
Invent. math. 86, 427-459 (1986) Inventiones 
mathematicae 
�9 Springer-Verlag 1986 

On Galois representations arising from towers 
of coverings of Pl\{O, 1, 

Yasutaka Ihara 

Department of Mathematics, Faculty of Science, University of Tokyo, Hongo, 
Bunkyo-ku, Tokyo 113, Japan 

Summary. We propose a new way to describe, universally, the l-adic Galois 
representations associated to each "almost pro-/" tower of etale coverings 
of PI \{0 ,  1, ~} .  This generalizes our universal power series for Jacobi sums 
(cf. I-I]) which arises from the tower of Fermat curves of degree 1" ( n ~  ~) ,  
and contains the case of the tower of modular curves of level 2ml" (m: 
fixed, n ~ )  as another important special case. As a fundamental tool, we 
shall establish and use an "almost pro- /vers ion" of the theorems of Blanch- 
field and of Lyndon in Fox free differential calculus. 

w O. Introduction 

(A) First, we recall the following classical situation. Suppose given a pair 
(X*, G) of a complete smooth absolutely irreducible curve X* over Q* (Q c Q* 
G 0 )  and a finite group G of Q*-automorphisms of X*. Then the Tate module 
T~=Tt(JacX* ) of the Jacobian of X* (at a prime l) can be regarded as a left 
module over the group ring A=Zz[G] ,  and the Galois group GQ,=Gal (0 /Q*)  
acts on T z as A-automorphisms, defining a Galois representation GQ,--*E • into 
the unit group of E = End a T t. In general, E can be quite big and complicated 
to describe. But if T t is (close to being) a free A-module of rank one, then E is 
(close to being) the anti-isomorphic dual A' of A, and we obtain an anti- 
representation (which looks like) GQ,~A • This will be referred to as the 
(quasi) skew CM-case. The well-known case is where G is abelian and JacX* 
has complex multiplications arising from the G-action (the CM-case). Two 
questions arise. 

(i) Is there any other (quasi) skew CM-case? 
(ii) Would (quasi) skew-CM theory be useful? 

But first, we remind ourselves of the principal difference between the CM (i.e., 
A: commutative) and the skew-CM (A: not necessarily commutative) cases. In 
the former case, the action of each p~GQ, on T t is represented by the left 
multiplication by an element a~A, and the association p ~ a  is really canonical. 



428 Y. Ihara 

On the other hand, in the latter case, it is only measured by the "right 
multiplication" of some a'~A, and the association p~a '  depends on the choice 
of an A-basis of T~. So, the question (ii) is closely related to whether there is a 
"good choice" of an A-basis of T~. Of course, it also depends on how close to a 
principal A-module our T~ is (in short, how neat it is). 

(B)  The main purpose of this paper is to give a partial answer to the above 
questions by showing: 

(a) Roughly speaking, a quasi skew-CM theory holds when (X*, G) is a 
Galois covering of p1 unramified outside 3 points. 

(b) It can be made simple and neat, by consideration of an almost pro-I 
tower {X*} over p1 (instead of a single covering) and by passage to the 
projective limits. Moreover, there is a fairly good way to choose a "basis" for 
lim Tl(Jac X*). 

(c) Including the CM-case, the universal treatment for almost pro-I towers 
{X*} gives a new approach and some applications to Galois representations 
w.r.t. (e.g.) Fermat and modular curves. 

There is a closely related work, developed independently by G. Anderson. 
He enlarges T~(Jac X*) to the Tate module of a certain well-chosen 1-motive to 
make it a principal A-module! While we use free differential calculus as a basic 
tool and put stress on the simplification at the limit, his method is geometric 
and treats each curve and ramification carefully and beautifully. His work, 
communicated to the author first in October 1985, will be partially presented 
in [A]. These two works, at the present stage, may be regarded as forming a 
pair with each other. 

(C)  Now we shall state our main results in a somewhat specialized form. Let 
{X,},= o be an almost pro-I tower of Galois coverings X*/P 1 unramified 
outside 0, 1, oo and having infinite ramification indices at 0, 1, ~ (see w 1 for 
precise definitions). Put ~ = l i m  Gal(X*/P1), d=Z~[[~]]  (the completed group 

algebra), and Z = l i m  Tt(JacX* ). Let Q* be a common field of definition for 
( 

the Galois coverings X*/P 1. Our main results consist of: 
(I) Construction of a "universal" anti-representation 

~: G o , ~ d  • (Theorem A, w 1). 

(II) Explicit presentation of Z as a left d- ideal  A (Theorem B and Remark 
1.5; w 1). 

(III) Description of the Go,-action on ~, as the right multiplication of ~(p) 
(p~Go,) on A (Theorem C, Remark 1.5; w 1). 

All depend simultaneously on the choice of a "coordinate system" de- 
scribed below. 

The first step is to enlarge the tower {X*|  by adding all pro-I coverings 
of X * |  unramified outside 0, 1, ~ .  Call ~ the total Galois group of the 
enlarged tower over P~. Then ~ is a free almost pro-I group of rank 2, in the 
sense of w (A). A choice of an ordered set of generators (x,y) for ~ is the 
unique choice of a "coordinate system" made in this paper. This will determine 
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all basic isomorphisms, (anti-)representations, etc. uniquely. The basic require- 
ment for (x,y) is that each of x,y,  z=(xy)  -~ is a loop around one of 0, 1, oe. 
Once (~ is embedded in C, there is a standard choice for (x, y) (cf. w 3 (A)). Now 
our explicit presentation of the "Tate module" 3; is based on the group- 
theoretic re-interpretation of 3; as the abelianization ~f~ab of the kernel ~ of the 
projection ~ ~ (5: 

1 ~ 9 ~ t ~ ( 5 ~  1 (exact) 
(1) 

~: "free", 3;~-9l "b (as left W-modules). 

By applying to (1) the "almost pro-l" version of the Blanchfield-Lyndon 
theorem in free differential calculus (w 2), we obtain an explicit presentation 

3;=9lab ~ ' {(4, r / )ede2;  ~(x--1)+t/(y--1)=0} (2) 

of 3; as a left d -module  (Theorem B). Here, x (resp. y) denotes the projection 
of x (resp. y) on (5 c a l .  One may further identify the modules of (2) with the 
left d- ideal  d ( x - 1 ) c ~ d ( y - 1 ) ,  via (~,t/).--,((x-1) ( x - l , y - 1  are not zero- 
divisors in ~) .  

Now the Galois group GQ. acts on 3; as d-automorphisms. From the 
above presentation of 3;, it is not clear what End~3; looks like, and in 
particular, whether all d-endomorphisms of N ( x - 1 ) c ~ d ( y - 1 )  are given by 
right-multiplications of those ~ e d  satisfying ( x - 1 ) e e d ( x - 1 )  and (y 
- 1 ) ~ d ( y - 1 ) .  But GQ. acts this way! In fact, we can construct three anti- 
representations 

related to each other by 

( x -  1) ~b(p) = ~,~(p) ( x -  1), ( y -  1) 0(p) = ~b,(p) ( y -  1) 

(peGQ.), such that the action of p on 3; is given (via (2)) as 

(~' t/)~(~' q)(qs~ p) ~br~p)) ' 

or equivalently, as ) ~ 2 - 0 ( P )  ( , ~ e d ( x -  1 ) c ~ d ( y -  1)) (Theorem C). The anti- 
representations (3) are constructed independently of the GQ.-action on 3; 
(Theorem A). They describe, not only the GQ.-action on 9l ab, but also that on 
~/[9~, 9l] (modulo inner automorphisms by elements of Nab). However, in 
several important cases, this difference disappears, and the kernel of ~, coincides 
with that of the GQ,-action on 9P b (w 5). 

The following is a direct corollary of Theorem C (w 1): We can always find 
(via a certain specialization of 0) an open subgroup of Go, which acts 
unipotently on the group of /-division points of JacX* for all n. Here, of 
course, the point is that it is simultaneous for all n, and the chief reason is that 
the GQ,-action is measured by the elements of d • 
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Typical examples are: 
1) The tower of Fermat curves of degree l"; 

t5 = Z  l x Zz; 

2) The tower of modular curves of level 2ml"  (m: fixed, (m, l)= 1. Start with 
level 2, then 2m, 2m l . . . .  ). 

(5 = (SL 2 (Z/m) x S L  2 (Z,) ) /+ I (if (m l, 2) = 1). 

3) Other standard nilpotent towers, such as the Heisenberg tower, 

a 

15= 1 ; a,b, ceZ~ . 

0 

In our previous work [I], we studied the universal 1-cocycle 

~k: G o ~ d  • =ZI[I-Z l x Zt]] • =Z/[fu, v] • 

arising from the tower of Fermat curves, in connection with Jacobi sums, 
Coleman power series, larger Galois representations, etc. (cf. also 
[A] [IKY]). We hope that the study of our generalized anti-representation 
(or anti 1-cocycle, under a loosened assumption) will give, as in the Fermat 
case, further insight into the arithmetic of T~(Jac X*), and into the large Galois 
representation rpo: GQ--.Autn pr~ (P~\{0, 1, oo}). Some aspects related to mo- 
dular curves will be discussed in future publications (cf. also Example 3 w 1). 

( D )  The organization of this paper is as follows. In w 1, we shall present our 
main results (Theorems A-C) under a generalized form, together with some 
examples. In w we shall establish an "almost pro-l" analogue of free differen- 
tial calculus, including that of theorems of Blanchfield and of Lyndon. In w 3, 
we shall give proofs of results presented in w 1, and in w discuss the de- 
pendence of ~ on the choice of the coordinate (x, y), together with some basic 
congruences satisfied by ~,. In w 5, we shall discuss the relation between the 
kernel of ~b and that of the Go.-action on 3;. 

