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In this paper I will introduce and study HNN valuations on groups. These 
are functions v: G ~ R w { + ~ } which satisfy axioms resembling those for valua- 
tions on rings, and which are also related to decompositions of G as an H N N  
extension. They arise naturally when one classifies G-R-trees whose hyperbolic 
length function is abelian. 

My main interest in H N N  valuations is that they can be used to characterize 
the geometric invariant Z=Z(G) defined by Bieri, Neumann, and Strebel [7] 
if G is finitely generated. [Recall that Z is a certain set of equivalence classes 
[g] of non-zero homomorphisms Z: G ~ R ,  where two such homomorphisms 
are equivalent if they are positive scalar multiples of one another. It captures, 
among other things, complete information as to which normal subgroups of 
G with abelian quotient are finitely generated.] An H N N  valuation v on G 
gives rise to a homomorphism Z,: G ~ R ,  and I will show that E is the set 
of classes [Z] such that Z does not have the form gv for any non-trivial H N N  
valuation v. 

This description of X, as we will see, unifies two previously known results: 
On the one hand, the "rat ional  points"  of Z were understood in terms of HNN 
decompositions of G ([7], w 4); on the other hand, X was undertstood for metabe- 
lian G in terms of valuations on commutative rings [6, 3]. 

The point of view provided by H N N  valuations seems to be quite useful 
for computat ional  purposes, in the same way that ring-theoretic valuations were 
useful in the metabelian case. I will illustrate this by calculating X when G 
is a one-relator group (3E;r). As a corollary, one can quickly read off from 
the defining relator r a description of the set of finitely generated normal sub- 
groups of G with abelian quotient. 

The paper is organized as follows. I begin by studying in w 1 G-R-trees with 
abelian length function. This motivates the definition of H N N  valuation, which 
is given in w 2. It is possible to read w 2 independently of w 1, but the definition 
may then seem strange. In w 3 I look at the connection between H N N  valuations 
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and HNN extensions. This discussion leads naturally to a definition in terms 
of HNN valuations of a set that I call S. 

w 4 treats one-relator groups. I calculate 2~ (as defined in w 3), and I give 
the algorithm for describing the finitely generated normal subgroups with abelian 
quotient. For the convenience of the reader who is interested in one-relator 
groups but is not familiar with the Bieri-Neumann-Strebel invariant, I have 
written w 4 so as to be independent of [7]. 

In w 5 I do assume familiarity with [7], and I prove that the set S defined 
in w 3 coincides with the Bieri-Neumann-Strebel S; this gives the promised char- 
acterization of the latter in terms of HNN valuations. More generally, w 5 con- 
tains a characterization of the sets 2; a of [7], where A is a G-group. I indicate 
briefly in w 6 how one can recover from this characterization the known connec- 
tion between SA and ordinary valuations (on rings) when G and A are abelian. 
In w 7 I complete the discussion of trees begun in w 1 by constructing a G-R-tree 
associated to any HNN valuation. This, together with ~ 1 and 5, yields a charac- 
terization of ~ (Corollary 7.4) in terms of G-R-trees. Finally, w 8 contains two 
families of examples where Z is computed via tree actions. 

Some of the results of this paper remain valid if R is replaced by an arbitrary 
ordered abelian group A. Treating this generalization systematically, however, 
would have resulted in extra technicalities without adding any substance to 
the paper. I have therefore confined myself to the case A = R, but, wherever 
feasible, have written the exposition in such a way that it applies with little 
change to a general A. 

I am very grateful to R. Bieri and R. Strebel, who have had an enormous 
influence on this paper. In particular, the idea that 2g should be describable 
in terms of tree actions arose from discussions with Bieri at a conference in 
Bielefeld in November 1985. And Strebel, upon seeing the functions v that arose 
from my study of tree actions, urged me to take seriously the analogy with 
valuations on rings and suggested that this point of view might lead to a calcula- 
tion of S for one-relator groups. In addition, he showed me how to reformulate 
the result of this calculation in geometric language. 

Acknowledgements. I would also like to thank H. Abels for organizing the Bielefeld conference and 
providing a stimulating atmosphere, and I thank the University of Bielefeld and the National Science 
Foundation for their financial support. 

1. Tree actions with abelian length function 

Useful references for this section are [1], [10], and [15]. We will follow the 
notation and terminology of [1] regarding R-trees and group actions on R-trees, 
except that all of our actions will be right actions. 

Let X be a G-R-tree, where G is an arbitrary group, and let l: G - * R  be 
the corresponding hyperbolic length function. Recall that I is said to be abelian 
i f / = l x I  for some homomorphism X: G-*R;  X is then unique up to a factor 
of + 1 ([1], 1.4). If, in addition, G has no fixed points in X and no invariant 
line, then we will say that X is a non-trivial abelian G-R-tree. In this case G 
fixes a unique end e of X ([1], Theorem 7.5), which can be characterized as 
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the unique end belonging to all of the characteristic subtrees A~ for g ~ G. [Recall 
that Ag is the axis of g if g is hyperbolic and the fixed point set of g if g 
is elliptic.] 

We use the fixed end e, in the non-trivial case, to make a canonical choice 
of the homomorphism Z above: For any hyperbolic g, we set z(g)=/(g) if g 
translates away from e, and z(g)= - l (g )  otherwise. In other words, if we choose 
an identification of Ag with R such that e corresponds to - ~ ,  then x.g = x + z(g) 
for all x~Ag. This canonical Z will be denoted Zx. Following a method of 
Tits (cf. [15], last paragraph of proof of Proposition 4), we will now introduce 
a second function on G, called v, which essentially determines the G-R-tree 
X. 

Still assuming that X is a non-trivial abelian G-R-tree with fixed end e, 
choose a basepoint x~X, and let Y be the ray (e, x]. Let l: Y ~ R  be the unique 
isometric embedding such that z(y) decreases as y ~ e and z(x)=0; the image 
t(Y) is then an interval (r, 0], where r > -  oo. [The definition of "end" given 
in [1] allows the possibility r > - ~ ,  but this can only happen if Z=0. The 
reader may prefer to redefine "non-trivial" so as to exclude this case.] We 
define a function V=Vx, x: G ~ ( - ~ , O )  as follows. For any geG, the ray yg-1 
represents the same end e as Y, hence Yc~ Yg-1 is a ray (e, y] for some ye Y. 
Now set v(g)= t(y). In other words, if we view t as an identification and think 
of Y as a set of real numbers, then 

(i.1) v(g)=max{te Y: t.g~ Y}. 

Letting ;t = Zx, we can also write 

(1.1') t . g = t + z ( g )  for t<v(g) in Y, 

and v(g) is the largest non-positive real number with this property. 
It is useful to give an alternate definition of v in terms of the subtrees A,. 

For this purpose note that, since the end e is common to Y and A~, the intersec- 
tion Yc~A~ is a ray (e,z] for some z~Y; we then have v(g)=t(z) if z(g)<0 
and v(g)=l (z ) -z (g)  if z(g)>0. The following picture illustrates this in case 
z(g)>0. Here y and z are as above, and we have z=yg. The arrows indicate 
the direction of translation of g along its axis. 

Y 

zg 

Ag 

= xg 

x 

Fig. 1 

Let t ing  d be the metric on X, we see from this picture (and similar ones 
for z(g)<0) that 

(1.2) v ( g ) = - d ( x ,  Ag)-z(g) if z(g)>0 
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and 

(1.3) v(g) = - , t ( x ,  A~) 
= v(g- 1) + l(g) 

=v(g-1)--~((g) if z(g)_<0. 

Let L be the Lyndon length function associated to the base point x, i.e., 
L(g) =d(x, xg). Then we have 

(1.4) L(g) -- l(g) + 2d(x, As) 

= - z ( g )  - 2 v ( g )  

for all g, where the second equality follows from 1.2 and 1.3. This shows that  
the (based) G-R-tree X is uniquely determined by • and v, provided X is spanned 
by the orbit  of x (cf. [1], w 5). Note that Z can be eliminated here. Indeed, 
it follows from 1.3 that  

(1.5) v(g- ') = v(g) + z(g) 

for all g, hence z (g ) - -v (g -1 )_  v(g). Substituting this into 1.4, we obtain 

(1.6) L(g)= -(v(g) + v(g-1)), 

so the G-R-tree spanned by x is in fact determined by v alone. 
1.5 is one of the formal properties of v that we will take as part  of the 

definition of  "HNN valuation" in w Before proceeding further, we record 
two others. The first is essentially a restatement in terms of v of our non-triviality 
assumption. Let G x =< o = {g 6 G: Z (g) =< 0}. In the terminology of [15], this is simply 
the submonoid of G consisting of the elements g such that  the end e is attracting 
or neutral for g. 

(1.7) v[Gx~o does no t  assume a minimum value. 

For  if v[Gx<o assumed a minimum value, then the intersection Z =  ~ Ag 
geG 

would be non-empty. But Z would then be a G-invariant subtree of X, which 
would consist of fixed points if Z = 0  and which would be a line otherwise; 
either way we contradict the non-triviality assumption on X. 

The other  property of v is the following inequality, which resembles the 
familiar ultrametric inequality from valuation theory: 

(1.8) v (g h) __> min { v (g), v (h) - Z (g)}. 

To prove this, suppose that  t<-min{v(g), v(h)-z(g)} in Y By 1.1', we have 
t g -- t + Z (g) _----- v (h), so t g h -- t + Z (g) + Z (h) = t + Z (g h). All  of this is going on inside 
Y, so 1.8 follows from the definition 1.1 of v. 

