Invent. math. 64, 263-296 (1981) Iﬂveﬂtlon&:
mathematicae

© Springer-Verlag 1981

Unipotent Characters of the Symplectic
and Odd Orthogonal Groups Over a Finite Field

George Lusztig*
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The purpose of this paper is to give explicit formulas for the character of the
unipotent representations of the symplectic or odd special orthogonal groups
over a finite field F, on any regular semisimple element, provided that g is
sufficiently large. These formulas (which were conjectured in [11, 4.37) involve a
Fourier transform on a certain symplectic vector space over a field with two
elements.

Some of the main ingredients in the proof are:

a) Kawanaka’s theorem [7] on the existence of lifting for certain field
extensions of odd degree in case of finite classical groups, and its application,
due to Asai [2], to the zeta functions of the varieties X, of [5].

b) The use of the Deligne-Goresky-Macpherson cohomology [4] for the
closure X, of X, . (This depends on results of [9] concerning singularities of
Schubert varieties.)

c) The results of [10] on classification and degrees of unipotent repre-
sentations of classical groups.

The case of even orthogonal groups will be considered in a sequel to this

paper.

This paper was written during a visit at the Australian National University, Canberra, and I am
grateful for its hospitality.

1. Characters of Hecke Algebras

1.1. Let (W, S) be a Weyl group and let H be the corresponding Hecke algebra
(see for example [8, §17) with coefficients in @Q[u'/?, u~'/2]; here u'/? is an
indeterminate.

Let E be an irreducible Q@ [W]-module. We associate to E an H-module E
by the method of [13]. Let C<=W be the two-sided cell of W (see [8, §17)
corresponding to E. The free Q[u'/?, u~'*]-module .#_ with basis e_(zeC) is a
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left H-module and a right W-module:
=2 N...e
=%

(Here T, (xeW) is the standard basis of H, ;, g are defined as in [8, §1] and
N, . €Z[u'*], n,, , ..€Z are defined by the formulas

7;: CZZZ Nx. z,z° Cz’

z Iu:l

Czlu: 1° W:Z nw, z,z" C ,,
and

2 l(z) L) =1 +1(2)/2 Py,z(“_l)Ty
y=z

is defined in 8, 1.1].)

1.2. It has been proved in [13] that the left H-module structure and right
W-module structure on .#, commute with each other. It follows that
E=(///C®QE)W is in a natural way an H-module, free as a Q[ul/% u=1/?]-
module. It also follows from the results in [13] that, for any xe W, we have

(1.2.1) Tr(T,, E)eZ[u'?].
We have also:
Tr(T,, E)y=|W| ! Tr(m— T, mw on .#,)tr (w, E)
=Wy Y X Neoofy o tr(w, E).

zeC z'eC weW
z'yz
z' gz

(Here Tr means trace over Q[u'/?, u~'/?] and tr means trace over @.) The

coefficients N, , .., n can be computed as follows.
Let

w,z’, z

D= Y u @20, ') T,eH

yeW
zZZy

where Q_ (z<y) are polynomials in u defined by

Z (_l)l(W)il(Z)Qz,y})y,wzéz,w (VZéW)
ZEYEW
Let t: H—-Q[u"? u='%] be the Q[u'/?, u '/*]-linear map such that t(T,)=0
if wke, 1(T)=1. It is well known that

if x=y

ul(x)
(122) T(TxTy‘l)={0 i sy,
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It follows immediately that
C,.D,-)=0,,
and, hence, that for any x, z, z/, z’e W, we have:

N,

x,z,2"

:‘C(T;c CzDz”1)7 nx,z,z"=T(Dz"" Cz 7;)|u=1'

Thus, we have the following.

1.3. Proposition. For all xeW, we have:

(1.3.1) Te(T, E)={W|"' Y Y «(T.C,D,.))
weW z=xz’
inC

‘L.(Dz’1 Cz' Tw)'u: e tr (W7 E)
where the second sum is over all ordered pairs z, 2’ of elements in C such that
zpZ,zgz. (Wewrite zrz instead of z ;2', 2 g 2'.)

1.4. It follows from the results of [13] that EQ Q(u'/?) is an absolutely irreduc-
ible H-module and that this gives a 1 —1 correspondence between irreducible
W-modules and irreducible H-modules. Note that under the specialization
u'? 51, E becomes the W-module E.

1.5. Let a—a be the involution of the ring Q[u'/?, u="?] such that U2 =y,
It extends to an involution h—h of the ring H, such that T,=T=1 for all xe W

(see [8, §11).

1.6. Corollary. Tr(T,~!, Ey=Tr(T,, E), for all xeW.

Proof. 1t is enough to prove that, for all x, z, z’e W, we have

o(T71C,D, - )=2(T,C,D, ).
Co=u'02% P (W)T,.

y
Y2y

By [8, (1.1.c)] we have C,=C,. It follows that

Let

= v/2 r
Dz"l_u Cz"lonwo

where w, is the longest element in W and v is its length. Since E‘:z C,, we see
that it is enough to prove the identity

(1.6.1) th-u? T, )=t(h-u?T,)

for all he H. We may assume that h="T,. If x&w,, then both sides of (1.6.1) are
zero. If x=w,, then (1.6.1) is equivalent to the identity (T,;)=u" which is a
special case of (1.2.2).

1.7. Lemma. For any xe W, we have

Tr(T,, E)y=Tr(T,-., E).
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Proof. 1t is enough to show that there exists a non-singular symmetric bilinear
form (,):(E®@Qu'?) x(EQQu'?))—-Qu'?) such that (T,e, e)=(e, T,-,¢)
for all xeW, e,e'cE®QQ(u'?). Let e,,...,e, be a basis of the vector space
E®Qu'?). Consider the bilinear form (,), on E® Q(u"?) given by (e;, €)o=09;
and define (e, &)= Y u='™(T,e, T,e€'),. One checks immediately that (T,e, ¢)
weW

=(e, T,¢) for any simple reflection s, and hence (T.e, ¢)=(e, T,-€) for any
xeW. It remains to show that (,) is non-singular. But if e is a non-zero vector,
then (e, ¢) is a sum of squares of elements in ®(u'/?), at least one of which is
non-zero. It follows that (e, €)+0 and the lemma is proved.

1.8. Let Dim(E) be the “formal dimension” of E. It is an element of @Q[u],
satisfying the identity (see [3]):
Z ul(w)

1.8.1 —lx) EYTo(T.-., B)=2*__ . dim(E).
(L3.1) Zwu Te(T,, E) Tr(T,-1, E) Dim (E) im (E)

Let A(E) be the degree of the polynomial (inu) Dim(E) and let u*® be the
largest power of u dividing this polynomial. Since Y '™ is a product of

weW
cyclotomic polynomials in u, and the left hand side of (1.8.1) is in
Z[u'? u=17], it follows that Dim(E) is of the form y,u*® times a product of
cyclotomic polynomials +u—1 (where y, is a strictly positive rational num-
ber). It follows that

(1.8.2) Dim (E) =u~4®~4® Dim (F).

1.9. Proposition. For any xe W, we have

l{(x}—a(E)

- Je,u 2 +higher powers of u
TT(E,E)={ Ix)~ A(E)+ v gher p

cu 2 +lower powers of u'/?

1/2

where ¢, c, are integers.
Moreover, for given E, there is at least one xe W with ¢, +0 and there is at
least one xeW with ¢ +0.

Proof. Using Lemma 1.7 and (1.8.1) we see that

S u ' T (T, B =

{dim (E)yg 'u=“® +higher powers of u
xeW

dim (E) y; ' u’~*4® +lower powers of u.
Since Tr(T,, E)eZ[u'/?], (see (1.2.1)), the proposition follows.

1.10. Corollary. a(E) is the smallest integer «  such  that
w1+ 2T (T | E)eZ[u'?] for all xeW; A(E) is the largest integer B such that
u 1@+ B2 T (T, EyeZ[u ] for all xeW.

1.11. Lemma. Assume that w, is in the centre of W and let eg= 11 be the scalar
by which w, acts on E. Then T, acts on E as ¢g-u’=“B+4EN2 imes identity
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and, for all xeW, we have

o_ 8(E)+ A(E) _
egl 2 Tr(T, E).

Tr( woXx? )
Proof. Our assumption implies that T, is in the centre of H, so it acts on E as
A times identity where AeQ [u'/%, u~*/?]. We have

Tr(T,, ., E)=Tr(T,, T}, E)y=2 Tr(T2}, E)=ATr(T,, E).

Wo X2

(The last equality follows from Corollary 1.6.) It follows that

Z u™'™Tr(T,, E)? = z u~ o) Tr(T,

wp X?

Ep =Y u=**+® 22 Tr (T, Ef

— —v/12zu~l(x)'rr(Tx, E)Z

hence, using (1.8.1):

S U™ . Dim(E)"'=u""1*Y '™ Dim(E)~*.

Using now (1.8.2) and the identity Y '™ =u"> u'®, we see that

1 =u- 2v 12 . ua(E)+ A(E)
hence

,_aE)+ A(E)
A=+tu 2

1/2

If we specialize u'/* to 1, A must specialize to ¢, hence

a(E)+ A(E)
= TTT
A=¢gu
The lemma is proved.

1.12. Remark. Without the assumption that w, is in the centre of W, it is still
true that T2 =u?"~“®-4E on E. The proof is similar to that of Lemma 1.11.
Springer (see [3]) has shown that, on E, T2 =u*+4m® ' Z0¢:B (qum over all
reflections r in W).

— e pp—
1.13. Lemma. Tr(T,, E®sign)=(—u)'® Tr(T,, E).
Proof. See [6].

This Lemma, together with Corollary 1.10, imply

1.14. Lemma. a(E®sign)=v—A(E).
1.15. For any integer i we define Tr (T, E; i/2)eZ to be the coefficient of u'/* in
Tr(T,, E) (see (1.2.1). For any xeW, we define two virtual representations o,
o, of Wby

()~ a(E)) E

(1.15.1) o, =(—1)'® 2 Tt ( B =
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(1.152) A, =Y Tr (TE ’ft?@lﬂ) E
E

{Both sums are over all irreducible @[ W]-modules E, up to isomorphism.) We
have

1.16. Lemma. &/, = o, ®sign.

Proof. From Lemmas 1.13, 1.14, it follows that for each irreducible E,

£ l(x)—f;(Em) (-1 T (1, B l(x)—a(f@sign))’

whence the required identity.

