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1. Introduction 

We define an n-arrangement as a finite family of hyperplanes through the origin 
in C "+1. In [11] and [12] we studied the free arrangement and defined its 
structure sequence (their definitions will be given again in Sect. 2). In this article 
we say the generalized exponents instead of the structure sequence. Let (d o , 
d 1 . . . . .  d,) be the generalized exponents of a free n-arrangement X. Let ]XJ 
= U H. Our main result is 

HEX 

Main Theorem. (1 (1 +dlt ) equals the PoincarO polynomial of C "+ ~ \ [X] .  
i=o 

Let G c G L ( n + I ;  C) be a finite unitary reflection group acting on C "+1. 
Then the set of the reflecting hyperplanes of the unitary reflections in G makes 
an n-arrangement X. Such an arrangement is called a Shepherd-Todd arrange- 
ment. We can show that a Shepherd-Todd arrangement is free. Moreover its 
generalized exponents coincide with the generalized exponents of G which were 
recently defined by Orlik-Solomon [6]. In this special case our Main Theorem is 
nothing other than the main result in [6]. For details see [13]. 

Especially when G c G L ( n +  1; R), the arrangement X is called a Coxeter 
arrangement which is of course free [7]. In this case our Main Theorem is 
known as the Shepherd-Todd-Brieskorn formula ([10], [1] Theorem 6(ii)). 

Remark. The class of free arrangements is far wider than that of Shepherd-Todd 
arrangement. In fact many examples show that the freeness of arrangement is a 
combinatorial property [11]. 

In Sect. 3, we briefly review the combinatorial formula for the Poincar6 
polynomial proved by Orlik-Solomon [5]. Next we compute some Hilbert 
polynomial by two different methods. One method is by the generalized ex- 
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portents (Sect. 4) and the other is combinatorial  (Sect. 5). And in Sect. 6 we prove 
Main Theorem by comparing the two computat ions and by applying the Orlik- 
Solomon formula. 

Assume that Q6R[z  o . . . .  , z,], a product of real linear forms, is a defining 
equation of a free n-arrangement X. By combining the Main Theorem with the 
Orlik-Solomon formula and Zaslavsky's result ([14] p. 18 Theorem A), we have 

:1# {connected component  of R "+ 1 \ {Q = 0}} 
n + l  n 

= ~ b,(C"+~--.IXl)= [](1-t-d,), 
i = 0  i = O  

where b/(C "+1 \ I X ] )  stands for the i-th Betti number  of C "+1 \ [ X I .  
This equality is called the Coxeter equality and was proved when n---2 in 

[12]. In [2] Coxeter proved this equality when X is a Coxeter arrangement. 
K. Saito proved 

4t: {connected component  of R "+1 \ {Q =0}} < l~I (1 +di) 
/ = 0  

in [8]. 

The author would like to express his thanks to Professor K. Saito who has encouraged him 
constantly and gave him many helpful suggestions. 

2. The Generalized Exponents of a Free n-Arrangement 

(2.1) Definition. Let X be an n-arrangement in C "+1. We call X to be free if 

Der (log [Xt)0 .'= {a germ 0 of holomorphic vector field 

at 0 such that 0- QsQ. (9c.+ 1, 0}, 

is a free (9c.+1 ' o-module, where 0 is the origin of C "+1 and QeC[z0 ,  . . . ,  z,] is a 
defining equation of IX[. 

A germ 0 of holomorphic vector field at 0 is said to be homogeneous of 
degree d, denoted by d e g 0 = d ,  if 0 has a local expression 

0=  Y' 
i = 0  

at the origin such that fi's are homogeneous polynomials and all non-zero f~'s 
have the same degree d. A little observation leads us to the existence of a system 
of homogeneous free basis {0o, . . . ,0 ,}  for Der(log[XI)o if X is a free n- 
arrangement.  It is easy to see that a set (deg 0o, ..., deg 0,) of integers depend 
only on X. 

(2.2) Definition. We call (deg 0 o . . . .  , deg 0,) the generalized exponents of a free 
n-arrangement X. 
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3. The Miibius Function and the Poincar~ Polynomial 

Let X be an n-arrangement throughout this article. 
In this section we briefly review the combinatorial formula for the Poincar6 

polynomial of C "+ 1 \ lXI .  

(3.1) Definition. Let L ( X ) = { 0  H; A c X } , w h e r e  we interpret that C "+1 
H e A  

= ~ H. Define the join and meet operations in L(X) by 
Hs4, 

s v t : s ~ t ,  
and 

s A t = c ~ H  ( H r u n s o v e r a s e t  { L e X ; L = s ~ t } )  for s, teL(X). 

Then L(X) becomes a lattice which is called the lattice associated with X. 
Write s<t  if s v t=t(s, teL(X)). 

(3.2) Definition. Define the M6bius function I~ on L(X) inductively by 

~ ( C . +  1) = 1 

~(s )  = - y~ ~(t) .  

t : f  s 

(3.3) Definition. The rank of seL(X), denoted by r(s), is the length of the longest 
chain in L(X) below s. Then r(C"+~)=0. 

(3.4) Definition. For any integer i>__0, put 

~(L(X)):= E I~ ( s ) l  
s e L ( X )  
r ( s )  ~ i 

(3.5) Theorem (Orlik-Solomon [5]). 

i~i(L(X) ) = bi(C. + 1 ... I XI) 

.fi~r any integer i>=O, where the right handside stands for the i-th Betti number of 
C"+1 \ l XI .  