We also have (as in  valuation theory again): 

(1.9) Equali ty holds in 1.8 if v(g) ~ v(h)-  z(g). 

One can see this directly, as in the proof of  1.8, or one can deduce it formally 
from 1.5 and 1.8. 
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We close this section by describing a var iant  of our  definition of v. Instead 
of taking values in ( - -  ~ ,  0], the new function will be allowed to take arbi trary 
real values, as well as the value + ~ .  For  the rest of this section we will denote 
by Vo (resp. Yo) the funct ion called v above (resp. the ray (e, x] called Y above). 

Choose, if possible, a subtree Y conta in ing  Yo such that t extends to an  
isometry (still called l) of Y onto  an interval (r, + ~ )  of real numbers ,  r >  - ~ .  
I-If Z ~ 0 ,  then r = -  ~ ,  and we have simply extended the half-line Yo to a line 
Y.] For  example, if x is on the axis Ag of some hyperbolic element g, then 
we can take Y=Ag. As in 1.1 and the discussion preceding it, one sees for 
any g~G that  either there is a largest y~Y  such that ygeY, in which case we 
set v(g)= t(y), or else Y is g- invariant  [which means Y=Ag if g is hyperbolic],  
in which case we set v(g)= or. Thus 1.I is still valid, provided " m a x "  is replaced 
by "sup".  This function v = Vx. r, ~: G ~ R u { + ~ }  has the same formal proper-  
ties 1.5, 1.7, 1.8, and  1.9 as v o. Note, however, that we now have v(1)= + ~ ,  
whereas Vo satisfies Vo(1)=0. 

The following consequence of 1.5 and 1.9 shows that X can be recovered 
from v: 

(1.i0) If v(g) < ~ then ~(g) = v(g-  1)_ v(g). If v(g) = ov then z(g) = v ( h ) -  v(gh) 
for any h with v(h)< ~ .  

(Note tha t  there must  exist such an h by 1.7.) 
It now follows easily that  this "ex tended"  v, like the original Vo, conta ins  

enough informat ion  to determine the subtree spanned by the orbit  of x. To 
see this, it suffices to show that  we can recover Vo from v. Now we can certainly 
recover Vo from v and  Z. For  by 1.5 we need only consider those g with x(g)<0,  
and we clearly have: 

(1.11) I f z ( g ) < 0 t h e n  Vo(g)=min{v(g),0}. 

So our claim follows from 1.10. 

Examples. 1. Suppose G is an  H N N  extension (B, t; (B1)t=B2) and  let X be 
the associated tree, cf. 1-14]. The stable letter t is hyperbolic in X, and  the 
vertex stabilizers a long  the axis A t are the conjugates N,=t -rBt  r, r~Z. These 
form an increasing (resp. decreasing) sequence as r increases if and  only if the 
H N N  extension is ascending (resp. descending) 1. It follows easily that the act ion 
of G on X is abelian and non-t r ivia l  if and only if the H N N  extension is either 
properly ascending (i.e., ascending but  not  descending) or properly descending 
(i.e., descending but  no t  ascending). 

Suppose, for instance, that  it is properly descending. Set Y=At and take 
as basepoint  the un ique  vertex x of Y whose stabilizer is B. The resulting v 
=Vx, r,x t hen  satisfies v(t)= ~ and  v(n)=sup {reZ : n~N~} for ne N = U N,. These 
equat ions determine v, for any  geG can be written as g = n t  k for some neN 
and  keZ, and  we have v(ntk)=v(n) by 1.8 and 1.9. The homomorph i sm Xx 
in this case is the canonical homomorphism Z associated to the HNN extension, 
with X ( B ) = 0  and ;~(t)= i. Fin the ascending case, on  the other hand,  Xx = - X . ]  

2. Let k be a field with a proper  non-arch imedean  valuat ion 09: k --* R w { + ~ } .  
("Proper"  means that  09 takes on values other than  0 and + ~ . )  Let X be 

i Recall that G is called an ascending (resp. descending) HNN extension if B2=B (resp. BI =B) 



484 K.S. Brown 

the corresponding R-tree (cf. l-l] or  [15] or, for the case of a discrete valuat ion,  
[14]). It admits  an  action of GL2(k). Let G, Q, and A be the following subgroups 
of GL2 (k): :/ :/  (10 
Thus Q can be identified with the multiplicative group k*, A can be identified 
with the additive group k, and  G is their semi-direct product  A>~Q. The action 
of G on X is abel ian and non-trivial .  One can check that there is a (unique) 
Q-invariant  line Y in x ,  which we use to define v: G ~ R w { + oo } (after choosing 
a basepoint  x). Then  v(Q)= oo, and  it is possible to choose x so that  viA=co. 
Hence v (a q) = v (a) = co (a) for a e A and  q ~ Q. The homomorph i sm X = ~x: G ~ R 
is given by X (a q) = co (q). 

2. H N N  valuations 

Let G be a group and Z: G ~ R  a homomorphism.  Let R~  be the ordered 
commutat ive  mono id  R w  { + oo}, with + oo as largest element and  r + ( +  oo) 
= + ~ for all r. A funct ion v: G ~ R o ~  will be called an H N N  valuation with 
associated homomorphism Z if it satisfies the following two axioms: 

(a) v(g- ~)=v(g)+ z(g). 
(b) v (g h) -> min {v (g), v (h) - X (g)}- 

We will say that v is non-trivial if, in addi t ion:  
(c) v [ G x <= o does no t  assume a m i n i m u m  value. 
Axioms (a) and  (b) are simply properties 1.5 and  1.8 from the previous 

section, and  (c) is 1.7. As in w 1, (a) and  (b) imply the following two properties: 
(d) Equali ty holds in (b) if v(g)4: v (h) -z (g) .  
(e) The homomorph i sm X is uniquely determined by v, except in the case 

where v(g)= oo for all g. 
In  view of (e) we may write Z = Xv if v(g)< oo for some g, e.g., if v is non-trivial .  
It  follows from (a) and  (b) that  v(1) is the largest value taken on by v. 

In particular,  v(1)=oo if v takes on  the value ~ at all. In  case v(1)<o% we 
can normalize v by adding a constant  to make  v(1)=0,  and  then the values 
of v are in ( -  oo, 0], as with the function Vo = vx. x of w 1. 

Note  that  we allow the possibility that X=0  in the definition above. But 
if G is finitely generated an d  v is non-trivial ,  then ;~ is necessarily non-zero ;  
for if X were zero, then the m i n i m u m  value of v on  the generators would be 
the m i n i m u m  value of v on  all of G, contrary to (c). 

We now record a few easy consequences of the axioms. Assume, in what  
follows, that (a) and  (b) hold. 

(2.1) Proposition. (i) Given gl . . . .  ,gn in G, let vi=v(gi)--z(gt...gi_l), 
i= 1 . . . . .  n. Then v(g 1 ... g,) > m i n { v l  . . . . .  v,}, with equality if the sequence (vi) 
assumes its minimum value only once. 

(ii) I f  X (g)< 0 then v(g k) = v(g)for  any positive integer k. 
(iii) I f  v(g)>v(h) and z(h)<O, then v(hg)>v(h)+ z(g), with equality if v(g) 

>v(h).  
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(iv) Given g, h eGx<=o with v(g)>= v(h), we have v([g, h])_> v(h)+ z(gh), where 
[g, h] = g -  t h - ~ g h. Equality holds i f  v (g) > v (h) and Z (g) < 0. 

(v) Let  N = k e r x ,  and for  any real number r<v(1)  let N , = { n e N :  v(n)>r}.  
Then Nr is a subgroup o f  N,  N, ~ N~ if r <_< s, and (N,) ~ = N~ + x r for  r < v (g). [ ]  

These subgroups N, have a simple interpretation when v comes from a tree 
action as in w 1. Assuming, for simplicity, that X + 0, the Nr are simply the stabiliz- 
ers along a line or half-line leading to the fixed end. 

Remark. A comparison of (v) with Example 1 of w 1 suggests that we should 
think of an H N N  valuation v as giving G the structure of"  generalized descending 
H N N  extension". 

The following consequence of 2.1(i) will be the starting point for our study 
of one-relator groups in w 4: 

(2.2) Corollary. Suppose gl ... g, = 1, where n > 2. Then the sequence (vi) of  2.1(i) 
assumes its minimum value at least twice. 

Proof  Suppose the minimum # occurs only once. Then v(1)=/~ by 2.1(i). If 
v(1)= oo, then we already have a contradiction, since the minimum cannot be 

if it only occurs once. If v ( 1 ) < ~ ,  then consider the cyclic permutation 
g, 'gx - . - g , - 1  of the original relator. Its v-sequence, up to order, is (vi-z(g,)) ,  
whose minimum lx--z(gn) still occurs only once and still must equal v(1) by 
2.10); hence z(gn)=0. Continuing in this way we see that ;((gi)=0 for all i, 
so that vi=v(gi). But now it is clear that the minimum cannot be v(1) if it 
occurs only once, since v(1) is the largest value taken on by v. [ ]  

Next we wish to elaborate on the non-triviality condition (c). 

(2.3) Proposition. Suppose v and Z satisfy (a) and (b), with z~-O. Then (c) is 
equivalent to each o f  the following conditions: 

(c') v I N is not bounded below, where N =  ker Z- 
(c") v l G' is not bounded below, where G' is the commutator subgroup o f  G. 

