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Much progress has been made recently in studying the geometric properties 
of the cohomology of finite groups. In ['7], the authors introduced analogous 
methods into the study of the cohomology of restricted Lie algebras. Although 
the formalism was established for arbitrary finite dimensional restricted Lie 
algebras, these results were by and large applicable only to p-unipotent Lie 
algebras (i.e., those with nilpotent restriction map). For such Lie algebras g, 
I-7; 2.7] relates the cohomological support variety I g IM of a restricted g-module 
M with the rank variety, the subvariety of g corresponding to those cyclic 
subalgebras for which M is not projective (thereby providing an extension of 
"Carlson's conjecture" 1-2] from elementary abelian p-groups to p-unipotent 
Lie algebras). 

In this paper, we extend the results of our previous paper to arbitrary finite 
dimensional restricted Lie algebras and restricted modules. In particular, Corol- 
lary 1.4 presents a definitive generalization of Carlson's Conjecture for restricted 
Lie algebras. For  a connected linear algebraic group G, Theorem 1.2 provides 
a description of the image inside the Lie algebra of the support variety of a 
rational G-module in terms of the corresponding variety of a Borel subgroup 
of G. In Theorem 1.3, we present a geometric cohomological criterion which 
identifies those cyclic, p-unipotent subalgebras of g restricted to which a given 
restricted g-module is projective. Corollary 1.4 is then an easy consequence of 
Theorems 1.2 and 1.3 together with a recent theorem of Jantzen 1-10]. 

Section 2 presents various applications of these results. For example, Theo- 
rem 2.2 provides necessary and sufficient conditions for a subvariety of a finite 
dimensional restricted Lie algebra g to be the image of the support variety 
of some restricted g-module. Proposition 2.4 indicates how knowledge of the 
G-orbit structure of the subvariety of nilpotent elements of g=Lie(G) for G 
simple can provide information concerning restricted g-modules. Section 3 con- 
cludes with a few problems worthy of further study. 
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A first draft of this paper offered weaker results applicable only to Lie alge- 
bras of reductive algebraic groups with a restriction on the prime p and only 
to rational modules. A recent preprint [113] by J.C. Jantzen inspired us to rethink 
our arguments from a slightly different point of view, enabling us to obtain 
the present general results by eliminating any restriction on the size of p or 
on the module. We are most grateful to J.C. Jantzen for providing us with 
his manuscript 1-10]. 

1. Support varieties 

Throughout this paper we consider a fixed algebraically closed field k of positive 
characteristic p and we consider only algebraic groups over k. Let G be an 
affine algebraic group defined over the prime field Fp with Frobenius morphism 
tr: G ~  G. We denote by G1 the (group-scheme theoretic) kernel of tr. If V is 
a rational G-module, we write V ~1~ for the corresponding "twisted" G-module, 
obtained by making G act on V though tr. Equivalently, V ~1~ has the same 
G-structure as V, but a new k-structure in which k acts on V through tr-1. 
Given a rational G-module V such that G~ is in the kernel of the action of 
G on V, there exists a rational G-module W such that V- ~ W ~1~, and we often 
write V ~-~ for W. We refer the reader to I4; w for a discussion of these 
matters. 

As is well known, the category of rational G~-modules is equivalent to the 
category of restricted g-modules with g=Lie(G1). The latter is by definition 
the category of modules for the restricted enveloping algebra V(g) of the re- 
stricted Lie algebra g. This follows from the facts that a rational G~-module 
is by definition a comodule for the coordinate ring k[G~] of G~ and that V(g) 
is naturally isomorphic to the dual algebra of k [G~]. Without further comment, 
we frequently view a restricted g-module as a rational Gl-module and cohomol- 
ogy of the algebra V(g) with coefficients in such a module as rational cohomology 
of GI. 

Let G be a connected linear algebraic group defined over Fp and let B c G 
be a Borel subgroup over F r For a rational B-module M, we denote by 
H~ M) the rational G-module obtained by inducing M from B to G (cf. 
[4; w 1]). The n th right derived functor of H~ - )  we denote by H"(G/B, -) ,  
the notation indicating the well-known interpretation of H* (G/B, M) as certain 
(sheaf) cohomology groups of the quotient variety G/B. In terms of rational 
cohomology, H*(G/B,M)~-H*(B,M| where the action of G on 
H*(B, M| is defined by the action of G on the coordinate ring k1-G] 
of G given by (g.f)(x) =f (g-  1 x) for f~k I-G] and x, g~ G (cf. 1'5; 2.9]). 