(3.6) Remark. In the first draft of this article the proof of (3.5) was contained, 
but we recently found that (3.5) had already been proved by Orlik-Solomon, so 
we omit the proof here. 

4. The Computation of the Hilbert Polynomial 
by the Generalized Exponents 

From now on we denote C0c,+, o and Der(loglX]) o simply by (9 and D(X) 
respectively. Let m be the maximal ideal of (9 and QEC[z o . . . .  , z,] be a defining 
equation of ]X]. By c3Q denote we the Jacobian ideal of Q in (9 (i.e., c~Q 
=(~?Q/~?z o . . . .  , OQ/Oz,). (9). Then (?Q depends only on X. Thus we sometimes 
write J(X) instead of c?Q. 
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(4.1) Definition. Define an (9-submodule 

Ann(X)=  {0~D(X); 0- Q=0} 
of D(X). 

(4.2) Definition. Introduce a decreasing filtration 

((gk)m=mm~...(~mm (m~O) 
k 

on an (9-module (fig (k>0) .  Then this filtration (((gk)m)m>=0 makes (ilk to be an m- 
bonne filtered C-module (see [9]). 

By the natural projection (9~(9/J(X), we can induce an m-bonne filtration 
o n  e/J(X). 

On the other hand, D(X) can be embedded in (9 "+1 by the correspondence 

k f~(t~/~'zi)~---~(fo . . . .  , f ,)  (f/6(_9(i =0  . . . .  , n)). 
i = 0  

So one can induce an m-bonne filtration on D(X). Since Ann(X) is an (9- 
submodule, Ann(X) can also be an m-bonne filtered O-module. 

From now on we regard (9 "+l, (9, (9/J(X), D(X) and Ann(X) as m-bonne 
filtered (9-modules in the above manners. 

(4.3) Definition. Let M=(M, ) ,>  o be a filtered (9-module. Then M(k) 
=(M(k),),=> o is another filtered (9-module defined by M(k),=Mk+ . for kCZ, 
k~O. 

In [11] we dealt with an exact sequence of filtered O-modules 

(4.4) 0 ~ Ann (X) --* (9" + 1 ~ (9 (m - 1) ~ ((9/J (X)) (m - 1) ~ O, 

where each morphism is strictly compatible (e.g., see [3] p. 7) with each filtration 
and m = # X = deg Q. 

(4.5) Definition. Let M=(M,),>=o be an m-bonne (decreasingly) filtered (9- 
module. A polynomial H(M; v) is characterized by the property that: 

H(M; v)~Q[v] equals the dimension of (9/m~-C-vector space My~My+ 1 for 
sufficiently large v. 

For  our convenience, we put 

ftm) __(f+ 1)..m.(f+m)! and f w ) =  1 

for any polynomial f and m > 0. 

Let X be free with its generalized exponents (do, . . . ,d ,)  throughout this 
section. Then we have 

(4.6) Proposition. 

(1) H(D(X);  v)= k (v-di)  ~"), 
i = 0  
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and 

(2) H(Ann(X);v)= ~ (v-di) (") if do= l .  
i = 1  

Proof By the very definition of (do,. . . ,  d,) we have an isomorphism 

n 

D(X) - ,  | ~(-d,), 
i = 0  

from which we deduce (1). 
If d o = 1, then X is not void, so we have 

D(X) = Ann(X)@C �9 0o, 

where 0o= ~ zi(cg/~gzi) is the Euler vector field [11]. Thus we obtain (2). 
i = 0  

(4.7) Definition. H(X; v)EQ[v] is defined by: 

v)=/H(C/J<X); v) if X +05, H(X; 
if X = r  

We call H(X; v) the Hilbert polynomial of X. 
Define Pi(X)(i = 1, ..., n)eZ by 

H(X; v)= ~ P//(X) v C"-i). 
i = 1  

By (4.4) and (4.6), we can calculate the Hilbert polynomial of X through a 

are defined by 

l~I(1 +tit)= ~ hi(to, . . . ,  t n ) t  j. 
i = 0  j > O  

Then n o = l  and hi(to, ..., t , )= to + ... + t,. 
Define 

ni(X ) = ni(d o .... , d,), 

163 

little bit complicated but easy computation; 

(4.8) Theorem. If d o= 1, then 

~= l { (m + i -  2) +(-1)is~l (diJ) } v ("-i), H(X; v + m -  1)= i i 

we interpret ( ; ) = 0  where if a<b. 

(4.9) Definition. Let i>0.  The polynomials 

~i ( to ,  . . . ,  t . ) e C [ t 0 ,  . . . ,  t . ]  
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and 

H. T e r a o  

k 

nAX)-- F[ n.21(X) 
j = l  

for any multi-index I=(I(1) ,  ... I(k)) composing of k non-negative integers. 

(4.10) Proposition. 
1) ~o(X)--~o(t,(x))= 1, 
2) Tq(X)=#~(L(X))=m. 

Proof. 1) is obvious. 

If X--~b, then n~(X)=0=fl l (L(X)) .  So we can assume that X4:~b and do= 1 
[11]. On the other hand we know that 

deg H(X;  v) = deg H((~/c~Q; v) = dim Spec(C/0 Q) - 1 5 n - 2 

(see [93). 
Thus we have 

( m - , ) _  ( / )  ~= o=p,(x)= 1 =m-l- dr, 
= l  1 

which implies that 

r e = l +  ~ d j=  ~ dj=~zl(X ). 
j = l  j = O  

By a direct computation we obtain 

121(L(X))=m. Q.E.D. 