Proof  It is trivial that ( c" )~(c ' )~ (c ) .  Suppose (c) holds, and choose g~G with 
z(g)<0.  By hypothesis we can find hEGz< o with v(h)<v(g).  Conjugating h by 
positive powers of g, we obtain by 2.1(iii) a sequence (hi) in Gx_< o such that 
v(hi) decreases to - ~ .  2.1(iv) now implies that v([g, hl])--v(hi)+ ~((ghi)< v(hi), 
so v([g, hl])--* - ~ .  Hence (c)~(c").  O 

Examples. 1. Suppose G is a descending H N N  extension (B,  t; B ' = B z ) .  Let 
~(: G--~Z ~ R be the canonical homomorphism, with ~((B)=0 and Z(t)= 1. Then 
there is an H N N  valuation v on G with Z=Z, .  We have already seen this 
in Example 1 of w 1 from the tree point of view, but it can easily be verified 
directly; just define v by the formula given in that example and check that 
the axioms hold. This v is non-trivial if and only if the given H N N  extension 
is properly descending. 

Conversely, suppose v is a non-trivial H N N  valuation such that Z=Z ,  is 
discrete, i.e., has infinite cyclic image. Multiplying v and Z by a positive scalar, 
we may assume z (G)=  Z. Choose t e G  with Z(t)= 1, and let B = N ,  for any r<=v(t). 
Then the conjugates t k B t - k ( k ~ O )  are proper subgroups of N which increase 
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and exhaust N by 2.1(v). Hence G is a properly descending HNN extension 
and ~( is the associated homomorphism. 

We can summarize this example as follows: Given Z: G--~Z, there is a non- 
trivial H N N  valuation v with Z = Zo i f  and only if G admits a decomposition 
as a properly descending H N N  extension with Z as associated homomorphism. 

2. Let A be a ring (not necessarily commutative), let Q be a subgroup of 
the multiplicative group A* of units of A, and let to: A ~Roo be a valuation 
in the sense of [81, w Let G=A>~Q, where Q acts on the additive group 
A by right multiplication; thus (a ,q) . (a ' ,q ' )=(a+a'q- l ,qq ' ) .  Motivated by 
Example 2 of w we set z(a,q)=to(q) and v(a,q)=to(a). It is easy to check 
that Z takes finite values and is a homomorphism and that axioms (a) and 
(b) hold. Condition (c) will hold if and only if to does not assume a minimum 
value; a sufficient condition for this is that to lQ 4: 0. 

[For future reference, we remark that everything we have said here remains 
valid if to only satisfies the following weak form of the axioms for a valuation 
on a ring: 

(i) to(0)= ~ and to(l)=0. 
(ii) to (a + b) > min {to (a), co(b)}. 

(iii) t o ( - a )= to (a )  and to(aq)=to(a)+to(q) for a~A, q~Q. 
To be a valuation, of course, to would have to satisfy a stronger version of 
(iii), namely, to (a b) = to (a) + to (b) for all a, b ~ A.] 

3. If G is abelian, then G does not admit any non-trivial HNN valuation, 
except possibly with Z = 0. This follows from 2.3. 

4. At the other extreme, suppose G is a non-abelian free group. Then any 
non-zero Z: G--* R can occur as the homomorphism associated to a non-trivial 
H N N  valuation. In fact, let ~ be a basis for G, and let go: X ~ R~ be an arbitrary 
function. Extend go to ~• by setting go(x-1)=go(x)+x(x) for xe~ .  
Then 2.10) suggests a way to extend go to a function v on G: For any reduced 
�9 • 1-word ~ = xl ... xn with n > 1, set v(~)=min {go(x~)-Z(Xx ... xi-1): 1 < i<  n}; 
set v(1) equal to any value >go(x) for all x e ~  -+1, e.g., v(1)=oo. It is easy to 
check that axioms (a) and (b) hold. To make sure that (c) holds, we need only 
be a little careful in choosing go. For example, suppose we choose distinct ele- 
ments x , y ~  with Z(y)~0;  if we then define go so that go(x)=0 and go(y)= ~ ,  
it is easy to check (c). 

5. Let G and X be arbitrary and let X be a set of generators of G. [Note: 
We will take this to mean that G is given as a quotient of F(~); we do not 
require that ~ embed in G, although, for simplicity, we will not distinguish 
notationally between an element of 3E and its image in G.] Let go: X-- .R~ 
be arbitrary. We can again try to extend go to an HNN valuation v with Zv = X, 
as follows: First extend go to 3~ • as above; then extend it to ~• 
= x l  ...x~ by setting go(~)=min{go(xi)-X(xl ... x~-l)} if n > l  and 
go (~) = sup {go (x): x e 3~ • 1 } if n = 0. Now set v (g) = sup {go (~)}, where ~ ranges over 
all words representing g. It is easy to check that (a) and (b) hold. But there 
is no guarantee that v IX= go. All we can say is that v l3E> go and that v is the 
smallest H N N  valuation with this property (and with X as associated homo- 
morphism). So if there is any extension of go to an H N N  valuation with X 
as associated homomorphism, then our v extends go. 
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6. Let G be the group of orientation-preserving piecewise linear homeo- 
morphisms of the unit interval. Let 2: G ~ R* be the derivative at 0, where 
R* is the multiplicative group of positive reals, and let ; t= log2 .  Let v(g) 
=loge(g) ,  where e(g) is the largest e > 0  such that g is linear on [0, e]. It is 
easy to check that X and v satisfy (a)-(c). A similar definition of v works for 
x = l o g  p, where p is the derivative at 1. We will return to this example in 
w 

We close this secton with some technical remarks that will be useful later. 
First, since an H N N  valuation is determined by its restriction to Gx<=o, it is 
natural to try to state the axioms in terms of this restricted function. To this 
end one easily verifies: 

(2.4) Proposition. Fix a hornomorphism Z: G ~ R and a function v: Gx< = o ~ R~.  
Then there is a unique extension of  v to G satisfying (a), and this extension satisfies 
(b) if and only if the original v satisfies (b) and (d). [] 

Next we introduce two methods for modifying H N N  valuations, both of 
which are motivated by w 1. Let v be an H N N  valuation with associated homo- 
morphism Z, and suppose g is an element of G with x(g)+0  and v ( g ) < ~ .  
We wish to change v to a new H N N  valuation w with the same X and with 
w ( g ) = ~ .  Replacing g by g-1  if necessary, we may assume z(g)<0.  Given 
heGx<_o, let hk=g-khg  k for k >0.  If there is a k such that V(hk)<v(g), then 
choose such a k and set w(h)=v(hk)-kx(g);  it follows from 2.1(iii) that this 
is independent of the choice of k. If there is no such k, then set w ( h ) = ~ .  
It is easy to verify (b) and (d) for w, as defined on Gx__<o, so w extends to 
an H N N  valuation by 2.4. We will say that w is obtained from v by change 
of axis. [In case v comes from a tree action and is defined with the aid of 
some line or half-line Y, w is simply the H N N  valuation obtained by replacing 
Y by the axis As. ] 

The second construction, called truncation, is motivated by 1.11. Given an 
H N N  valuation v and a real number M<v(1) ,  we define a new H N N  valuation 
w with w(1 )=M as follows: Define w on Gx=< 0 by w(g)=min{v(g),M}, check 
that (b) and (d) hold, and extend w to G by 2.4. 

3. Ascending and descending I-INN extensions 

Let G be a finitely generated group and X: G--~ Z a surjective homomorphism. 
In many cases one knows that G necessarily admits an H N N  decomposition 
G =  (G, t; (B1) t = B z )  with X as associated homomorphism and base group B 
again finitely generated. This holds, for instance, if G is finitely presented ([4], 
Theorem A). And if G is a one-relator group, we can even take B to be a 
one-relator group and B1 and B2 to be free subgroups. (The procedure for 
doing this will be recalled at the beginning of the next section.) It is of interest 
to know whether this H N N  extension is ascending, i.e., whether B2 = B. In the 
one-relator case, for instance, B is then free, and X therefore yields a particularly 
simple description of G as a split extension N>~( t ) ,  where N = k e r x  is an 
increasing union of free groups. This description is even simpler if the H N N  
extension is both ascending and descending, in which case N itself is free. 
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H N N  valuations provide a useful point of view for studying this situation, 
in view of the following result: 

(3.1) Proposition. Let G be a finitely generated group and Z: G --~ Z a surjective 
homomorphism. The following three conditions are equivalent: 

(i) G admits a decomposition as an ascending H N N  extension with finitely 
generated base group B and with Z as associated homomorphism. 

(ii) G does not admit a decomposition as a properly descending H N N  extension 
with Z as associated homomorphism. 

(iii) There is no non-trivial H N N  valuation v on G with Z=Xv. 
Moreover, i f  these conditions hold then every H N N  decomposition of G with 

X as associated homomorphism is ascending. 

The equivalence of (ii) and (iii) has already been pointed out in Example 
1 of w 2. The equivalence of (i) and (ii), as well as the last assertion of the 
proposition, can be found in w 4 of [7]. The proofs given there, however, are 
phrased in terms of the S-invariant. For  the convenience of the reader, we 
will give here a direct proof: 

(i)~(ii): Suppose G is an ascending H N N  extension (B, t; (B1)t=B) with 
B finitely generated, B _  N = k e r  Z, and z( t )=  l. If G also admits a descending 
H N N  decomposition (C,  s; C s = C2) with C ~_ N and X(s) = 1, I will show that 
C = N, so that the decomposition is not properly descending. Write t = ns, where 
heN.  Since N is the increasing union of the conjugates Ck=skCs-k(k>O),  some 
Ck must contain n and a finite set of generators for B. But then Ck contains 
B and is closed under conjugation by t, so C k contains N and hence C = N. 