The author is particularly grateful to Takayuki Oda and G. Anderson for 
valuable communications related to this subject. The idea to use free differen- 
tial calculus which the author had vaguely in mind was first realized by Oda's 
alternative proof of Theorem 2 of [I] (a special case of Theorem 2.2 of this 
paper). It required pro-I justifications but prompted the present study. Com- 
munications with Anderson mentioned above helped in enlarging the scope 
which affected some descriptions in w 0 and w 5. He is also very grateful to B. 
Mazur and H. Sah for stimulating discussions, and to Harvard University for 
the hospitality during the spring of 1985, while this work was being developed. 

w 1. Preliminaries and statement of main results 

(A) The completed group algebra. Let l be a fixed prime number, and Z~ be 
the ring of l-adic integers. For a profinite group 15, its completed group 
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algebra d=Zl [ [~ ] ]  over Z l is defined in the usual way, as follows. Let {N).}2eA 
be the set of all open normal subgroups of ~,  and for each 2~A, put Ga 
=~b/Nz. Then each G a is finite, and ~=lim_mG~. For each pair (2, m) of 2~A 

and a positive integer m, consider its usual group algebra A~,m=(Z/lm)[G~] 
over Z/l'. For two pairs (2, m) and (#, n) such that NzcNu and re>n, let ,,~,m) - -  v(t~, n) 
denote the ring homomorphism A~, m ~ Au,, defined by 

p,(a~)pu(g), where p,. Z/lm~Z/l" and Pu" G~-~G, are canonical 
geGA geGA 

projections. Then ~a ,,~,m)~ forms a projective system of finite rings, and d / ' ~ A , m  ' Y(l~,n) J 

is, by definition, its projective limit limmA~,,.. It is naturally a Zl-algebra, and 

carries a projective limit topology, w.r.t, which ~ is compact. The augmentation 
homomorphisms s~,,,: Aa,m--*Z/l 'n defined by ~, a g g ~  ag induce a homomor- 
phism s: d ~ Z ~ ,  called the augmentation homomorphism of ~ .  Its kernel 
I = Ia, the augmentation ideal, is a two-sided closed ideal of ~ .  It is topologi- 
cally nilpotent when (~ is a pro-I group, but not always so in general. (For 
example, if ~b=PSL2(Zt) with l>3,  then ~ b = [ ~ , ~ ] ;  hence 1=12=... 4=0.) We 
shall consider ~ as embedded in d •  the group of invertible elements of ~ ,  in 
the obvious manner. 

For example, if (~ is a free pro-I group of rank r generated by xt, . . . ,x, ,  
then 

,5~i/~---Z/[[U 1 . . . .  ,Uv]~nc by xj-l~--~uj ( l < j < r )  

as topological Zl-algebras, where Z~l[u I . . . . .  u,]l.~ denotes the algebra of formal 
power series in mutually non-commutative variables u, . . . .  , u, over Z~, equipped 
with the Krull topology (cf. IS]). The augmentation s: a l + Z  t corresponds to 
f(u)--+f(O). Therefore, each element Oear can be expressed uniquely in the form 

s(O). 1 + ~ Oj(xj- 1) (o~ ..... o,~r 
j = l  

~0 
This defines "free differentiations" ~x~x.=0~ (1 <j<r), which will be generalized 

later to the case of free almost pro-I groups (w 2). 
As another well-known example, if ~ Z ~ •  ... • (r copies), then 

~r . . . .  ,u~  (by x~-l~--~u~), the algebra of commutative formal power 
series in r variables over Z~. We shall also treat the cases such as (~ =PSLz(Z~), 
or SL/(Zt). In these cases, ~5 is no longer a pro-I group, but contains a pro-I 
open normal subgroup ~ t ,  the principal congruence subgroup of level I. The 
completed group algebra N~=Z~[[~t]] of (~  is a certain quotient of 
Z~[[u~, u2, u~],~, and one can obtain an explicit presentation of ,~ using that of 
~r 

(B) The given data. Let K*=Q*(t )  be the rational function field of one 
variable over a subfield Q * = 0  (the algebraic closure of Q). The main object 
we start with is an infinite algebraic extension L*/K*, containing no non-trivial 
constant field extensions and satisfying the following conditions (i)-(iii), where 
L = L*. 0 and K = K*. (~ = (~ (t) (the composite fields). 
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(i) L/K is a Galois extension and is unramified outside t = 0, 1, ~ .  
(ii) L/K is an almost pro-I extension, i.e., L contains a finite Galois exten- 

sion K1/K such that L/K 1 is a pro-I extension. 
(iii) The ramification indices of 0, 1, ~ in L/K are infinite. 
Note here that L/L* is a Galois extension with Gal(L/L*)~Gal((~/Q*) 

(canonically), and that L/K* is also Galois (whose Galois group being generat- 
ed by Gal(L/K) and Gal(L/L*)). 

Now let M be the maximum pro-I extension of L which is unramified 
outside the places t = 0, 1, ~ of K. Then M/K* is a Galois extension (because 
the condition characterizing the extension M/L is Gal(L/K*)-invariant). There- 
fore, M/K, M/L* are also Galois. Define 

9~ = Gal (M/L), ~ = Gal(M/K),  15 = Gal(L/K),  

1 ~ 9 1 ~ 1 5 ~ 1  (exact); 

M 

I }91  
L * - -  L 
I I }15 

Q* (t) = K* - - - -  K = I) (t) 

I I 
Q*- 0 

The group Gal(M/K*) acts on itself from the left by inner automorphisms 
Int(g): gl ~gglg-1. Every group action which is canonically induced from this 
will be called the natural action. For  .example, GQ,=Gal((~/Q*)"~Gal(L/L *) 
acts naturally on 15, and hence on its completed group algebra d--Z~[[15]]. 
This action will be denoted by Jp (p~GQ,). Note that this action is trivial (Jp 
= 1, all p) if and only if L*/K* is itself a Galois extension. Also, Go, and 15 
(hence also ~ )  act naturally on the abelianization 9lab= 9l/[9l, 9~] of 91. Thus, 
9lab is a left ~ -modu le  on which GQ, acts semi-linearly; p(av)=Jp(a)p(v) 
(p~GQ,, a~M, V~91ab). 

Note also that 91 is a pro-I group, and that ~ contains a pro-I open normal 
subgroup ~1 =Gal(M/K1) (KI: as in the condition (ii)). Since the inertia groups 
in characteristic 0 are (topologically) cyclic, the above condition (iii) implies 
that each inertia group above t=0,1 or ~ in M/K is a quotient of the 
profinite completion Z of Z isomorphic to a group of the form Z z • (Z/m), with 
some m>__l, m ~ 0  (mod l). We write m=mo, ml,mo~ for t=O, 1, 0% respectively. 
Let () (resp. 1, ~ )  be a place of M above t=O (resp. 1, ~) ,  and x (resp. y, z) be 
a generator of. i ts  inertia group in ~=Gal(M/K). By a topological reason, we 
may choose O, 1, ~ and x, y, z in such a way that ~ is (topologically) generated 
by x and y, and that x y z = 1 (see w 3 (A)). The choice of such a triple (x, y, z) is 
our second given data, which plays the role of a "coordinate system". 

Finally, note that M/L is "essentially unramified", in the sense that each 
inertia group above t=O, 1, oo in M/K is isomorphically mapped to that in 
L/K. In fact, since M/L is pro-I and the ramification indices in L/K are 
divisible by l ~ M is the composite of unramified pro-I extensions of K,  for all 
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n. We shall denote by x, y, z the projections of x, y, z on ffi, respectively. They 
have the same orders, m o l ~, m I I ~176 m~o I ~~ as x, y, z, respectively. 

(C) The main results. Now suppose given L*/K* and (x,y, z), and denote by 
ag =Z~[[ffi]] the completed group algebra of (!i = Gal(L/K), considered also as a 
GQ.-module as described above. We shall construct a continuous anti 1-cocycle 

~,=~%,~: G e . ~ d  • 

which contains all information about the representations of GQ. in the Tare 
module T~(JacX,) of the Jacobian of the curve X, corresponding to K,  (n 
=0, 1 . . . .  ). In particular, when L*/K* is a Galois extension, ~b will be an anti- 
representation. The construction of q, is based on the following two Pro- 
positions: 

Proposition 1.1. Let ~=Gal(M/K), x, yeq~ be as above, and ~=Zt[[~]]  be the 
completed group algebra of ~. Then each element 0 ~  can be expressed uniquely 
as 

O=s(O)" 1 -~- 01(X - 1) + 02(y-  1) (01, 02~9~ ), 

where s: ~ ~ Z l is the augmentation homomorphism. 
O0 ~0 

For the proof, see w 3 (A). We define the free differentiation by ~xx = 01, ~yy 
= 0 2  . 

For each p~Ge,, let ~Gal(M/L*) be an extension of p. Then J ' -~ f~5  -1 
( f ~ )  induces an automorphism of ~. On the other hand, let X: GQ, ~ Z ~  be 
the cyclotomic character. 

Proposition 1.2. The notation being as above, and ~ denoting conjugacy in ~, 

where ~ = Z(P). 

This is essentially the same as [I] I w (Prop. 2). Now, p, ~5 being as above, 
choose s, tE~ such that 

~ ~ - 1  1 f)x~ -1 =sx=s -a, pyp  =ty=t - (ct=Z(p)). 

Consider s, t as elements of ~ =Zl[[~]]. Then, by the definition of free differen- 
tiation, 

s - t = ~ ( ; ; t )  ( x - - 1 ) + ~ ( y - 1 ) ,  

o r  
a(t O(s-t) ( x _ l ) =  t - s )  (y_l)"  

s Ox 0y 

Let n: ~ be the canonical projection induced from the canonical homo- 
morphism ~ .  

Theorem A. For each p6Go,, choose ~6Gal(M/L*) and s, teq~ as above. Then the 
element 

n (s ~(s- t)  1 ) ) = n ( t  ~(t-S) 
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of' d depends only on p, and belongs to ~• Moreover, if we call this element 
~b(p), the mapping ~: GQ,-~d • gives a continuous anti 1-cocycle, i.e., 

~(p'o;)=j,(~(p)).~(p,) (P,P'~e*). 
The dependence of ~b=~b~x,y } on the choice of the coordinate system (x,y) 

will be described later (w 4). 
The second main result is concerned with an explicit presentation of the 

projective limit li, mmTl(JacX.) as a submodule of d e2. Let L = U K  ., with 

K J K :  finite Galois, and put K*=L*c~K,. Let X* be the complete smooth Q*- 
curve with function field K*, and X.=X*|  Let J* (resp. J.) be the Jacobian 
of X* (resp. X,), and Tl(J*)= Tz(J,) be their Tate module at l. Consider the 
projective limit lim Tt(J* ) as a GQ,-module, and also as a left d -modu le  in the 

< 

natural manner (i.e., via the natural actions of Go. and ~i on Tt(J* ) for each n). 
First, we assert the following 

Proposition 1.3. There is a canonical isomorphism n~b~--lim_mTt(J* ) commuting 
with the actions of GQ, and d .  

Proof. For each n>0,  let K~ ~b denote the maximum unramified abelian pro-I 
extension of K.. Then Gal(KU~b/K,) is canonically isomorphic with Tt(J* ). On 
the other hand, by the assumption (iii) on the ramifications of 0, 1, ~ in L/K, 
every finite abelian pro-I extension of K~ in M is contained in K"m ~ab for some 
m_> n. Therefore, ~ K! ~b coincides with the maximum abelian pro-I extension 
L ab of L in M, i.e., the field corresponding to [ n , n ] .  Therefore, n ab 

=Gal(L~b/L)~-Jim Gal(KU~b/K.) is canonically isomorphic with limm T~(J*), the 

isomorphism obviously commuting with the actions of Go, and d .  q.e.d. 

