. Then the problem of finding all such modular forms g will be 
reduced to a problem of Galois theory. It is a special case of a general result of 
Labesse and Langlands (L-indistinguishability for SL(2), Canad. J. Math. 
XXXI (1979), 726-785; Proposition 6.5) that if g=g |  then g is as described 
above. Alternately, the theorem of Deligne and Serre (Formes modulaires de 
poids 1, Ann. Sc. de rEc. Norm. Sup., t7 (1974), 507-530) shows that the L- 
series of g is the Artin L-series of some irreducible two-dimensional Artin 
representation a of Artin conductor 128 and determinant Z-2. Since g=g| 
we have that a=a| which implies by Frobenius reciprocity that a is 
induced from an index two subgroup. It is easy to check that there is up to 
isomorphism only one such Artin representation with Artin conductor 128 and 
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determinant the character )~-2. It is in fact induced from any of the 3 qua- 
dratic extensions inside the field of 8 th roots of unity. The L-series of g may be 
expressed in three ways as the Dirichlet L-series of a character of a quadratic 
extension K. When K=Q(i) ,  r /may be taken to be the character of the (1 +i) s- 
ideal classes which is trivial on (1 +20  and - 1  on (5) (these ideals generate the 
ideal class group in question, which has order 4). It is easy to see that g 
= ~ q(a) qN, = ~ ( _  l )m+,  q(4,,+ ,)5+ 16.2, the sum taken over all (m, n) in Z x Z. 

A similar computation shows that when K = Q ( ] f L 2 ) ,  the Dirichlet character 
of this field may be taken to be the character 77' of the 4-ideal class group 
which is trivial on (3) and takes value i on (1+]/-S-2). Then g = ~ q ' ( b ) q  ~ 

= ~ ( - l ) " q  ~4"+1~+8"2. The expression coming from the field Q(lf2) will not 
be used in the sequel. 

Remark. The form g has a long history. Jacobi noticed that g=qH(1-qS" ) (1  
_q16n) and remarked on the two representations given in Theorem 1. A recent 
reference to this form is [13], a serendipitous one is H.J. Smith's Report on 
Number Theory [20], where he treats Jacobi's example in his article 128! 

By Theorem 1 and the previous remarks, a basis for the space of cusp forms 
of weight 3/2, level 128 and trivial character is {gO2, gO8, g032 }. Similarly, 
{gOl,gO4, g016 } is a basis for the weight 3/2 cusp forms of level 128 and 
character Zs- 

Theorem 2. The modular forms g 02, g 04, g 08 and g 016 correspond to the weight 
two form (9 (of level 32, trivial character) under Shimura's map from forms of 
weight 3/2 to forms of weight 2. 

Proof The first few terms of the q-expansions of the forms of weight 3/2 with 
level 128 and trivial character are as follows: 

gO2 

g08 

g032 

The Hecke 
T(52) shows 

eigenvalues 

= q + 2q3 + q9 _ 2 q l l  _ 4q17 _ 2q19 _ 3q2S + 4q33 _ 4q35 + . . .  

= q + q 9  _ 4 q 1 7  _ 3q25 + 4 q 3 3  + ... 

= q  _ q 9  _ 2q~7 +q25 + 2 q 3 3  + . . . .  

operators T(p 2) preserve this space. Consideration of T(32) and 
that gO2, gO 8 and 2gO32-gO 8 are eigenforms. The first two have 

23=0 , )~5=-2,  while it is clear that 2 g 0 3 2 - g 0 8 =  ~O(m) ,,5 m q  , 
--oc3 

where 0 is the nontrivial quadratic character of conductor 4. 

To derive that g02 and g08 are eigenforms for all T(p2), notice that they 
are orthogonal to ~O(m)mq "2 since the eigenvalues of T(32), T(52) are dif- 
ferent than on the latter form. Hence the span of g 02 and g 0 s is T(p 2) stable. 
The form g(02-  08) has q" appearing with nonzero coefficient only when n = 3  
(8) (since g = ~ c(n)q" and c(n)=0 unless n = I (8)). Similarly g 08 has exponents 
in the q-expansion all congruent to 1 modulo 8. It is clear from the formula for 
the action of T(p 2) [18, Theorem 1.7] that T(p2)(g(02-O8)) and T(p2)(g08) 
have the same properties with respect to exponents modulo 8 appearing in the 
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q-expansion. Since T(p 2) acts on the span of g(02 -- 08) and g 08, it must be that 
they are individually eigenforms for all T(p2). 