(ii)~(i): Choose t~G with X(t)= 1. Since G is finitely generated, we can find 
a finitely generated subgroup B ___ N = ker Z such that G is generated by B and 
t. Let C be the t-closure of B, i.e., the subgroup generated by the conjugates 
Bk=t-kBtk(k>O) .  Then G is a descending HNN extension with base group 
C, stable letter t, and associated homomorphism Z. In view of the hypothesis 
(ii), this H N N  decomposition cannot be properly descending, so C = N. In partic- 
ular, tBt  - 1 ~  _ C, hence tBt  -~ is contained in the subgroup D generated by 
Bo, . . . ,  Bk for some k. But then D is closed under conjugation by t -~, so G 
is an ascending HNN extension with base group the finitely generated group 
D, stable letter t, and associated homomorphism Z. Thus (i) holds. 

Proof of  the last assertion of 3.1. Suppose we have an arbitrary H N N  decomposi- 
tion G = ( B , t ;  (B1)t=B2) with B ___N=ker x and ~( t )=l .  As in the previous 
paragraph, if (ii) holds then the t-closure C of B must equal N. But the normal 
form theorem for H N N  extensions easily implies that C cannot equal N unless 
B2=B.  [] 

(3.2) Corollary. Let Z: G--~ Z be a surjection, where G is f initely generated. 
Then ker X is finitely generated i f  and only i f  Z and - Z both satisfy the conditions 
of 3.1. 

Proof. The "only if" par t  is trivial. Conversely, suppose ~( and --Z satisfy the 
conditions of 3.1, and write G as an ascending HNN extension (B, t; (B~) t=  B)  
with B finitely generated, B _c ker  Z, and Z(t)= 1. Then G is also a descending 
H N N  extension (B, s; /P=BI>,  where s =  t-1.  The homomorphism associated 
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to this H N N  decomposition is - ~ ,  so 3.1 (applied to -X)  implies that this 
descending H N N  extension is ascending. Thus B l = B = k e r z ,  and the latter 
is therefore finitely generated. [ ]  

We wish to understand the set of homomorphisms Z satisfying the conditions 
of the proposition. It will be convenient here to focus on condition (iii) and 
to allow arbitrary non-zero Z (not just discrete Z) and arbitrary G (not necessarily 
finitely generated). Since condition (iii) is not affected if Z is multiplied by a 
positive scalar, we introduce the set S = S(G)= (Hom(G, R) -{0} ) /R* ,  where R* 
is the multiplicative group of positive reals, acting by scalar multiplication. When 
G is finitely generated, S is the sphere considered in [7]. 

Now let S = Z(G) be the set of classes [~ ]eS  such that Z satisfies condition 
(iii) of 3.1. We will show in w 5 that, for finitely generated G, X coincides with 
the set called S in [7] 2. First, however, we wish to compute our X for one-relator 
groups. That will be done in the next section. We close the present section 
with two observations that will be needed there. Let Z c be the complement 
of X in S. 

(3.3) Proposition. Let G be a finitely generated group with finite generating 
set ~, let X: G--* R be a non-zero homomorphism, and let t be an element of 
~i. such that X(t) �9 O. The following three conditions are equivalent: 

(i) [Z] ~ S~. 
(ii) There is an H N N  valuation v on G with Zv=Z, v ( t ) = ~ ,  and v ( x ) < ~  

for some x~3s 
(iii) There is an H N N  valuation v on G with Zv=Z, v(t)= ~ ,  and min{v(x): 

x ~ ; }  =0.  

Proof An H N N  valuation v as in (ii) is easily seen to be non-trivial (consider 
the conjugates of x • by the powers of t); so ( i i )~( i )  by our definition of Z. 
Conversely, suppose (i) holds, and let v be a non-trivial H N N  valuation with 
Z=Xv. By change of axis we may assume v ( t ) = ~  (cf. end of w note that 
change of axis leaves X unchanged and does not affect the non-triviality assump- 
tion). Then v(x)< m for some x~3E, since otherwise we would have v ( G ) = m ,  
so (i i)~(i) .  Finally, we may normalize any v as in (ii) (by adding a constant) 
to make min{v(x)} =0 ,  so (ii)~(iii).  [ ]  

(3.4) Proposition. I f  G is finitely generated, then Z is an open subset of the 
sphere S. 

Proof. Choose a finite set �9 which generates G. Given [Z]~2~, choose t~3E with 
~(t)~ O. Let v=  v x be the smallest H N N  valuation with associated homomorph-  
ism Z and with v( t )= oo and v(~)>O; in other words, v is constructed as in 
Example 5 o fw  from the function r ~ R ~  given by q~(t)= oo and ~0(x) 
=0  for x~et. Since [Z]eS, we must have v(3~)= oo by 3.3. In particular, v(3~)>0, 
so the definition of v implies that for each x~3E there is a relation x =  ~ such 
that ~0(~)>0. Now set 

U={[ r / ]~S :  r/(t)=t=0 and q~(~x)>O forall  x ~ } .  

2 It is immediate from w 4 of [7] that our Z has the same discrete points as that of [7]. Since 
the discrete I-x]'s are dense in S when G is finitely generated, this makes it plausible that the two 
~'s are the same. 
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If [~/]e U, then 2.1(i) implies tha t ' q  cannot satisfy condition (iii) of 3.3. Thus 
U is a neighborhood of [Z] contained in S. []  

4. Example: One-relator groups 

Let G be a one-relator group (3E; r )  with 3E finite and r cyclically reduced 
and non-trivial in F(3E). Assume, to avoid trivialities, that card(30 > 2. We begin 
by briefly reviewing the standard procedure (" Magnus rewriting") for decompos- 
ing G as an H N N  extension. See, for instance, [12], w IV.5, for more details. 

Suppose that some te3E has exponent sum 0 in the relator r. Then we may 
rewrite r as a relator r' in the elements Uk=t-kut k, where ue3E--{t}. For  each 
such u, choose a non-empty interval of integers l (u )=  [/~(u), #'(u)] with the fol- 
lowing two properties: (a) I(u) contains all the subscripts k such that uk occurs 
in r'; and (b) for at least one u which occurs in r, I(u) is the smallest interval 
satisfying (a). Let B be the one-relator group generated by the Uk (U~Y~--{t}, 
k~l(u)) and having defining relator r'. Let B1 (resp. B2) be the free subgroup 
generated by the Uk with #(u)<k<ff(u) (resp. lt(u)<k<l/(U)). Then G is an 
H N N  extension (B, t; (B1)t=B2), and the associated homomorphism is given 
by ~(t)= 1 and X(u)=0 for u~3s 

If card(X)> 2, then the given basis for B E omits at least two of the generators 
of B, and at least one of these omitted generators occurs in r'. The Freiheitssatz 
therefore implies that  B 2 < B, so the H N N  extension is not ascending and [Z] r Z. 
If card(3Q=2, then I claim that the H N N  extension is ascending if and only 
if u s occurs exactly once in r', where u is the element of ~ - { t }  and #=#(u) .  
The "if" part is trivial. Conversely, if B2=B then there has to be a relation 
in B expressing u s in terms of the Uk with # < k < i f ,  and such a relation is 
clearly a defining relation for the free group B = B2 in terms of the generators 
uk, #<k_-<//. The claim now follows from the fact that the cyclically reduced 
defining relator for a one-relator group is unique up to cyclic permutat ion and 
passage to inverses, cf. [13], Theorem 4.1 i.  

The procedure just outlined can be used to decide for any given discrete 
X whether or not I-Z] ~S. Fo r  we can do a sequence of "elementary operat ions" 
on 3E [e.g., multiplying one generator by a power of another]  to get a new 
one-relator presentation of G such that X(t)= 1 for some generator t and Z(u)=0 
for u # t. Then t has exponent sum 0 in the defining relator, and Magnus rewriting 
is applicable. In particular,  since 2~ is open in the sphere S and the discrete 
[Z] are dense in S, it follows that 2 ;=0 if card (3~)>2. If card(3s on the 
other hand, then it is not  obvious how to use this method to obtain a global 
description of S, the problem being that each Z requires a different set of genera- 
tors. We will solve this problem by using H N N  valuations, primarily as an 
a id  in guessing a characterization of ~. This guess turns out to be remarkably 
easy to prove (Theorem 4.2), and it leads to the desired global description of 
Z (Theorem 4.4). 

Let Z: G ~ R be a non-zero homomorphism. Choose t~3E with X(t)# 0 and 
let u be the other element of 3E. By Proposit ion 3.3 we have [ ~ ] e S  c if and 
only if there is an H N N  valuation v with Xv=X, v(t)=o% and v(u)=0. Corol- 
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lary 2.3 now enables us to write down a necessary condition for [g] to be 
in S c. Let q~: ~• o be given by q~( t •  q~(u)=0, and ~o(u-1)=X(u). 
Let the relator r be x l  ... xn ( x i eX•  and set vi=q~(xi)--Z(xl  ... x~_~). If there 
exists a v as above, then clearly we must have n>2 ,  and 2.3 implies that g 
satisfies: 

(,) The sequence (vi) has a repeated minimum, i.e., it assumes its minimum 
value more than once. 

We will show that (.) is also sufficient for [~] to be in So: 

(4.2) Theorem. Let G be a two-generator one-relator group ( ~ ; r )  such that 
r is cyclically reduced and not the trivial relator, and let Z: G ~ R be a non-zero 
homomorphism. Choose t~3i with Z(t)#:O, and let v i be as above. Then [Z]~S r 
if  and only i f  ( . )  holds. 

Proof. The "only if" part has already been proved, so we will assume (.) and 
prove that [~] e S c. 