In Sect. 6, we shall prove that 

(4.11) ni(X)=l~i(L(X)) (i>O). 

(4.12) Proposition. 7he alternating sum of rco(X ) . . . . .  re,+ I(X) is zero if X 4=0. 

Proof. We can assume that d o = 1, thus 

Z ( -  1)' rc,(X)= ~ (1 - d,)= 0. 
i = 0  

(4.13) Proposition. Let X#:c~. For each integer i (2< i<n) ,  there exist real 
numbers ci4:0 and c(I; i) (1~I[i]), which are independent of X, such that 

Pi (X)-c in i (X)= Z c(I; i) rct(X ). 
l~l[i] 

Here 

I[ i] . .= I=( I (1)  . . . .  , I (k));O<=I(j)<i(j=l, . . . ,  I(j)<=i . 

Proof. By combining (4.8) with the fact that PI (X)=0  we have 
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i=2  j = 0  

We simply write rcj(t) instead of nj(t o, ..., t,) ( j = 0 , . . . , n + l ) .  Let 2 < i < n .  
Since 

tj 

i j=o "" 

is a symmetric polynomial of degree i of t o , . . . , t , ,  it can be written as a 

polynomial of r%(t),...,rc~(t). Notice that { ~  (t~)} are algebraically 
j='O k O<k<=n 

independent over C and generate the C-algebra of symmetric polynomials in 
C[t  o . . . .  , t.]. Therefore one knows that there exists a real number ci4:0 such 
that 

( - 1 )  i ~ -cin~(t ) and thus F i ( t ) - c i n i ( t  ) 
j=o i 

polynomia~ o~ ~ot~' . . . . .  ~, ~,,, beca~so (~/) is o~ de,roe ~ '.~,n fact a r e  c i =  

1 
( i 5 1 ) ! )  

On the other hand, we have 

,v_o+,,,.~,=v,~,, (m;~ t,,~1~+(~-,)~ v,.,~, 
Thus if we define 

~(t)..= ~ (-1)~vi_j(t) ~1( ~c[t0, ...,t,], 
j=O 

then Pi(d0, ... d , )= Pi(X). It is easy to see that Pi(t)-ci rci(t ) is of degree i and is a 
polynomial of Tc o(t) . . . . .  rci_ 1(0. And replace ti by dj(j = O, . . . ,  n). Q.E.D. 

(4.14) The observation so far shows that the following two data concerning a 
free arrangement X are equivalent: 

(1) The set of the generalized exponents (d o . . . .  , d,) of X, which is equivalent 
to 

i " rc,(x) ti= l~ (1 +d~t), 
i=0  i=0  

(2) The Hilbert polynomial H ( X ;  v) of X together with #X,  which is of 
course equivalent to the data 

(#x ,  P2(X), ..., P.(X)). 

If (4.11)holds true, then the additional two data are also equivalent: 

(3) The polynomial ~ t~i(L(X))t  i, 
i=0  
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(4) The Poincar6 polynomial of C "+ 1 \ IX[ .  

The author would like to thank the referee for his comment  on (4.14). 

5. The Combinatorial Computation of the Hilbert Polynomial 

(5.1) Definition. The essential dimension of X, denoted by ess.dimX, is defined 
by 

ess.dim X = Max r(x). 
x~L(X) 

Then 0 < ess.dim X < n + 1. 

(5.2) Definition. Define an n-arrangement 

X s = { H e X ;  H~s}  

for any seL(X). Then it is easy to see that ess.dim(Xs)=r(s). 

(5.3) Definition. Let L be a lattice and xeL.  Define a sublattice 

L'- .x={yEL; y-<x} 
of L. 

Under the same notation as in (5.2) we have the following two Propositions: 

(5.4) Proposition. There is a lattice isomorphism 

L(X~) ~ , L (X) \ s .  
Proof Easy. 

(5.5) Proposition. An n-arrangement X~ is free if X is J~ee. 

Proof In [11] we introduced a coherent sheaf Der(loglXI)  on C "+1. Thus 
Der(log [X[) is locally free at the origin. If we take a generic point P on s such 
that P is sufficiently near to the origin, then Der(loglXl)p is a free Cc,+l p- 
module. And it is clear that 

Der  (log IX I)p ~ Der (log IX s[)o. Q.E.D. 

(5.6) Definition. Define 

d ( X )  = {X~; seL(X)}, 
and 

Y(X)={L(Y) ;  r~&(X)}.  

Then there exists the natural surjective map  

L: d ( X ) ~  S(X) .  

We denote {seL(X); r(s)=i} by L(X)(i) (i>0). 

The concepts defined in the following (5.7) are essential: 
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(5.7) Definition. Let  G be an abelian group. For  a map  

define a new map  

by 

q; ~4(x)-~ 6(~(x)-~ 6), 

r~ q: ~4(X) --, G(resp. c~(X) ---, G) 

( r ,q ) (Y)=q(Y) -  ~ q(Y~) 
seL(Y)(i) 

(resp.(r,q)(L(Y))=q(L(Y))- ~ q(L(Y)'..s)) 
s~L(Y)(i) 

for any Y E ~ ( X )  and  any integer i=>O. Denote  riri_ 1 ... roq by Riq. 
We say that  q is i-cumulative (i>=0) on X (resp. on L(X)) if 

(R,q)(X)=O (resp.(Riq)(L(X))=O). 