Now consider the mapping 

\?x!  7r \?Y!] 
Then: 

Theorem B. The mapping (**) induces an isomorphism 

n a b _  ~ :, ~ : { ( ~ , / ~ ) ~ 2 ;  ~ ( x  - -  1) +~/(y - 1)=0} 

of left s4-modules. This isomorphism is also bicontinuous. 

This is a special case of an "almost pro-I version" of a theorem of Blanch- 
field and of Lyndon in free differential calculus (cf. w 2). By Prop. 1.3 and Th B, 
we shall identify l!m Tz(J* ) with the left d-submodule  Z c d  ~2 given in Th B. 

Our third main result describes the action of GQ. on Z in terms of two 
"transforms" ~b x and ~,y of ~, as follows: 

Theorem C. For each peGQ., its action on ~ is obtained by the restriction 
tO ~(C:~ ~2) of the leJ~ ~ semi-linear automorphism of ~ ) 2  defined by 
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where O~(P) (resp. Or(p)) is the unique element of d • satisfying 

( x -  1)= 1) 4,(p) 

(resp. Oy(p)(y- 1)=(Jp(y)-  1) ~,(p)), 

O(p) being as in Theorem A. 

In fact, each of Ox, Or: Ge *~s~• is also a continuous anti 1-cocycle, given 
explicitly as 

= (s : " ' -  1 ] 
-U2i--1 ! 

~ky(p)=n (t y_X(p)_y_l )1 

! 

+ ( 1 - J p ( y ) ) n \  0y ]" 

(Cf. w 3 (B) for justification of the quotient symbols (x xt~ -1) / (x--1)  -1, etc.) The 
uniqueness statement follows from: 

Proposition 1.4. None of the elements x - l ,  y - l , z - 1  of d=Zz[[(5]] are right 
(or left) zero divisors of d .  

These proofs will be given in w When L*/K* is a Galois extension, 
~0, ~ ,  ~y are anti-representations having the same kernel. This kernel is ob- 
viously contained in the kernel of the action of GQ. on 3;. Whether they 
coincide seems to be a question of a delicate nature. Comparison of these two 
kernels, from various aspects, will be given in w 5, together with some examples 
where they coincide. 

Remark 1.5. In view of Proposition 1.4, we may identify 3; with the left d - idea l  
A = d ( x - 1 ) c ~ d ( y - 1 ) ,  via 3 ;~ (~ ,q )~ - -~ (x -1 )= - t l ( y -1 ) e A .  Then what 
Theorem C claims is that peGQ. acts on A via A~2~Jp(2)~(p)eA. This de- 
scription is simpler in form (so, we employed it in the Introduction); on the 
other hand, this presentation of 9l "b as a left d - idea l  is specific for the 3-point 
ramification case. So, we preferred to formulate Theorems B, C in the above 
form here. 

Finally, we shall present one direct application of Theorem C. Consider the 
action of Go. on the group fl* of/-division points of the Jacobian J* of X* 
(n>0). Since lJ*~F~g-, g, being the genus of X*, this action gives a linear 
representation of GQ, in GL2g,(FI) (and, in fact, in GSp2g,(F~)) for each n. As the 
"prime-to-/" part of the order of the group GSP2g,(F~) is unbounded (as n~oe) ,  
it is not a priori obvious whether there exists a finite Galois extension Q**/Q* 
such that the action of Go., on t J* is unipotent for all n>O. But Theorem C 
gives the following 

Corollary. Assume that L*/K* is a Galois extension. Then there exists a finite 
Galois extension Q**/Q* such that the action of Go** on ~J* is unipotent for all 
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n>O. More precisely, let ffia be the maximum open normal pro-I subgroup oJ if), 
put G=IS/~ 1 (a finite group), and let :(: ~r  ] be the projection. Then it 
suffices to choose as Q**/Q* the extension corresponding to the kernel of the 
composite anti-representation 

~o~O: G o . ~ r  • ~ F / [ G ]  • 

The composite so~o~k: Go.--.Fz • of cr with the augmentation homomorphism s: 
F tI-G] ~ F t is the identity map. 

In particular, when L*/K* is a pro-I extension, Go, itself acts unipotently on 
i J* for all n > 0. 

Proof. Let J be the kernel of ~. Then J is an open two-sided ideal of d 
generated by l and 11, where 11 is the augmentation ideal of ~r =Zz[[~l]]. Since 
qi 1 is a pro-I group, I 1 is topologically nilpotent. Since g - a l l g = I  1 for any 
g ~ ,  J is also topologically nilpotent. Therefore, l + J  is an open normal 
subgroup of d • Moreover, as J is topologically nilpotent and l~J, 1 +J is a 
pro-I group. Denote by Q**/Q* the finite Galois extension corresponding to 
the kernel of ~o~. Then Go**=~b-l(1 +J ) ;  hence Go** is a pro-I group modulo 
Ker ~k. Since Ker ~k=Ker ~bx=Ker ~y, Theorem C implies that GQ** acts on 2:, 
and hence also on the image of ~: in fl* (n>O), through some pro-I group. 
Therefore, GQ.. acts unipotently on the image of 7~tJ*.  But it acts trivially on 
the cokernel which is GQ.-isomorphic to a subquotient of GaI(L/K). Therefore. 
GQ** acts unipotently on fl* for all n>0.  Finally, since O(p)=-n(s) m o d d ( x  
-1 ) ,  O ( p ) - i  is contained in the augmentation ideal of d :  hence soeoqj 
= 1. q.e.d. 

Remark 1.6. (i) Even if we choose K 1 to be the field corresponding to ~1, the 
above Corollary does not mean that psGQ. acts unipotently on i J* for all n if 
so for n = 1 (or even if it acts trivially on t J*). There are differences of delicate 
nature. 

(ii) The basic congruences (w satisfied by ~b, ~x and ~r give further 
informations about the image of eo~k. 

(iii) It may be an interesting problem to find out Q** explicitly for the case 
of modular curves of level 2m l" (n~og). 

( D ) Examples 

Example 1. (The maximum pro-I tower.) Take L: the maximum pro-I extension 
of K=(~( t )  unramified outside 0, 1, ~ .  Then M = L ,  and ( ~ = )  (fi =Gal(L/K) is 
a free pro-I group of rank 2, generated by such elements x, y, that x, y and z 
=(xy)  -1 each generates an inertia group above 0, 1, ~ respectively. 

~=Zt[qJ]~Zt[[u,v~nr by x-l~--~u, y-l*-*v.  

There is a good way to lower the field of constants of L to Q * = Q ,  using 
the following "Belyi's normalization". For  each peGQ and its extension 
~eGal(L/Q(t)), one always has p x p  l~xZ(P), ~y~-l..~yZ(O), [gz[9-1..~zX(p) 
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(Prop. 1.2). But there is a unique choice of ~ such that ~y~)~yX~p) and ~z~ -1 
=z  ztp), where g denotes conjugacy by some element of [ffi, ffi] ([I] Iw 
Define 

L*: the set of elements of L invariant by this fi for all peGQ; 

(a subfield such that L*. ( ) =  L, L* c~ Q = Q). 

The Jo-action of GQ on s /  is a very large Galois representation unramified 
outside I. In this example, the Jp-action itself is already complicated, and its 
study should perhaps precede the study of the anti 1-cocycle ~: GQ--*d • We 
note only that the abelianization of qJ; O,b: GQ__.~•215 gives the 1- 
cocycle in the Fermat case (Example 2 below) whose restriction to GQ~,~=) is a 
non-trivial homomorphism [I]. Therefore, ~ cannot be a coboundary. 

Since ~l={1}, Theorems B, C are empty in this case. 

Example 2. (The Fermat tower.) Take L: the maximum abelian pro-I extension 
of K = 0 ( t )  unramified outside 0, 1, oo; i.e., L = K ( t  all", ( t --1)l / t" ;  n=0,  1,2, ...). 
Then (5=Gal(L/K)~-Z t x Z t and s~-Z~[u ,v]  are the abelianizations of the 
corresponding objects in Ex. 1. The subfield L* over Q* = Q  is obtained as the 
intersection of L with "L* of Ex. 1". Then, L*.(~=L,  and L*.Q(p~) is the 
standard model of L over Q(pt~), i.e., the field generated over Q(pt~)(t) by the 
l"-th roots of t and t - 1 for all n > 0 (cf. [I] I w 4). The J ;ac t ion  of GQ on d is: 

l + u ~ ( l + u )  x~o) , 1 +v--.(1 + v) z~) . 

M: the maximum pro-I extension of K unramified outside 0, 1, oe (the field 

II II 11 
Gal(M/L) Gal(M/K) Gal(L/K) 

II free pro-l, II 
[~, ~]  rank 2 ~ b  

L in Ex. 1), 

~,b ~ ;  = {(4, ~ )e~*2 ;  ~ U+~ V=0} 

=d ' ( - -V ,U)  (a free ~-module,  rank 1). 

This element ( - v , u ) e Z  corresponds to the element of gpb represented by 
[ x , y ] = x y x - l y - l e ? R = [ ~ , ~ ] .  For each p6G o, define Fo6s~t• by p ( - v , u )  
= F o �9 ( - v, u). On the other hand, 

p ( - v ,  u)=(Jo(-v)O,,(p), Jo(u)Oy(p)) (Th. C). 

Therefore, 0, 0x and 0y for this case are given by 

uv F v u F 
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The power series Fp was studied in detail in [I] in connection with complex 
multiplications of Fermat curves and Jacobi sums. Further results on F o will be 
given in [IKY] (cf. also [A]). 

Example3. (The modular tower.) 1 Regard K = Q ( t )  as the field of modular 
functions of level 2 over (~, and t as a 2-function giving an isomorphism 
F \ .~  ~ ,PI \{0 ,  1, oo}, where F is the principal congruence subgroup of level 
2 in PSL2(~ ) and .~ is the complex upper half plane. Fix a positive integer m 
with (m, I)= 1 and put 

L =  U (the field of modular fun_ctions~ 
of level 2m l" over Q ] '  

6J = Gal(L/K) = lim {g eSL2 (Z/2 m l"); g = I (mod 2)}/+ I. 
n 

(For example, q)~_PSL2(ZI) if m = l  and /#2.) As for L* and Q*, there are 
various choices. We only note here that the standard model of L over the 
cyclotomic field Q(p2m~=) can be lowered, in a "standard way", to a model L* 
over 

Q* =Q(/~2m,l/~_/) with ___l-1 (mod4). . .  14=2, 

...t=2, 

which is a Galois extension over K*=Q*(t) .  So, for this choice of Q* and L*, 
the Jp-action of GQ. on ~'=Zzl[l~i]] is trivial. We may assume that the pro- 
jections of x, y, z on �9 correspond to 

(_1 
respectively. The left ~r 

~ab,.~={(~, ~])E~2; ~(x--l)-]-~(y--1)=0} 

in this case is neither free nor cyclic. (For example, if m = 1 and 14: 3, we can 
prove, by using supersingular Frobeniuses, that the minimum number of gener- 
ators of �9 (as d-module)  is 2.) 