Case I. X(t)= 1 and X(u)=0. Then we use Magnus rewriting to exhibit G as 
an HNN extension. It is easy to check that the subscripts k such that uk occurs 
in the rewritten relator r' are precisely the vi which are < ~ ; so our assumption 
(*) says that uu occurs more than once in r' and hence, by the discussion above, 
the HNN extension is not ascending. This proves that [Z] ~Sc. 

Case 2. ;t is discrete. Multiplying X by a positive scalar, we may assume im X 
=Z.  Let Z(t)=p and Z(u)=q. Let G' be obtained by adjoining to G a new 
generator s with sP=t, and extend X to ~': G ' ~  Z by setting ~('(s)= 1. Then 
G' is a one-relator group (s, u; r ') ,  where r' is obtained by replacing every occur- 
rence of t in r by s ~. Moreover, condition (*) still holds for G' and ~'. If we 
can construct an HNN valuation v on G' with v ( s ) = ~ ,  v(u)=0, and ;~v=Z', 
then its restriction to G will show [X]eS c. So we may replace G by G', i.e., 
we may assume p = 1. 

Now replace the generator u by u ' = u t  -q, so that Z(u')=0. This yields a 
new one-relator presentation G = ( t , u ' ;  r") ,  where r" is obtained from r by 
substituting u' t q for u and then cyclically reducing. Note that the cyclic reduction 
process only involves cancelling cyclically adjacent occurrences of t and t-1, 
i.e., there is no cancellation involving u'. It follows easily that (.) still holds 
for the new presentation, so we have reduced Case 2 to Case 1. 

Case 3. X is not discrete. Then X(t) and Z(u) are linearly independent over Z. 
Now the numbers vi which are < ~  have the form aix( t )+bi; t (u) ,  where ai 
and b, are integers depending only on the relator r. So the repeated minimum 
guaranteed by (*) must occur for formal reasons, i.e., because of coincidences 
among the a~ and b~. Hence any ~ sufficiently close to X will also satisfy (*) 
[and will also have ~/(t)~0], so [t/] will be in Z ~ by Case 2 if t/ is discrete. 
Since the discrete homomorphisms are dense in Hom(G, R), the desired result 
that [X]e2~" follows from the fact that 2: ~ is a closed set. [] 

The remainder of this section will be devoted to restating Theorem 4.2 in 
a form that is more convenient to apply in practice. I am grateful to R. Bieri, 
W. Neumann,  and R. Strebel for helping me arrive at this reformulation. For 
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simplicity, we will only consider the case where r is in the commutator subgroup 
F(X) '  of F(30, so that the abelianization G/G' is of rank 2. (Otherwise, the sphere 
S contains only two points [q-X] and there is no need to reformulate 4.2.) 
The first step is to get rid of the asymmetric treatment of the two generators 
of G: 

(4.3) Theorem. Let G = (x ,  y; r)  with r a cyclically reduced non-trivial element 
o f  F(x, y)', and let s 1 . . . .  , s n be the proper initial segments o f  the relator r, i.e., 
s i=x l  ... x~-l .  Let ~: G ~ R  be a non-zero homomorphism. I f  )~(x) and Z(Y) are 
both non-zero, then I-K] r and only i f  the sequence (X(s/)) assumes its maximum 
value exactly once. Otherwise, I-Z]~2~/f and only if the maximum occurs exactly 
twice. 

Proof. Replacing r by a cyclic permutation if necessary, we may assume that 
the maximum value of (X(si)) is 0=~(s0 .  In case Z(x) or Z(y) vanishes, then 
we may also assume that X(Sz)=0. For  the conditions ~(s2)=Z(x0<0 and ~(sn) 
= - Z ( xn )<  0 imply (r being cyclically reduced) that either X(x 1)= 0 or X (xn)= 0; 
so we may do a cyclic permutation, if necessary, to make X(x~)=0. Finally, 
we may assume in both cases (by renaming the generators) that x~ = x  and 
hence that X(y)4:0. 

Now consider the sequence (vi) of 4.2, with t=y .  We have 

- X(si) if x i = x  

vi=l~)~(Si+l) if x i = x  -1 

if x i = y  • 

If X(x)~ 0 (which means that ~ (x)< 0), it follows easily that the minimum value 
0 = v l  of (v~) is repeated if and only if ~(s~)=0 for some i>  1, i.e., if and only 
if (Z(s~)) has a repeated maximum. (The essential point here is that the non- 
negative sequence (-X(s,)) is monotonic between successive occurrences of x • 1; 
so if it ever goes down to 0 for i>1 ,  then this must happen at one of the 
values occurring in the v-sequence.) Similarly, if ~t(x)= 0, then (v~) has a repeated 
minimum if and only if X(s~)=0 for some i>2,  i.e., if and only if the maximum 
of (~((s~)) occurs more than twice. The theorem now follows from 4.2. [ ]  

We now restate this geometrically. View the abelianization G/G' of G as 
a lattice in the vector space V= G/G' |  R, and view Z as a vector in the dual 
space V*. We will identify both V and V* with the Euclidean plane R 2, and 
we will identify our sphere S with the unit circle in V*; thus [X] is thought 
of as the point of S obtained from X by radial projection. 

Let v,, ...,vn be the images of s~, . . . , s ,  in V. It is useful to think of 
these lattice points v~ as the successive vertices of the closed polygonal path 
obtained by "tracing out"  the relator r in the plane V. Suppose, 
for example, that r is the following relator of length 16: 
r = x - l y - ~ x y 2 x - l y - l x 2 y - l x - l y x - l y x y - 1 .  Its trace is pictured in Fig. 2 
below; one should start following it at the origin, which is shown as a heavy 
dot. [For  clarity, multiple occurrences of the same segment have been set off 
from one another.] 
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: 11.-11 

Let C be the boundary of the convex hull of the vi. It is a closed, convex 
polygon, whose vertices form a subset of {vi}. Call a vertex simple if it equals 
vi for exactly one i. The polygon C always contains a horizontal edge at both 
the top and bot tom and a vertical edge on each side. Let e be one of these 
four edges. If e contains vi for exactly two i, then e will be called special and 
will play the same role below as the simple vertices. (Note that such an e is 
necessarily of length 1, and its two vertices are simple.) 

It is now easy to restate 4.3 geometrically, since the numbers g(s~) of 4.3 
are simply the inner products (vi, Z). Recall that a line L in V is said to be 
a supporting line of C if C lies on one side of L and intersects L. For  any 
non-zero Z, let L x be the supporting line of C such that X (thought of as a 
vector) is orthogonal to L x and points away from C; thus L x intersects C at 
the points of C where the linear function ( - ,  Z) takes its maximum value. 
The following restatement of 4.3 is now immediate: 

(4.4) Theorem. I f  the vector Z is neither horizontal nor vertical, then [ Z ] e S  
if and only if Lzc~C is a simple vertex of C; if X is horizontal or vertical, then 
[Z] e E if and only if L z c~ C is a special edge of C. Consequently, E is a finite 
union of open arcs of  the circle S, one for each simple vertex v or special edge 
of C. The arc A corresponding to v (or e) is obtained as follows. Let f and 
f '  be the edges preceding and following v (or e) when C is traversed in the counter- 
clockwise direction, and let Z and Z' be the outward pointing unit normals at 
f and f ' .  Then A is the (counterclockwise) open arc from Z to X'. [] 

[Note that the arcs A coming from the vertices of a special edge are redunant 
in this description of E. We can exhibit this concretely by extending the sides 
adjacent to a special edge until they meet (assuming they are not parallel), 
thereby replacing the special edge and its two vertices by a single vertex, which 
is then considered simple.] 

Returning to the example traced out in Fig. 2, C is the solid polygon in 
Fig. 3, with the simple vertices shown as heavy dots. The only special edge 
is the right hand vertical one, and the dot ted lines serve as a reminder that 
the special edge is treated the same as a simple vertex. This yields the picture 
of E in Fig. 4, as a union of the two solid open arcs, from Zt to Z2 and ~2 
to Ha. 
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In particular, we see from this and Corollary 3.2 that a normal subgroup 
N of G with G/N infinite cyclic is finitely generated if and only if N = ker X 
for some surjection X: G--~Z with 0<X(y)<x(x).  Intuitively, then, 1/4 of the 
normal subgroups with infinite cyclic quotient are finitely generated. 

Remark. Suppose G is a one-relator group and we want to determine the finite 
generation of an arbitrary N-~ G with G/N abelian. R. Strebel has pointed out 
to me that the case we have treated, where G/N,~ Z, is essentially the general 
case; more precisely, if N is finitely generated and G/N is abelian, then G/N 
necessarily has torsion-free rank < 1, except in the trivial case where G is free 
abelian of rank 2. [If there were a finitely generated N with G/N abelian and 
of rank > 1, there would be one with G/NgZ 2. Then N _ N '  for some N' 
with GIN ~ Z, and N'  is again finitely generated. Such an N'  is necessarily free 
(cf. proof of 3.2 and first paragraph of w 3). But then the existence of a finitely 
generated N-~ N'  with N' /N~Z implies that N'  is a free of rank 1 and hence 
that N is trivial.] 
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5. Connection with Bieri-Neumann-Strebel 

Let G be an arbitrary group, Z: G ~ R  a non-zero homomorphism, and 3[ a 
set of generators of G. For  any 3[ + 1-word ~ = Xl -.. x, ,  let t l . . . .  , t. be the non- 
empty terminal segments of 4, i.e., t i=  xl ... x,.  Recall from [7] that the x-track 
of ~ is the set of real numbers {Z(ti)}, l < i < n .  Note that if ~ represents an 
element of ker Z, then Z(ti)= -X(si), where si = X l ... x i-1 as in w 4. 