Tr (T

x°

1.17. In the case where w, is in the centre of W, we define a Z-linear map { of
the group of virtual representations of W into itself, by the requirement that
{(E)=¢,E for E irreducible (e;= +1 is as in 1.11). We have

1.18. Lemma. If w,, is in the centre of W, we have o, . =(—1)® (o), (xe W).
Proof. This follows immediately from Lemma 1.11.

1.19. Now let W,(I=S) be a standard parabolic subgroup of W and let H, be
the corresponding subalgebra of H. For each irreducible Q [W,]-module E" we
define a Q[W]-module J}, (E) by the formula

(1.19.1) J¥ (E)=2[E":El,,E

sum over all irreducible Q[ W]-modules E such that a(E)=a(E"). Here [E" E]y,,
denotes the multiplicity of E' in the restriction of E to Wj; it is equal to
[E": E]y,, the multiplicity of E’ in the restriction of E to H, (over the field
Q(u'’?). Note that, for any irreducible Q[W]-module E, we have (cf. [12,
Lemma 4]):

(1.19.2) LE": E]y,#0=>a(E)Za(E),
(1.19.3) ye=2[E:Ely, v
(sum ranges over the same set as in (1.19.1)). With these notations we have

1.20. Lemma. Let zeW,. Consider the virtual W,-module o¥ P (=a, with respect
to W,) and the virtual W-module o) (=o, with respect to W). We have

w w w
o ):JW,(O‘(Z )
(where J,’VVI is extended to virtual representations by Z-linearity).

Proof.

. l(x)—a(E
oc(zW)=(___1)l(z) Z Tr (TZ,E, (X) 2(1( ))E
CE:
Womod.

- . l(z)—a(E
= Z Z [E’: E]H[ -Tr ('I'z’ E” _.(.2)2&) E
irrEd. irfed.
W-mod. Wy-mod.
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. l(z)—a(E I(z)— —a(E'
By 1.9, we have Tr (TZ,E’, %ﬂ—))zo unless @) 2a(E)zl(z) Za(E)

a(E)<a(E'). On the other hand by (1.19.2), we have [E': ]y, =[E": E], =0
unless a(E")< a(E). Thus,

ie.

l(z)—a(E)
2

zZ

M=y Y [E:E],,Tr (TE >E=J§,ﬁ’1 (D).
E E’

a(E’)=a(E)

1.21. Remark. We shall apply the previous lemma in the case where W, is a
product of two commuting standard parabolic subgroups W, x W,., and
z=z7-27"(Z’eW,, z"eW,.). In that case, we have clearly

oD = ¥ ) o W),
1.22. Lemma. If w, is the longest element of W, then o, is the sign repre-
sentation of W.
Proof. If E appears with non-zero coefficient in «,, , then, by 1.12, we have

v—a(E) _ a(E)+A(E)
2 7 2

hence A(E)=v. Applying 1.9 with x=seS, we see that Tr(T,, E)=c,u'/?+ cons-
tant. But the eigenvalues fo T, must be —1 or u and the previous equality
shows that u is not an eigenvalue of T, on E. Hence T,= —1 on E. This shows
that E is the sign representation. Conversely, it is clear that the sign repre-

sentation appears with coefficient 1 in «,, , since T, acts as (—1)" on g@ﬁ

2. Irreducible Representations of a Weyl Group of Type B,

2.1 Let W, be the group of all permutations of the set
F={,2, . my .. 2, 1)

which commute with the involution i—i, i'=i of %. A permutation in W,
defines a permutation of the n element set consisting of the pairs (1, 1),
(2,2),...,(n,n"). Thus we have a natural homomorphism of W, onto &,, the
symmetric group in n letters.

Let y: W,—{+1} be the homomorphism defined by

1 if {o(1), 6(2), s oW} A {1, 2, .}
x(o)= has even cardinality
—1 , otherwise.

The irreducible Q@ [W,]-modules are in 1 —1 correspondence with ordered pairs
g, 0, of irreducible representations of &,, &, (k+1=n). The correspondence is
defined as follows. We identify W, x W, with the subgroup of W, consisting of
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all permutations in W, which map {1,2,..., k, k/, ..., 2, 1'} into itself and hence
also may {k+1,...,n, n',...,(k+1)} into itself. As before, we have natural
homomorphisms W,—»S&,, W,—&,. We can regard o,,0, as representations
g,, 0, of W,, W, via these homomorphisms. Consider the representation
G,®(0,®xlw,) of W, x W,. We induce it to W,; the resulting representation of W,
is irreducible; it is the representation corresponding to the ordered pair
(61, 0,). Now o, corresponds to a partition 0L, Sa, < ... =0, of k 3 o;=k),
in the following way: it is the unique irreducible representation of &, whose
restriction to S, x&,, x... xS, =&, contains the unit representation and its
restriction to S, x G,y x...c &, (where af o =... is the dual partition) con-
tains the sign representation. Similarly, ¢, corresponds to a partition
0<p,<...£8B,, of I. Since m', m” can be increased at our will (by adding
zeroes) we may assume that m'=m+1, m"=m. We now set A,=o;+i—1,
(1gism+1), y;=p4,+i—1 (1 <i<m). Let A denote the tableau

(/11,/12, ...,lm“)
.ul’ ,112, e ﬂm

Then A is a symbol of rankn and defect 1 in the sense of {10, 3.1]. In other
words, {A,,4,,..., 4, } is a set of m+1 distinct, =0 integers, {u, fty, ---» U}
is a set of m distinct, 20 integers and ) A,+) w;=n+m? Since m can be
increased at our will, we must regard A as being equivalent to the symbol

(0,,11+1,,12+1,...,/lm+1+1)
O, u,+1, ..., p,+1

obtained from A by a shift and also to the symbols obtained from A by iter-
ating such shifts. We shall often identify a symbol with its equivalence class
under shift. We shall denote by [A] the irreducible representation of W,
corresponding to (g, 6,), constructed above.

Thus, we have a 1 —1 correspondence [A]«> A between irreducible Q(W,]-
modules and symbols A of rank n and defect 1, modulo shift.

We shall regard W, as a Weyl group of type B,, with simple reflections as
described in [10, 2.1]. The longest e¢lement of W, is the permutation 11,
262, ..., hen.

2.2. Lemma. The longest element of W, acts on [A] as multiplication by &=

X =it . . .
(=5 (with the previous notations).

Proof. Assume that [A] corresponds to (6,,0,) as above where o, is a repre-
sentation of &, and ¢, is a representation of &, k+[=n. Using the definitions,
we are immediately reduced to the case where either k=n or I=n. If k=n, we
have ¢ ,,=1, since [4] factors through &, and the longest element of W, is in
the kernel of W,—&,. Similarly, if I=n, we have ¢, =¢,=(—1)" and the
lemma is proved.

2.3. The sign character of W, is the tensor product of the sign character of &,
lifted to W,, with the character y, defined in 2.1.
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A A

1 Ayt

fysees thy
Let t be an integer, t = max(4,, 4;). We consider

Let A= ( ) be a symbol of rank n and defect one.

o t=i0Sist ik py, )
{t—i0Zist i A, .o Ay 1)

Then A is again a symbol of rank n and defect one. Its equivalence class is
independent of the choice of .

2.4. Lemma. [4] ®sign=[A].
Proof. This can be immediately reduced to a statement on representations of
symmetric groups, for which we can appeal to [14, (1.7)].

2.5. Let A= (’11’ T l’"“) be a symbol of rank n and defect one. The follow-

His o5
ing formulas follow from the results in [10, (2.8.1), 8.2].

(25.1) a[A]=A[A] (mod 2).
(2.5.2) a[A]= _ > inf(4;, 4) + Z inf(,ui,uj)

= 15igjs
+ Z 1nf(l,,,u]) Ltm(m —1)(4m+1)

(Note that this expression is invariant under shift.)

(253) A1=2*", where 2d+1 is the number of “singles” in A (entries which
appear in exactly one row of A).

(Recall that y was defined in 1.8.)

2.6. We identify S, x W, (r+s=n) with the subgroup of W, consisting of all
permutations in W, which map {1,2,...,r} into itself, (hence also map
{102, ...,r}and {r+1,...,n,n,...,(r+1)} into themselves. This is a standard
parabolic subgroup of W,. We consider an irreducible representation of &, x W,
of the form e(r)® [ A'] where &(r) is the sign representation of €, and

A/: (l/l’ - ’A‘:nﬁ-l)
)u',l, [ERP) lum

is a symbol of rank s and defect one. Since m can be increased at our will, we
may take it so that 2m+1=r. We want to associate to A" a symbol A of rank n
and defect one. We try to define A as the symbol obtained by increasing each of
the r largest entries in A" by one and leaving the others unchanged. However,
it may happen that the set of r largest entries in A’ is not uniquely defined but
there are two choices for it. Then the same procedure gives rise to two distinct

125
symbols A;, Ay of rank n and defect one. For example, if A’=( 5 3 ) and

r=2, the r largest entries in A’ are ( ) 35), hence A= (1 6) is defined. If

24
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.2
however r=3, the r largest entries in A’ could be taken as ( 5) or as
(..S)Ac iy, we b A_(136)A_(126 3
s 3 ) cordingly, we have A,= 5 g | M= 34).
In general, we have a(a(r)®[A’])—(r)+a[A’]— a4l
genera " “or a[4]=a[4,]’

sees immediately from (2.5.2). Moreover, by (2.5.3), we have

as one

P14

Ve =V~ {
OF Viay+ Veaw-

2.7. Proposition. With the previous notations, we have

(4]

Jé","x w M@ [A])= {or [Ad+ [Ayl-

The remarks just proceding the proposition, in conjunction with (1.19.2),
(1.19.3), show that the proposition is a consequence of the following

28 Lemma. If A is defined, then [[A]: e(r)®[A]]s, w21 If A is not

defined, then [[A,]: e(N® [A]]e, «w,21 and [[Ay]: e(® [(A]]e, «w. 21

Proof. Assume that [A'] corresponds to the pair ¢, ¢, of irreducible repre-
sentations of &,, &, (respectively), a+b=s (see 2.1). Similarly, we assume that
[A] (or [A], or [A,], if defined) corresponds to the pair t,, 7, of irreducible
representations of &, &, (respectively), c+d=n. We must prove that