The kernel of the anti-representation r G o . ~  r215 coincides with that of 
the action of Go, on ~ (w 5 (D)). This anti-representation ~ in the modular case 
has an additional property that an element of d of the form 

~b(P)+Xt(P)~b(P) -1 (PeGo*, Xl: Go*~Z?:  the l-cyclotomic character) 

commutes with all elements of 0(Go, ) (the congruence relation for Hecke 
operators). There are many interesting problems related to specializations of 0. 
For example, what is the image of O| Go.~Fll[~]]• In the Fermat case, 
this question is closely related to the Vandiver conjecture [IKY]. Another 
basic specialization gives a transparent way to connect modular forms of 

1 Details for this case will be given in a separate article 



Galois representations 439 

weight 2 (level 2ml ~) with those of weight d + 2  (level 2m). Roughly speaking, 
the symmetric tensor representation of the "PSL2(Z~)-part" of 15, of an even 
degree d, induces an algebra representation d~Md+I(ZI[PSL2(Z/m)]); hence 
the composite anti-representations 

~(d~, ~ ,  ~(~. a Q , ~  d ~ ~ OLd+I(Z, [PSL~(Z/m)]). 

These specializations of ~O,~,qJy are not conjugate to each other, and 
x ~y ~ ( 0  in a certain sense) is closely connected with the Galois 

representations studied by Shimura [Sh], Deligne [De], and Ohta [-O]. A 
recent work of Hida [HI  should also be closely related, because our ~ is 
universal for the representation of GQ. in Tz(JacX* ) of the modular curves X* 
of level 2ml" over Q*, while Hida's representation in GL2(ZI[[t]] ) describes its 
"/-ordinary portion". 

There are also other interesting towers with 15=SLz(Zl) (instead of mod 
_ I), or 

15= 1 I �9 
0 

2. Free differential calculus on free almost pro-! groups 

(A) Free almost pro-I groups. Let F be an abstract free group of rank r 
generated by x 1 . . . .  ,x  r (r>__l), and F~ = F  be a normal subgroup of finite index. 
Then F 1 is again free, with rank r x, where q - 1  = ( r - 1 ) ( F : F  0. Let N run over 
all normal subgroups of F contained in F~ such that FffN is a finite /-group, 
and form the projective limit 3 = lim(F/N). In other words, 3 is the completion 

of F with respect to the pro-/ topology of F 1. The profinite group 3 con- 
structed this way will be called a free almost pro-I group of rank r. It contains 
an open normal subgroup 31 =li_m_m(FffN) which is a free pro-/ group of the 

"correct rank" q, i.e., q - 1 = ( 3 : 3 1 ) ( r - 1 ) .  Conversely, if a profinite group 3 
generated by r elements contains an open normal subgroup 31 which is a free 
p ro- /g roup  with the correct rank, then 3 is a free almost p ro- /group  of rank r 
with respect to any set of r generators ~1 . . . . .  fir of 3. Namely, in this case, the 
homomorphism from the abstract free group of rank r, F = ( x l ,  ..., x,), into 3 
defined by xj~ff~ (1 <j<r) is injective, and 3 is the completion of F w.r.t, the 
pro-I topology of the preimage F~ of 3~- This follows immediately from the 
(well-known) fact that a free pro-I group of finite rank cannot be isomorphic 
with its proper quotient. (This last statement is obvious, because the proper 
quotient group cannot have as many open normal subgroups of a given index 
l" as the original group for all n.) It is also easy to see that if a free almost pro- 
l group of finite rank is pro-l, then it is free pro-l, and that any open subgroup 
of a free almost pro-/ group of finite rank is again a free almost pro-/ group 
with the correct rank. We shall identify xjsF with its image x j e 3  (1 <j<r). 
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(B)  Theorem 2.1. Let ~ be a free almost pro-I group of rank r generated by 
x 1, . . . ,x, ,  ~=ZI[[~]I  be its completed group algebra over Zt, and s: N -+Z  z be 
the augmentation homomorphism. Then every element 0 of ~ can be expressed 
uniquely in the form 

O=s(O). 1+ ~ 0 j (x j -  1) (01 . . . . .  0 r ~ ) ,  ( # )  
j=l 

where 1 = 1~ is the identity element of q~. Moreover, for each j, O-+Oj gives a 
continuous Zl-linear map of ~ onto itself. 

aO Definition. ~-xj = 0j (l __<j __< r). 

Remark. When r = 1, ~ is of the form (Z/m) x Z~, with (m, l) = 1. Hence 

~ ~_ (Z~ [t]/(t" - 1)) lull, 

and the augmentation homomorphism s: ~ Z ~  is induced by the substitutions 
u-~0, t ~ l .  In this case, the above theorem is reduced to the elementary fact 
that the ideal of Z~[t] generated by (tm - 1) ( t -  1) -1 and t - 1 is (1). 

Before proving Theorem 2.1, we give a list of basic rules for free differential 
calculus ~/Oxj, each of which is (as in the classical abstract case) an immediate 
consequence of the definition of O/~xj. 

0 
0) ~xi: ~ is continuous and Zrlinear (1 <=j<=r); 

i) ~xi=~ij  (the Kronecker symbol) (1 =<i,j=<r); 

ii) 8(o~fl) Oa Off 
0xj =ax--j s @ +  a 

iii) 0(f-l) - f - 1 0 f  
Ox---~. = Oxi ( f e~) ;  

iv) Let f e ~  and ~eZ. Then 

0 ( f  ~) Of 
Ox i -/~ 0xj'  

where fl is any element of ~ such that f l ( f - 1 ) = f ' - 1  (it exists; cf. w 3 (B)). 
v) If a is any automorphism of ~, extended to that of ~ in the obvious 

way, and if O/O(axj) is the free differentiation with respect to {axj}, then 

O( xj) = b- xj 

vi) if ~1 is any open subgroup of ~, with free (almost pro-l) generators 
Yl . . . .  , y,,, then 
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00 __ir__~l__ 00 0y i 
Oxj Oy i OXj (0E El [[~l'[])' 

where we regard Zt[[~]l as embedded in Z~I[~]}. 

(C) Proof of Theorem 2.1. This will be reduced to the two known cases, the 
abstract case and the pro-/ case. Let our group ~ be constructed as in (A), 
from an abstract free group F on x~ . . . .  , x~ and its normal subgroup F 1 of finite 
index, as ~ = lim (F/N), where N runs over all normal subgroups of F contained in 

( 

F 1 such that (F I:N) is a power of 1. Let F=L[F~c ~ be the left Fl-COset 

decomposition of F, and Z [F] (resp. Z I-F~]) be the group ring of F (resp. F0 
over Z (formal finite Z-linear combinations of elements of F (resp. F0). Then 
Z [ F ] = Q Z [ F 1 ] e a ,  as Z-modules. By a theorem of Fox [F]  (cf. also [B], 

[MKS]), every element of Z [F] can be expressed uniquely as 

O=s(O). 1 + ~ Oj(xj- 1) (01 . . . .  ,0rsZ[F]), 
j = l  

where s: Z [ F ] - o Z  is the augmentation homomorphism (sum of coefficients). 
0 0  0 .  

Write 0J=~x~x " (classical free differential calculus). We shall show that each 
0xj 

Z [ F ] - + Z [ F ]  ( l < j < r )  is continuous w.r.t, the topology of Z [ F ]  which is 
induced from our topology of M = Z t [[~]] via the canonical injection Z I F ] - 0 ~ .  

For  this purpose, take any O=yO~c~r with 0xr Then 0 is 
2 

"small" if its image in (Z/l ' )  IF~N] vanishes for some "large" m and "small" 
N. Since N is always contained in F~, 0 is small if and only if each 0 4 is. Now, 

, = ,  ' 

where Yl . . . .  ,Yr, is a free generator of F 1 (flee differential calculus in the 
0 

abstract case). But ~v.: Z [ F 1 ] ~ Z [ F 1 ]  ( l < i < r 0  is continuous w.r.t, the to- 

pology induced from that of Z~[[~a], because it is a restriction to Z[F1] of a 
continuous free differentiation of Zll[~x~--Zl[[ul . . . . .  ur,]],c (w 1 (A)). Therefore, 

004 &0 
when 0 is small, 0 k and ~ are small for all 2 and i. Hence each ~ is also 

0 
small. This proves that : Z [ F ] ~ Z [ F ]  is continuous. Therefore, we can 

extend ~ to a continuous (Zrlinear) mapping ~-~x~.: ~ - + ~ '  By continuity, we 
J J 

obtain the formula 
00 

O=s(O). 1 +g~=, ~xj ( x j -  1) 
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for any 0~N. The above rules i)-vi) also follow from the classical case by 
passage to the limit. The uniqueness of 0j in Th. 2.1 follows directly by 

applying ~ to both sides of the formula (#) .  The surjectivity of ~x.: N ~ N  is 

obvious, q.e.d. 

( D)  As before, let ~ be a free almost pro-/ group of rank r (<  oo) generated 
by x I . . . .  , x,, and 9l be any closed normal pro-I subgroup of ~. Put ~i = ~/91, 
N=ZI[[~]], d=Zl[[~i]] ,  and let 7t: N ~ d  denote the projection (which is 
obvious continuous). 

Then the action n ~ f n f  -1 (n~91, f e ~ )  of ~ on 91/ induces an action of 
on 91ab=91/[91, 91], which gives 9lab a structure of a left ~r The 
following theorem is an almost pro-/ version of a theorem of Blanchfield and 
of Lyndon [F] in abstract free differential calculus. (The Blanchfield theorem 
corresponds to the injectivity, and the Lyndon's to the surjectivity of (*).) 

Theorem 2.2 2. The mapping n ~  rc \~?xl ! .... rc ~ of ~ into induces an 

isomorphism of left sJ-modules : 

j = l  

This isomorphism is also bicontinuous. 