(5.8) Remark. For  an / -cumulat ive m a p  q; S(X)--*G, a m a p  

qo L: , ~ ( X ) ~ G  

i s / -cumula t ive  on X because of (5.4). Thus  we may  say that  the / -cumula t iveness  
on L(X) implies the / - cumula t iveness  on X. 

The  following Propos i t ion  is easy: 

(5.9) Proposition. I f  two maps 

ql ,  q2: o4(X)--*G(Y'(X)-~G) 

are i-cumulative on X (resp. on L(X)), then 

(1) ql-t-q2, ql--q2 are both i-cumulative on X (resp. on L(X)), 
(2) ql is j-cumulative on X (resp. on L(X)) for any integer j>i. 

Assume that X is free in the rest of this section. 
The  Main  result in this section is 

(5.10) Theorem. A mapping Pi: , 4 ( X ) - ~ Z  (see (4.7)) is i-cumulative on X (i 
= 1, . . . ,  n). 

(5.10) easily reduces to 

(5.11) Proposition. A mapping H: A ( X ) ~  Q [ v ]  defined by H(Y)=H(Y;  v) (see 
(4.7)) for Ye ,~(X)  satisfies 

d e g ( R i H ) ( X ) < n - i -  1 (1 =<i<n). 

The  rest of  this section is devoted to the p roo f  of  (5.11). We need some 
prepara t ions  for the algebraic  geomet ry  on Spec 6' which is the ma in  tool for the 
proof. 

Let  t = V ( ~ ) ( ~ 3 e S p e c C [ z  0 . . . .  , z,]) be a plane through the origin in C "+1. 
Then { :=V(~3 .C)  is a closed subvarie ty  of  SpecC.  For  any n-a r rangement  Y, 
define 
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L(Y) = {t; teL(Y)}, 

L(Y)(i) = (/eL(Y); t~L(Y)(i)}. 

Induce the lattice structure on L(Y) from the lattice structure on L(Y) through 
the one-to-one correspondence t~--~t. 

Let s be a closed subvariety of SpecC. Then there exists an element 
(s'~)~L(u which is the largest (with respect to the order in L(Y)) element among 
a set {{eL(Y); {~s}. Define Ys= Y<s>. Then notice that 

ess.dim Y~=r((s)) (5.2) 
and 

Y~= Yt if teL(Y). 

Define a morphism in d(X)  as an inclusion map, then d(X)  becomes a 
category. 

Define another category cg by 

Ctj(cg) = {m-bonne decreasingly filtered C-module}, 

Jgo~(cg)= {C-homomorphism which is compatible 

with the filtrations}. 

Then ~ is an abelian category. 
Let  l<i<--n. Then we shall construct a contravariant functor M(i) from 

d ( X )  to Z satisfying the following three conditions: 

(Ai): The morphism M(i)(Y)~M(i)(Z) induced from the inclusion Z~--*Y is 
surjective and strictly compatible with the filtrations for any Y, Zed(X) ,  Z ~ Y,, 

(BI): Put s = V ( ~ )  for any ~3~SpecC, then 

M(i)(Y)~ ~ , M(i)(Y~)~ 

for any Ye~4(X), where the C-isomorphism above is the localization (by ~)  of 
the morphism 

M (i)(Y)~ M (i)( Y~) 

induced from the inclusion map Y~--~Y,, 

(Ci): M(i)(Y) is either 0 or a Cohen-Macaulay C-module of dimension (n-i) 
and 

Ass(M(i)(Y))~3(Y)(i+ 1), 

where by ~3(Y)(i+ 1) denote we a set 

{~ESpec (9; V(~)eL(Y)(i+ 1)}. 

In the rest of this section we simply write IL(Y)(i)I instead of _U s. Then 
notice that s~L~Y~i) 

(5.12) Supp (M(i)(Y))= [L(Y)(i+ 1)l 

for any Y~c(X)  if (Ci) holds. 
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Our aim is to define M(i)(1 <i<n) inductively. 
Let 2<i<_n and M(i -  1) be as above. We shall construct M(i) satisfying (Ai), 

(B/) and (Ci). Let Y ~ ( X ) ,  t~L(Y)(i) and ~36Spec(9. Then we have 

(5.13) Lemma. 

(~ M(i-1)(YO~= ( ~  M(i-1)(Yt)~, 
t~ L(Y) (i) t~ L(Y)(i) 

t ~ V( '~ )  

in other words, M( i -  1)(Yt)~=0/f t :~V(~3). 

Prot~ Notice that 

L(Y,)(i)-- {t} 
and thus 

Supp M(i - 1)(Y,) c [L(Y~)(i)[ = t. 

by (Ci_ 1)- Therefore (5.13) is a result in the theory of commutative algebra (see 
[4]). Q.E.D. 

There is a morphism 

q~t(Y): M(i -  1)(Y)~ M ( i -  1)(Yt) 

induced from the inclusion. Define K, M(i)(Y)e(gdj(c~ ") such that every mor- 
phism (with a possible exception of ~0(Y)) of an exact sequence 

(5.14) O-.K~M(i-1)(Y)-~Y)-~ _~) M(i-1)(Y,)-*M(i)(Y)~O, 
t~L(Y)(i) 

is strictly compatible, where (p(Y)= (~  G(Y). 
teL(Y)(i) 

(5.15) Lemma. K =0.  