(2.8.1) <Indg:»< Wa x Wb(e(r)®61 7, %)
Ind%’; < Wdﬁ1 ®7T,- X)>W" =1

where &;, T; are defined as in 2.1, 5, - y means 6,® x| W,,, T,y means T, ® x| W;;
W_x W, is identified with the subgroup of W, consisting of all permutations in
W, which map {1,2,...,¢, ¢,...,2,1'} into itself and hence also map
{c+1,....,nn, ..., (c+1)} into itself; &, x W, x W, is identified with the subgroup
of W, consisting of all permutations in W, which map {1,2,...,q,d,...,1'} into
itself, {(n—b+1,....,n, 7, ...,(n—b+ 1Y} into itself, {a,a+1, ..., n—b} into itself,
hence also map {(n—by,...,(a+1),d’} into itself. The intersection of the two
subgroups of W, appearing in (2.8.1) is the subgroup &,_ , x W, xS, , x W, of
W, consisting of all permutations in W, which map {1,2,...,4a, a/, ..., 1'} into
itself, {(n—b+1,...,n, n,...,(n—b+1)} into itself, {a+1, ..., c} into itself,
{c+1,..., n—b} into itself, hence also {c, ..., (a+ 1)’} into itself and {(n—b), ...,
{c+1)} into itself. (Note that a<c, b=d.) The inner product (2.8.1) is a sum of
contributions (2 0) from the various double cosets of W, with respect to the
two subgroups in (2.8.1). It is enough to show that the contribution of the
double coset of the identity element is =1. That contribution is an inner
product of two representations of the intersections of these two subgroups.
Thus, it 1s enough to show that

(Elc—a)®F,Re(d—b)®FG, Y,
(fl , ec~a X VVa)®(fZI 6d—b x VVb)>Gc_axWax®d_p,x ngl
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or, equivalently, that

(elc—a)® G, f1>6¢-,,><W,, -(e(d—-b)®5, 1 sz>ed_,, wagl

or, equivalently, that

(ele—a)®ay, T1>Gc,ax6u'<8(d_b)®62772>6d,bx6bgl-
We have

<E(C_a)®0'1, T1>Gc,uxea=17 <£(d_b)®0-2a TZ>Gd,b xsbzl

as it is well known in the representation theory of the symmetric group. This
completes the proof of the Lemma.

20y 220 -0es Zom

29. Let Z =( ) be a symbol of rankn and defect one. We

21,23y o Zpm 1
arrange the z’s in such a way that z,<z,<...<z,,, z,<z;<...<Z,,_;. We
say that Z is a special symbol, if the inequalities z,<z, <z,<z,<...
Szym_1=22,, are satisfied. This concept is clearly invariant under shift. The
following result is immediate from (2.5.2).

2.10. Lemma. Let Z be as above. Assume that Z is special. Then
a[Z]= Y (z5;_;—i+1)(mod?2).
i=1

In other words, we have g5,=(—1)"""! (see Lemma 2.2).

2.11. Assume now that Z is special. Let ¢ be an arrangement of the 2d+1
“singles” in Z into d disjoint pairs and one isolated element, such that each
pair in ¢ contains one single in the first row of Z and one in the second row
of Z. We want to define what it means for ¢ to be an admissible arrangement
for Z. We use induction on 4. If d=1 there is a unique arrangement, the empty
one; it is, by definition, admissible. Assume now that d >1. An arrangement @
for Z is admissible if @ contains a pair of singles (z;<z,) in different rows of Z
such that there are no singles z' in Z with z;<z' <z; and if the corresponding

J
arrangement for the special symbol obtained from Z by removing z, z; is

02 .
admissible. For example, the special symbol ( ! ) has two admissible arrange-
ments: one of them consists of the pair (0, 1), the other one consists of the pair

024 o
(1, 2). As another example, the symbol ( {3 ) has 5 admissible arrangements:

the first one consists of (0, 1), (2, 3)
the second one consists of (1, 2), (3, 4)
the third one consists of (0, 1), (3, 4)
the fourth one consists of (1, 2), (0, 3)
the fifth one consists of (2, 3), (1, 4).

2.12. If ¥ is a subset of @, we denote by ¥* the set of singles in the first row
of Z which appear in a pair of ¥; we denote by ¥, the set of singles in the
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second row of Z which appear in a pair of ¥. Let (Z,)* (resp. (Z,),) be the set
of elements in the first row of Z (resp. the second row of Z) which don’t
appear in any pair of @. In particular any entry of Z which is not a single is
in (Zy)* or (Z,),.

Let @ be an admissible arrangement for the special symbol Z as above. For
any subset = ® we define a virtual representation of W, (n=rank of Z) by the
formula

(2.12.1) c(Z, &, &)=Y (—1F®

Yed

((ZO)*u Y (P~ P)* )
(Zy),, 1 P*11 (D~ P),

where e(¥)=|® ~ ¥*|. Note that ¢(Z, &, §) is a sum of 2°terms (d=number of
pairs in @) each of which is + an irreducible representation of W, correspond-
ing to a symbol of rank n and defect one. The term corresponding to ¥ =0 is
[Z] itself; all other terms are of form [A] with A non-special. The ¢(Z, @, &)
are called the virtual cells of W,.

2.13. Consider a virtual cell ¢(Z, @, &) as in 2.12. We define a new virtual cell
¢(Z, &, ®) as follows. Choose an integer t>z,,. Let

_=({t—i|0§i§t, i¥z,,2;, ...,zz,n_l})
{t—i|0<iZt,i%20,25, ..., 25}

This is again a special symbol of rankn and defect one. There is a 1—1
correspondence z«>t—z between the singles in Z and the singles in Z. Using
this 1 -1 correspondence we transport @, & to Z and we get an arrangement &
of Z and a subset @ of &. It is easy to see that & is admissible. Using now
Lemma 2.4, we see that the following resuit holds

2.14. Lemma. ¢(Z, §, ®)®sign=c(Z, &, ).

2.15. We now consider the standard parabolic subgroup &, x W, of W, (r+s
=n) as in 2.6. Let

!
Zg 2z Zym

Z'= £ = =

A
lIA
1A

Z Z3 Zom_1
be a special symbol of rank s and defect 1; we shall assume, as we may, that
2m+1zr. We associate to Z’ the special symbol

Zo Z3 Zom
z=[ = = = <

Z, Z3eZypm

defined by z,=zj(0<i<2m—r), z;=2;+12m+1—r=<i<2m). Then Z has rank
n. Suppose we are given an admissible arrangement & for Z’ and a subset ¢’
of @'. We transport these to Z using the natural bijection z;<z; between Z’
and Z. In the case where r=2m+1 or r<2m and z,_,<z,,.,_, (so that
Z,Z' have the same number of singles) we thus get an admissible arrangement
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@ for Z and a subset $ &. In the case where Zymey=Z2my 1., (0 that Z has 2
new singles in addition to those coming from Z’), the set of pairs in Z coming
from those in @' together with the new pair (z,,_,, Z3p,,_,) from an ad-
missible arrangement for Z. It has a subset ¢ corresponding to the pairs in &'
(the new pair is not in ®). Using now Proposition 2.7 we see that the following
result holds.

2.16. Lemma. JI" _ (c(n®c(Z', &', &) =c(Z, D, ).

S, x Wy

2.17. Let Z, ®, & be as in 2.12. Let &, be the set of pairs (z;, z)) in @ such that
z;+z; is odd. Let @, < & be defined by ¢, =(PU @)~ (PN P,). We have

2.18. Lemma. (—1*4{(c(Z, &, P))=c(Z, D, D,) where { is defined as in 1.17.
( Note that the longest element in W, is central.)

Proof. By Lemmas 2.2 and 2.10, the left hand side of the identity to be proved
equals
((ZO)*J_L Y, (- 'P)*)

L (=17 (Zo) L P* (@~ W),

Yoo
where

eW)=e(¥)+ > z+ > z+ Y z+ Y oz

iodd z&(Zo)x zeVP* z,e(@—-¥),
=e(Y)+ ) z+ ) z; (mod2)
z,eP* z, ¥,
=e(V)+|P, N VP| (mod 2)
=|B* N PH| | DF N PH|
=|Pin P (mod 2)

and the lemma is proved.
Remark. 1, for example z,=i (mod 2) for all i, we have &, =® and ¢,=® —&.

2.19. We now define by induction on n a certain set of involutions Q,<W,.
For n=0, we take Q,=W,={e}. Assume now that nz1 and that Q. c W, is
already defined for s<n. We say that weW, is in Q, if and only if there exists a
partition n=r+s (0<s<n) and an element zeQ c W, such that w is either
equal to wy’ - zeS, x W, W, (w§’ is the logest element of S, and S, x W, is the
standard parabolic subgroup as in 2.6) or it is equal to w, - (W’ - z) where w{ z
is as before and w, is the longest element of W,.

2.20. Proposition. The following 3 sets of virtual representations of W, coincide:

(@) {a,|wel,},
(b) {,IweQ,},
(c) the set of virtual cells of W,.

Moreover, if (Z, ®, ®) =, =u,,(w,WweRQ,, Z, D, d as in 2.12), then
(2.20.1) a[Z]=1(w') (mod 2).
(2.20.2) v—A[Z]=l(w) (mod?2).
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Proof. This is obvious when n=0. Assume now that n=1 and that the proposi-
tion is already known for n' <n.

First, we show that if weQ, then «, is a virtual cell. If w=wl zeS,
xW.cW, (zeQ,, 0<s<n, r+s=n) then by 1.20, 1.21 and 1.22 we have

o, =J&" 4 (e(r)® o).

By the induction hypothesis, «** is a virtual cell, hence by Lemma 2.15, «,,. is
also a virtual cell. At the same time we deduce from the induction hypothesis
that (2.20.1) holds for our w. Now let w'=w,w where w is the element we have
just considered. We have

o, = (=1 (A, ), by Lemma 1.18
=(—=1)*"{(a, ®sign), by Lemma 1.16
=(—1)"{(c(Z, D, P)®sign), by first part of proof
=(—1)"(c(Z, D, D)), by Lemma 2.14

=(—1y®+al2 yirtual cell, by Lemma 2.17.
But as (2.20.1) holds for w, we have a(Z)=I(w) (mod 2). It follows that

IwWY+al[Z]=l(wow)+a[Z]+n=I(we)—I(W)+n+a[Z]
=l(wg)+n=n’+n=0(mod 2).