Proof Put K = Ker  re, the kernel of n. Then K is a closed two-sided ideal of N 
=Z~[[~] contained in the augmentation ideal I, and sJ~-N/K.  Denote by K. I  
the closed two-sided ideal of N generated by elements of the form k.i (keK, 
ieI). Since K is a left N-module, K /K  2 is naturally a left s/-module.  Since K 2 
~ K . I ,  K / K . I  can also be regarded as a left d -module .  The proof of Th. 2.2 
consists in establishing two d- isomorphisms 9 1 a b _ ~ K / K . i  and K / K . I  - , ~  
whose composite is to give the desired s/- isomorphism (*). 

(I) That  K / K . I  ~ Z. Consider a continuous additive homomorphism 

\ O x ~ l  . . . .  ~ \~X-X,x/l " ( # )  

We shall check that this induces an ~- isomorphism K / K . I  ~ ~Z. First, take 
k ~ K  and i~I. Then, since s(i)=n(k)=O, 

O(k.i) gk . Oi ~xj =~s(O+k_------~O;~x~ 
hence ( ~ )  factors through K/K.I .  Moreover, if b e n  and a = ~ ( b ) ~ ,  then 

c~(b k) ~h s(k) cgk c~k ,~ (cgk'~ ; 
dx~ -dx~  + b ~ x  =b-~x J ..... ,a.~t \dx2 ] 

2 The author wishes to thank Takayuki Oda and Hans Sah for valuable discussions related to 
this theorem 
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(0k)G hence (:~) induces an ar K/K.I--*dd ~r. Since k = ~  (x3 
d 

-1)  and 7r(k)=0, the image is obviously contained in X. Therefore, (:~) 
induces an ar 

K/K.I  ~ X.. (:~:~ ) 

Ok 
Injectivity of (~:#). If k~K is in the kernel of (#), then - - ~ K  for all j; hence 0x; 

Surjectivity of ( ~ ) .  Take any (~j)~3;, and ~jeN for each j with r~(~j)= ~. Put 
~ Ok 

k= ~j ~j(x~-1). Then ~(k)=O; hence keK. On the other hand, ~J=~xj; hence ~ 

[c~ ~; hence (#)  maps k to (~j). =re \~xj! 

Therefore, (~=~=) is bijective. 
(II) That 9lab ~ ~ K/K.I. This is induced from a continuous mapping n--+n 

- 1 (mod K.1) of 91-+K/K.I. Since 

n n ' - l = ( n - 1 ) + ( n ' - l ) + ( n - - 1 ) ( n ' - - l ) - ( n - 1 ) + ( n ' - - l )  mod K.I 

for any n,n'E91, the above mapping 91-,K/K.1 is a group homomorphism. 
Since K/K.1 is abelian, this induces an additive group homomorphism 

91"b--* K/K.I.  (!) 

Moreover, if n~91, f ~ ,  then f n f - l - l = f ( n - 1 ) + f ( n - 1 ) ( f  -1 - 1 ) - f ( n - 1 )  
mod K.I; hence (!) is an ~-homomorphism. 

Surjectivity of (!). It is clear that K = K e r =  is generated, as an additive 
topological group, by elements of the form (n - 1) f (ne91, fe~) .  (Note that f(n 
- 1 ) = ( f n f  -1 - 1 ) f )  But since ( n - 1 ) f = ( n - 1 ) + ( n - 1 ) ( f - 1 ) = ( n - 1 )  
modK.I,  the image of (!) is dense. By compactness of 91,b, (!) must be 
surjective. 

Injectivity of (!). Let 1~ denote the augmentation ideal of Z~[[91]]. Then K 
=I~.9~ (K being generated by ( n - 1 ) f ;  ne91, fe~) .  Therefore, K.I=I~ . I .  
Now let ne91 be such that n - l e K . I .  Then n - l e I ~ . I .  Let U be any open 
normal pro-/ subgroup of ~, put 91"=9l. U, and let I~, be the augmentation 

m 

ideal of Zl[f91*]]. Then n - l ~ I ~ . I ~ I m . I .  Let ~ =  LI91, ea (c~=l, m=(~:91")) 

be a left 91*-coset decomposition of ~. Then 9~=@Z~-91"]c~ as modules; 
hence a 

I = I ~ , ~  | Z,1~91"11 �9 (c~ - -  i). 
a, , l  

Therefore, 
n - 1 ~ I~,- I = (i~,)2~ (~) i~,(ca _ 1). 
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But since n-l~Zz[[9l*~, it must belong to (I~,) 2. But since 9l* is an open pro-/ 
subgroup of ~, 91" must be a free pro-/ group of finite rank. Therefore, by a 
well-known fact about the completed group algebra of a free pro-/ group of 
finite rank [S], we conclude from n - l e ( I~ , )  2 that n~[91*, fit*]. 

Finally, to conclude from this that n~[9~, 9~], it is enough to show that f(n) 
=1 for any homomorphism f :  91--,A into a finite abelian (discrete) group A. 
Since f has an open kernel, there exists an open normal pro-/subgroup U c 
such that f = l  on 91c~ U. But then, f extends to 9t* = T t - U ~ A .  Since ne[9l*, 
9l*], we obtain f (n )= l .  This proves that ne[91,9l]; and hence the injectivity 
of(!). 

Since t?(n-1)= On (neaR), the composite of the above two d-isomorphisms 
~xj Ox~ 

gives the ~r of Theorem 2.2. Since (,) is continuous (because the 
free differentiations are so) and ~t "b is compact, (*) is bicontinuous, q.e.d. 

w 3. Proofs for w 1 

(A) On the group ~; proof of Theorem B. Let .~ be the complex upper half 
plane, and F be the principal congruence subgroup of level 2 in PSLz(Z ) 
acting on .~ in the usual manner; 

z~?z=(az+b)(cz+d)-~; 7 = + ( ~  bd)~F, z ~ .  

Then F acts freely on ~ and, as is well-known, F\~---PcX\{0, 1, ~}  as Rie- 
mann surface; hence F-nx(PcX\{0,1,~}). The fuchsian group F has 3 in- 
equivalent cusps, represented by z = i ~ , 0  and 1, and their stabilizers in F are 
free cyclic groups generated by 

x=(10 21),  y = ( _ l  2 01) and z=(xy)-l=(12 -23) ' 

respectively. As is well-known, F is a free group of rank 2 generated by x, y. 
There are 6 distinct isomorphisms 2: F\ .~ - , P  c 1\{0,1, ~} (the "2-func- 
tions'), depending on how we associate 3 cusps to 3 missing points {0, 1, ~} of 
P~\{0, 1, ~}. To fix our notation, we shall normalize 2 by the condition: 

2( i~)=0 ,  2(0)= 1, 2(1)= ~ .  (,) 

For each subgroup F'cF with finite index, denote by Kc(F' ) the field of 
modular functions w.r.t. F'. In particular, Kc(F)= C(2). Consider its subfield 
K(F)=0(2).  Then, as is well-known and easy to prove, Kc(F' ) for each F' 
contains a unique finite extension K(F')/K(F) such that K(F'). C = Kc(F' ). Now 
let F' run over all subgroups of F with finite indices, and put 9Y/= ~)K(F'). 
Then ~02 is the maximum Galois extension of K(F)= 0(2) unramified outside 2 
=0,1, oo. The group F acts on 93/ as f ( z ) ~ f ( y - l z )  (y~F, f~gY/), and the 
injection F~--~Gal(~OI/K(F)) defined by this action gives the profinite completion 
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of F. (In other words, Galois theory holds between subgroups of F with finite 
indices and finite subextensions of 9X/K(F), under the correspondence 

If we fix a normal subgroup F~ = F of finite index and let F' run over only 
those normal subgroups of F contained in F~ such that F~/F' is an/-group, then 
9JU')= U K(F') is the maximum pro-I extension of K(Y1) unramified outside 
0, 1, ~ .  In this case, GaI(gJlm)/K(F)) is the completion of F w.r.t, the pro-I 
topology of F~ and hence is a free almost pro-I group of rank 2 generated by 
x, y. Note that x, y, z can be regarded as generators of the inertia group of the 
place of 9J/ (or 9JU 1)) above 2=0,  l, ~ ,  determined by the cusps z=ioo,  0, 1, 
respectively. 

Now let K = ( ~ ( t ) = K  1 = L = M  be as in w 1 (B), and fix an embedding 0"--~C. 
Then K can be identified with K(F) via t,--*2, and this identification isomor- 
phism K ~ , K(F) extends to an isomorphism K 1 - , K(q) (for some F0, and 
further to M - ~  ,gX ~r'). Therefore, ~ = G a l ( M / K )  is isomorphic to the com- 
pletion of F w.r.t, the pro-I topology of F 1. In particular, ~ is a free almost pro- 
1 group of rank 2 generated by x, y, and x, y and z = ( x y )  -1 each generates 
some inertia group above 0 , 1 , ~ ,  respectively. Therefore, Prop. 1.1 and 
Theorem B (w 1) are immediate corollaries of Theorem 2.1 and Theorem 2.2, 
respectively. 

(B)  Some lemmas. For the proof of Theorems A, C, we shall need the follow- 
ing three lemmas (lemma 3.1-3.3). Their variations (lemma 3.1', 3.2') will also 
be used later. 

Lemma 3.1. Let @ be a profinite group, l be a prime, and g be an element of 15 
whose order is divisible by 1 ~, i.e., the l-component of the order of g in the finite 
factor groups of (5 is unbounded. Then g - 1  is not a right (or left) zero-divisor 
of g, [[ ff~]. 

Proof. Suppose ~ (g -1 )=0 ,  with ~Z~[[@ll. Let ~B=li,~mG~, with each G 4 finite, 

and g4 (resp. ~4) be the projection of g (resp. ~) on G 4 (resp. Z l[G4] ). Denote by 
D 4 the cyclic subgroup of G 4 generated by g~, and by d,---ID,[ its cardinality, 
i.e., the order of g4 in G~. Now ~4(g4-1)=0 implies that ~4 is divisible by 13 4 
= ~ a from the right. But if 2>/~, G~-~Gu, then /3 4 projects to (d~-ld~)fl,. Fix 

a~D.~ 

/~ and let )~--*~. Then by our assumption on g, we have d~ ldz~O (l-adically). 
Therefore, c%, which is divisible by (dj ld4)f l ,  from the right for all 2, must 
vanish for any p. Therefore, ~ =0. q.e.d. 

Proposition 1.4 is a special case where (~=Gal(L/K)  and g = x , y  or z. 
(Their orders are divisible by l~; w 1 (B).) 

Using multiples of ~ o- instead of fl~, we obtain, exactly in the same 
aEG:~ 

manner, the following similar assertion. 

