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The purpose of this paper is to give explicit formulas for the character of the 
unipotent representations of the symplectic or odd special orthogonal groups 
over a finite field Fq on any regular semisimple element, provided that q is 
sufficiently large. These formulas (which were conjectured in [11, 4.3]) involve a 
Fourier transform on a certain symplectic vector space over a field with two 
elements. 

Some of the main ingredients in the proof are: 
a) Kawanaka 's  theorem [7] on the existence of lifting for certain field 

extensions of odd degree in case of finite classical groups, and its application, 
due to Asai [2], to the zeta functions of the varieties X w of [5]. 

b) The use of the Deligne-Goresky-Macpherson cohomology [41 for the 
closure )?w of X w. (This depends on results of [9] concerning singularities of 
Schubert varieties.) 

c) The results of [10] on classification and degrees of unipotent repre- 
sentations of classical groups. 

The case of even orthogonal groups will be considered in a sequel to this 
paper. 

This paper was written during a visit at the Australian National University, Canberra, and I am 
grateful for its hospitality. 

1. Characters of Hecke Algebras 

1.1. Let (W, S) be a Weyl group and let H be the corresponding Hecke algebra 
(see for example [8, w with coefficients in ~ [ u  1/2, u-1/21; here u 1/2 is an 
indeterminate. 

Let E be an irreducible Q [W]-module.  We associate to E an H-module /~ 
by the method of [131. Let C o W  be the two-sided cell of W (see [8, w 
corresponding to E. The free Q [u 1/2, u-1/2]-module J//c with basis e=(zE C) is a 

* Supported in part by the National Science Foundation 



264 G. Lusztig 

left H-modu le  and a right W-module:  

r~ . e z=  ~ N ~ .. . .  ,e~, 
z"~ z 

Cz " W =  2 nw, z,z,, ez,,. 
z"~z 

(Here Tx(x~W) is the s tandard  basis of H, ~ ,  ,g are defined as in [8, w and 
N x . . . .  ,~7l[ul/2], n . . . . .  ,,eTZ are defined by the formulas 

T~C~=~N~ . . . .  ,Cz, 
2,' 

C ~ l , , = ,  . w = ~ n  . . . . .  ,, C ~ , , I , :  1 
z "  

and 
Cz= ~ ( -  1)/(~)-l'') u -'(''+t(z)/2 Py, ~(u- ') T r 

y<z 

is defined in I-8, 1.1].) 

1.2. It has been proved in [13] that  the left H-modu le  structure and right 
W-module structure on ~ ' c  commute  with each other. It follows that  
P~=(JCZc| w is in a natural  way an H-module ,  free as a Q[u'/2,  u ,/2]_ 
module.  It  also follows f rom the results in [13] that, for any xeW, we have 

(1.2.1) Tr  ( Tx, ~)e  71 [ul/2]. 

We have also: 

Tr  (Tx,/~)= I W I -  1 T r ( m ~  Txmw on ~ ' c )  tr(w, E) 

~ - I W [ - 1 Z  2 2 Nx . . . .  "nw,~.,ztr(w,E). 
z~C z'eC weW 

z'~z 
z'~z 

(Here Tr  means  trace over  II)[u 1/2, u - ' /2]  and tr means trace over  Q.) The 
coefficients N x . . . .  ,, nw, z,,z can be computed  as follows. 

Let 
Dz = X u-'(~'/2 Qz, y(U- ') T, eH 

yeW 
z<=y 

where Qz, y(z__<y) are polynomials in u defined by 

( - 1 )  t(w) l(~)Q~,yPy, =6~,~ (Vz<=w). 
Z<<-y~W 

Let v: H--*l~[u 1/2, u - I / z ]  be the Q [ u  1/2, u ' /2]-l inear m a p  such that  Z(Tw)=O 
if w+e, z(Te)= 1. It is well known that  

{;~(~) if x = y  
(1.2.2) ~(Tx Tr- ') = if x#:y.  
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It follows immediately that 

r,(CxOy , ) = ~ , y  

and, hence, that for any x, z, z', z "cW,  we have: 

Nx . . . .  ,=r(T~C~Dz,  1), n . . . . .  ,,=r(Dz,, ,GTx ) lu= , .  

Thus, we have the following. 

1.3�9 Proposition. For all xeW,, we have: 

(1.3.1) Tr(T~,/~)-----IWI-' ~ ~ v(T~C~D~, ,) 
w~W z'~z" 

i n C  

�9 ~(Dz , C~, T~)l,=~-tr(w,E) 

where the second sum is over all ordered pairs z, z' o f  elements in C such that 
z Ez', z ffz'. (We  write z ~ z '  instead o f z  Ez', z f fz ' . )  

1.4. It follows from the results of [13] tha t /~ |  ~/2) is an absolutely irreduc- 
ible H-module and that this gives a 1 - 1  correspondence between irreducible 
W-modules and irreducible H-modules. Note that under the specialization 
u~/2~ 1,/~ becomes the W-module E. 