Proof. Let ~6~3(Y)(i), then the localization of (p(Y) by ~3 is an isomorphism 
because of (5.13) and (B i_ 1). Thus we have 

K~ = M (i) (Y)~ =0, 

which implies that 

Ass (K)c~ ~3(Y)(i) = Ass (M (i)(Y))c~ ~3(Y)(i) = c~. 

On the other hand 

Ass(K)cAss(M(i-1)(Y))c~3(Y)(i) (C~_1), 

therefore we obtain 
Ass(K)=q~, 

which implies that K =0. 

Next let Z ~ ( X ) ,  Z c Y, then we have a commutative diagram 
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(5.16) 

O--* M( i -  I ) (Y)~ _(~) M(i-  1)(Yt) ~ M(i)(Y)--*O 
tEL(Y)(i) 1 

O--* M(i-1)(Z)~ _(~) M( i -  I)(Z,,)~ M(i)(Z)oO, ueL(Z)(i) 
where the rows are exact and the vertical morphisms are induced from Z~--~Y 
and Z,~--~Y,, respectively (ueL(Z)(i)). From (5.16), we can define a surjective and 
strictly compatible morphism 

M(i)(Y)-~ M(i)(Z) 

commuting (5.16). This implies (Ai). 
Replace Z by Ys (s=V(~),  ~aSpec(9) in (5.16) and localize by ~. Then we 

obtain another commutative diagram 

(5.17) 

O ~ M ( i - 1 ) ( Y ) ~  (~ M(i-1)(Yt)~oM(i)(Y)~O 

1~ teL(Y)(i) [I 

O~ M(i-1)(Y~),~ _@ M(i-1)(Yt) ,~M(i)(~)~O teL(Y)(i) t~s 
because of (B i_ 1) and (5.13). Thus we have (B/). 

Let ~aSpec  (9 and s = V(~). Assume that s r [L(X) (i + 1)l, then r(<s)) < i. If 
r((s>)<i- 1, then by (5.13) we obtain 

_@ M(i -  1)(Yt)~=0 teL(Y)(i) 
and thus 

M(i) (Y)~=0. 

If r((s>) = i, then 

{tat(Y) (i); t~s} = {(s~'>}. 

Therefore we have an exact sequence 

O---~ M( i -  1) (Y))-~ M(i -  1) (Y~>)~ M{i) (Y)~--*O, 

and thus M(i)(Y))= 0 by (B i_ x). (Notice that Y~> = Ys.) These facts imply that 

Supp (M(i) (Y)) ~ IL(x) (i + 1)l. 

Take the cohomology long exact sequence of the first row in (5.16) by the 
functor (~)(9/m, then we have 

Tor~+ 2 (M(i) (Y), (~/m) = 0, 

because 
homolog, dim (M(i-  1) (Y)) 

=homolog. dim( _@ M(i-1)(Yt))=i t~L(Y)(i) 
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(see [4] p. 129). This implies that 

i + 1 > homolog, dim (M (i) (Y)) 

= n + 1 - depth (m(i) (Y)) 
> n + 1 - dim Supp (M(i) (Y)) 
>=n+l-(n- i )=i+l ,  

and thus M(i)(Y) is Cohen-Macaulay of dimension n-i .  So M(i)(Y)has no 
embedded primes and its associated primes are all of height (i+1). Thus we 
have (Ci). 

Next we have to construct M(I). Define 

M(1)(Y)={~ ]J(Y) ifif Y=~b.Y#4~' 

Then the (5'-homomorphism 

M(1)(Y)-~M(1)(Z) 

is naturally defined when Z c  Y,, because J(Z)=J(Y) unless Z=~b. This map is 
surjective and strictly compatible with each filtration and M(1) is a functor from 
,~(X) to c~. This is (A1). 

If Y=~b, then (A0, (B1) and (C 0 trivially hold true. 
So we assume Y4=qS, then in [11] (Prop. 2.6) we proved (C1). 
Let 

J(Y)=~(1)c~. . .~(k)  (primary decomposition), 

then {V (~(t)) . . . .  , V(~(k))} = L(Y) (2) and V(~(i)) # V(~(j)) (i +j). 
What remains to be proved is (B1). Let ~13eSpec (9 and s =V(~3), then we must 

show that the (9-homomorphism 

( 6'/J ( Y))~ ~-~ (6]J ( Ys))~ 

is an isomorphism. Thus the whole constructions of M(i) (i>__1) reduce to the 
following 

(5.18) Lemma. 

(l) J(Y~)= ("] s 

(2) there is a natural 6'-isomorphism 

(~/~(1)c~. . .c~(k))~(~/  (~ ~(i))~. 
~ ( i )  = 

Pro(~ (l); Assume that 

V(~) = s = V(~(1))~L(Y) (2), 

then in this case we must prove that 

J(Y~) = ~(1). 

Since J(u has no embedding primes (5.5) and L(Ys)(2)= {s}, we deduce that 
J(u itself is ~3-primary. Notice that J(Ys)c~(1) is also ~3-primary. Because 
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J(Y~)~J(Y), we have 

!2(1) c~ ... ~ ( k ) = J ( Y )  

=J(Y~)nJ(Y)  

= (J (Ys) ~ t~(1)) c~ ~(2)  (~... c~ t2(k). 