We require the following spectral sequence first obtained for reductive alge- 
braic groups by H.H. Andersen and J.C. Jantzen in 1'1; w 3]. For the reader's 
convenience, we sketch a particularly simple derivation. 

(1.1) Proposition. Let G be a connected linear algebraic group defined over Fp 
and let M be a rational G-module. There is a first quadrant spectral sequence 

E*'*(M)= H*(G/B, H*(B~, M) ~- ~) =~ H*(GI, M). 
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Proof. We have 

H*(G,, M)~H*(G, M| ")) by [4; 4.4] 

~-H*(B, M| m) by [11; Theorem 2]. 

The asserted spectral sequence is the Lyndon-Hochschild-Serre spectral sequence 
(cf. [4; 4.5]) with E*' *-term 

H*(B/B1, H*(BI, MQk[G]m))~-H*(B, H*(B~, M)~- n)| [] 

If g is a (finite dimensional) restricted Lie algebra, the cohomology variety 
I gl of g is the affine algebraic variety associated to the commutative k-algebra 
Hev(V(g), k) t - l )  (cf. [7; 1.4]). If M is a finite dimensional restricted g-mod- 
ule, the support variety IglM of M is the support in Igl of the Hcv((V(g), k) t-  t). 
module H*(V(g),M| ~-1). Since the action of H*(V(g),k) ~-1) on 
H*(V(g), MQM*) ~- 1) is defined by the natural algebra homomorphism 

H* (V(g), k) ~- 1)~- Ext~) (k ,  k) ~- 1) 

-* Ext* t~)(M, M) (- 1) ,~ H* (V(g), M | M*) ~- 1), 

it follows that J gJM is the zero locus in [gl of the homogeneous ideal 
ker {Hev(V(g), k) ~- 1) ~ H*(V(g), MQM*) ~- 1)}. Consequently, ]g IM is a conical, 
closed subvariety of [ g[. 

As in [7; 2.1], we denote by ~:tg[--*g the morphism of varieties associated 
to the natural map ~*: S*(g*)-* H~v(V(g), k) t- 1), where S*(g*) is the symmetric 
algebra on the dual of g (or, equivalently, the algebra of polynomial functions 
on g). By [7; 2.4], we may identify q~(JglM) for a finite dimensional restricted 
g-module M with the support of the graded S* (g*)-module 
H*(V(g), M |  ~-1). So defined, ~(Igl~) is a conical, closed subvariety of g 
(cf. [7; 2.43). 

The map q~* is obtained by multiplicatively extending the natural map g* 
H 2 (V(g), k) ~- 1) constructed by Hochschild: for (p~g* c l) and H~(V(g), K) iden- 

tified with the group of isomorphism classes of restricted extensions of g by 
k, (p is sent to the split Lie algebra kt~g with p-th power given by (a, X) tpl 
= (q0 (X) p, X lpj) (cf. [9; p. 575]). For p > 2, Hochschild's construction can be iden- 
tified with the edge homomorphism of the spectral sequence 

E~]"'=S~(g*)tl)| *) =~ H2~+'(V(g), k) (cf. [8; 1.1]). 

Namely, let g,b denote the underlying vector space of g viewed as an abelian 
Lie algebra with trivial restriction. Then the associated graded complex of the 
filtered cobar resolution for k[G1] is the cobar resolution for V(g,b), SO that 
the Eo-term of the spectral sequence is H*(V(gab),k ). The inclusion Eo 2'~ 

H2(V(gab), k) is given by Hochschild's construction for g.b" The edge homo- 
morphism sends q~eg.m viewed as a 2-cocycle for g~b to the same cochain 
for g, which we know to be a 2-cocycle for g. Identifying 2-cocycles with exten- 
sions and identifying the isomorphism g * " ) - E g  '~ with Hochschild's construc- 
tion for gab, we identify the edge homomorphism with Hochschild's construction 
for g. For p = 2, Hochschild's map can be similarly related to 

H*(V(gab), k)=(S*(g*), ~) (cf. [8; 1.2]) 
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which plays the role of the above spectral sequence for p > 2. Namely, Hoch- 
schild's map for p = 2  and gab can be identified with the diagonal map A: g.(l) 

S z (g*) --- H 2 (V(gab), k). Hence, as argued for p > 2, Hochschild's map for p = 2 
and g sends (p~9 *~ to the cocycle A (~o)~(S*(g*), 0). 