Lemma 3.1'. Let @ be a profinite group whose order is divisible by l ~, i.e., the l- 
component of the order of finite factor groups of ff~ is unbounded. Let I be the 
augmentation ideal of Zz[[ffi~, and suppose that ~eZt[[ffi]] satisfies ~. I =0 (or I .  
=0). Then ~=0. 
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Now, in general, if ~b is a profinite group, g~b ,  and 0~Z, then g ~ - I  is 
always divisible by g - 1  in Ztl[ffi]] from either side, as can be verified easily by 
passage to the finite quotients of (5. (Conversely, if g , g ' ~ ,  m> 1, and (g ' -1 )  m 

is divisible by g - I  in one way, then g' must be of the form g'=g~ ( ~ Z ) .  We 
shall need this later, but only when m=2 ;  cf. the proof of Theorem 5.1.) In 
particular, when the order of g in (5 is divisible by l ~, g~-1 is uniquely 
divisible by g - 1  from either side (lemma 3.1). The two quotients coincide, 
because the equalities 

g~--l=(g--1)fl=fl '(g-1) (fl, fl' eZt[[(~) 
give 

(g - 1) fl(g - 1) =(g~ - 1) (g - 1) = (g - 1) (g~ - 1) =(g - 1) fl'(g - 1); 

g~ - 1 
hence fl = ft. This quotient fl = ff will be denoted by - - .  

g - 1  
Now we shall go on to the next 

Lemma 3.2. Let ~ be a free almost pro-I group of rank 2 generated by x, y, and 
a be an automorphism of ~ such that 

a(x)=sx~s -1, a(y)=ty~t -1 

with some s, te~, ~, flEZ ~. Then, for any f eq~, 

 sT i--l ;+(1 
(~) 

0( t -s )~  +(1 -~r(f)) ~ .  d(a(f))Oy -er (iOfy ) {t Y~-]  ~y j 

Here, the automorphism of Z,I[~]I induced from a is also denoted by ~. 

First, we prove a more general 

Lemma 3.2'. Let ~ be a free almost pro-I group of rank r generated by x 1 .... , xr, 
and a be any automorphism of q~. Put axi=uix i with uie ~ (1 <i<r), and take 
any element f e~ .  Then, for each j (1 <j<r), 

0x---7 uj+,,_l  0x r 
Proof. Each side of (!), as a function o f f ,  satisfies the 1-cocycle relation co(f g) 
=~( f )+o ' ( f )~ (g )  ( f , g ~ ) .  Moreover, it is continuous. Such functions are 
obviously determined by their values at the generators of 5. Therefore, it is 
enough to check (!) only when f=x~ (1 < i<r ) .  But then, both sides of (!) are 
equal to 

~(ui x~) c~u~ 
- -  F u i (Sij. Oxj c~xj 

q.e.d. 

Proof of lemma 3.2. This is a special case of lemma 3.2', where r = 2, x~ = x, x2 
=y ,  u~=sx~s-~x -1, u2=tyat-~y -~. The formulas follow directly from lemma 



Galois representations 447 

3.2', if we only note that  

f - l = ~ x  (x-1)+~y (y-1 ). q.e.d. 

N o w  let ~ be a free a lmost  pro-I  group of rank 2. Two  ordered pairs (x, y), 
(xl,yl) of generators  of  ~ will be called equivalent, if xx,.~x ~ and y l~y  ~ with 
some cr f l~2  • ( ~  : conjugacy). When  (x, y), (xl, Yl) are such, we shall define an 
element ~x,,rl) e(~,r ) 6Zl[[~] ,  as follows. Choose  any s, t e ~  and ~, f l~2  • with 

Xl=SX~S -1, y~=tT t  -~. 

We shall show that  the element 

e(Xl,yl) _ O(s- t ) (x_l )=t_O(t-s)  ~x,y) - s  Ox ~y (y - l )  

of Zl[[~]] depends only on (x,y) and (xl,yl). For  this purpose,  let s', t ' e ~  and 
e', f l ' e 2  • be another  choice for s, t and ~, ft. Then f rom the equalities 

sx's-l=s'x~'s'-l(=Xl),  tyPt-l=t'  yP't'-a(=yl) 

follow that  

Os x ~ -  1 ~s' , x ~ ' -  1 
(1--Xl)~x+s~--I =(1--Xl)Ox +s x - - l '  (1) 

Ot Ot' 
(1 - yx) ~xx = (1 - yl) ~x.  (2) 

Since xl,  y~ is a genera tor  of  ~, y~ is of infinite order,  and since ~ is an a lmost  
pro-I  group,  the order  of y~ is divisible by 1% Therefore,  by l e m m a  3.1, 1 - y ~  in 
(2) can be cancelled, and  we obta in  

Ot c~t' 
~x-x =ffs . (3) 

N o w  mult iply x -  1 on bo th  sides of  (1) f rom the right, to ob ta in  

~s Os' 
(1 - x t )  ~ x  (x  - 1) + ( x l  - 1) s = (1 - xx)  ~ (x  - 1) + (x  1 - 1) s'. 

Again, x a - 1  can be cancelled, and we obta in  

S-~xx ( x -  1 ) = s ' -  ( x -  1). (4) 

But (3) and (4) give 

0 (s - t) 0 (s' - t') 
s ( x -  1 )=s '  - -  ( x -  1), 

Ox Ox 
as desired. 
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Therefore,  .(x,,ro depends only on x, y, x 1, Yl. It is clear that ~(x, y) 

e(X, r) _ 1 o(r~, xO _ o(x,, r,) 
( x , y ) - -~ ,  ~(y,x) - -~(x ,y)  " 

L e m m a  3.3. Let (x,y), (xl,y O, (x2,y2) be mutually equivalent ordered pairs of 
generators of a free almost pro-I group ~ of rank 2. Then 

e(X2, y~)  _ o(x2, y~)  o(x~, y o  (,) 
(x,y) --~(xx,yD ~(x,y) �9 

Proof. Put 

x,=slx='s? ~, xa=s2xys~l=(s~sOx"'=(s~sO -~, 

Yl = tl Ya~ t~ 1, YE = t2 yf2 t-~ 1 = (t 2 tO ya~ tJ= (t z tl )- 1, 

(s i, t i ~ ,  a i, fli~2~; i =  l, 2). Then, 

e(X2,y2)_r e ~ ( $ 2 8 1  - t 2  h) ( x -  1) 
(x,y) - - ~  ~1 OX 

[ OS1 0t* ~ (x -- 1), =szsa ~ (x--1)--(sz~-x--t2-~xx ! 

and 

Put 

(  (s2-t2, )( 
~(12,y2) ,,(x~,rO_ s2 (x , - -  1) s 1 ~(xl,yl) " ~(x,y) -- ~X 1 

~(s, - q) ( x -  1)~. 
] 8x 

Then 

_ ~(xl,y.)_ r O(s* - t l )  ( x -  1). O=s2 - t2 ,  e-~-(x,r) - oa Ox 

_e(X=,r:)., ,(x:,.)..(x.,yl) 00 8q  O 0  
(~,y) -~(~ , ro  ~(x,r) =-~-xx (X-1) + O ~ f  ( x - 1 ) - S x l  (x 1-1) e. 

O0 O0 
But since O=-~x(X- 1)+~yy ( y -  1), and 

(~) 

O0 O0 8x .00 8y 
e-z-- ~ - ,  ( # )  is equal to 

OXl Ox 011 vy oxl 

00 00 

where 

~ = x -  1 + ( x -  1) Otl ~-x (x - 1 ) -  (Xx - 1) e, 

l l=(Y-1)~x  ( X - 1 ) -  ~--~Yxl (Xl-1)e.  

Therefore,  the proof  of our  lemma is reduced to that  of the vanishing of  { and 
~/. Now,  to check that  { and ~/vanish, consider two 2 x 2 matrices over Z I [ [ ~ ;  

< 
ox OOy,) A,= ~ ~1 A= ~yl ' \Oy o ]  

\ &  e y /  
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Then AA'=A'A=Iz;  hence it is enough to prove that A (  ~)=(O). But by a 
straightforward calculation using t/ 0 

x l - l = ~ x  (X-1)+~y  (y-1),  Y l - - l=~x  (X-1)+~y (y-1),  

we obtain 
Ox t c~t 1 

A(~)=(-~xx ( X - 1 ) + ( x ~ - l ) ~ x ( x - 1 ) - ( x ~ - l ) e  ~ 

O ~ x ( X - l ) + ( Y l - 1 ) ~ ( x - m )  / "  

But from x x =s  1 x ~' s~ -1 a n d  y~ = t~ y#~ t~ -~, we obtain 

gxl =(1 --xl) Osl x ~' -- 1 c3y I gt I . 
0x ~-x +sl  x -  1 ' ~3x =(1 --Y0 0x ' 

axx ( x -  1)=(x 1 - 1) Is 1 - 0 s l  ~-x (~- 1)]. 
Ox 

�9  e,efor  

Remark. When there exist automorphisms al : (x, y)~(xl, yO, a2: 
(xl, Yx)~(x2, Y2) of ~, lemma 3.3 can also be proved by using lemma 3.2. 

Corollary 1. ~l,yO.e~X,y) _ 1. In particular, ~(x,r) ~(x,y) (xl,r~)- o(~,r~) belongs to the unit group 
z , ~ ]  ~. 

The notation being as in lemma 3.2, define e(~,y)(a) by 

~(ax, ay)~ ,7 Ir e't: llx e(x,y)(a)=~(x.y) =~to.oJl �9 
Then 

C o r o l l a r y  2. (i) e(r.x)(a ) = e(x,r)(a), 

(ii) e(x ' r)(a'o a) = a'(e(~, y)(a)) e(~, r)(a'), 

for any two automorphisms a, a' of ~ leaving the equivalence class of (x, y) 
invariant. 

Proof (i) is obvious. (ii) follows immediately from lemma 3.3 and from the 
obvious identity 

6 '  r o(xl, yl)] _ o(a'xb a 'y t )  
~ ( x ,  y) J - - ~ ( a ' x , a ' y )  

(cf. w 2 (B) (v)). 

(C)  Proofs of Theorems A, C. They are easily reduced to lemma 3.2 and 3.3, 
as follows. 