Finally, from Shimura's theory there exist weight two forms ~bl, ~b 2 of level 
at most 128 having T(p) eigenvalues in agreement with those of T(p 2) on g(O z 
-08)  and g08 respectively. Since the eigenvalues for p=3,  5 are known, it is 
easy to compare these values with the forms appearing in Table 3 of [4] of 
level dividing 128 to see that q~l =q~2 =q~ is the only possibility. 

The case of the forms g 04 and g 014 with character ~8 is analogous to the 
preceeding; we will not carry it out here. 

For future reference write g 02 = ~ a(n) q" and g 04 = ~ b(n) q". Let the form 
of Theoreml  be given by g=~c(n)q", with c(n)=0 for n<0.  Then a(n) 

= ~ e (n-2m 2) and b(n)= ~ c(n-4m2). Formulas for a(n) and b(n) may 
m ~  - - 0 0  m =  - - ~ 3  

be given in terms of the characters 7, q' of the proof of Theoreml  and 
expressions of n by ternary quadratic forms. It is easy to see by using Theo- 
rem 1 that for n odd, a(n) equals the number of triples of integers (x, y, z) such 
that 2xZ+y2+32z2=n minus one-half the number of (u,v,w) with 2u2+v 2 
+8w 2 =n. 

2. Waldspurger's Theorem on L-Series Values 

We will specialize to our situation the following theorem of Waldspurger. 

Theorem (Waldspurger [25, Theorem 1]). Let (a be a newform of weight k - 1  
and character g 2 which is the image of a form f of weight k/2 under Shimura's 
map. Assume further that 16 divides the level of c~. Then there exists a function 
A(t) from square free integers to C such that 

(i) A(t) 2 e(Z- 1 X~71)/2 ~,, 1/2) = 2(2 ~z) (1 -k)/2 F((k - t)/2) L(q~ X- 1 ~(k T 1)/2 Xt, (k -- 1)/2). 

(ii) For each positive integer N, there exists a finite set of explicitly de- 
scribed functions e(n) such that ~ A(n sT) c(n)q" for c(n) in this set spans the 
forms of weight k/2, level N, and character g which correspond to (a via 
Shimura's map. 

Remark. The statement here is a special case of that of [25], which is sufficient 
for our purposes. The factor e(~/, 1/2) for a Hecke character q is the one in 
[24]; Waldspurger uses the inverse in his statement. In particular, when q is 
quadratic e(q, 1/2)=1 (since ~ is inductive and e(1)=l  [24]). The sets of 
functions c(n) are given in the 11 equations of Sect. VIII.4 of [25]. They 
simplify immensely in the case of interest here. 

Theorem 3. Let g 02 = ~ a(n) q" and g 04 = y" b(n) q" be modular forms of weight 
3/2 and level 128 corresponding to the unique weight two normalized newform of 
level 32 and trivial character. For d a square-free odd positive integer we have 

L(E e, 1) = a(d) 2 fl d- 1/214 
L(E 2a, 1) = b(d) 2 fl(2d)- 1/2/2. 
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where 
oo 

8= ~ dx/(x 3 - x )  l/2 =2.62205 ... is the real period of E. 
1 

Proof We compare the forms constructed in Waldspurger's theorem with those 
constructed in Theorem 2. In this case, the possible functions are all of the 
form c(n)=n~/4H%(n), where for p odd and n square-free, %(n )= l  [25, 
VIII.4.3]. The possible nonzero choices for c2(n ) are the characteristic function 
of an odd residue class modulo 8 [25, VIII.4.1]. 