The following theorem provides the key to extending the results of 1-7] for 
p-unipotent Lie algebras to general restricted Lie algebras. 

(1.2) Theorem. Let G be a connected linear algebraic group defined over Fp, 
let B = T. U be a Borel subgroup also defined over F r, and let g = Lie(G), b = Lie(B). 
For any finite dimensional rational G-module M, we have 

(b(I g IM) = G. (b(l b IM) 

where G. 4(Ib [M) is the orbit of 4(Ib IM) under the adjoint action of G. Consequent- 
ly, if G is reductive and if p is greater than the Coxeter number of any simple 
quotient of G, then IglM--~G �9 IblM. 

Proof. We introduce the following ideals: 

S* (b*) ~ IM = ker {S* (b*) ~ H* (B1, k) (- 1) ~ H* (B1, M|  (-- 1)}, 

S* (g*) ~ JM = ker {S* (g*) ~ H* (G1, k) t -~) ~ H* (G~, M |  t - ~)}, 

S*(g*)~ KM= {feS*(g*): for all xeG, x ' f  lb e lM}, 

S*(g*)=LM= {feS*(g*): for all xeG, x'flbeV~M}. 

By definition, ~(IblM)=Z(IM)cb, the zero locus of IM. Similarly, ~(tg[M) 
= Z (Ju) c g. Since the radical of I M, ]//~M, is the ideal of functions on b vanishing 
on the closed subvariety O([blM)Cb, LM is the ideal of functions vanishing 
on G.~(IbIM). We first verify that G.~([bIM ) is a closed subvariety of g, so 
that to prove the theorem it will suffice to prove that ~/JM=LM. Namely, 
�9 ([blM)~b is stable with respect to the adjoint action of B on b because M 
is a rational G-module. Since R={(xB,  Y): x -1. Y~(IbIM)} is clearly a closed 
subvariety of G/B x g and since the projection G/B x g ~ g is a closed map, 
the image G. ~(I b[M) of R via the projection is closed. 

By naturality, ~(IblM)~(IglM) (cf. [7; 2.4]). Since ~(lglM) is G-stable, we 

conclude that G.~(Ib[M)cq~(IgIM) and thus LM~I/~M. We claim that 

]/K~M~LM. Namely, let f~LM and let I f  denote the ideal of S*(g*) generated 
by the functions x . f  as x ranges over the elements of G. Since S* (g*) is Noether- 
ian, I f  is finitely generated. Let xl "f, .... x i . f  denote generators of I f  and let 
A = p  n be a sufficiently large p-th power that each of (xt "fA)lb . . . . .  (xKfA)lb lie 
in IM. (We implicity use the equality x . f a =  (x .f)a.) For  any x ~ G, x . f=  ~,2i(xi "f) 
for some choice of 21, ..., 2jeS*(g*) depending on x; thus, x'fA-=Z,~A(xI' f  A) 
so that (x.fa)[b~lM . We conclude tha t fa~KM,  SO that LM~] /~M as claimed. 
Thus, to complete the proof of the equality ~(Ig[M)= G. ~(IbtM), it will suffice 

to prove that K M ~ ]/~M. 
The naturality of the map b * ~  H2(H1, k) ~- ~) for any restricted Lie algebra 

b determines a commutative diagram 

KM --* S*(g*) --* H*(G~, k) (- 1) 

[M -* S * ( b * )  ~ H * ( B 1 ,  k) (- 1) 
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By Frobenius reciprocity, we obtain the following commutative diagram 

KM ~ S*(g*) ~ H*(G1, k) ~ 1~ 

H~ IM) ~ H~ S*(b*)) ~ N~ H*(B1, k) ~- ~)). 