Thus «,. is a virtual cell. We have at the same time verified that (2.20.1) holds
for w. We have verified that for all weQ,, «, is a virtual cell and (2.20.1) is satis-
fied.

We shall now prove that any virtual cell ¢(Z, @, &) of W, (notations as in
2.12) is of the form «, for some weQ,. We may assume that 0 doesn’t occur
twice in Z. Let t, be the largest entry in Z. If some number i, 0Si< ¢, doesn’t
appear in Z, then there is an r=1 such that z,,,_,,, is 21 and appears in Z,
but z,, . ,+1 doesn’t appear in Z (which implies r <n); let s=n—r. Then Z,
@ is obtained from a Z', @' for W, as in 2.15. Moreover, since the number of
singles in Z is exactly the same as the number of singles in Z', & is also
obtained from a subset & <@’ as in 2.15. By Lemma 2.16, we have

AZ, &, B)=J2" ,, (e(NDc(Z', T, $))
=JE w (e @), (zeQ,), by induction hypothesis
=y,

Consider now Z, @ defined with respect to t=t, as in 2.13. Then 0 doesn’t
appear twice in Z and t, is the largest number in Z. By 2.14 and 2.18, there is

a unique subset @ = & such that
<2, &, 8)=(~ 1y (c(Z, &, $)®sign).

If some number i, 0<5i <, doesn’t appear in Z, then by the previous argument
we have ¢(Z, @, #)=0,, for some w'eQ,. Then c(Z, &, &)=(—1)*'9{(a, ®sign)
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=(— 1AW o I a[Z]+1(wyw) was odd, a,., would be equal to
minus a virtual cell. By the first part of the proof it is also equal to a virtual
cell. But minus a virtual cell cannot be equal to a virtual cell, since a virtual
cell has a unique component corresponding to a special symbol and that
component appears with coefficient +1. It follows that a[Z]+1(w,w") is even
and ¢(Z, &, P)=u1,,,,,.

Thus we may assume that both Z and Z contain all numbers between 0
and t,. It follows that each of these numbers is a single in Z, hence t,=2d and

Z_(o, 2, 4,..,2d )
"\ 1, 03,..,2d—-1)

(This is a symbol of rank n=d?+4d.) By definition of an admissible arrange-
ment there exists at least one pair (i, i+ 1)ed. Assume first that (i, i+1)¢ . Let
Z' be the special symbol obtained by replacing i+1, i+2,...,2d in Z by i,
i+1,...,2d—1 and keeping the other entries unchanged. Then ®, & come from
corresponding objects ¢, & for Z' as in 2.13, and hence

Z, &, B)=JE . . (Qd—D)®c(Z, P, D)

=JE w20, (B2A—D®0)
(zef2,_,,.;, by induction hypothesis)

=aw{)“-i)z'
Assume next that (i, i+ 1)ed. We have
o(Z, &, )=(— 117 (c(Z, D, D— D).

(For our Z, by the remark following Lemma 2.18, we have (—1)"%{(c(Z, @, B))
=c(Z, 9, &~ P).) Now (t,—i—1, t,—i)ed hence (t,—i—1, t,—i)¢&—d. By
the previous argument it follows that ¢(Z, ®, ® —®)=q,, for some we,, hence
c(Z, @, B)=(—1)"?{(a, ®@sign)= ta,, . As earlier in the proof, we see that
the sign is +1. Thus, we have proved that each virtual cell of W, is of the form
o, for some weQ,. Hence the sets (a), (¢) coincide. Under tensor product with
sign, the set (¢) remains stable (Lemma 2.14) while the sets (a), (b) are switched
among them (1.16). It follows that the set (b) coincides with the sets (a) and (c).
Finally (2.20.2) follows from (2.20.1) together with 1.14, and 2.4. This completes
the proof of the proposition.

2.21. Corollary. Let ¢ be a virtual cell of W,. There exist two integers a(c)< A(c)
such that a(E)=al(c), A(E)=A(c) for each irreducible representation E of W,
which appears with non-zero coefficient in c. If weQ, is such that ¢c=./,,, then

l(w)—A(E
_c_=z Tr (Tw’ E: w) E
(sum over all irreducible Q[W]-modules E such that A(E)=A(c)).

Proof. The definition of a virtual cell and the formula (2.5.2) show that a(E) is
the same for all irreducible E appearing in ¢ with non-zero coefficient. Apply-
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ing this statement to the virtual cell ¢®sign and using Lemma 1.14, we see
that A(E) is the same for all irreducible E appearing in ¢. The Corollary
follows.

2.22. Lemma. Let A be a symbol of rank n and defect one. Then there exists a
special symbol Z of rank n and an admissible arrangement @ for Z such that [A]
is the component of ¢(Z, ®, D) corresponding to a subset W <@ in the sum (2.12.1)
defining c(Z, @, @). We then have

(2.22.1) [A]=2"% (-1 P c(Z, D, D)

D
where 2d +1 is the number of singles in Z, and e'(P)=|P*ny*|.

Proof. We may assume that d=1. We take the entries in both rows of 4 and
arrange them in increasing order. We get a monotonic sequence of integers in
which there may be equalities but no two consecutive equalities. The first,
third, fifth, etc. term of this sequence will be the first row of Z while the
second, fourth, etc. term of this sequence will be the second row. It is clear that
Z is a special symbol of rank n. We can form a sequence of singles in
A:Xy,X,, .05 Xy, X,y such that x, is the smallest single, x, is the next smallest
single, etc, and such that x,, X,, ..., x, are in the same row of x, but x,, is in
another row. (Not all singles can be in the same row of A.) Thus we have
found the pair of singles (x,, x,, ;) in different rows of A such that there are no
singles of A in between x,, x,, ;. We set x'=x,, x?=x,_,. We remove (x, x?)
from A. We get a symbol A" with only 2d—1 singles. If 2d—1=3, we do the
same procedure for A’ as we did for A and we thus find a new pair (x3, x*). We
iterate this procedure as long as it is possible. We find d pairs, which can be
regarded as an admissible arrangement @ for Z and it is then easy to see that
[A] is one of the components of ¢(Z, &, ®). (See also the proof of Lemma 3.4.)
The formula (2.22.1) follows immediately from (2.12.1).

3. Lagrangian Subspaces over F,

31. Let V be a vector space over the field F,, endowed with a basis
e, e,,...,e,;, and with a symplectic form (,): VxV—F, such that (e;,e)
1 if li—jj=1
—{0 otherwise
each i, 1<i<2d, the vector space V,={e;>*/(e;> of dimension 2d—2. 1t in-
herits a symplectic form (,) from V, and also a basis €}, ..., €5, , given by
ey=e,(h<i—2), €_,=e, +e,., e=e,, (sh<2d-2), if 1<i<2d
e,=e,, ,(1=h=2d-2), if i=1, ¢,=e¢, (1£h<2d-2), if i=2d. We then have
1 if [h—k|=1
0 otherwise

. It is clear that (,) is non-singular. If d= 1, we consider for

again (e, e;()={

3.2. We define, by induction on d, a family #(V) of lagrangian (=maximal
isotropic) subspaces of V, depending on the given basis (e;) of V. If d=0, we set
F(V)={0}. Assume now that d=1 and that .#(V)) has been already defined for



Symplectic and Odd Orthogonal Groups Over a Finite Field 279

1<i<2d (with respect to the basis of V, described above). By definition, a
lagrangian subspace C of V is in S (V) if and only if there exists i, (1 <i<2d)
such that e;eC and such that the image of C under the natural map
(et —<(e>* /ey is in F(V). For example, if d=1, #(V) consists of two
subspaces; the first is spanned by e,, e;, the second is spanned by e,, e,, the
third is spanned by e, e,, the fourth is spanned by e,, e; +¢e; and the fifth is
spanned by e,, e, +e,.

3.3. We now define a function f;,: V—Z, as follows. Any veV can be written
uniquely in the form

v="3 (e e, 1 +...Fe )

1Z2asr

where 1 <i, <j, <i,<j,<...<j, <2d. We then set
()= #{ali,=j,=0(mod 2)} — #{a]i,=j,=1(mod 2)}.

34. Lemma. Let veV. Then f,(v)=0 if and only if there exists Ce S (V) such
that veC.

Proof. If (v, e,)%0 for all h, then v is uniquely determined: it is (e,+e3)+ (e
+e)+(eote ) +... if d is even and it is (e, +e,)+(es+eg)+(eg+e,9)+... if
d is odd. In both cases, f,(v)+0 (if s=1). It is also clear that such v cannot be
contained in any C<.#(V). Hence we may assume that d=1 and that (v, e,)
=0, for some h, and that the lemma is already proved for V,. Then either
i,<h<j,—1 for some a, (1=a=r), or j,<h<i,, ,—1 for some o, (0Sa<r), or
j,=h=i, ,—1 for some o, (1=a=r—1). (We agree to set j,=~1, i, ,=2d+1)
A simple computation shows that in each of these three cases, the image
7 of vin V,=<e,»*/<e,) satisfies f,, (7)=f,(v). If f,(v)=0, then f, (5)=0, hence
by the induction hypothesis, we have ve C’, (C'e #(V,)). Then v is contained in
the inverse image C of C' under <{e,>*—><e,>*/{e,>=V,, and C is in £(V), by
definition of #(V). Conversely, if ve C(Ce#(V)) then there exists an h such
that ¢,eC and C is the inverse image of C'e#(V,) under {e,>*—{e,>*/{e;>.
The image 7 of v in ¥, is contained in C’ hence, by the induction hypothesis it
satisfies f;, (7)=0. But then f,,(v)=f,, (7)=0 and the Lemma is proved.

3.5. Let V={veV|f,(v)=0}. The proof of Lemma 3.4 gives at the same time:

3.6. Lemma. Let veV be such that (v, e,>=0 for some h, 1 <h<2d. Then tl~1ere

exists Ce# (V) containing v, e, and v+e,. In particular, we have also v+e,cV.
We shall now prove

3.7. Lemma. Assume that d=1. Given i, (1Li<2d) and two elements v, v'eV

such that (v, e)=(v', e)=1, there exists a sequence of elements v=v,, v,, ..., 0,

=v' in V and a sequence of subspaces C,, C,, ..., C, _, in (V) such that v,,
0, 1€C, (1Sh=m—1)and (v,, e)=1,(1Sh<m).