The following technical lemma will provide the link between H N N  valuations 
and the theory developed in [7]. Let 3[_ = 3[+ i n  Gx~ 0. 

(5.1) Lemma. I f  N is a subgroup of  ker Z, then the following two conditions 
are equivalent: 

(i) For any H N N  valuation v on G with ;tv=Z and v[3[_ bounded below, 
v]N is bounded below. 

(ii) For some real number r < O, every element of  N can be represented by 
an 3[ + 1-word with z-track bounded below by r. 

I f  N is normal in G, then (i) and (ii) are also equivalent to: 
(iii) Every element of  N can be represented by an 3[+ 1-word with non-negative 

z-track. 

Proof  ( i ) ~  (ii): Let (p:3[ +l _. R be given by q~ (x)= rain {0, -Z(x)}  ; thus (p (3[_)= 0 
and ~0 (x-  1) = (r (x) + Z (x) for all x e 3[ + 1. Let v be the H N N  valuation constructed 
from q0 as in Example 5 of w 2. Then v(1) = 0, and v(g) for g =I = 1 equals sup {t0(i)}, 
where ~ ranges over the words representing g and (p(Xl ... x,)=min{q~(xi) 
-Z(Xl  ... xi-1)}. Note that ~0(~) is simply the minimum value of the z-track 
of ~ if ~ represents an element of ker Z. Now (i) implies that v IN is bounded 
below, which says precisely that (ii) holds. 

( i i )~(i) :  Suppose v is an H N N  valuation with Zv=Z and v13[- bounded 
below by a real number c. Then 2.1(i) immediately implies that v(g)>=r+c for 
any geker  Z which is represented by an 3[+l-word with x-track >__r. Thus (ii) 
implies that v(N) > r + c. 

Now suppose N ~  G, and choose xe3[ • with Z(x)<0. If (ii) holds and geN,  
then for any integer k we can represent x - k g x  ~ by word ~ with x-track _>_r. 
Hence g is represented by xR~x -k, which has x-track _>_0 if k is large enough. 
This shows that (ii)~(iii),  and the converse is trivial. [ ]  

We will temporarily denote by 2; BNs the set 22 defined by Bieri, Neumann, 
and Strebel [7] for finitely generated G. Recall the following characterization 
of it in terms of x-tracks with respect to a finite generating set 3[ ([7], 3.4): 
[-Z'] ff xBNS if and only if every element of ker Z can be represented by an 3[ + 1_word 
with non-negative x-track. We can therefore conclude from the lemma and Prop- 
osition 2.3 that [Z]~2; BNs if and only if every H N N  valuation v with Z ,=Z 
and v13[- bounded below is trivial. Now the condition that v13[- be bounded 
below is vacuous when 3[ is finite. We have therefore proved:  

(5.2) Theorem. I f  G is finitely generated, then [Z]~22 BNs if  and only if  there 
is no non-trivial H N N  valuation v on G with Z~ = Z. In other words, Z, BNs coincides 
with the set 22 defined in w 3. [] 
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Remark. Combining Theorem 5.2 With one of the main results of [7], we obtain 
a remarkable criterion for finite generation of normal subgroups of G with 
abelian quotient. Note  first that  if v is a non-trivial H N N  valuation on the 
finitely generated group G and M is a subgroup such that G'_~ M ___ ker Zo, 
then M is obviously not finitely generated; for v yields a non-trivial filtration 
on M by 2.3. The remarkable resuR, however, is that this is the only way 
that  a normal  subgroup with abelian quotient can fail to be finitely generated: 
If G' __q M _~ G, then M is finitely generated unless G admits a non-trivial H N N  
valuation v with M ~_ ker Zv- This is Theorem B1 of [7], restated in terms of 
H N N  valuations. 

We close this section by characterizing in terms of H N N  valuations the 
sets ZA=ZA(G ) considered in [-7]. Recall that G is still required to be finitely 
generated, A is a finitely generated right G-group, and it is assumed that every 
element of G' acts on A by an inner automorphism of A. 

(5.3) Theorem. Let  A be a G-group as above, let H = A x G, and let ~z: H--*  G 
be the canonical surjection. Given a non-zero homomorphism Z: G ~ R, I-Z] e S, A (G) 
i f  and only i f  every H N N  valuation v on H with Z~= Z o n is bounded below 
on A. 

Proo f  Let 3E be a finite set of generators of G. Recall that, for a suitable finite 
set of generators ~r of  A as a G-group, the following condition (,) characterizes 
the points Ix]  of 2~A: 
(,) Every element of A can be expressed as a product of elements a g with 
ae~r177  1 and g representable by an a~ + t-word with non-negative z-track. 

Here a ~ denotes a acted on by g, but  it can also be viewed as g-1 a g in 
the group H. As such, it can obviously be represented by an (Eu~C)• 
with non-negative (Zo ~)-track if g can be represented by an 3~ + a-word with 
non-negative z-track. Conversely, given an ( E u  d )  • ~-word with non-negative 
(Zor0-track which represents an element of A, we can move all the elements 
of 3s +~ to the left (where they must cancel) to get a product of elements a g 
as in (,). The theorem now follows at once from Lemma 5.1. [ ]  

6. Example: Nletabelian groups and valuations on rings 

The work of Bieri and  Strebel on finite presentation of metabelian groups [5] 
led them to the study of  the invariant Sa = 2~a(Q), where Q is a finitely generated 
abelian group and A is a finitely generated abelian Q-group, i.e., a finitely gener- 
ated ZQ-module. The crucial case to consider is the case of a cyclic module 
A, or, equivalently, the case where A is a quotient ring of ZQ and Q acts 
by multiplication. In this case Bieri and Groves ([3], Theorem 8.1), building 
on earlier work  of Bieri and Strebel ([6], Theorem 2.1), showed that ~A could 
be calculated in terms of  R-valued valuations on the commutative ring A. 

In this section we will indicate briefly how this result falls out  of our charac- 
terization of 2~A in terms of H N N  valuations. To simplify the notat ion we will 
assume that the canonical map Q --* A* is a monomorphism, and we will identify 
Q with its image; this involves no loss of generality, since we could simply 
replace Q by its image. 
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As in Theorem 5.3, we introduce the metabelian group G=A>~Q and the 
canonical homomorphism ~: G--~ Q, and we ask which non-zero homomorph- 
isms ;t: Q ~ R  have the property that Z~ for some H N N  valuation v on 
G which is not bounded below on A. Now we have already seen one way 
to construct such a v. Namely, suppose X extends to a function o9: A--*R~o 
satisfying the properties (i)-(iii) mentioned in Example 2 of w then we can 
set v(a, q) = o9(a). 

Conversely, suppose there exists a v not bounded below on A with Zv=Xon. 
By change of axis (cf. end of w we can arrange that v(0, q ) = ~  for some 
qeQ with z(q)+O. Q being abelian, it then follows easily from 2.1(iii) that 
v(0 x Q)= ~ .  Now G is generated by 0 x Q and (1,1), where 1 is the multiplicative 
identity of the ring A (and hence also the identity of the group Q). We must 
therefore have v(1,1)<oo, so we can normalize v to make v(1,1)=0. Finally, 
since (a, q)=(a, 1).(0, q) in G, properties (b) and (d) of H N N  valuations (w 
imply that v(a, q)= v(a, 1). Thus v has the form v(a, q)= o9(a), where o9(a)= v(a, 1), 
and it is a routine matter to verify that o9 satisfies (i)-(iii). This proves: 

(6.1) Theorem. Let A be a commutative ring which is additively generated by 
a finitely generated subgroup Q of A*. Then the complement Z~a of Za in the 
sphere S(Q) is the set of classes [Z] such that Z extends to a function o9: A ~ Roo 
satisfying properties (i)-(iii) o f  Example 2 ofw 2. [] 

(Note. The finite generation hypothesis played no role in our proof above; it 
was included simply because we have not discussed Z A otherwise.) 

As a corollary, we can easily obtain the result of Bieri-Strebel-Groves cited 
at the beginning of this section: 

(6.2) Corollary. Let A and Q be as in 6.1. Then [Z]eZ~4 if and only if Z extends 
to a valuation o9: A-~R~. 

Proof We must show that if Z extends to a function to o satisfying (i)-(iii), then 
Z extends to a valuation o9. For  this purpose we use an analogue of the method 
of Example 5 of w For a e A  set p(a)=sup{q~(O}, where ~ ranges over all 
elements of ZQ which represent a and q~(~)=min{)~(q): qesupport(~)}. [Here 
support(i) is the set of qeQ which occur in r with non-zero coefficient.] Clearly 
p(a)<ogo(a), so p, like o90, extends X- It is easy to check that p satisfies (i)-(iii) 
as well as: 

(iv) p (a b) > p (a) + p (b). 
Hence p is a pseudovaluation. Theorem 2 of [2] now implies that there is a 
valuation co > p such that o91Q = p l Q = z. [] 

7. The  tree associated to an I - INN valuation 

Recall from w 1 that a non-trivial abelian G-R-tree X yields, after suitable choices, 
a non-trivial HNN valuation v on G. For our present purposes it will be conve- 
nient to describe that construction as follows. Let e be the end of X fixed 
by G. Let Y be a subtree of X containing a ray (e, x] and admitting an isometry 
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l: Y ,(r, + ~ )  for some r >  --oo, such that t (y)~r  as y ~ e .  Choose such 
an ~ and set v(g)=sup{t~t(Y): t-l(t)g~Y}. This function V=Vx.r,, is a non- 
trivial H N N  valuation. [Apar t  from notation, this is the same as what we did 
in w 1, except that there we insisted on setting t (x) = 0 when Y was a ray (e, x]. 
By allowing arbitrary l, we can get v's with v(1) being any finite value, not 
necessarily 0.] 