Consider the composition of the following chain of maps 

K M --* S* (g*) ~ H*(G1, k) t-  l~ ~ H*(G1, M |  ~- t~ 

n ~  B*(B~,  M | M*)  ~- n) 

where the right-most map is the edge homomorphism of the spectral sequence 
{E*'* (M| of Proposition 1.1. Using the above commutative diagram and 
the naturality of the spectral sequence (and thereby of the edge homomorphism), 
we conclude that this composition equals the composition of the following chain 
of maps 

KM ~ H ~ (G/B, IM) ~ H ~ (G/B, S* (b*)) ~ H ~ (G/B, H* (B~, k) ~- 1)) 

--* n ~  H*(B~, M| t- 1)). 

Since the composition of the three right-most maps of this latter chain is induced 
by the chain of B-module maps 

I M -* S* (b*) ~ n* (n~, k) ~- 1) ~ H* (B~, M| t- 1) 

and since this composition is zero by definition of I M, we conclude that the 
composition of the original chain is likewise zero. This implies that the image 
of the composition 

K M ~ S* (g*) --* H* (G1, k) ~- 1) ~H* (G1, M| ~- n 

has positive filtration with respect to the filtration on H*(GI,  M |  ~- ~ asso- 
ciated to the spectral sequence { E * ' * ( M |  Since H"(G/B,  -- ) = 0  for 
m > d = dim(G/B),  we conclude that (KM) d+l maps to 0 in H*(G~, M |  ~- 1). 

Consequently, K M c ]fJ~M as required. 
Finally, if G is reductive and if p is greater than the Coxeter number of 

any simple quotient of G, then 4: [g[ ~ g  is injective with image the closed 
subvariety of nilpotent elements [7; 2.3] and 4: ]bl ~ b  is injective with image 
the closed subvariety t t cb  (cf. [1; 2.3]). Consequently, the equality q~([glM) 
=G'~([blM) of closed subvarieties of g implies the isomorphism Iglu-~ 
G.Ibl~. [] 

We now consider an arbitrary finite dimensional restricted Lie algebra g 
and an arbitrary finite dimensional restricted g-module M. We denote by N c g 
the closed subvariety consisting of 0 together with those elements Xeg for 
which there exists some non-negative integer m(X)  with X [pm(x)l =t=O, X [pro(x)+ 11 
= 0. For any X e g, we denote by (X)  the restricted Lie subalgebra of g generated 
by X. 
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The following theorem interprets ~ (1 g lu) in module-theoretic terms involving 
the cyclic subalgebras ( X )  of g. Our proof uses an observation of Jantzen 
(cf. [10; 3.1]) concerning the usefulness of the natural map ~k: g--* gl(M), where 
GL(M) denotes the reductive algebraic group of k-linear automorphisms of M 
and gI(M)=Lie(GL(M)). Both Theorem 1.3 and its Corollary 1.4 have an obvi- 
ous reformulation for IglM whenever ~: Igl--' ~ is injective (e.g., g=Lie(G) with 
G reductive and p greater than the Coxeter number of any simple quotient 
of G). 

(1.3) Theorem. Let g be a finite dimensional restricted Lie algebra and let M 
be a finite dimensional restricted g-module. 7here is an equality of subvarieties 
of N: 

{ X ~ N : M is not projective as a restricted ( X)-module} w {0} 

= {X N: xtp ,"% g IM)} ,-, {o}. 

Furthermore, ~(I g l) c N. 

Proof. For notational convenience, let Rg (M)c  g denote the subvariety (the ~ rank 
subvariety" of M in g) on the left of the above equality and let No(M ) denote 
the subvariety on the right. Replacing M by M@P for P a faithful, projective, 
finite dimensional restricted g-module, we may assume that O: g ~ g I ( M )  is 
faithful. Then Rg(M)c N0(M): if M is not projective as a restricted (X)-module,  
then X tp= ~ ~((X)M) c ~(1 g ]M) by [7; 1,6]. To prove that Rg(M) ~ Ng(M), we 
observe that 0:  g--* g 1 (M) clearly has the property that ~b- 1 (Rgltu)(M))= Rg(M). 
Moreover, the naturality of �9 implies that ~-I(N~ItM~(M)) ~ No(M ). Consequent- 
ly, it suffices to prove that R~itu)(M)= Ng~tM)(M). 