Proof. When d=1, we must have v=v'=Dbasis vector e, other then e,, hence the
lemma is obvious in this case. We now assume d=2, and that the lemma is
already proved for all V,(1=h<2d). We shall make the additional assumption
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that v" is one of the basis elements e, , or ¢;_, and that basis element appears
with coefficient 1 in v, This will certainly imply the general case, since e; |,
e;, ; (if both are defined) are contained in the same Ce #(V), by Lemma 3.6.
To be definite, we assume that v'=e¢; | hence i=2 and that e; _, appears with
coefficient 1 in v. (The other case is entirely similar.) Since veV, it satisfies
(v, e,)=0 for some h. Since, by assumption, k=i, we are in one the four cases
below.

Case 1. There exists h+i—2, i—1,1,i+1 such that {v,¢,)=0, Then v,e,_,, ¢
are in {e,>* and their images 7, &;_, in ¥, are not orthogonal to the image &,
in V,. Moreover g; is one of the elements in the standard basis of V,. Applying
the induction hypothesis to V,, we find a sequence of elements v=v,, v,, ...,
v,=e¢;_, in {e,>* and a sequence of subspaces Cy, ..., C,, ;<=.# (V) such that
each C; contains e,, v;, v;,, and (v}, ¢;)=1, for all j, as required.

Case 2. (v, ¢;_,)=0. In this case, by Lemma 3.6, there exists Cc .#(V) such that
v,e; , are both in C.

Case 3. (v,e,_,)=0. Since e;,_, appears with coefficient | in v, and (v, ¢;_,}=0,
it follows that ¢, , also appears with coefficient 1 in v (and, in particular, i=4).
We may assume that (v, e, ,)=1, otherwise we are in Case 1 and we are done.
But then we must have (v+e¢;_,, ¢; 3;)=1+1=0 hence v+e, , satisfies the
assumption of Casel with h=i—3. (Note that v+e, ,eV (by Lemma 3.6),
(v+e,_,,e)=1 and e, , appears with coefficient 1 in v+e;_,.) Applying Casel
to v+e;,_, and using the fact that there exists Ce#(V) containing v and
v-+e; , (see Lemma 3.6), we are again done.

Case 4. (v,e;,,)=0. By Lemma 3.6, there exists a Ce.#(V) containing v and
e;,, and also a C'e#(V) containing e;, ; and e,_,. Since (¢;, {,¢)=1, we are
done. The Lemma is proved.
3.8. Proposition. Let x, y—[x, y] be a map V x V—F, with the following proper-
ties.

a) For any xeV, and any CeSJ(V), the function y—{x,y] (C—F,) is F,-
linear.

b) For any xeV, yeV and e; such that (x, e;)=0, we have

(- 1)[& ¥1 +(— 1)[x+e1, vl =(— 1)(xvy) +(— 1)(x+ep ),

c) For any yeV, we have

Z (_ I)Dc,y]: Z (_ 1)(x,y).

xeV xeV

Then [x, y]=(x, ) for all xeV, yeV.

Proof. Let us fix x, x'eV and e; such that x'=x+e;, (x,e;)=0. Let Ce# (V) be
such that e;eC. Then (e;, y)=0 for all yeC, hence, by b), (—=1)F*1 (- 1)
=2(-1)*Y for all yeC. It follows that (—)*M=(—1)FN=(_1)=»
=(—1*"» for all yeC hence [x, y]=[x', y]=(x, y)=(x", y) for all yeC. Now
let Ce#(V) be such that e;¢ C. From b) we have

(__1)[x,y]+(x,y)+(___1)[xt y]+(x,y):1+(_1)(ej~.y)
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hence
2-$ Z (- l)lx,y]+(x,y)+2~s z (_ 1)IX’, Y+ =1

yeC yeC

(since y —(e;, y) is a linear function on C, not identically zero.) It follows then
from a) that exactly one of the linear functions y—[x, y]+(x,y), y—=[x, y]
+(x,y) on C is zero. Similarly, exactly one of the linear functions y—[x, y]
+(x', y), y=[x, y]+(x, ¥) on C is zero. Thus there are 2 possibilities:

) [x, y]=(x, y) and [x, y]=(x', y) for all ye C (we then say that C is of the
1st kind).

2) [x,y]=(x', y) and [x, y]=(x, y) for all ye C (we then say that C is of the
2nd kind).

We shall now show that all Ce#(V) such that e;¢ C are of the same kind.
If this is not the case, we could find C, C’'e #(V), such that e;¢ C, e;¢ C’, with
C of the 1st kind and C’ of the 2nd kind. We can find vectors ve C, v'e C’ such
that (v,e)=1, (v',e;)=1 (since e¢C, ¢;¢C). By Lemma 3.7, there exists a
sequence of elements v=v,, v,,...,v,=0 in V and a sequence of subspaces
€y, Cyy ..., €y in F(V) such that (v,e)=1 (1=i<m), and v;, v, ,€C;
(1=igm—1). We set C=C,, C'=C,,. Then v,eC, nC; (1=<i<m). Since
(vl,el) 1 (1<i<m), we have e;eC; (Ogigm). Now C, is of the Ist kind and
C,, is of the 2nd kind. Hence there exists i(l £i<m) such that C, | is of the
Ist kind and C; is of the 2nd kind. The vector v, C; ;nC; will then satisfy
simultaneously the equations:

[x,v;]=(x,v) (since y;€eC; )
[x, v]=(",v) (since v;€C,).

It follows that (x,v)=(x', v;) hence (v;, ¢;)=(v;, x—x")=0. This is a contradic-
tion.

We have proved that, given any xeV and e; such that (x, e;)=0, we have
either

(3.8.1) [x,y]1=(x,y) forall yeV
or
(3.8.2) [x,y]=(x+e;y) forall yeV.

We shall consider three cases for a vector xeV.

Case 1. xeV is such that there exist e;+e, with (x,e)=(x,e)=0. Then the
function y—[x,y] (on V) must be equal to one of the finctions y—(x, y),
y—(x+e;, y) and it must be also equal to one of the functions y—(x, y),
y—»(x+ek, ¥). The functions y—(x, y), y—=(x+e;, y), y—=>{(x+e, y) (on V) are
distinct, since ¥ spans V. It follows that y—[x, y] is equal to y—(x, y) (on V).

Case 2. xeV is such that there exists e; with (x, e;)=0, but (x, ¢,)=1 for all k=j.
The vector x'=x+e; satisfies (X', ;)= 0 and also (x,e;.1)=1+1=0. (At least
one of e; ;, ¢; , is deflned) Hence, by Case 1, we have [x', y]=(x’, y) for all
yeV. Using now the identity b), it follows that [x, y]=(x, y) for all yeV.
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Case 3. xeV is such that (x, e) 1 for all j. (There is exactly one such vector x
in V) Since for all vectors x'+x, the identity [x', y]= (x, ) (veV) is already
known, the identity c) shows that [x, y] = (x, y) for all yeV.

The Proposition is proved.

4. Some Results on Reductive Groups

4.1. Let X be a (possibly singular) algebraic variety over Fp whose connected
components are irreducible, of the same dimension. Deligne, Goresky and
Macpherson define a canonical complex "Q, of l-adic sheaves on X (I=prime
other than p), defined in the derived category; its cohomology sheaves are
denoted #'(X). (For a definition, see [4], [9, §3]. Let H(X) denote the

hypercohomology with compact support of X with coefficients in *Q,.

4.2. We shall apply this construction to the varieties X, (defined in [5, 1.4]).
Let G be a connected reductive algebraic group defined over a finite field
FqCF_p and let F: GG be the corresponding Frobenius map. For each ele-
ment w in the Weyl group of G, let X, be the variety of all Borel subgroups of
G such that B and FB are in relative position w. The finite group G¥ acts
naturally on X, (by conjugation) and we thus have a virtual representation of
G" defined by R, =) (—1VH\(X,,. Q) (see [5,1.5].) Let X, be the closure of

X,, in the variety of all Borel subgroups of G. The following result is closely
related to [9, 4.2, 4.3].

43. Lemma. X, is the union of all X JYEw) where < is the standard partial
order on W. The sheaf #'(X ) is constant over each X, (y<w) and is zero if i is
odd. If BeX , (y<w) then the stalks #;}'(X,,) satisfy

Y dim A7 (X, )u' =P, (1)

where P, , are the polynomials introduced in 8, 1.1]. If F"B=B and if F" acts
trivially on the Weyl group of G, then all eigenvalues of F" on #7'(X ) are equal
to q".

Proof. Let B, T, be a Borel subgroup and a maximal torus of G, both defined
over F,. We identify the Weyl group of W with N(T;)/T,, in the usual way. For
each weW, let W be a representative for w in N(T), let G,=B,wB,<G and let
G, =%"'G,)<=G, where £:G—G is the Lang map £(g)=g 'F(g). Let
n: G- G/B, be the natural projection. Note that both G, and G, are stable
under right multiplication by elements of B,. We identify X, with
n(G/,)=G/B, under gB,—~gB,g~'. Then X, becomes n(G,)=nr(G.)<G/B,.
We consider the diagram

G.—* .G,

w

|

n(G},) n(G,)
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where the vertical maps are locally trivial fibrations with smooth fibre (= B,)

and the horizontal map is étale. The assertions of the lemma about n(G.) are
then a consequence of the analogous assertions about the Schubert variety

7(G,,) which were proved in [9, §4].