By the uniqueness of the primary decomposi t ion of  J(Y), we have 

~(1)  = J(Y~) c~ ~(1),  

and thus J ( Y , ) ~ ( 1 ) .  
By an appropr ia te  coordinate  change, we can assume that 

] /~(1)= ]/J(Ys)=(Zo, zl).  (9. 

The product  Q1 Q2 of  a defining equat ion Q1 of Y~ and a defining equat ion Q2 of 
Y \ Ys is a defining equat ion of Y, so 

~2(1)90(Q1Qz)/~3zI=QI(OQz/OZ,)+Q2(c~Q,/c3z,) ( i=0 ,  1). 

Notice  that 

Q2r Zi).(9=]/f~(1) and Q I " Q 2 E J ( Y ) ~ ( 1 )  �9 

Then we have Q l e ~ ( 1 ) ,  Q2(OQ1/Oz~)e~(1) and thus 

c3Qa/Ozie~(1 ) ( i=0 ,  1). 

This proves that  J (Ys)=~(1) .  In o ther  words 

k 

J ( Y ) =  (~ J(Y~(,)), 
i = 1  

where s(i)=V(~(i)) ( i=  1 . . . .  , k). 
F o r  a general s = V ( ~ ) ,  

J ( Y~) = _ (~ J ( ( Y~)t) 
teL(Ys)(2) 

= _(~ J(Y,)= (~ i~(i). 
teL(Y) (2 )  ~ ( i )  c 

t ~ s  

This proves (1). 
(2): Let  

~ (1)  ~ . . .  c~!~ (/) ~ ~ ,  

~ ( t + l ) , . . . ,  ~ ( k ) , $  (O __< t=< k). 

What  we have to show is that  

(5.19) (!~(1) ~ . . .  n t~(/)/~(1) ~ . . .  ~ !~(k))~ = 0. 

Take  a ( j ) e ~ ( j ) \ ~  ( j = / + l ,  . . . ,  k) and put  a=a( l+ l ) . . ,  a(k). Then 
and 
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a(!~(1) ~ . . .  c~ ~(1)) c !~(1) c~... c~ ~(k),  

which shows (5.19). 

Thus we have finished to construct  M(i) ( i>  1) as desired. 
We shall continue the proof  of (5.11). 

(5.20) Definition. Let M~(9~(~g) and v>0.  By (M~)~ z denote we the decreasing 
filtration of M. Define 

Gr  ~ M = MUMv + 1, 

then Gr~M is an (9/m-~ C-vector space. A C-homomorph i sm 

t~: Gr" M--~ M~. 

is called a v-section of M if p o a = i d ,  where p: M~--~Gr~M is the natural  
projection. 

(5.21) Lemma.  Let v>O and i>1. Then 

There exists a v-section 6(i) of each M(i)(Y)  (Y6~c~(X)) commuting a 

M(i) (Y)~, ~ M(i) (Z),, 

GrV(M(i) (Y)) , Gr~(M(i)(Z)), 

where the two row morphisms are induced from the inclusion Z~--~Y for any 
Y, Z~,~C(X), Z c  Y,, 

(2)i: In the exact sequence 

O--~M(i)(Y) ~r), (~) M(i ) (Y , ) -~M(i+I) (Y)-*O 
teL(u 1) 

(see (5.16)), r (thus every morphism) is strictly compatible .for any Y ~ c ( X ) .  

Proof. As for (1)1, we have 

M(1) (Y),, = m"/m"c~J(Y) 

and 

Gr~(M(1) (y)) = m,./(m~ + 1 + m ~ n J(Y)). 

(If Y = ~ ,  then (1)1 trivially holds true.) Define or(l) by 

r (I-f]) = the class of f~ in mY/m v c~ J(Y), 

where f ~ m  ~, [ f ] ~ m ~ / ( m  ~+1 + m ~ J ( Y ) )  and f~ is a homogeneous  polynomial  of 
degree v satisfying 

f m f~(modm~+l). 

(1)i: 
diagram 
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Then a(1) is well-defined because J(Y) is generated by homogeneous poly- 
nomials. It is easy to see that (1)1 holds true. 

Next we shall show that (1)i implies (2)/. Assume (1)i. Let Y e d ( X )  and 
teL(Y) (i+ 1). Define Kte c(c@'(~) such that every morphism of an exact sequence 

(5.22) O--+ K,-+ M(i) (Y) ~o,(r) M(i)(Yt)-"O 

is strictly compatible. Thus there exist three v-sections (all denoted by a(i)) of 
M(i) (Y), M(i)(Y0 and K t respectively because of (1)/and (5.22). Then we have a 
commutative diagram 

0--~ (Kt) ~ , M(i)(Y)~ ~ot(r) M(i)(Yt) ~ --~0 

0--, ar~(K,) - , aff(M(i)(Y)) , ar~(M(i) (Yt))--~0. 

If xeM(i)(Y)~ and [q)t(Y)](x)eM(i)(Y~),,+l for all t6L(Y)(i+l),  then we have 

[q~t(Y) o a(i) o p] (x)= 0 

by chasing the diagram above, where 

p: M(i)(Y),---, Gr*(M(i)(Y)) 

is the natural projection. This shows that 

[a(i)op] (x)~ _ (-] K t = 0  (see (5.15)) 
teL(Y)(i+ 1) 

and thus xeM(i) (Y)~+ x. This implies (2)/. 
Next assume (1)i and (2)/. We shall prove (1)/+1. Let Y, Z e a l ( X )  and Z c  Y. 