Let XeNgItu)(M ). Choose a Borel subgroup B c  GL(M) as in Theorem 1.2 
and let U be the unipotent radical of B with u = Lie(U). By Theorem 1.2, there 
exists some g EGL(M) such that g XtP"~x~Je~(IblM). Since the restriction map 
H*(B1, M|  M|  is injective, ~(IblM)=~(lulM) as subvari- 
eties of b. Consequently, we may apply [-7; 2.7] to g X tpm ~x~le ~(I u lu) to conclude 
that M is not projective as a restricted (g .X)-module .  Because M is a rational 
GL(M)-module, this implies that M is not projective as a restricted (X)-module.  
Hence, X~RgItM)(M ) as required. 

To prove ~( ]g l )cN,  we consider an embedding gcg l~=Lie (GL, )  of re- 
stricted Lie algebras as above and observe that it suffices by functorality to 
consider the case g=gl~. If B c GL, denotes a Borel subgroup with unipotent 
radical U, then ~([bl)~u,  where b=Lie(B) and u=Lie(U).  Thus, Theorem 1.2 
implies that ~(]gl . l )~N.  [] 

We recall from [- 10] Jantzen's recent theorem that �9 (1 g I) = {X e g: X tpl = 0}. 
Combining this theorem with Theorem 1.3, we obtain the following simple, mod- 
ule-theoretic characterization of ~(IglM) proved by Jantzen in the special case 
ofp  equals 2 1-10; 3.9]. 

(1.4) Corollary. Let g be a finite dimensional restricted Lie algebra and let M 
be a finite dimensional restricted g-module. Then ~(1 g ]M) equals 

{X e g: X tel = 0 and M is not projective as a restricted (X)-module} w {0}. 
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Proof. Naturality implies that any X s g with xlp1= 0 and with M not projective 
as a restricted (X) -module  must lie in 4(I g lu)- Conversely, if X 4:0 is an element 
of 4(I g IM), then Jantzen's theorem implies that Xtp1= 0 and Theorem 1.3 implies 
that M is not projective as a restricted (X)-module .  []  

2. Applications 

In this section, we present a few applications of the results of Sect. 1. Our first 
application presents certain natural properties of 4(I glu) (cf. [7; 3.3]). 

(2.1) Proposition. Let g be a finite dimensional restricted Lie algebra, let D~g 
be a restricted Lie subalgebra, and let M and Q be finite dimensional restricted 
g-modules. Then 

a) ~(IblM)=~(IglM)nb. 
b) 4(Ig I ~ e )  = 4(Ig IM) u 4(Ig 1o) 
c) 4(I g IM| = 4(I g rM) • 4(I g le). 

Proof. The proof is the same as that given for [7; 3.3]. Parts a) and b) follow 
immediately from Corollary 1.4. Part c) follows from part a) by considering 
the diagonal map A : g--,g x g, since I g • gIM| IglM • Ig[Q. [] 

We next recall the restricted g-modules L~ first introduced by J. Carlson 
in the context of finite groups [3; w 2] and translated to the context of restricted 
Lie algebras by the authors in [7; w Namely, if (~H2n(V(g), k) is any non- 
trivial cohomology class, then ( naturally determines a homomorphism of re- 
stricted g-modules f22n(k)--,k whose kernel is defined to be L~, where O2n(k) 
is the 2n-th syzygy module for the trivial module k (cf. [7; 3.1, 4.1]). As shown 
in [7; 4.1], Lr has the following property: for any X~g  with XtP1=0, Lr is 
not projective as a restricted (X) -module  if and only if the cohomology class 
(~H2n(V(g), k) restricts to zero in H2n((X), k). 

The existence of restricted g-modules Lr with this property together with 
Proposition 2.1 enables us to prove the following theorem, a generalization of 
[7; 4.3] from p-unipotent Lie algebras to arbitrary restricted Lie algebras. The 
sketch of the proof given below is merely a repetition of the proof of [7; 4.3] 
which in turn is based on arguments of Carlson [3]. The reader should observe 
that part a) of Theorem 2.2 is a complete characterization of those subvarieties 
of g which can occur as images of support varieties of some restricted g-module 
in view of the fact that 4(I g IM) is always a closed, conical subvariety of g. 

(2.2) Theorem. Let g be a finite dimensional restricted Lie algebra. 
a) Any closed, conical subvariety of #(Ig[) is of the form #(Igtu) for some 

finite dimensional restricted g-module M. 
b) I f  M is a finite dimensional, indecomposable restricted g-module, then the 

projective variety Proj (4(1 g I M)) c Proj (g) -~ paim tg)- 1 is connected. 