When Z is trivial, we apply Waldspurger's theorem to find that 
A(n SI) c(n)q" for the four choices of the function c(n) above span the same 

space as g O2, g08. Since g02 and g0 s have no terms q" appearing with 
nonzero coefficient when n is not congruent to 1 or 3 modulo 8, it must be 
true that A(n)=0 for n=5,  7 (modulo 8). Choosing c(n) to be respectively the 
characteristic functions of 1 and 3 modulo 8 shows that for n square-free a(n) 
= l~ A(n) n ~/4 and a(n) = 83 A(n) n 1/4. Thus we have 

a(n) 2 = 82 L(E", 1) n 1/2 

a(n) 2 = 8~ L(E", 1) n x/2 

a(n) 2 =O= A(n) 2 = L(E", 1) 

n-- 1 (8), 

n -= 3 (8), 

n - 5 , 7  (8). 

To compute /~1, 83 we need to explicitly evaluate some L-series values. Let 8 
be the period of E. It is shown in [3, Table 1] that L(E", 1)nl/2/8 is rational, 
and a table is given for certain n. In particular L(E, 1)/8=l/4 and 
L(E 3, 1)31/2/8= 1. Since a(1)= 1 and a(3)=2 this shows that 4 / 8 = 8 2 = 8 2 .  

When )~=Z2, Waldspurger's theorem again applies. In this case, A(t) 2 
=-L(q~Z2 Zt, 1)=L(E 2t, 1). Comparing the Waldspurger basis with the basis (g 04 
--g016), g016 gives in this case that A(n)=0 when n - 3 ,  7 modulo 8 and that 

b(n)=7lA(n)n 1/4 n = l  (8), 

b(n)=75A(n)n 1/4 n - 5  (8). 

Using this to compute L(E 2", 1), and comparing with the tables of [3] to find 
L(E 2, 1) and L(E 1~ 1) verifies the theorem. 

3. Applications 

The previous results can be applied to prove that certain numbers are not the 
areas of rational right triangles by invoking the following theorem. 

Theorem (Coates-Wiles [7]). Let E be an elliptic curve over Q with complex 
multiplication by the ring of integers in a quadratic field of class number 1. I f  
L(E, 1)4=0, then E(Q) is finite. 

From this and Theorem 3 we obtain immediately our main result. Recall 
that g Oz=~a(n)q" and g O4=~b(n)q" are forms of weight 3/2, that a (n)=0 
unless n - 1  or 3 modulo 8 and b(n)=0 unless n--=l or 5 modulo 8. As a 
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notational device, let b(n/2) be zero if n/2 is not integral. Notice that a(n) 
+b(n/2) is one of a(n) or b(n/2). 

Theorem 4. I f  a(n)+ b(n/2)+ 0 then n is not the area of a rational right triangle. 

Comparison with the conjecture of Birch and Swinnerton-Dyer [3], [22, 
w 8] leads to a sharp conjecture about congruent numbers. To frame their 
conjecture we need the basic conjecture that the L-series of an elliptic curve 
over Q has a meromorphic continuation to a function on the complex plane. 
Attached to such a curve is a cohomologically defined group ///, the Tate- 
Shafarevitch group, which is conjectured to be finite. The conjecture of Birch 
and Swinnerton-Dyer relates the L-series value at 1 to the group of rational 
points of the elliptic curve and the conjectural order of / / / .  

Conjecture (Birch and Swinnerton-Dyer). Let A be an elliptic curve over Q and 
let A(Q) be the group of rational points of A. Then 

(i) L(A, 1)+0 if and only if A(Q) is finite. 
(ii) When A(Q) is finite, L(A, 1)=o~llIIIII cp/[A(Q)] 2, where ct is the integral 

of a minimal Ndron differential over A(R), cp=[A(Qp): Ao(Qp)] and ]G[ denotes 
the order of a group G. 

If this conjecture is valid for the curves E a, then d is the area of a rational 
right triangle if and only if L(E d, 1)=0. Combining the above with Theorem 3 
gives the following conjectural description of congruent numbers. Let ao(n ) be 
the number of positive divisors of n. 

Conjecture. Let d be a square-free positive integer. Then d is a congruent number 
if and only if a(d)+b(d/2)=O. I f  d is not congruent, the order IIII(Ed)l of  the 
Tate-Shafarevitch group is (a(d)/cro(d)) 2 when d is odd and (b(d/2)/~ro(d/2)) 2 when 
d is even. 