It is easy to see the effect on v of changing the choices above. First, for 
fixed Y the isometry ~ is unique up to an additive constant;  so changing 
simply adds a constant to v. Suppose next that we replace Y by a ray Y' = (e, x'] c 
Y and use the isometry 7'= I I Y'. Then the resulting H N N  valuation v' will 
be the truncation of v (as defined at the end of w such that v'(1)=z(x'). In 
general, then, we can say that any two H N N  valuations coming from X have 
truncations that differ by a constant. 

(7.1) Theorem. Every non-trivial HNN valuation v: G ~ R~ has the form Vx, r., 
for some X, Y, ~ as above. 

Proof Assume first that v (1)< ~ .  Adding a constant if necessary, we may assume 
that v ( l )=0 .  Reverting to the notat ion of w 1, then, we wish to construct X 
so that v =  Vx, x for some basepoint x. The construction is essentially forced 
on us by equation 1.4. Let L(g)= - (x(g)+2v(g) ) ,  where Z=~v. I claim that L 
is a Lyndon length function on G. If we accept this for the moment, then the 
Alperin-Moss generalization of Chiswell's theorem (cf. [1], Theorem 5.4) gives 
us a G-R-tree X with a basepoint x such that L(g)=d(x, xg) for all geG. 

Note that L(gZ)=L(g)-z(g) if X(g)<0 (cf. 2.1(ii)) and that L(g2)<L(g) if 
x(g)=0.  In both cases we can conclude from [1], 6.13(c), that the hyperbolic 
length of g is given by l(g)= - z ( g ) ;  in particular, l is abelian. It also follows 
that  v(g)= -d(x ,  Ag) if z (g )<0  ([1], 6.7). 

Next we verify that X is non-trivial, i.e., that ( ]  A s = 0  (cf. [1], Theorem 7.5). 
seG 

Suppose not, and let Y~OAs. By the construction of X,y  is in [x, xh] for 
some heG. Replacing y by yh -1 and h by h -1 if necessary, we may assume 
that  x(h)<0.  If h is elliptic, then the midpoint  of [x, xh] is the unique point 
of [x, xh] in Ah, so y must be this midpoint  and d(x, Ah)=d(x,y). For  any 
g~ G, we then have d(x, As) < d(x, y) = d(x, Ah); in view of the previous paragraph, 
this implies that v(h) is the minimum value of v on Gx=< o, contradicting the 
non-triviality of v. If h is hyperbolic, on the other hand, then Ix, x h] C~Ah 
=[p, ph] for some p, so y~[p, ph] and p is between yh -1 and y. Since N A s  
is a G-invariant subtree containing y, it follows that p~NA~. Then v(h)= 
-d(x ,  Ah)=-d(x,p)  is the minimum value of v on Gx<_o, so we again have 
a contradiction. 

It is now clear (cf. 1.2 and 1.3) that we will have Zx=X and vx,~=v provided 
Xx(g) and x(g) have the same sign for all g. Otherwise, we must have Xx= - X  
([1], 1.4), in which case Vx, x=~, where sT(g)=v(g-1). Assuming, as we may, 
that  X :4: 0, we will show that this leads to a contradiction. 

Choose g such that ;t(g)<0. By 2.3 we can find n ~ N = k e r z  such that 
v(n)<v(g). Replacing n by n ~ if necessary, we may assume that we also have 
v(n)<O(g). Then v(nS)=v(n)+x(g) by 2.1(iii). But we may also apply the latter 
to ~7 and its associated homomorphism -X.  Noting that g = v  on N, we obtain 
v(n s) = v(n)-x(g). This is the desired contradiction. 
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We now prove the claim that L is a Lyndon length function. Let 6 be 
the function defined by the equation 

L(g -~ h)= L(g) + L ( h ) -  26(g, h). 

Explicitly, we have 

(7.2) 5(g, h) = v(g- 1 h ) -  v(g) -  v (h ) -  x(g). 

To prove the claim, we must verify the following (cf. [1], w 5): 
(i) L(1)=0. 

(ii) L(g-  1) = L(g). 
(iii) 5 (g, k) >__ rain {5 (g, h), 6 (h, k)}. 

Now (i) is simply our assumption that v(1)=0, and (ii) follows from our axiom 
(a) for H N N  valuations. To prove (iii), we apply properties (a), (b), and (d) 
of H N N  valuations to obtain v(g- ~ h) => min {v(g) + z(g), v(h) + z(g)}, with equali- 
ty if v(g)* v(h). 7.2 now yields 

(7.3) 5 (g, h) > min { - v(g), - v(h)}, 

with equality if v(g)* v(h). (iii) follows immediately unless v(g)=v(h)= v(k). But 
in this case we go back to 7.2 and we find that (iii) reduces to 

v(g - 1 k) > min {v(g- ~ h), v(h- 1 k ) -  z(g-  1 h)}, 

which follows from axiom (b). This completes the proof of the theorem in case 
v(1) < ~ .  

Suppose now that v(1)= ~ .  For any real number M, let vM be the truncation 
of v such that VM(1)= M. Then vM is still non-trivial, at least if M is sufficiently 
large. [This proviso is only necessary if Z =0.]  By what we did above, then, 
v M comes from (XM, YM, tM), where X M is a non-trivial abelian G-R-tree, YM 
is a ray (eM,XM] representing the fixed end, and ZM: Y M ~ ( - ~ , M ' ]  is the 
isometry such that ~M(XM) = M. We may assume that XM, as in the proof above, 
is spanned by the G-orbit of xM; it is then determined, up to a unique basepoint- 
preserving G-equivariant isometry, by VM (cf. [1], Theorem 5.4). 

I claim now that there is a canonical embedding of X M into X M, if M < M'. 
For v M is a truncation of VM,, SO the remarks at the beginning of the section 
imply that vM is the H N N  valuation obtained by using the tree X M, but replacing 
the ray YM' by the subray (eM,,y], where y is the point of YM, at distance 
M ' -  M from XM,. In view of the last sentence of the previous paragraph, then, 
we may identify X M with the subtree of X M, spanned by the orbit of y, whence 
the claim. The desired X, Y,t yielding v are now obtained by passage to the 
limit as M-*  oo: Take X =  U x m  and Y= U YM, and let t be the isometry 
such that t[ YM=tM- [] 

Combining this with Theorem 5.2, we obtain: 

(7.4) Corollary. I f  G is finitely generated, then the complement Z c of the Bieri- 
Neumann-Strebel invariant S, is the set of classes [Zx] obtained from non-trivial 
abelian G-R-trees X. [] 
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Remarks. I. If we take v in the theorem to be the HNN valuation associated 
to a valuation co on a ring A as in Example 2 of w 2 (with Q =A*, say), then 
we obtain a tree X=X~, ,  with an action of the group A>~A*. This generalizes 
to arbitrary rings the construction, well-known for fields, of a tree associated 
to a valuation. In the case of a field, however, one knows that the action of 
A><A* extends to an action of GLz(A) on X. I do not know if this is true 
in general. 

2. It is not hard to deduce from the proof of the theorem that abelian 
G-R-trees can be classified by H N N  valuations. In order to state this more 
carefully, we will confine our attention to the case where Zx+ 0 and X is minimal, 
i.e., X has no proper G-invariant subtrees. [This simply means that X is the 
union of the axes of the hyperbolic elements of G.] Then the result is that 
minimal non-trivial abetian G-R-trees X with Xx + 0 are classified by equivalence 
classes of non-trivial H N N  valuations v with Zv~e0, where two such v's are 
equivalent if they have truncations which differ by a constant. 

In practice, however, we do not work directly with this equivalence relation. 
It is usually more convenient to try to find, for a given G and X, a canonical 
way to choose Y and 1 in any X with Zx =Z. Suppose, for instance, that G 
is a 2-generator 1-relator group as in w 4. Given Z, let t be a generator with 
x( t )+0 and let u be the other generator. Then for any X with Zx=Z, we can 
take Y= At and we can choose 1 to make the resulting v = vx, r,, satisfy v(u)= O. 
It follows easily that minimal non-trivial abelian G-R-trees X with Xx =~( are 
classified by HNN valuations v with v(t)= ~ ,  v(u)=0, and Z~ = X. 

A second example is provided by the metabelian groups G=A>~Q and 
the homomorphisms of the form Z o n considered in w 6. We can then always 
take Y to be the axis of Q (i.e., the unique Q-invariant line), and we can choose 

so that the resulting v will have v(1,1)=0. It follows easily (cf. proof of 6.1) 
the minimal non-trivial abelian G-R-trees X with Zx = X o n for some non-zero 
homomorphism X on Q are classified by functions 09: A-- ,R~ as in Example 2 
ofw with tolQ = x. 

8. Examples 

Given a group G, not necessarily finitely generated, we continue to write ~c 
=2Y(G) for the set of classes [X] of non-zero homomorphisms X: G ~ R  such 
that Z= Xv for some non-trivial H N N  valuation v, or, equivalently, such that 

= Xx for some non-trivial abelian G-R-tree X. In this section we will use tree 
actions to compute ~c in two families of examples. We begin with some general 
remarks. 