Proof. Let F~Sn(g *) be a homogeneous polynomial function on g with non-trivial 
image #*(F)=(eH2~(V(g),k). By above (cf. the proof of [7; 4.2]), 
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�9 ([(X)[M)~--[(X)]M=Z(FI<x> ) for any X~9 with XEP]=0 and for M=L~,  where 
Z(Ft <x>) is the locus of zeros in the space ( X )  of the function F. Consequently, 
part a) of Proposition 2.1 together with Corollary 1.4 implies for M = Lr that 

~(I9[M) = ~ ~(I(X)[~)---- U Z(Ft<x>)---Z(F)c~(Ig[) 
x~tlgD x+~tlgD 

where Z ( F ) c f l  is the locus of zeros of the function F. Applying part a) of 
Proposition 2.1, we conclude that we can realize in the form of ~(]gJM) any 
subvariety of g of the form ~(]g]) intersected with the zeros of a homogeneous 
ideal of S*(g*). Such subvarieties are precisely the closed, conical subvarieties 
of ~(]g]), thereby proving a). As remarked in [-7; 4.3], the proof of part b) 
is merely a translation of the proof of [3; Theorem 1] into our present con- 
text. [] 

We obtain the following intriguing result as an immediate corollary of part 
b) of Theorem 2.2 and Jantzen's recent theorem that ~(I g J)= {X e g : X  [pj= 0}. 

(2.3) Corollary. For any finite dimensional restricted Lie algebra 9, the projective 
variety Proj({Xeg: XtP]=O})cProj(g)"~pdimt~)-a is connected. [] 

Leonard Scott has shown us the following easy proof of Corollary 2.3 in 
the special case when g=Lie(G) with G a connected linear algebraic group. 
Let Y denote {X~g: XtP]=0} and let x, y be non-zero elements of Y. Choose 
g, heG such that g.x, h.y belong to n=Lie(U),  where B = T . U  is a chosen 
Borel subgroup of G. Let z be a non-zero element in the center of u with 
z [p1= 0, so that the span V x (respectively, Vy) of z and g. x (resp., z and h.y) 
lies in Y. Then Vx n Vy 4= 0 implies that Proj (V~ c~ Vy) lies in the connected compo- 
nent of Proj (Y) containing the image of G.x and that containing the image 
of G.y, so that the images of x and y lie in the same component of Proj (Y). 

We now restrict our attention to a simple algebraic group G defined and 
split over Fp and consider g-Lie(G) .  If p is greater than h(G), the Coxeter 
number of G, then[g[ ~ 4~(1 g t)= N, the closed subvariety of g consisting of nilpo- 
tent elements (cf. [7; 2.3]). Because the support varieties of rational G-modules 
are G-stable, knowledge of G-orbits of N can provide information about such 
modules. 

Fix a se t /7  of simple roots for the root system of G relative to a maximal 
torus T of a split Borel subgroup B of G. For each root ee / / ,  let X, be a 
non-zero e-weight vector in g; let X ~ = ~ X ~ ,  with the sum indexed by es/7.  

(2.4) Proposition. Let G be a simple algebraic group defined over Fp and let 
g =  Lie(G). Let M and Q be finite dimensional, rational G-modules. 

a) I f  p > h(G), then lg [M = l g [ / f  and only if M is not projective as a restricted 
( X ,  )-module. 

b) I f  p = 2, assume that G is not of type B, C, or F4; if p = 3, assume that 
G is not of type G2. Then M is projective as a restricted g-module if and only 
if M is projective as a restricted (X,)-module for some long root eE/7. 

c) For p as in b), M |  is projective as a restricted g-module if and only 
if either M or Q is projective as a restricted g-module. 
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Proof If p>h(G), XtP~=0 for all X~N,  whereas G.Xr is a dense subset of N 
([14; 4.6]). Since I g lu c N = t g I is closed, part a) follows from Theorem 1.3. Using 
the usual commutator  formules [13; p. 23] for g, it follows for p subject to 
the conditions of b) that G-X~ is the unique non-trivial minimal orbit in N 
whenever 7 is a long root in /7. Consequently G.X=c~4~(IglM)=0 implies 
�9 (IglM)=0 which implies by [7; 1.5, 2.4] that M is projective as a restricted 
g-module, so that part b) follows from Theorem 1.3. Finally, part c) follows 
from the uniqueness of a minimal non-trivial G-orbit in N as in part b) together 
with part c) of Proposition 2.1. []  