Remark. In order to derive the conjecture from that of Birch-Swinnerton-Dyer 
and Theorem 3, it is only necessary to apply the algorithm of [23] to check 
that % = 4  when p is odd, pld and that c2=2 or 4 according to d odd or even. 
The remaining cv = 1, and Ed(Q) has order 4 in all cases. 

Among other things, the conjecture predicts that a(n)/ao(n ) and 
b(n/2)/ao(n/2 ) are integers, and gives an efficient algebraic criterion for deciding 
when a number is the area of a rational right triangle. Table 1 contains a list of 
all square-free positive integers n less than 1000 such that a(n)+b(n/2)~O, By 
Theorem 4, these are all noncongruent, and conjecturally this list contains all 
noncongruent square-free positive integers less than 1000. The table contains 
several numbers left undecided in previous works [1, 2, 26]. The numbers are 
tabulated according to the value of a(n)/tro(n ) for n odd and b(n/2)/ao(n/2 ) for n 
even; that is by the signed square root of the conjectural order of///(E"). 
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Table 1. Noncongruent square-free integers < 1000 

331 

a(N)/cro(N ) N 

1 1 3 33 
385 411 451 
835 899 921 

- 1 11 19 35 
393 403 419 
787 795 817 

2 73 155 185 
785 865 937 

- 2  17 89 97 
769 897 929 

3 43 131 163 

- 3  107 251 283 

4 113 337 577 

- 4  409 521 569 

5 307 859 971 

- 5  443 523 947 

- 6 433 673 

- 7  467 

9 907 

51 
489 
969 

67 
427 
843 

203 

57 59 83 139 177 187 209 211 267 321 339 345 379 
499 515 555 587 595 649 659 665 681 707 803 811 827 

91 105 115 123 129 179 195 201 227 235 249 273 347 
435 473 483 563 611 635 683 691 705 715 739 753 779 
851 993 

241 281 329 355 545 553 579 601 627 641 697 755 763 

193 217 233 259 305 377 401 449 481 497 617 667 713 745 
955 977 979 

417 491 537 571 619 849 913 923 

331 547 633 643 699 737 771 883 

593 809 857 881 953 

939 

b(N/2)/ao(N/2) N 

1 2 10 
506 586 

- 1 26 42 
770 834 

2 82 282 

- 2 146 178 

3 298 778 

- 3 218 394 

4 706 802 

- 4  482 898 

5 698 

58 74 114 122 130 170 258 290 314 346 354 362 370 402 474 
610 618 642 714 730 746 786 826 906 922 946 962 970 986 

66 106 186 202 266 418 498.530 554 570 634 682 690 754 762 
858 874 930 

562 626 818 914 

274 322 466 938 994 

458 538 794 842 978 

4. Criteria for Noncongruent Numbers 

There are several classical criteria which yield noncongruent numbers [1, 9, 
15]. For  example, it is known that if p and q are primes congruent to 5 
modulo 8, then pq and 2p are not congruent numbers. This section will 
explain how such classical criteria may be derived from Theorems 1 and 4. I 



332 J.B. Tunnell 

am indebted to K. Kramer for pointing out to me that all the classical criteria 
can be obtained by making a 2-descent on the curve E d, or on an isogenous 
curve, to prove that En(Q) is finite. He also provided an extensive list of 
criteria obtained in this fashion of which a few simple examples are treated 
here. 

Proposition 5. Let p be a prime congruent to 3 modulo 8. Then a(p)= 2 (mod 4), 
so that p is not a congruent number. 

Proof It is easy to see from the proof of Theorem 1 and the definition that a(n) 
= ~  q(x +iy)  over all triples of integers (x, y, z) such that x > 0  is odd, y is even 
and such that n = x 2 + y Z + 2 z  2. When n = 3  (mod 8), z must be nonzero. There 
are two expressions p = x 2 + 2 z  2, one with z the negative of the other. Since ~/(x 
+ i y ) + ~ l ( x - i y )  is even, the sum of ~l(x+iy) over p = x 2 + y 2 + 2 z  2 with x > 0  
and odd and y + 0  is divisible by 4. Hence a(p)-~2tl(a)-2 (mod4) if p = a  2 
+2b  2. 