Considering a commutative diagram 

0--, M(i)(] 

0 ~ G r V ( M ~  - 

O- M(i)(Z)~ 

/ 

)~ ~ (~ M(i)(Y~)~ --~ tEL(Y)i i + l ) / / / ' ' ~  ~ M(i+ 1)(Y)~ 0 

~ | 

( r~( @ M(i)(Y,)) ~ Gr~(M(i+ 1)(Y))- 
teL(Y)(i+ 1) 

u~L(Z)(i + 1) 

~ ~(i) 

~,0 

M(i+I)(Z),  --~0 

0--* Gff(M(i) (Z)) --~ Gr'(  @ M(i) (Z.)) --~ Gr*(M(i + 1)(Z))--~ O, 
uEL(Z)(i+ 1) 
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where all four rows are exact because of (2), By using this diagram, we can 
define v-sections of M(i + 1) (Y) and M(i + 1) (Z) respectively and they satisfy the 
condition in (1)i +1. Q.E.D. 

(5.23) Lemma. 
H(M(i)(X); v)=(-1)'-~(R,H)(X) (i>= 1). 

Proof. If X = ~b, then this is a trivial equality. So assume that X #(p. We shall 
prove this by an introduction on i. 

When i=  1, 

(RIH)(X)=(RoH)(X)-  ~ (RoH)(X,) 
t~L(X)(1) 

: H ( X ) -  ~ H(X,) 
teL(X)(1) 

=H((~/J(X); v)-  Z H((9/J(Xt); v) 
teL(X)(1) 

=H(M(1)(X); v) 

because (9/J(Xt)=0 if teL(X) (1). 
Assume that 

H ( M ( i -  1)(X); v)=( - 1)'- 2(R~_ ~ H)(X) 
then 

( -  1)i(Ri H) (X) = ( -  1)i(Ri_ 1 H ) ( X ) -  

(i>2), 

(-1)i(R,-~H)(X,) 
t~L(X)(i) 

= U ( M ( i - 1 ) ( X ) ; v ) -  ~ H(M(i-1)(Xt)  ;v) 
teL(X)(i) 

=H(I~I(i-1)(X); v)-- ~ H(l~,{(i-1)(Xt);v ) 
teL(X)(i) 

= - H(M(i) (X); v) 

because of (5.21.2)i_~). Q.E.D. 

Since 
dim Supp (M(i) (X)) < n - i 

by (5.12), we have (see [9] III-7 Th6or~me 1) 

deg (Ri H) (X) = deg H(M(i) (X); v) 

= dim Supp(M(i) (X))-  1 

<_n-i-1 .  
This proves (5.11). 

6. Proof  of  Main Theorem 

Before the proof of Main Theorem we need some combinatorial preparations. 
Let L be a lattice associated with some n-arrangement. Denote {seL; r(s)= i} 

by L(i) for i_>_0. Then #i(L) is defined by #i(L) = ~ [#(x)[ for i > 0  as in Sect. 3. 
xeL(i) 
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(6.1) Definition. Let I=( I (1)  . . . .  , I(k)) be an arbitrary multi-index composing of 
k non-negative integers. Define 

k 

g, (L)=  [ ]  #,u)(L). 
j=l 

(6.2) Proposition. #, is ]I[-cumulative on L. 

The proof of (6.2) is rather technical. We need the following two definitions 
and a lemma. 

Fix a multi-index I=(I(1) ,  ..., I(k)) with I(j)~Z, I(j)=>0 (/'= 1 . . . .  , k). 

(6.3) Definition. Define a set 

g ( L )  = {(x 1 . . . .  , XR) ; xd~L(l(j)) ( j=  1 . . . .  , k)} 

and a func t ion / i ;  ~--(L)---~Z by 
k 

/,(~)= [-[ Iu(x)[, 
j = l  

where ~=(x l ,  ..., X k ) ~ Y ( L  ). 
For any integer j > 0, define a set 

Y ( L ; j ) =  {a=(x  I . . . .  , Xk ) eY (L ) ;  r(la[)----j}, 

where 1~1 stands for x 1 c~... ~ x  k = x  I v ... v XkeL. 

(6.4) Lemma. 

1) tq(L)= Y', fz(~z), 
~ e J ( L )  

2) J - ( L ) =  U J - ( b ; j )  (disjoint), 
1=o 

3) J - ( L ; j ) =  U J - ( L \ s ; j )  (disjoint) (j>=O). 
s~L(j) 

Proof  Notice that J - (L; j )=q5  f o r j > l l [ = I ( 1 ) +  ... +I(k) ,  then 2)is obvious. 
1) is easy to see from the definitions o f / h ,  ~ and @(L). 
As for 3), let ~ = ( X a , . . . , x k ) ~ J - ( L ; j ) ,  then r([aD=j, thus ~ Y - ( L \ [ a l ; j ) .  

Conversely it is easy to show J ( L ' . . s ; j ) c J - ( L ; j )  for any seL(j),  j>O. If 
~e~--(L ' . . s ; j )c~-- (L ' , . t ; j )  for some s, teL(j) ,  then ]a[-<s, Ic~l<t and [c~leL(j), 
which implies that s = l a l = t .  Q.E.D. 