Proof of Theorem A. For peGQ,, choose an extension peGal(M/L*). Let 
= Gal (M/K), x, y be as in w 1, and a denote the automorphism of ~ defined by 
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cr(f)=jSf~5 -1 ( f ~ ) .  Then r -1 and a ( y ) = t T t  -1, with 
and with some s, t e ~  (Prop. 1.2). Therefore, by lemma 3.3, 

e t , , ~ -  ,,( . . . .  r) O ( s  - t )  ( x  - 1)  
(x ,y ) t~p- -  ~(x, r ) = S  0X 

is independent of the choice of s, t. If we replace ~ by n~ with some neg/, then 
a will be replaced by Int(n)oa, Int(n) being the inner automorphism f ~ n f n  -1 
of ~; hence s, t will be replaced by n s, n t, respectively. But since 

O(n s) Os On ~3(n t) Ot On 
Ox = n ~ x q O x '  Ox =n~xx+Ox' 

we obtain e(~,y)(Int(n)oa)=n.e(~.y)(a). Therefore, the projection zr(e(~,r)(a)) on sr 
depends only on (x,y and) p. By Cor. 1 of lemma 3.3, this belongs to 
n(Zil[~]l•162 • The equality ~,(p'op)=Jo,($(p)).~,(p' ) follows immediately 
from the equality (ii) of Cor. 2 of lemma 3.3. It is easy to check that ~ is 
continuous, q.e.d. 

Proof of Theorem C. Let p, ~, s, t be as above, and put 

Then 

/ x x 'm- 1 \ (O(s- t)~ 

~ r ( p ) = x ~ t ~ - ) + ( 1 - J p ( y ) ) T z  \ Oy ]" 

@x(P) (x - 1)= (dp (x) - 1) @(p), tpr(p) (y - 1) = (Jp(y) - 1) @(p), (*) 

because re(s) x x(p) = Jp(x) zt(s), n(t) yX(p)= jp(y) zt(t). 
By lemma 3.1, $x(P) and $r(p) are determined by the equations (*) (and in 

particular, they depend only on p). Since ~b is an anti 1-cocycle, ~b x and ~kr are 
also. 

Now take any n~gl. Then p acts on Z---92 ab (via Th. B) as 

(x(On~, On (zr(Oa(n)'l~IOa(n)'l~ 

By lemma 3.2 for f =  n, we obtain 

hence 

Ox =~r ~xx" s x - 1  

Similarly, from 

Oy =a �9 t y - 1  
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follows 

n \  ay ] 

Therefore,  p acts on ~ as 

, " ,..-+ 
This proves Theorem C. q.e.d. 

+0) 

w 4. Dependence on the coordinates 

We defined three anti 1-cocycles ~, ~x, ~by: GQ,- - ,d  • using two special genera- 
tors x, y of ~ = Gal(M/K).  To indicate their dependence on x, y, we denote (in 
this section) ~, ~/x and ~y by ~k{~,yi=~{y,x l, ~,~l{~,y} and ~rl{x,y} respectively 
({x, y}: unordered  pair). No te  that  they are defined as long as x and y generate 

and each of x, y generates some inertia group above one of {0, 1, oo}. Their  
dependence on the choice of x, y is as follows. If if, ~k' are anti  1-cocycles GQ.--* 
d • and ~ e d ,  we shall express as 

the relation 
,/p(a) I/s (p)= I/s'(p) ~ (V peGo, ). 

(i) If XI=SXCtS -1, y i = t y P t  -1 (s, t e ~ ,  a, fleZ• and x l , y  1 also generate ~, 
then 

n[e(Xi, Yl)~ 
t (x, y) / 

where -{>:"Y') is as in w 3. This follows immediately from lemma 3.3. ~(x, y) 
(ii) If (x, y, z) is as in w 1 (B), then ~,/{y.=l, if{y,:}, ~/rl{y, zl etc. are also defined, 

and they are related to each other  as follows. 

t~{x. y} 

~yl{~, r} ~xl{~, yl 

x,l l, 
x 
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Here, modulo symmetry, the only "new relation" to be checked is 

and this can be checked easily from the definitions. 

Congruences. From the definition and from the above cycle relations, we can 
easily deduce the following congruences. Here, for each peGQ,, ~ is an exten- 
sion of p to an element of GaI(M/L*), and s, t, u are any elements of ~ such 
that 

[)X~) -1 -~-SXCtS -1, ~ y ~ - l  = t y ~ t - 1  ' ~Z~- I=uz~  -1 

Proposition 4.1. 

(i) 

(ii) 

(iii) 

~O{x.r}(p)- s mod d ( x -  I), 

- t  m o d ~ l ( y -  1), 

x = -  1 mod(J.(x) - 1) ~r ~x/{x,y}(P) =- S ~ -  1 

(x y)~-  1 
--u x y - ~  m~176 y)- l) d ;  

~by/{~,r}(p)=t y~-I mod(Jp(y)-  1) ~r 
y - 1  

(x y)~ - 1 
--=Jp(x) - l u  x mod(Jp(yx) -  1)~r 

x y - 1  

(c~=z(p)). 

In the Fermat case, these congruences served as generic congruences for 
Jacobi sums [I] w This system of 6 congruences is "complete" in a certain 
group theoretic sense (similar to [I] Theorem 3B). 

w 5. Comparison of  the two kernels 

In w 5, we assumc that L*/K* is a Galois extension, or equivalently, that the 
action of Go, on sr  ] is trivial. Then ~k,~kx,~,r: GQ,--*d • are anti- 
homomorphisms, related to each other by 

(x-1)~k(p)=~kx(p)(x-1), ( y -  1) ~k(p) = ~@(p) ( y -  1) (p~GQ,), (1) 

and the action of p on 9P b ( c ~ 1  ~2, via TheoremB) is given by the right 
multiplication of the diagonal matrix 

(~O~p) ~r~p)) (cf. Theorem C). 

By (1) and Proposition 1.4, q/, qJx, ~Or have the common kernel. Denote by k 1 
(resp. k2) the Galois extension of Q* corresponding to the kernel of the action 
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of Go, on 9l ab (resp. the kernel of ~k). It is clear that k 1 c k 2. We shall clarify 
the difference of roles played by these two extensions k I and k 2 of Q*. 

(A) First, consider the left ~r A = s J ( x - 1 ) ~ d ( y - 1 ) ,  and its Zrsub- 
module 

D={ZeA;  A. 2=0}. 

Then, since DE----0, I + D  is a subgroup of ~r215 isomorphic to the additive 
group D. 

Theorem 5.1. An element p of GQ, acts trivially o n  ~f~ab if and only if ~k(p)el +D. 
In particular, (~k(p) - 1) 5 =0  for peGkl. 
Proof By Remark 1.5 (w peGQ, acts trivially on 9~ab~z if and only if 
A - ( ~ ( p ) - l ) = 0 .  Therefore, it remains only to check that if PeGkl then ~(p) 
- l e A .  To check this, take any extension fieGal(M/L*) of peGQ, and, as 
before, put 

pxD-l=sxX(O)s -1, ~yD-l=tyX(P)t -1 (s, te~). (2) 

Then, since p acts trivially on 15 = ~/9l, 

nl=sxX(P)s-'x -1 and n2=tYX(P)t-ly - '  

belong to 9l. Therefore, A contains the elements 

( OS xx(P)--I ) 
(On,](x_l )=x ( l - X ) ~ x + S  1 ( x - l )  (3) rC\Ox l x-1  

and 

Now suppose PeGkl. 
particular, the elements (3) and (4). Therefore, it annihilates 

But since 

(On2] (x-- 1) = r~ (1 - y) ~xx ( x -  1) . (4) 
~\Oxl 

Then the right multiplication of ~ ( p ) - 1  annihilates A; in 

r t ( 0 ~ ( x - 1 ) - s + l )  and r t ( ~ ( x - 1 ) ) .  

~O(p) - l=x  ( s -  1 0 ( ~ t )  ( x -  1)), 

the right multiplication of ~b(p)- 1 annihilates ~k(p)- 1 itself; 

(0(p)-  0 5 =o. 

Now, from (5) we obtain 

(re(s)- 1)2ed(x - 1), 

(5) 

(6) 
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because ( x - 1 ) n ( s ) =  n(s)(x zCp)-'- 1). And from (6) we obtain n(s)~(x) .  In fact, 
take any finite quotient G of ~,  and project d onto Z,[G].  Call -~, i the 
projections of s, x on G, respectively, and let d be the order of ~ in G. Then (6) 
implies 

a--1 

(~-1) ~ y~ ~J=0; 
hence ~= o 

d--1 d--1 d--1 

j = O  j = O  j = O  

in Z~ [G]. But since ~J (O__<j_<_ d - 1 )  are distinct elements of G, this equality can 
hold only when 

Therefore, g~(~).  Since G is an arbitrary finite quotient of ff~, we obtain 
n(s)~(x) .  Similarly, n( t)~(y) .  Therefore, s~91(x) and t~91(y); or in other 
words, we can choose s and t from 91. But then, 

( O ( s - t ) ] ( x - 1 ) = - - n  (y -1 )~A.  q.e.d. O(p) - l= - r c \  ~x I \ ~y ! 

Now let p~Gk. Then we have shown above that ~ x ~  -1 (resp. p y p -~ )  is 
conjugate to x z(p} (resp. yXtO)) by some element of 91. Similarly, by using y, z 
instead of x,y,  we can show that ~z~  -1 is conjugate to z xw) by some element 
of 9l. Since the n-conjugation does not change x, y, z rood 91, this implies that 
xxtp)-I, yX(p)-i and z z(p)-I belong to 91. But since each inertia group above t 
= O, 1, oo in M/K is canonically isomorphic to that in L/K (w 1 (B)), this implies 
that 

xX~P~=x, yX(O)=y, zXW~=z in ~, 

or equivalently, 
X(p) -0  (mod m l~), (7) 

where m= l c m(m o, m~, rn~), the least common multiple of the "prime-to l" part 
of the ramification indices of 0, 1, m in L/K. Therefore, 

~ x ~ - l ~ x ,  ~ y ~ - l ~ y ,  p z p  ~ z  (p~Gkl), (8) 

where ~ denotes conjugacy by some element of 91. 
A place of M (or any of its subfields containing Q*(t)) will always mean a 

place relative to its constant field. It will be called cuspidal if it lies above t 
= 0, 1 or c~. 

Corollary 1. (i) Cuspidal places of L* are kl-rational; (ii) k x contains the groups 
Pro, 1~ of the m-th and the l~-th roots of unity. 

Proof (i) Let P be a place of M above t = 0 having ( x )  as its inertia group in 
M/K. Take any p~GQ, and its extension ~Gal(M/L*).  Then popo~ -~ is also a 
place of M which coincides with P on K;  hence popo~ -~ =Pos -x with some 
s ~ .  But then, ~x~-l=sxX~O)s -1. Now let P~Gk. Then ss91(x),  as shown 
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above. Therefore, poPo~) -1 coincides with P on L; hence pop coincides with P 
on L*, for all peGkl. Therefore, the residue field of L* w.r.t. P is contained in 
k 1. Since L*/K* is a Galois extension, this implies that all places of L* above t 
=0  (and similarly, t =  1, oo) are kl-rational. (ii) is obvious (either by (7), or by 
(i)). 