1.5. Let a ~  be the involution of the ring Q [ u  ~/z, u- , /z ]  such that u ~/2 =u -~/2. 
It extends to an involution h~ /~  of the ring H, such that T~= Tf}  for all x ~ W  
(see [8, w 1]). 

1.6. Corollary. Yr(T~ ] , /~)=Tr  (Tx, E) , for  all x~W.  

Proof  It is enough to prove that, for all x, z, z'~W, we have 

r (T~]  CzDz,_d=r(T~ CzD ~, 1). 

Let c; Z 8',,(u) 5". 
y'<=y 

By [8, (1.1.c)] we have C'y = C'y. It follows that 

O~,- , =u  ~/2 C'~,- ,wo Two 

where w o is the longest element in W and v is its length. Since C~= C~, we see 
that it is enough to prove the identity 

(1.6.1) ,~(h. u -V~ 2 T w o ) = , c ( h  . u - v12 Two ) 

for all h~H.  We may assume that h=  T x. If x + w  o, then both sides of (1.6.1) are 
zero. If x = w  o, then (1.6.1) is equivalent to the identity 2 u v r(T~o)= which is a 
special case of (1.2.2). 

1.7. Lemma. For any x~W,  we have 

Tr (T x,/~) = Tr (Tx- l,/~). 



266 G. Lusztig 

Proof. It is enough to show that there exists a non-singular symmetric bilinear 
form (,):  (/~| x (E |  such that (T~e, e')=(e, T~_, e') 
for all xeW,  e,e 'EE@Q(ul/2).  Let e I . . . . .  e, be a basis of the vector space 
/~| ~ (u 1/2). Consider the bilinear form (,)o on/~ |  ~ (u 1/2) given by (e i, e)0 = 3is 
and define (e, e ')= ~ u-"W)(Twe, Twe')o. One checks immediately that (T~e, e') 

w~W 

=(e, T~e') for any simple reflection s, and hence (T~e,e')=(e, T~_,e') for any 
xeW. It remains to show that ( ,)  is non-singular. But if e is a non-zero vector, 
then (e, e) is a sum of squares of elements in Q(u~/2), at least one of which is 
non-zero. It follows that (e, e)# 0 and the lemma is proved. 

1.8. Let Dim(/~) be the "formal dimension" of/~. It is an element of Q[u], 
satisfying the identity (see [3]): 

ul(w ) 

(1.8.1) ~ u "X)Tr(T~,/~)Tr(T~_, /~)=~w .dim(E). 
x~w ' Dim (/~) 

Let A(E) be the degree of the polynomial (inu) Dim(/~) and let u "~) be the 
largest power of u dividing this polynomial. Since ~ u "~) is a product of 

w~W 
cyclotomic polynomials in u, and the left hand side of (1.8.1) is in 
71[u ~/2, u-1/2], it follows that Dim(/~) is of the form 7eu "(e) times a product of 
cyclotomic polynomials + u - 1  (where 7E is a strictly positive rational num- 
ber). It follows that 

(1.8.2) Dim (/~) = u -a(E)-A(E) Dim (/~). 

1.9. Proposition. For any x~ W, we have 

l(x)-a(E) 
~C x U 2 + higher p o w e r s  o f  u 1/2 

Tr (Tx, E)=-~ .x)-A~E)+~ 
(c,xu -i +lower powers of U 1/2 

where cx, c'~ are integers. 
Moreover, for  given E, there is at least one xe  W with c~ 4= 0 and there is at 

least one x E W  with c'~:~O. 

Proof Using Lemma 1.7 and (1.8.1) we see that 

= ~dim (E) 7{ 1 u - " ~ l  + higher powers of u 
u-.~)Tr(T~,/~)2 [dim(E)7{ 1 u ~ A~E)+Iower powers of u. x~:W 

Since Tr(T~, E)~Z[ul /Z] ,  (see (1.2.1)), the proposition follows. 

1.10. Corollary. a(E) is the smallest integer c~ such that 
u ~-"x)+')/2 Tr (Tx,/~)~7Z [u 1/2] for all x6  W; A(E)  is the largest integer ~ such that 
u ~-"~)+#-v)/2 Tr (T~, E ) E Z [ u - l / 2 ] f o r  all x~W.  

1.11. Lemma. Assume that w o is in the centre of  W a n d  let ee= +_1 be the scalar 
by which w o acts on E. Then Two acts on E as e e. u ~-~E)+a~E))/2 times identity 
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and, for all xeW, we have 
a(E)+ A(E) 

~ v 
Tr (Two~, E)=eE u 2 Tr  (T~, E). 