For  further applications it will necessary to count the number of repre- 
sentations of an integer as 2a2+b2+c  2. This ternary quadratic form is in a 
genus with one class. It is well known that the number of representations of n 
by quadratic ternary forms in a genus is related to class numbers of quadratic 
fields. The following result, taken from [11, Page 194] will be sufficient for 
applications here. Let d be an odd square-free integer greater than 1. Let N(d) 
be the number of triples of integers, modulo the action of unimodular integral 
matrices stabilizing the form q(x, y, z) = x 2 + y2 + 2z 2, such that q(x, y, z) = d. 

Then N(d)= h( -2d) /2 ,  where h ( - 2 d )  is the class number of Q (]f~-2d). 

Proposition 6. Let p=-1 (mod 8) be a prime. Write p=a2 +4b 2 and suppose that 
16 does not divide p - 1  +4b.  Then a(p)-=4 (mod 8), and p is not congruent. 

Proof There are unique expressions p = a  2 +4b  2 =c  2 +2d  2 in positive integers. 
Hence, of the expressions of p as x 2 + y 2 + 2 z  2, exactly two are such that x y z  
=0. Of the h ( - 2 p ) / 2 - 2  remaining expressions (x,y,z)  and ( x , - y , - z )  are 
counted together, since multiplying y by - 1 ,  z by - 1  is a unimodular 
transformation preserving x 2 + y  2 +2z  2. In the sum these contribute q (x+ iy )  
+~l(x- iy)=+_2.  The contributions of (x,y ,z)  and ( x , y , - z )  are the same, 
showing that a(p) =- 2(~/(a + 2b i) + ~/(c)) + h( - 2p) + 4 (mod 8). 

The hypothesis is equivalent to h ( - p ) ~ 4  (mod8), since by [63, h ( - p )  
_ p - 1  
- 2 t-2b. From Proposition 2 of [14], h ( - p ) + h ( - 2 p ) -  (modS). 

From the fact [5] that p = r 2 + 2  �9 16s 2 implies that h ( - p ) = O  (mod 8) we see 
that c -  +3  when p - 1  (rood 16) and c--- +1 when p - 9  (mod 16). It is easy to 

see that t l ( a + 2 b i ) = - I  in all cases. Thus, a ( p ) - - 2 ( - l + q ( c ) ) + P - s  
(rood 8). 

z .  

The hypothesis of the previous theorem may be stated in several ways, 
which are equivalent to those considered by Razar in [16, Theorem 2]. 

Proposition 7. Let p and q be primes congruent to 5 modulo 8. 7-hen b(pq)=-4 
(mod 8), so that 2p q is not the area of a rational right triangle. 
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Proof T h e  a l t e r n a t e  exp re s s ion  for g in t e rms  of  an  ideal  class c h a r a c t e r  q' o f  

Q ( l f ~ - 2 )  in T h e o r e m  l m a y  be  used. T h e n  b ( p q ) = Z q ' ( x + y ] / ~  ) o v e r  all  
t r ip les  o f  in tegers  (x,y,z) such tha t  pq=x2+2yZ+z 2 with  x > 0  and  z even.  O f  

the  h(-2pq)/2 express ions  o f  p q (up to u n i m o d u l a r  a u t o m o r p h i s m  s tab i l i z ing  
x 2 + 2y  2 + z 2) the re  are  2 wi th  y = 0. In  the r e m a i n i n g  ( h ( -  2p q)/2- 2), (x, y, z) 

a n d  ( x , - y , - z )  a re  c o u n t e d  once ,  b u t  c o n t r i b u t e  q(x+y]/-2)+~l(x-y]/-L2) 
= _ + 2  to the  sum.  Hence ,  b(pq)=-4+2(h(-2p)/2-2)-h(-2p) ( rood 8). F r o m  
[14;  Cor .  1, P rop .  5] h ( - 2 p ) = 4  (rood 8). Th is  es tab l i shes  the  result .  