The "Main Theorem" of [6] asserts that a finite dimensional rational TG1- 
module M is projective as a restricted g-module if and only if M is projective 
as a restricted module for the restricted subalgebras (X~) for each root ~. (This 
"Main Theorem" applies as well to the group schemes TGr for r >  1.) Thus, 
part b) of Proposition 2.4 gives an improved version of this result in the case 
when G has two root lengths provided that p satisfies the conditions of (2.4b) 
and M is a rational G-module. In fact, one can reprove this "Main  Theorem" 
without restriction on p or M using Corollary 1.4: if M is a finite dimensional 
TGl-module  which is not projective, then 0=t:~([glM)cg is T-stable (cf. [7; 
4.4]) and thereby must contain some non-zero weight vector X~. 

(2.5) Remark. It is likely that part a) of Proposition 2.4 has a suitable formula- 
tion for small primes. For  example, the SL,-orbits of the nilpotent variety N c ,  I, 
are in one-to-one order preserving correspondence with partitions of n. Write 
n = p m  + r with 0 < m and 0 < r < p. If 2 denotes the partition (p, ..., p, r) of n, 
then the SL,-orbit  Ca associated to 2 is open and dense in cb(l~l,I ) 
= { X ~ I , :  XtpI=0}. Consequently, if Xz~C~, then part a) of Proposition 2.4 
can be generalized for type A without restriction on p as follows: a finite dimen- 
sional restricted ~l,-module M satisfies I~I, IM=[M,[ if and only if M is not 
projective as a restricted (Xz)-module.  Using [12; 1.2.5], we may apply the 
same argument to the other classical types at least when p 4= 2. 

When p is small, the statement of part c) of Proposition 2.4 is no longer 
valid. For  example, in case G is of type C2 and p = 2, the 16 dimensional Steinberg 
module St factors as St ~-M| where M and Q are the 4 dimensional irreduc- 
ible modules with high weights corresponding to the two fundamental dominant 
weights. On the other hand, St is projective as a restricted g-module whereas 
neither M nor Q is. A similar factorization of the Steinberg module occurs 
for G of type F4, p = 2 and for G of type Gz, p = 3. 

3. Further questions 

We conclude with a few problems tO add to the list of those we presented 
in [7; w 5], having provided fairly satisfying answers to the problems [7; 5.2] 
and [-7; 5.6]. 

(3.1) Problem. Let G be a simple algebraic group. Which G-stable, closed, coni- 
cal subvarieties of lgl can be realized as I glM for some rational G-module M 
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(cf. [-10; w For small primes p (i.e., p<h(G)), one would presumably first 
answer this question with I gl replaced by ~(I g I)- 

(3.2) Problem. Let G be a simple algebraic group with Coxeter number h(G)< p, 
and let B be a Borel subgroup of G with unipotent radical U. Then H*(G~, k) 
is the coordinate ring of the nilpotent variety N =  G.u, where u=Lie(U). Can 
one generalize this in the following direction? Let P be a parabolic subgroup 
of G. Does there exist a natural G-algebra Ap such that H*(G1, Ap) is the coordi- 
nate ring of G.up, where up is the Lie algebra of the unipotent radical of P? 
A somewhat easier problem is to find natural modules Mp whose support variety 
is G. up. 

(3.3) Problem. For simple algebraic groups G with p>h(G) or G of classical 
type and p4:2, 'P(Igl) has a dense orbit (cf. Remark 2.5), so that proj(~(lgl)) 
is irreducible where g = Lie(G). For which restricted Lie algebras g is Proj(I g [) 
irreducible? 

(3.4) Problem. Give a reasonably general necessary condition on a finite dimen- 
sional restricted g-module M which implies that Proj(~(IglM)) is irreducible 
(cf. Theorem 2.2, part b). 

(3.5) Problem. By [7; 3.2], the dimension of #(IglM) can be interpreted module 
theoretically as the complexity of M. Give a module theoretic interpretation 
of the degree with multiplicities of the projective subvariety Proj(~(lglM)) 
c Proj (g) in "good" situations (e. g., when Proj (# (I g IM)) is irreducible). 
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