Suppose we already know one non-trivial H N N  valuation v on G, with 
X---Xo + 0. Adding a constant to v if necessary, we may assume that G contains 
elements g with x(g)<0 and v(g)>O. Let B be the "base group" No 
= N c~ v - l  ([0, + ~ ] ) ,  where N =ker  X. Then for any g as above, the conjugates 
of B by the positive powers of g increase and exhaust N by 2.1(v). We will 
use this "generalized HNN structure" on G as an aid in computing S c. More 
generally, we will use it to analyze actions of G on R-trees: 
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(8.1) Lemma. Let X be a G-R-tree which is abelian as a B-R-tree. Then X 
is either abelian or dihedral. More precisely, X satisfies one of  the following 
mutually exclusive conditions. 

(i) XN@0, where X N is the f ixed point set o f  N in X.  In this case X is abelian 
as a G-R-tree, and either X is trivial or Zx=0. 

(ii) X n = 0  but XB +O. In this case X is abelian and non-trivial, and Zx=CZ 
for some real number c > O. 

(iii) X contains a B-invariant line Y on which B acts as a non-trivial group 
of translations. In this case Y is also G-invariant. 

(iv) X is non-trivial as an abelian B-R-tree. In this case X is also abelian 
as a G-R-tree (and non-trivial). 

Proof We will use the method of Tits [15]; see also [1], w 7. By the classification 
of abelian B-R-trees, we have the following three possibilities for the action 
of B on X: (a) XB+0. (b) X contains a B-invariant line Y on which B acts 
as a non-trivial group of translations. (c) X is non-trivial as an abelian B-R-tree. 
We examine these cases one at a time. 

Case (a). If B has fixed points in X then so does any conjugate of B; hence 
every element of N is elliptic. Thus either XN~ 0 or else X ~ = 0  and N has 
a unique fixed end e. In the first case, the abelian group G/N acts on the tree 
X N, and it follows easily that (i) holds. In the second case, e is also fixed by 
G since N <  G, hence X is abelian and non-trivial. Assuming Xx+0, I claim 
that )~x is a positive scalar multiple of )~, so that (ii) holds. We already know 
that )~x(g)=0 when x(g)=0;  the claim will follow if we can show that Xx(g)<0 
when z(g) <0. 

Suppose, on the contrary, that xx(g)>0  for some g with ~(g)<0. Since any 
conjugate of B has fixed points in X, it follows that the group B ' = N ,  has 
fixed points for any r < 0 .  Take [rl large enough that the conjugates of B' by 
the positive powers of g increase and exhaust N, and choose a point x fixed 
by B'. Replacing x by a suitable point on the half-line (e, x] if necessary, we 
may assume that xeAg .  But then the assumption that Xx(g)>O implies that 
the stabilizer of x is closed under conjugation by g and hence contains N. 
This contradicts the assumption that XN= 0. 

Case (b). The line Y in (b) is necessarily the unique B-invariant line, since it 
is the axis of any hyperbolic element of B. Choose g e G  so that the conjugates 
of B by the positive powers of g increase and exhaust N. Then Yg is the 
B~-invariant line and is also B-invariant since B c B~; hence Yg = Y. Repeating 
this argument, we see that Y is in fact N-invariant. N being normal in G, the 
same argument shows that Y is G-invariant, so (iii) holds. 

Case (c). Let e be the end fixed by B. Arguing as in case (b), we see that N 
fixes e, hence G fixes e and (iv) holds. [ ]  

We now complete the discussion of Example 6 of w 2. 

(8.2) Proposition. Let G be the group o f  orientation-preserving piecewise linear 
homeomorphisms of  the unit interval. Then every G-R-tree X is abelian. I f  X 
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is non-trivial and Zx #0 ,  then [Zx] = [log 2] or [log p], where 2 and p are the 
derivative homomorphisms at 0 and 1. In particular, So= {[log 2], [log p]}. 

Proof Let X be a G-R-tree. Suppose first that either ker 2 or ker p, say ker p, 
contains a hyperbolic element g. If J is a sufficiently small interval [ 1 - e ,  1] 
and Gs is the subgroup of G consisting of homeomorphisms supported in J, 
then Gj commutes with g and hence fixes the two ends of the axis Y=A~. 
We now apply the lemma, with z = l o g  2, v as in Example 6 of w 2 [modified 
by an additive constant],  and B = Gj. Since we already know B fixes two ends 
of X, the lemma is applicable and case (iv) is impossible. Thus X is abelian 
except possibly in case (iii), and [Xx] = [log 2] if X is non-trivial. 

To see that X is necessarily abelian if (iii) holds, recall from the proof  of 
the lemma that N = ker 2 fixes the two ends of Y. On the other hand, for any 
g~ker  p we can find a conjugate B' of B such that g commutes with B' and 
hence with some hyperbolic element of N. So g also fixes the two ends of 
Y. Since G is generated by ker 2 and ker p, it follows that G fixes the two 
ends of Y. Thus X is abelian. 

Finally, suppose that ker 2 and ker p both consist entirely of elliptic elements. 
Then we can again apply the lemma, still with N - - k e r  2. This time case (iii) 
is impossible, hence X is abelian. It follows that the elliptic elements form a 
subgroup, so our hypothesis implies that every element of G is elliptic. Thus 
Zx = 0 if X is non-trivial. [ ]  

Remark. The proof  applies verbatim to any irreducible subgroup H of G on 
which 2 and p are independent, where the terminology is that of [7], w 8. Hence 
we recover the Bieri-Neumann-Strebel calculation ([7], Theorem 8.1) that S c 
={[ log21H] ,  [ l ogp lH]}  for such an H, provided H is finitely generated (so 
that  their 27 is defined). 

For  our  second and final family of examples we consider a sequence of 
groups first introducted by Houghton [11]. (See also [9], w 5.) Fix an integer 
n > l ,  let N be the set of positive integers, and let S = N x { 1 ,  . . . ,n}. Thus S 
is the disjoint union of n copies of N. The /-the copy, N x i, will be called 
the /-the prong. The n-prong Houghton group is defined to be the group H 
of all permutations g of S such that g is eventually a translation on each prong. 
More precisely, we require that there be an n-tuNe (ml, ...,  m,)eZ" such that 
for each ie  { 1 . . . . .  n} one has (x, i). g = (x + ml, i) for all sufficiently large x ~ N. 

The assignment g~-~mi defines a homomorphism ~ :  H ~ Z ,  i = 1  . . . . .  n. If 
n > 2, it is easy to see that cq is the homomorphism associated to a decomposition 
of H as a properly ascending H N N  extension. As base group we can take 
the group Hi consisting of those elements of H which fix the i-th prong pointwise. 
A n d  as stable letter we can take the " t rans la t ion"  t=t j i  along the union of 
the i-th and j- th prongs for any j 4= i, this being defined by 

( x , j ) . t = ( x - l , j )  for x > l  

(1,j). t = (1, i) 

(x, i). t = (x + 1, i) 

(x, k). t = (x, k) if k 4=j, i. 
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Note  t h a t  Hi is i s o m o r p h i c  to the  ( n -  1)-prong H o u g h t o n  group.  
If  n =  1, H is an  infinite, locally finite g roup  and  ct 1 = 0 .  If  n > 2 ,  however ,  

it is easy to see tha t  H is finitely generated.  A n d  if n > 3, then  H is genera ted  
by the  ti~. 

(8.3) Proposi t ion.  Every H-R-tree X is abelian. I f  X is non-trivial, then Zx is 
a negative scalar multiple of ~i for some i. Hence 2; c =  { [ - ~ 1 ]  . . . . .  [ - c t , ] } .  

This  ca lcu la t ion  of E was also o b t a i n e d  by Bieri and  Strebel  [ unpub l i shed ] .  

Proofs of 8.3. The  first asser t ion  follows f rom the fact tha t  H has  a locally 
finite n o r m a l  s u b g r o u p  wi th  abe l ian  quot ien t .  T o  calcula te  Zx if X is non- t r iv ia l ,  
we m a y  assume n > 3 .  Suppose  Zx is no t  a negat ive  mul t ip le  of any  of the 
n k n o w n  ct's. Since H is finitely genera ted ,  we mus t  have  Z x + 0 ,  so Xx(t)~-O 
for some t = tij. Apply  L e m m a  8.1 wi th  B = H i a n d  ~( = - c q .  Since we are assum- 
ing t ha t  X is non- t r iv ia l ,  the only  cases tha t  can  occur  are (ii) and  (iv). A n d  
since we have  also a s sumed  t h a t  (ii) does  not  hold,  the  only possibi l i ty  is (iv), 
i.e., X is non- t r iv ia l  as an  abe l ian  Hi-R-tree.  

N o w  let H i j = H i n H j ,  and  apply  L e m m a  8.1 wi th  G=Hi ,  B = H i j ,  a n d  Z =  
- ~ l H i .  As above ,  the  only possibi l i t ies  are (ii) and  (iv); bu t  this  t ime  it is 
(iv) t h a t  c a n n o t  occur,  because  Hij c o m m u t e s  wi th  t a n d  so fixes the two ends  
of the axis At. Hence  ZxlHi is a negat ive  mul t ip le  of ~i lHi .  

I n t e r c h a n g i n g  i a n d  j in the  a r g u m e n t  above,  we also have  tha t  ZxlHj is 
a negat ive  mul t ip le  of ctilH j. I t  follows tha t  Zx(tik)@O for any  k, so we may  
replace j by k above  to conc lude  t h a t  ZxlHi is a negat ive  mul t ip le  of  O~RIH i. 
But th is  c a n n o t  be  s imul t aneous ly  t rue  for all n -  1 values  of k :# i, so we have  
a con t rad ic t ion .  [ ]  
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