4.4. The finite group G¥ acts naturally on X, and on the corresponding
complex of sheaves "Q,, hence it also acts on the hypercohomology spaces
Hi(X,). Using the filtration of X, by X,(y<w) we see that we have an
equality of virtual (GF, F")-modules

(4.4.1) Z(—l)'lH‘(X )= Y Y(-1FH(X,, #%(X,)

Y§le
where n is such that F" acts trivially on the Weyl group. Let H(X,)®,
H{(X,)® be the part of weight h of H;(X ), H.(X)), i.e. the part on which the
eigenvalues of F” have all their complex absolute values equal to q""?(heZ).
Taking the part of weight h in (4.4.1), we get an equality of virtual G*-modules

L=DH(X,) "=} Y (=B, H(X)"?

i YEw L

where P, ,, ; is the coefficient of 4/ in P, . But according to a version of the
Weil conjectures, due to Dehgne (see [4] [9 4.4]) we have H{(X )9 =H(X ).
(The assumption in [loc. cit.] is verified by X, see Lemma 4.3.) Moreover,

H (X J)=H X ,» @) since X is non-singular. Hence, we have:

4.5. Lemma. Given weW and heZ, the virtual G*-module

(=1 Y Y(-1FP,, ;HI(X,, Q)"*~?

yEw i, j
is an actual G*-module: it is equal to H"(X ).

4.6. We now assume that F acts trivially on the Weyl group W of G. For each
virtual @[ W]-module M, we define (cf. [11, (3.17.1)].

4.6.1) RM)=|W|=' 3 Tr(w, M)R,

weW
(an element of the Grothendieck group Z(G*)®Q of virtual @Q,-representations
of GF tensored with @Q. It is not in general, in #(GF).) We now state some
simple properties of R(M).

4.6.2) (R(M), RIM"))gr=<{M, M">y.

(This follows from the orthogonality formula for R, [5, 6.8])

Let P be an F-stable parabolic subgroup of G with unipotent radical Uy,
and let W, be the corresponding standard parabolic subgroup of W. Let M’ be
a virtual Q[W,]-module. Then R(M’) is a well defined element of Z(LF)®Q
where L=P/U,; we regard R(M’) as an element of Z(PF)®Q (via the natural
map #(PF)— A(IF)). We have

(4.6.3) IndSr(R(M')=R(Ind%, (M)  (in 2(G")®Q).
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If p is an irreducible representation of G¥, the space of its U} invariant vectors
pUf is in a natural way an If-module. This extends by Q-linearity to a
homomorphism p—pU#: Z(GHRQ - RA(IF)®Q. If M is a virtual Q[W]-
module, and M | W, is its restriction to W,, we have

(4.6.4) (RM)Y*=R(M|W,) (in Z(L)®Q).
Let D: Z(G*)— %(GF) be defined by

(46.5) Dp)= ¥ (—1y® Indgr(o"F)

P:I:Bo
where r(P) is the semisimple F-rank of P/Up,; D extends to a Q-linear map
D: Z(G")®Q —» 2(G")®Q. From (4.6.3), (4.6.4) we have for any virtual Q[W]-
module M:

DRM)= ) (=1 R(Indy (M| Wp))
4

P> Bg
=RM®( ), (=1 Indy, (1))
P> By
hence
(4.6.6) D(R(M))=R(M ®sign).

The following result is due to Asai [2]; its proof depends on the result of
[11, 3.9] concerning eigenvalues of Frobenius on H (X, , ®,) and on the recent
results of Kawanaka [7] concerning lifting for field extensions of odd degree in
the case of classical groups.

4.7. Theorem. [2, 2.4.7]. Assume that G=8p,,, SO,,., or SO3,. (+ stands for
split). Then for any heZ we have

(=)' H(X,, Q)"=} Tr(T,, E; h/2) R(E)

(sum over all irreducible Q[ W }-modules E.)

Combining Lemma 4.5 with the previous Theorem we get

4.8. Proposition. Let G be as in Theorem 4.7, let weW and let heZ. Then the
element of Z(G*)®Q given by

(4.8.1) (=U'Y Y Y B . Tr(T, E;h/2—)) R(E)

E ysw j
is a linear combination with integral positive coefficients of irreducible repre-
sentations of GF.

49. Corollary. Assume that G=Sp,, or SO,, ,. Let ¢ be a virtual cell of
W=W, and let w, weQ,, be such that c=s7,, c®sign=.u/,, (see 2.20). Let
A=A(c), a=al(c), (see 2.21), h=l(w)—A+v, K =I(w)—a. Then

(4.9.1) R@+ Y Y YB.. Tc(T, E;h2—j) R(E)
A(E1)5<A vaw J
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and

492  R@+ Y Y VB, Tr(T, E@sien k/2—j)R(E)

are linear combinations with integral positive coefficients of irreducible repre-
sentations of GF.

Proof. First note that by (2.20.1), (2.20.2), h and k' are even. It is known [8, 1.1]
that for y<w, we have P, , ;=0 unless j <3(/(w)—I(y)); moreover, for y<w, we
have P, ;=0 unless isidw)—1(y)—1). By 1.9, we have Tr(Ty,E;h/Z—j)zo

l(y)—A(E s
M' Thus, P, ;Tr(T,, E; h/2—j)*0 implies h/2=j

2
+(h/2_j)§%(l(w)_l(y))+l(y)_A(E)+v=I(W)~A(E)+v if ySw and similarly,

2 2
w)y—A(E)—1+v
2

unless h/2—j<

h/2< , if y<w; or, in other words, that A(E)< A4 if y<w and

A(E)< A if y<w. Thus, for our particular h, there are no non-zero terms in the
sum (4.8.1) corresponding to E with A(E)> A4; the non-zero terms correspond-
ing to E with A(E)=A4 must have y=w and j=0. Their contribution to the
sum is

S T (Tw, E w) R(E)=R(s7,)=R(c).
A(E)=A

and hence (4.8.1) coincides with (4.9.1).

The expression (4.9.2) is obtained by applying the operator D to the
expression (4.9.1) with ¢ replaced by c¢®sign. But when D is applied to an
integral positive combination of unipotent representations (=irreducible repre-
sentations of G* which appear as components of some R,), then the result is
again an integral positive combination of irreducible representations. Indeed,
by a result of Alvis and Kawanaka (see [1]), D applied to an irreducible
representation p of G' is (—1)® times an irreducible representation of G,
where P is an F-stable parabolic subgroup of G such that pUf contains a
cuspidal representation of PF/Uf. In our case, r(P) is necessarily even, since
unipotent cuspidal representations of Sp,,, §0O,, ., can only occur for even
values of n'. (cf. [10].) This completes the proof of the Corollary.

5. The Main Results

5.1. Let G=G,, be either Sp,, or 80O,,,, (defined over IF,). For each partition
n=r+s (0<s<n) we denote by P a maximal parabolic subgroup of G which
is defined over IF, such that the corresponding standard parabolic subgroup of

the Weyl group is &, x W, W, =W (see 2.6); then P, has a Levi subgroup L,
defined over IF, and isomorphic to GL, x G,.
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The unipotent representations of G (ie. irreducible representations of GF
appearing in some R, weW) have been classified in [10] in terms of symbols
of rank n and odd defect. T

Recall that a symbol of rank » and odd defect is a pair A= (T”

of two finite subsets T', T"” of {0,1,2,3,...}, such that |T’|+|T"|=2m+1,
IT'|l=m+1 (mod 2), |T"|=m (mod2), ) A+ > u=n+m?> There is an equiva-
AeT” pel”

0u(T'+1)
0 (T”+1)
shall often identify a symbol with its equivalence class (compare with 2.1 where
a special case of this notion was considered). Any symbol A of rank n and odd
defect gives rise to a special symbol Z of rank n, by exactly the same
construction as in the proof of 2.22: Z is the unique special symbol whose set
of entries (some of which may be repeated twice) coincides with the set of
entries of A (union of T’ and T", with common elements repeated twice.) We
shall then set a,=a[Z]. (Note that, if A has defect 1, we have a,=a[A], see

(1.8).)
5.2. Lemma. There exists a 1—1 correspondence A—p(A) between the set of
symbols of rank n and odd defect (up to shift) and the set of unipotent repre-
sentations (up to isomorphism) of GF with the following properties.
(i) If Z is the special symbol corresponding to A, a=a[Z]= a, and d=d[Z]
is such that 2d+1 is the number of singles of Z, then 2° dim (p)= ¢* (mod ¢***).
T
(ii) Let A= (T”
t=all entries in A. Let T ={t—i|0<igt, i¢T"} T"={t—i|0Li<t, i¢T'}, and
- T -
let A= (T ) This is again a symbol of rank n odd defect and D(p(A))=p(A).

7

) consisting

lence relation on such pairs generated by the shift (T) ~ ( > and we

7

) be a symbol of rank n and odd defect. Let t be an integer,

(iii) Let A’ be a symbol of rank s and odd defect. We associate to A’ a symbol
A (or two symbols A, Ay) of rank n by increasing by 1 each of the r=n—s
largest entries in A’ (we may assume that A’ has Z=r entries), as in 2.6, where the
case of symbols of defect 1 was considered. (The discussion in 2.6 is applicable in
the present, more general case.) Then

p(A)+1

Indﬁr,s(St,®p(A’))={ or p(A)+p(Ay)+1

where v is a Z-linear combination of representation p(A;) such that a, >a, (or
a, >a, =a,), and St, is the Steinberg representation of GL,(F)).

Proof. The description of unipotent representations given in [10] is in terms of
irreducible representations of certain Hecke algebras of type B,(I<n) arising as
endomorphism algebras of a representation induced by a unipotent cuspidal
representation of a parabolic subgroup. That description allows one to reduce
(ii), (iii) to statements about representation of Weyl groups of type B,(I<n)
which follow from 2.4, 2.7 respectively. (i) follows from the explicit dimension
formulas of [10].
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We have:

5.3. Lemma. For any unipotent representation p of GY there exist integers
d=d(p)=0, a=a(p)=0, such that

(5.3.1) d+d*<n
(5.3.2) 24 dim (p)=¢"(mod g°* ).

Let o(n) be the largest integer such that o(n)+o(n)><n. If ¢>2°" then the
conditions (5.3.1), (5.3.2) determine d(p), a(p) uniquely.

Proof. The existence of s(p), a(p) follows from Lemma 5.2. We now prove
the uniqueness statement. We assume that d, d' <o(n) and 2°D=4* (mod ¢°*1),
2¥ D=¢* (mod ¢“*!), where D is an integer. If g=p° (p odd), the p-adic
valuation of D is ae=a'e, hence a=a’; but then 29—2¥=0 (mod g). Since
0<2, 2% <gq, it follows that 2¢=2% hence d=d". If g=2° the 2-adic valuation
of Dis ae—d=da'e—d, hence d—d’ is divisible by e; but 0=<d, d'<e by assump-
tion, hence d=d’ and a=4a'.