S i m i l a r  c r i te r ia  a re  o b t a i n a b l e  in o the r  cases by  express ing  a(n) or  b(n) in 

t e r m s  of  a q u a d r a t i c  class n u m b e r  a n d  c o m p u t i n g  m o d u l o  8. 

References 

1. Alter, R., Curtz, T.B., Kubota, K.K.: Remarks and results on congruent numbers. Proc. Third 
Southeastern Conf. on Combinatorics, Graph Theory and Computing 1972, pp. 27-35 

2. Alter, R.: The congruent number problem. Amer. Math. Monthly 87, 43-45 (1980) 
3. Birch, B.J., Swinnerton-Dyer, H.P.F.: Notes on elliptic curves II. J. reine angewandte Math. 

218, 79-108 (1965) 
4. Birch, B.J., Kuyk, W.: Tables on elliptic curves. In: Modular functions of one variable IV. 

Lecture Notes in Mathematics, vol. 476, pp. 81-144. Berlin-Heidelberg-New York: Springer 
1979 

5. Barrucand, P., Cohn, H.: Note on primes of type x2+ 32y 2, class number, and residuacity. J. 
reine angewandte Math. 238, 67-70 (1969) 

6. Brown, E.: The class number of Q ( l f ~ ) ,  for p-= 1 (mod 8) a prime. Proc. Amer. Math. Soc. 
31, 381-383 (1972) 

7. Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39, 223- 
251 (1977) 

8. Cohen, H., Oesterl6, J.: Dimension des espaces de formes modulaires. In: Modular functions of 
one variable VI. Lecture Notes in Mathematics, vol. 627, pp. 69-78. Berlin-Heidelberg-New 
York: Springer 1977 

9. Dickson, L.E.: History of the theory of numbers II. Carnegie Institution, Washington, DC 
(1920) (reprinted by Chelsea, 1966) 

10. Flicker, Y.: Automorphic forms on covering groups of GL(2). Invent. Math. 57, 119-182 (1980) 
11. Jones, B.W.: The arithmetic theory of quadratic forms. Math. Assoc. of Amer., Baltimore, MD 

1950 
12. Lagrange, J.: Th6se d'Etat de l'Universit6 de Reims, 1976 
13. Moreno, C.J.: The higher reciprocity laws: an example. J. Number Theory 12, 57-70 (1980) 
14. Pizer, A.: On the 2-part of the class number of imaginary quadratic number fields. J. Number 

Theory 8, 184-192 (1976) 
15. Razar, M.: The nonvanishing of L(1) for certain elliptic curves with no first descents. Amer. J. 

Math. 96, 104-126 (1974) 
16. Razar, M.: A relation between the two-component of the Tate-Shafarevitch group and L(1) for 

certain elliptic curves. Amer. J. Math. 96, 127-144 (1974) 
17. Serre, J-P., Stark, H.M.: Modular forms of weight 1/2. In: Modular functions of one variable 

VI. Lecture Notes in Mathematics, vol. 627, pp. 27-68. Berlin-Heidelberg-New York: Springer 
1977 

18. Shimura, G.: On modular forms of half-integral weight. Ann. of Math. 97, 440-481 (1973) 
19. Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Iwanami Shoten 

and Princeton University Press 1971 
20. Smith, H.J.: Collected Mathematical Papers, Volume 1, Oxford (1894). (reprinted by Chelsea, 

1965) 



334 J.B. Tunnell 

21. Stephens, N.M.: Congruence Properties of Congruent numbers. Bull. London Math. Soc. 
pp. 182-184 (1975) 

22. Tate, J.: The arithmetic of elliptic curves. Invent. Math. 23, 179-206 (1974) 
23. Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: 

Modular functions of one variable IV. Lecture Notes in Mathematics, vol. 476, pp. 33-52. 
Berlin-Heidelberg-New York: Springer 1975 

24. Tate, J.: Number theoretic background. In: Automorphic forms, representations, and L- 
functions. Proc. Symp. in Pure Math. XXXIII, Part 2, pp. 3-26 (1979) 

25. Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. 
J. de Math. pures et appliqu6es 60, (4) 375-484 (1981) 

26. Guy, R.K.: Unsolved problems. Amer. Math. Monthly 88, 758-761 (1981) 

Oblatum 22-1-1983 