(6.5) Definition. For any integer j > 0 ,  define 

p,,/L)= Y, /,(~). 
a ~ J ( L ; j )  

Then it is easy to see 

(6.6) ,u,(L)= ~ ~(~) 
a~J(L) 

; 2  2 
j =  0 a e J - ( L ; j )  

Ifl 
= Z /z,,i(L)' 

j = O  

((6.4) 1)) 

/t(a) ((6.4)2)) 
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Proof of (6.2). It is sufficient to prove that each/h, j  ( 0 < j <  Ill) is j-cumulative on 
L because of (5.9) and (6.6). Assume that r(s)<j  (s~L), then J - ( L \ s ; j ) = ( a ,  thus 
/~L~(L'-.s)=0. This implies that 

(Rj/~x, ~) (L) = (rj #~, j) (L) 

=#I,j(L) - ~ 1~,2(L\s) 
sEL(j) 

= 2 E 
a~9-(L: j) seL( j )  aE~-(L'-, s; j) 

=0 

because of (6.4) 3). Q.E.D. 

Let X be an n-arrangement. 

/,(~) 

q;(qS)={10 i = 0  
i>0,  

thus qi(~b)=Tri(~b ) i>0). So we can assume that 0 +  Y~,~C(X). 
We prove (6.7) by an induction on i. 
When i=0,  we have 

O=roqo(Y)=qo(Y) -  ~ q(Ys) 
se:L(Y)(O) 

= q o ( r ) - q o ( 0 ) = q o ( Y ) -  1 (I), 
thus 

qo(Y) = 1 =#o ~ L(Y). 

Next assume that 

(6.8) qj=t~joL (j=0, 1, ..., i -1) .  

Since qi(Yt)--0 if t eL(Y)  and r(t)<i (II), we deduce 

Ri-  1 qi( Y) = qi( Y) �9 

Proof It is easy to see that 

Let i>0.  The following proposition gives a characterization of the map 

ploL: ~ ( X )  ~ Z. 

(6.7) Proposition. Assume that the maps 

q/~r 0__>o) 

satisfy the Jollowing conditions" 

I. qo(O)= l. 
II. q~(X~)=O/f s~L(X) and r(s)<j (j>O). 

III. The alternating sum of qj(Y) (j>O) is zero if Y~d(X)'- ,  {qS}. 
IV. qj is j-cumulative on an)' Ye ,~ (X)  (j=0, 1,.. . , i).  Then qj=l~joL (j 

= 0 ,  1 . . . .  , i) on  d ( X ) .  
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Therefore we have 

(6.9) O=(Riqi)(Y ) (IV) 

= qi(Y)- ~, qi(Ys). 
s~L(Y)(i) 

Let s~L(Y)(i), then qj(Ys)=O for j > i  (II). Thus we have 

qi(Y~)=qi_,(Y~)-qi_2(Y~)+... + ( - 1 )  i-1 qo(Y~) (III) 

~--~i- 1 o L( Ys)-ill-2 o L(Ys)+... + ( -  1)'- 1/2o o L(ys) (6.8) 

= #i o L(Y~) 

because the alternating sum of #i also vanishes ([14]). Therefore we obtain 

qi(Y)= ~ qi(Y~) (6.9) 
s6L(Y)(i) 

= ~, #,oL(Y~) 
scL(Y)(i) 

= ~ I~,(L(Y)\s) (5.4) 
seL(Y)(i) 

= ~ II~(s)l=#i~ 
s~L(Y)(i) 

This completes the proof. 

(6.10) Remark. We have already shown that xj (j>=0) satisfy the conditions I 
and III in (6.7) for any free n-arrangement X (4.10) (4.12). 

Notice that ~ ( Y )= 0  for any free arrangement Y with ess.dim Y<i. In fact 
the number of non-zero generalized exponents of Y is less than i [11]. Thus ~j 
(j>0) satisfy the condition II in (6.7) for any free n-arrangement X because of 
(5.2). 

The whole proof of Main Theorem reduces to the following (6.11) 1)i (i>0) 
because of (3.5): 

(6.11) Proposition. Let i>=O. Then we have 
1)i ni(X ) =#i  ~ L(X) for any free n-arrangement X, 
2)i ~i: d(X)---~Z is i-cumulative on X for any free n-arrangement X. 

Proof. When i = 0  or i=  1, it is easy to see because of (4.10). 
Let i>2. Assume that 1)j ( j=0, 1 . . . . .  i - 1 )  holds true. Let X be a free n- 

arrangement. Recall the fact that P~ is/-cumulative on X (5.10) and that P~-ci ~ 
(c~:~0) is a linear combination of {nx}, where I runs over the set I[i] (4.13). By 
the assumption, we know that nI(X) = #t (L(X)) (I ~ 1 [i]). Since #1 ~ L (I~ I [i]) is 
I/I-cumulative on X (6.2) (5.8), it is/-cumulative on X (5.9) (2). Thus ~i and Pi are 
both/-cumulative on X. Therefore 2)i holds true in the light of (5.9) (1). 

Next assume 2)j ( j=0, 1 . . . .  , i). Let X be a free n-arrangement. Then the 
assumption implies that the maps ~j: ~'(X)--~Z (j=0, 1, ..., i) satisfy the con- 
dition IV in (6.7) because Y ~ I ( X )  is also free. Thus we can apply (6.7) (see 
(6.10)) and prove 1)i. 

Therefore an induction proceeds and completes the proof. 
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