54. Lemma. (a) If A is a symbol of rank n and defect one, then

g““ (mod ¢!V 1), if A is special

dim R[A]= {0 (mod g1+ 1Y), if A is non-special.

(b) If ¢ is a virtual cell of W, then
dim R[¢] =¢°" (mod ¢°1+ 1),
Proof. (a) follows from [10, 2.7(i)] and (b) follows from (a).

5.5. Lemma. Let Z be a special symbol of rank n with 2d +1 singles, let @ be an
admissible arrangement for Z and let @, ¢' be two subsets of @. Let ¢
=c(Z, @, 9), ¢'=c(Z, D, ). Then

2 if =9

(R(e), RV gr= {0 if =&,

Proof. Using (4.6.2), we have
CR() RO p=4e w,= 2. (1)

Yo
where  f(¥)=|$* N W*|+|(P)* A P* =|JAP* (mod2) and J=(F*u(P)*)
—($* () ) @*. If $=, then J+0 and so f(¥)=0(mod 2) for all ¥ = &. If
P+, then J+0 and d=1, and so |J (P — P)*| is even for 2! values of ¥
and is odd for the other 297! values of ¥. The Lemma is proved.

5.6. Theorem. Let c=c(Z, D, d) be a virtual cell of W,. Let a=a(c), be defined
as in 2.21 and let d=d(c) be such that 2d+1 is the number of singles in Z.
Assume that ¢>22°" (a(n) is as in Lemma 5.3.) Then

2d
R(¢)= '21 Pi
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where p, (1<i<2% are distinct unipotent representations of G satisfying a(p,)
=a, d(p)=d.

Proof. We may assume that the theorem is already proved for all virtual cells
¢’ such that a(¢)>a or such that a(¢)=a and d(¢')<d (if such ¢ exist.) Let
P1isP2sr---» P, be the set of all unipotent representations of GX (up to isomor-
phism) such that {p;, R(¢)> +0 and <{p;, R[c¢"]>=0 for any virtual cell such that
a(c)>a, (1=i=Zt). If A is any symbol of rank »n and defect 1 such that a[A]>a,
then [A] is a Z-linear combination of such virtual cells ¢’ (see Lemma 2.22)
hence {(p;, R[A]>=0 (1<i<t). Taking inner product with the actual repre-
sentation # of G* given by (4.9.2), we see that n,={p,, R(c)) is an integer =0,
and being #0, it is an integer >0, (1<i<t). We now show that a(p,)Za
(1<i<t). Indeed, on the one hand, from Lemma 5.2 we compute explicitely the
number N of unipotent representations p satisfying a(p)>a: it is equal to
Y. 2293 sum over all special symbols Z of rank n with a(Z)>a. On the other

z

hand, let us fix for each such Z an admissible arrangement @,. Then, when é
runs through the subsets of ®,, we get 24 representations R(c(Z, &, ) to
which our induction hypothesis applies; these representations are disjoint and
each contain 249 distinct irreducible components p each satisfying a(p)=a[Z],
(see Lemma 5.5.) Thus, the number of unipotent representations p which satisfy
a(p)>a and appear in some R(c¢) with a(c¢')>a is at least equal to N. We
conclude that all unipotent representations p satisfying a(p)>a must appear in

some R(¢) with a(c’)>a and therefore cannot be in the set {p,, p,, ..., p,}-
Next, we assume that min a(p,)=a’<a; we shall reach a contradiction as
follows. lsize
We may assume that this minimum is reached precisely for py, p,, ..., p.

(¢ <t). We shall consider the dimension of the GE-module # given by (4.9.2), in
two different ways. On the one hand, using Lemma 5.4, we see that

dim # =q*(mod ¢°* ),

on the other hand, by the induction hypothesis, all irreducible representations
p appearing in %, which are different from p,,...,p, satisfy
2™ dimp=0(modg°*') and in particular, 2°®”dimp=0(modg**"). Also
2°M dim p,=0 (modg**!) for ¢'<igt and 2% dimp,=q“ (modq**') for
1<igt. Hence

v
2" dim @= Y 29"~ g% (mod ¢g* )
i=1

=0 (mod g**?).
It follows that

20 =dey =0 (mod q).

=

i=1

i

Therefore, if t' =1, we must have

e
Z Da(n)—d(pi) ni; q.
i=1
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On the other hand by Lemma 5.5, we have:

i 2 <(R(0), R(©)y =2
hence .

t t
qua(n) Z ni§2"‘") Z ni2§2"(")+d§22"(")
i=1 i=1

a contradiction.

We have thus proved that a{p;)=a for i=1,...,t

Next we show that d{p)=d, (1<i=<t). Assume that d(p;))<d, for some i
1<i=t; we have also a(p;)=a. As before, we can count explicitely the number
of unipotent representations p of GF satisfying a(p)=a, d(p)<d: it is given by
v=Y2%@_ sum over all special symbols Z of rank n satisfying a(Z)=
d(Z)y<d. On the other hand, as before, for each such Z we can construct 2@
representations R(c(Z, ., ), (¢, fixed) to which our induction hypothesis
applies, so we see that the number of unipotent representations p which satisfy
a(p)=a, d(p)<d and which appear in some R(¢) with a(c)=a, d(c')<d, is at
least equal to ». We conclude that all unipotent representations p satisfying
a{p)=a, s(p)<s must appear in some R(¢') with a(¢)=a, d(¢')<d. In particular,
our p; must appear in some R(¢') with a(¢')=a, d(c')<d. The inner product of
the actual representations R(c’), # is strictly positive since p; is a component of
both. On the other hand, R(¢") is clearly orthogonal to all terms of the sum
(49.2) defining #. This contradiction shows that s(p,)=s for i=1,...,t. We
now consider, as before, the dimension of # in two different ways. On the one
hand, dim #=4" (mod ¢°*!). On the other hand, as we have seen, we have
29" dim(p)=0 (mod ¢°*!) for all irreducible components p of # other than
P1s P2 s P, and 29¥) dim(p,)=¢* (mod ¢***) for 1 <i<t. Hence

t
2°WdimR= Y 20"W-40) p g¢ (mod gt ?)

i=1
= 2a(n) qa (mod qa+ 1).
It follows that
t
(5.6.1) 200 N 2o =dd . =0 (mod g)

i=1

The left hand side of (5.6.1) cannot be >0 for then it is =g, hence 2°™>gq, a
contradiction. We have

t t
T 2000y < Z 20m—-dp. (since d(p;)=d)

i=1

II
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hence the left hand side of (5.6.1) is =0. Therefore it must be equal to 0; it
follows that the last 3 inequalities are equalities so that d(p;)=d for all i,

t t
1gi<t,and ) m=3 n?=2%ie n,=1 for all i and t=2* Since (R(c), R(¢))¢r

i=1 i=1 24
=27, we must then have R(¢)= ) p;. The theorem is proved.
i=1

5.7. Let Z be a special symbol of rank n, and let Z, be the set of singles of Z;
let d be defined by 2d+1=|Z,|. We can write Z,=Z}11(Z,),, where Z¥ is
the set of entries of Z, appearing in the first row of Z and (Z,), is the set
of entries of Z, appearing in the second row of Z. We have |Z¥|=d+1,
(Z),l=d. Let Z, be the set of elements which appear in both rows of Z.
Z,1(Zy)*
Thus, Z = ( )
ZZ‘L‘L(ZI)*
Let &, be the set of all symbols of rank n and odd defect which contain the
same entries as Z. There are exactly 22¢ such symbols, one for each subset
McZ, such that |M|=d(mod 2): the symbol corresponding to M is A,

Z,1wW(Z,—M
=( 212, )). If we associate to M the set M*<Z, defined by M*
Z,uM

=Mu(Z,),—~(Mn(Z,),) we get a 1 —1 correspondence Ay M* between &,
and the set V, of subsets of Z; of even cardinality. The set V,, has a natural
structure of F,-vector space of dimension 2d: the sum of M and M7¥ is
defined to be (Mf UM¥)— (M A MZ¥). This allows us to regard %, as an F,-
vector space of dimension 2d. The 0 element is Z itself. (Indeed, (Z,)F =0.)

The vector space V, has also a natural non-singular symplectic form
(,): Vg, x V,, = F,: itis given by

M, MH=IM# "M} mod 2.

We shall regard this also as a symplectic form on &%,, via the bijection
S Va,-

The vector space V,, has a natural basis e, ..., e,, defined as follows: we
arrange the elements in Z, in an increasing sequence; then e; is the subset of
Z, consisting of the i-th and (i+ 1)-th elements in this sequence. It is clear that

(1 if fi—jl=1
(ei’ej)_{O otherwise

Thus V,, (hence &) is a symplectic vector space of the kind considered in
3.1.

The corresponding subset ¥, <V, (see 3.5) consists of the subsets M* < Z,
such that |M*nZ¥|=IM*n(Z,),|, or equivalently, of the subsets M*cZ,
such that |M|=d. _

In other words, ¥, corresponds to the subset of &, consisting of all
symbols of defect one.

The lagrangian subspace in #(V, ) (see 3.2) are in 1—1 correspondence
with the admissible arrangements & for Z: the lagrangian corresponding to ¥
is: {¥, u¥*|¥ <P} cV,,. Under the bijection V, <5 this lagrangian becomes
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the set of all
((Zo)*u Y (d—VP)*

(Zo), L P* 11 (D — av)*)e% (P o).

Any subset # =@, gives rise to an F,-linear form on this lagrangian, sending
the element corresponding to ¥ to |#*~ ¥*| mod 2eF,. This gives a 1—1
correspondence between subsets of @ and linear forms on the corresponding
lagrangian.

We can now state

5.8. Theorem. Let G=G, be either Sp,, or SO,,, | (defined over IF,). Let Z be
a special symbol of rank n, and let d=d[Z] be as in 5.2. Assume that q=22°®
where a(n) is defined in Lemma 5.3. Then

1) For any Ae % of defect one, we have

(5.8.1) R[A]=2"" % (-1 p(4)

A'eSz

where (,) is the symplectic form on ¥, described in 5.7.
2) Let & be the subspace of &, corresponding to a lagrangian subspace in
F(V,), and let &: &L —F, be a linear form. Then

(58.2) Y (—1FWR[A]= Y p(a).