Corollary 2. kz/k 1 is a pro-I abelian extension with the Galois group isomorphic 
to a closed additive subgroup of D. In particular, if sJ contains no element ~4=0 
with c(2 =0, then k~ =k z. 

Corollary 3. k 1 = k  2 i f  (~ is abelian. 

In fact, if G is any finite abelian quotient of ~,  Q~[G] is a direct sum of 
commutative fields. Hence ~Ed ,  0~ 2 =0  implies ~----0. 

This applies to the tower of Fermat curves of degree m l ~ 

(B)  Now denote by L ab the intermediate field of M/L corresponding to 
[91,91], i.e., the maximum abelian extension of L in M. Then Gal(Lab/K) 
~-~/[91, 9l]. Denote by Out~,b(~/[91,91]) the quotient of the group of those 
automorphisms of ~/[91, 91] which stabilize 9l, modulo the group of inner 
automorphisms by elements of 91ab=91/[91,91]. Then the natural action of 
Gal(Lab/L *) on t~/[91, 91] (w 1 (B)) induces a homomorphism 

Go,-~ Out~~ (~/[91, 913). (# )  

Proposition 5.2. The kernel of ~ coincides with that of ( #e ). 

Remark. This shows that /f every automorphism of ~/[91, 91] which acts 
identically on both ~/91 = ffi and 9lab is necessarily an inner automorphism by 
an element of 91,b (or equivalently, if Hi(ffi,91~b)=0), then k l = k  2. At present, 
the author knows very little about this cohomology group HI(~,  91,b). At any 
rate, the action of GQ. gives only a special type of automorphisms of ~/[91, 91]. 
So, even if Hl(ffi, 91ab)4:0, it is still possible that k~ coincides with k 2. 

Proposition 5.2 is an immediate consequence of the preceding results in (A) 
and the following two lemmas. So, we shall omit its proof. 

Lemma 5.3. The centralizer in 9lab of each of the projection of x, y, z on 
~j/[91, 91] is trivial. In particular, 9lab contains no non-trivial central element of 
~/[91, 91]. 
Proof It suffices to prove that ( x - 1 ) i f = 0  (ff~91,b) implies if=0. But since 9lab 
C E ~  ~)2 a s  left ~'-module (Theorem B), this is an immediate consequence of 
Proposition 1.4. q.e.d. 

To state the next lemma, let p~G~,, ~eGal(M/L*) be an extension of p, and 
s, t~91 be such that 

p x p  l = s x s - 1 ,  ~ y ~ - l = t y t  -1 (9) 

(cf. (8) above). 
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Lemma 5.4. ~k(p)= 1 /f and only if s - t  mod[91, 91]. 

Proof. As s, t~91, 

Therefore, ~k(p)= 1 if and only if 

( ts-tq 
rc~ ax l=Tt\ ay 1=0. 

But by Theorem 2.2, this is equivalent with s-1 t~ [91, 9l]. q.e.d. 

(C)  For a field k with Q * c k c Q ,  a weak (resp. strong) k-model of L ~b will 
mean any field f2 which fits into the diagram (10) below (the inclusion of fields) 
and satisfies the condition that O/L* k (resp. O/K* k) is a Galois extension. 

Lab-- O �9 Q 

C,k l 
I K (10) 

K*k l 

A strong k-model is unique, because 9lab contains no non-trivial central element 
of ~/[91,91] (lemma 5.3). In terms of k-models, the fields k=k  1 and k 2 are 
characterized as follows. 

Proposition 5.5. k = k 1 (resp. k2) is the smallest extension of Q* such that L ab has 
a weak (resp. strong) k-model. 

Proof. It is obvious that the existence of a weak k-model implies k ~ kl. The 
existence of a strong k-model implies that, for each peG k, we can choose ~ and 
s, te91 (cf. (9) above) so that the automorphism x ~ x T ) - l = s x s  -1, y--*~)y~-~ 
= t y t  --~ of ~/[91,91] is the identity map. But then, s, te[91, 91] by lemma 5.3; 
hence PeGk2 by lemma 5.4. Therefore, k ~ k 2. Conversely, suppose that peGgy. 
Then by lemma 5.4, we can choose an extension ~eGal(Lab/L * k2) of p which 
centralizes ~/[91, 91]. Such a ~ is unique, and the common fixed field of ~ 
(PeGk~) gives the strong k2-model of L ab. Finally, to prove the existence of a 
weak k~-model, choose any kl-rational place P of L* k~. As we know (Cor. 1 of 
Theorem 5.1), the cuspidal places of L*k~ are k~-rational. We assert that there 
is a unique weak k~-model ~p of L "b in which P decomposes completely (i.e., all 
places of ~?p above P are k~-rational). This is equivalent to saying that, for each 
P~Gk,, there exists a unique extension ppeGal(L"b/L*kl) such that 

poPop~ =P, (11) 
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where P is any extension of P to a place of L ab. (As 9l "b is central in 
Gal(Lab/L * kl) (by the definition of kl), the condition (11) is independent of the 
choice of P.) But this is obvious; the existence of p~, is a formal consequence of 
the kl-rationality of P, and the uniqueness is that of the "unramifiedness" of 
Lab/L (in the sense of w 1 (B)). q.e.d. 

Proposition 5.6. (i) For each cuspidal place P of L* kl, there exists a unique weak 
kl-model Op of L ab in which P splits completely; (ii) k 2 is the smallest extension 
of k 1 such that f2p. k 2 is independent of E Moreover, t2 e. k 2 is the strong k 2- 
model of L ab . 

Proof. (i) is already proved above. As for (ii), the latter assertion is obvious. It 
remains to check that if k = kl is such that t2 e �9 k = f2Q .k for any cuspidal places 
P, Q of L*k x then k ~ k  2. Take two cuspidal places P (resp. (~) of L ab having 
( x )  (resp. (y ) )  as their inertia groups, and let P (resp. Q) be their restrictions 
to L* k 1. Take peG k. Then pe= pQ; hence 

pexp~a=X,  peyp~ l - - y  mod [TI, 9l]. 

But then, ~(p)= 1 by lemma 5.3 and 5.4. q.e.d. 

To proceed further, we need the following "finiteness" assumption on the 
extension L/K. 

[Assumption (F)] Let K,/K (n>O) denote the maximum Galois subexten- 
sion of L/K such that the /-component of the ramification index of each of t 
= 0, 1, oo in K,/K is a divisor of l". Then [K,:  K] is finite for all n > 0. 

This assumption is satisfied in several important cases, e.g., Examples 2, 3 
o f w  

Let X* be the proper smooth Q*-curve with function field K * = K ,  nL*, 
and J* be its Jacobian. Note that urab K, ~ L = K , ,  where K,  ~rab is the maximum 
unramified abelian pro-I extension of K,  (n>0). 

Theorem 5.7. Under the assumption (F), 
(i) k 1 is generated over Q* by the l-power torsion points of J* for all n > 0 ;  
(ii) k 2 is generated over k 1 by the l-power division points of the cuspidal 

points of J*|  I for all n>=O. 

Here, a cuspidal point of J*| I means a point determined by a cuspidal 
prime divisor of degree 0 on X * Q k  1. 

Corollary. If the cuspidal points of J*| 1 (n>O) are torsion points, then kl 
~ k  2 . 

Proof. If the order of a cuspidal point u~J*| is finite, the /-multiplication 
acts surjectively on Z u + ~J*. q.e.d. 

This applies to the case of modular curves (see (D) below). 

Proof of Theorem5.7. (i) Since ,r,b K, c~L=K,, the projection ~ab--eTt(J* ) is 
surjective. (ii) This is just a geometric re-interpretation of Proposition 
5.6 (ii). q.e.d. 
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(D) Examples for which k 1 = k  2 holds. (1) The maximum pro-/ tower (Exam- 
ple 1, w 1 (D)). Denote (newly) by Q* the field corresponding to the kernel of 
the Jp-action of G o on ~r Then L*. Q*/K*.  Q* is Galois. For  this extension, 
we have k l = Q * ,  because Z=(0).  Moreover, k2=k 1 by Theorem 5.1. Indeed, D 
c A -~ Z = (0). Therefore, Ker ~b coincides with Go.. 

(2) The Fermat tower (Example 2, w 1 (D)). By Corollary 3 of Theorem 5.1, k 1 
-----k 2 holds when L*/K* is abelian. 

(3) The modular tower (Example 3, w 1 (D)). By a theorem of Manin-Drinfield 
[M] [Dr], the assumption for the Corollary of Theorem 5.7 is satisfied in this 
case. 

(4) When t5 is pro-l, put d o = d |  and consider the associative 
algebra Gr~Co-C~lm/rm+l-~.~-o/-o , where I o denotes the augmentation ideal of ~r It 
is clear that if Gr ~r has no non-zero element whose square vanishes then it is 
also the case for ~r and hence kl = k  2 holds for any 15-tower L*/K* (Corol- 
lary 1 of Theorem 5.1). The structure of G r d  o is easier to determine than that 
of ~r itself. In fact, Gr  d o is the restricted universal enveloping algebra of the 
restricted Lie algebra O(15(m)/15(m+ 1)), where {15(m)} is the Zassenhaus fil- 
tration of 15 (cf. [L], Appendix A3). In particular, when 15 =~/~(n) ,  where ~ is 
the free pro-I group of rank 2 and {~(n)} is its central descending series (~ 
=~(1)), G r d  o has an "expected structure" and in particular has no zero- 
divisors, as has been checked by H. Kamezawa (Master's theses, Univ. Tokyo, 
1986). For  example, if 

= ~ /~ (3 )~  the Heisenberg group over Z~, 

then Gr~r  o is the quotient of F~l[u, v]],c (the non-commutative polynomials in 
two variables u, v over Fl) by the ideal generated by [u[u,v]] and [v[u,v]]. 
This is easily seen to be free of zero-divisors. 

Incidentally, the algebra Gr  ~r for the groups 

15={(~  d]b~sL2(Z'); a -d  _1, c-O (modl')~j... ( l > 3 a n d r = > l ,  
or l = 3 and r > 2), 

= { ( :  bd)6SL2(Zt); a==_d=l,b=c=O (mod2)}/+I. . .  (l=2), 

are isomorphic to the above algebra Gr ~o  for the Heisenberg group. One can 
apply this to give an alternative proof for k 1 = k 2 for the modular tower of level 
21 | 
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