Ae¥ AeSz
¢=(,A)on¥
Remark. By the discussion in 5.7, the left hand side of (5.8.2) is of the form R(c)
where ¢ is the most general virtual cell of W,.

It is clear that (5.8.1) implies (5.8.2). Conversely, (5.8.2) implies (5.8.1) by
Lemma 2.22.

5.9. Corollary. We preserve the assumptions of 5.8. Let A'e%, and let weW,.
Then
PA),Rer=2"" ¥ (=1 tr(w, [4]).

Ay
of defect one

5.10. We shall now prove Theorem 5.8. We may assume that n=1 and that the
theorem is proved for G, n'<n. We may also assume that 0 doesn’t occur
twice in Z. Let ¢, be the largest entry in Z.

A) If some number i, 0Zi<t, doesn’t appear in Z, then Z is obtained from
a special symbol Z’ of rank s<n by increasing each of the r largest entries of
Z' by 1 (r=n-s), and this set of r largest entries is unambiguously defined.
There is a unique order preserving bijection between the set Z, of singles of Z
and the set Z; of singles in Z'. This gives rise to a bijection, h: &7, ~ &, which
preserves the symplectic forms and the subsets of symbols of defect 1. Let
Aedy and let A" be a symbol of defectl in Sz, By 5.2(iil), we have
Ind,G,fs p(A)=p(h(A'))+ combination of p with a(p)>a=al[Z].

By Theorem 5.6, all components of R[h(A")] are of form p with a(p)=a. It
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follows that

CRTAAML, p(B(ADDgp
= (R[A(A)], Ind$E (St,® p(A')D g
= (R[] s, St,@ p(A)) 1 |
=(R[(A")| S, x W], St,®p(A)> .,  (by (4.6.4)).

It follows from 2.7 that [h(A")]| S, x W, =&(r)® [4"]+ combination of irre-
ducible representations E with a(E)<a. Using again Theorem 5.6, we see that
the last inner product is equal to

(REM®[A7]), St, @ p(A)) x|
={8t, @R[A"], St, & p(A P 1,
={(R[A"], p(A)gr
=(—1)“"472-4  (by the induction hypothesis).
= (= 1A ) —d.

Thus, we have 22¢ distinct irreducible representations of Gf which appear
with coefficients +27¢ in R[h(A")]. Since <R[h(A")], R[h{(A")]>=1 there can-
not be other irreducible representations appearing in R[h(A")], and the Theo-
rem follows for our Z.

B) Assume now that Z (defined with respect to t=t,) has the property that
some i, 0<i<t, doesn’t appear in Z. Then the Theorem is true for Z. We shall
deduce from this that it is also true for Z. We have a natural (order reversing)
involution z+»>t—z between the sets of singles in Z and in Z. This gives rise to
the bijection 4«4 between %, and %, which preserves the symplectic forms
and the subsets fo symbols of defect one.

Let A be a symbol of defect 1 in &,. We have

R[A]=27% ¥ (—=1)"% p(A).
A'eSy
We apply the operator D (see 4.6.5) to both sides of this equality. Using (4.6.6),
(5.2(ii)) and the identity (A, A')=(A, A’), the required identity (5.8.1) for A
follows.
C) If Z is in neither case A) or B), then t,=24d

_(QL4“w2d)
“\1,3,...,2d-1/)"

We can still apply the method of A) to get information on the multiplicities
{p(A), R[A]) for Z, starting from information for smaller groups. We obtain
the following weaker result: Let A, A"€%; be such that for some j, (1 £j<24d),
we have that j—1,; are in different rows of A’ and A" is obtained from A’ by
switching j with j—1 and leaving the other entries unchanged. Let A€%, be of
defect 1. Then

(10.0)  <p(A)+p(A”), R[ATygp=274(— A4 4 (= 14" ),
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Now, let @ be an admissible arrangement for Z. The 2¢ representations
R(c(Z, , D)) of GF (P = ®) are disjoint (Lemma 5.5) and each contains precisely
2¢ unipotent representations (with multiplicity one). These must be of the form
p{A), A'eS,, since all other unipotent representations of GF are already ac-
counted for by A) and B). It follows that, for @ and A% fixed, p(A') has
multiplicity one in R(c(Z, @, ®,)) for a unique &, and has multiplicity zero
in R(c(Z, @, D)) for all b= d, &+ d,. Hence, if A, is a symbol of defect 1, such
that [Ay] is the component of ¢(Z, ®, @), corresponding to ¥ =@ in the sum
(2.12.1) defining c¢(Z, @, &), we have:

(5.10.2) (p(A'), R[AyTdgp=2""(—1)/%"*"],
In particular, we have

(P, RIAT gp=(= 1)+ 274

where [A', A]eF, is an unknown function. If we identify %, with the symplec-
tic vector space V, (see 5.7) then the function [A', A] becomes a map V,
x V,—F,. This map satisfies the conditions of Proposition 3.8. Indeed con-
dition (b) is just (5.10.1), condition (a) follows from (5.10.2). Finally condition
(c) is the equality.

(5.10.3) Y {p(A),R[AT>gp
A'ey
{2t if a=2Z
0 if Ae#, A+Z, of defect one.

The left hand side of this equality can be written

(Y p(),R[ADge= Y <c(Z, @, 8), R[A])gp  (for a fixed D).

AeSz oD

= (2'R[Z], R[A])es

which is the right hand side of (5.10.3). We may therefore apply Proposition 3.8
and get the formula [A’, A]=(A", A). The Theorem is proved.

6. An Application

6.1. We preserve the notations in 5.7. In addition, we shall assume, as we may,
that the special symbol Z (of rank n) has 2m+1 entries where m=n (mod 2).
To the symbol

A=

(zzu(z1 —M)

*
Z,uM )e z

(McZ,, |M|=d (mod 2)) we associate the symbol A,.€%, where
M=M,1u(Z, —M),, (ie. the set of even entries in M union odd entries in
Z,—M). Note that M' = Z, satisfies again |M'|=d (mod 2) since

IM|+IM'|=(Z,)oqsl= Y, z=(sum of all entries in Z)=n+m?*=0(mod 2).

zeZ
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6.2. Lemma. With the notations of 6.1 and the assumptions of 5.9, we have

<p(Ap), R yor= (=1 p(Ape), Rypudap
for all weW,.

Proof. Using 59 and the formula Tr(wow, [4p])=¢,,, Tr(w, [4;]), (P<Z,,
|P|=d) we see that it is enough to show that

(_. 1)(Ap. AM) — ( — l)a[Z]( _ 1)(APyAM’) €LAp]

for any P<=Z,, |P|=d.
But this follows immediately from definitions and from 2.2, 2.10.

6.3. Theorem. We preserve the assumptions of 5.8. Let h be an integer, and let
AyeSy, McZ,, |M|=d (mod 2)) be as in 6.1. Then the multiplicity of p(A,,) in
the virtual GP-module Y (—1yHYX,)® (=part of weight h) is equal to

z zZ
(-2 dim[A4,,] if h=v—a—[—i+—A—[~] (where Z is as in 6.1) and |M'|=d
(see 6.1); otherwise, it is zero. 2

Proof. By 4.7, this multiplicity is given by

2. Tr(T,, E; h/2) {p(Ayy), R(E)) g
E

(sum over all irreducible Q[W,]-modules E). If the term corresponding to E is

A
non-zero, then, using 1.11 and 58, we have h=v—M (since
Tr(T,,, E; h/2)#0) and a[Z]=a(E), A[Z]=A(E) (since {p(4,), R(E))>se+0).

_a[Z]+A[Z]

3 . Hence the multi-

Hence the multiplicity is zero unless h=v

alZ]1+A[Z]
2
re. to {p(A4y), R, >sr. By Lemma 6.2, the last inner product is equal to
(=12 p(Ayp), R1>an‘ It remains to use the formula

plicity for h=v is equal to the sum of multiplicities over all k,

_jdim[4,.] if IM'|=d
Py Rl)Gﬁ_—{O, otherwise
6.4. Remark. 1t seems likely that for A,, as above such that |M’'|=d, we have
(p(Ay), HAX , )>ge +0 if and only if i=2v—A[Z].

6.5. According to [11, 3.9], to each unipotent representation p of GX (as in 5.8)
one can associate a sign A,=+1 such that, whenever p is contained in a
generalized eigenspace of Frobenius F: H.(X,)—H.(X,), the corresponding
eigenvalue of F is of the form 4, - ¢*, where k is an integer. It also follows from
[11,3.33] that, if p=p(A4,) (M<=Z,, |M|=d mod 2), as in 6.1, then 4, depends
only on the integer $(M|—d). We shall prove the following result (which was
proved in a different way in [2, 2.5.3] assuming the conjecture [11, 4.3])



Symplectic and Odd Orthogonal Groups Over a Finite Field 295

6.6. Proposition. With the previous notations, and assumptions of 5.8, we have
ip=(_1)%(IMl‘d)_

Proof. The Frobenius map F: X, — X, has no fixed points. Therefore, the
fixed point formula, together with 6.3 shows that

_afZ]1+4(Z)

Y (=) dim [ Ay ] A d 2 dim p(A4,)=0
Z M

(the first sum is over all special symbols Z of rankn, up to equivalence, the
second sum is over all subsets M cZ,, |M|=d (mod 2) such that |M’'|=d, see
6.1.)

It is enough to show that the same identity holds with 4,.,, , replaced by
(—1)FMI=9 " for then the desired formula would follow by induction on
1(|M|—d). Moreover, it is enough to prove this identity with g replaced by
(—q). Under this change, (—1)*?1dim p(A4,,) becomes dim p(A,,.). Thus, we

must prove
_alZ]1+ AlZ]

Y Y (=)D dim[ A, ](—q) " z  dimp(A,)=0
zZ M

(the summation is as before).
A direct computation shows that

alZ]+ A[Z)

(_1)‘}(|M|—d)+"— 2

=&y, (=1
Hence the identity to be proved is

_a(E)+ A(E)

(=1 Y epdim(E)g 2 dim(pp)=0
E

(summation is over all irreducible Q[ W]-modules E) where pj is the irreduc-
ible principal series representation of G corresponding to E.

But this identity simply expresses the fact that, in the standard repre-
sentation of the Hecke algebra H on the space of functions on complete flags,
the trace of T, is equal to zero.

This completes the proof.
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