Proof Our assumption implies that  Two is in the centre of H, so it acts on E as 
2 times identity where 2 e ~  [u l/z, u-a/z]. We have 

Tr  (T~ox,/~) = Tr  (T~o T ~ } , / 2 ) = 2  Tr  (T#  ~,/7~)=2 Tr  (T~,/~). 

(The last equality follows from Corol lary 1.6.) It follows that 

~" u -ttx) Tr  (T~,/~)2 = ~ u -lt~o~) Tr  (Two x, E) 2 = ~ u -  ~+ '(x) 22 Tr  (T~, E) 2 
x x x 

x 

hence, using (1.8.1): 

u "w~. Dim (/~)- 1 = u - ~ 2 2  ~ ut(~) Dim (/~)- 1. 
w w 

Using now (1.8.2) and the identity ~ uZ~W)=u~ u ~w), we see that 
w 

hence 

1 = u -  2 v 2 2  . l.la(E)+ ACE) 

a(E)+ A(E) 

2 = - ~ - I d  ~; 2 

If we specialize u 1/2 to 1, 2 must specialize to ~E, hence 

a(E)+ A(E) 

2 : t ~ E  uv  2 

The lemma is proved. 

1.12. Remark. Without  the assumption that w o is in the centre of  W,, it is still 
true that T~2=u 2~-"~E~-a~E) on /~. The proof  is similar to that of  Lemma 1.11. 
Springer (see I-3]) has shown that, on E, T_ 2 = U  v + d i m ( E ) - ~ E t r ( ' ' E )  (sum over  all 

WO 

reflections r in W). 

1.13. Lemma.  T r ( T  x, ~ ) = ( - u ) ' ~ X ) T r ( T x ,  P~). 

Proof See I-6]. 
This Lemma,  together with Corol lary 1.10, imply 

1.14. Lemma.  a(E| sign) = v - A(E). 

1.15. For  any integer i we define Tr  (Tx,/~; i /2)~Z to be the coefficient of u i/2 in 
T r ( T  x,/~) (see (1.2.1). For  any xeW,, we define two virtual representations ~x, 
~r of  W by 

(1.15.1) ~=(-1)"X'  ~ Tr (Tx, P.; !(x)2a(E)) E, 
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(1.15.2) ~r  Tr (T~,/~; l (x ) -A(E)+v)  E ' 2  

(Both sums are over all irreducible ~[W]-modules  E, up to isomorphism.) We 
have 

1.16. Lemma. ~r 

Proof. From Lemmas 1.13, 1.14, it follows that for each irreducible E, 

2 =(-1)"XlTr  Tx, E@sign; l (x)-a @sign) , 

whence the required identity. 

1.17. In the case where w o is in the centre of W, we define a Z-linear map ~ of 
the group of virtual representations of W into itself, by the requirement that 
~(E)=%E for E irreducible (~e= _1 is as in 1.11). We have 

1.18. Lemma. I f  w o is in the centre of W, we have ~r l~  ~(~x), (xeW). 

Proof. This follows immediately from Lemma 1.11. 

1.19. Now let W~(IcS) be a standard parabolic subgroup of W and let H l be 
the corresponding subalgebra of H. For each irreducible ~ [W~]-module E' we 
define a ~ [W]-module JWw,(E' ) by the formula 

(1.19.1) J~,(E')=Z[E': E]w E 

sum over all irreducible ~ [W]-modules E such that a(E)=a(E'). Here [-E'." E]w I 
denotes the multiplicity of E' in the restriction of E to W~; it is equal to 
[E': E]n~, the multiplicity of E' in the restriction of E to H I (over the field 
~(ul/2)). Note that, for any irreducible Ql-W]-module E, we have (cf. [-12, 
Lemma 41): 

(1.19.2) [E': E]w ' # O=>a(E') < a(E), 

(1.19.3) 7E'=X[ E': E]w," ~'E 

(sum ranges over the same set as in (1.19.1)). With these notations we have 

1.20. Lemma. Let z eW I. Consider the virtual Wrmodule ct~ w') (=c~ with respect 
to Wt) and the virtual W-module 7~w) (= ~ with respect to W). We have 

z - -  W ~  ~, z ! 

(where jw is extended to virtual representations by 7Z-linearity). W I  

Proof. 

,w) ( ) E  0c~ = ( - 1 )  l~) y, Tr T~,P,; l(x)-a(E) 
E: 2 

i r red.  
W-rood. 

E E" 
irred, irred.  

W-rood. Wl-mod.  
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have Tr  (T~,/~', l(z)~a(E))=O unless l(z)--a(E)>l(z)-a(E') . By 1.9, w e  2 = 2 I.e. 

a(E)<a(E'). On the other hand  by (1.19.2), we have [E':E]u=[E':E]w = 0  
unless a (E') < a (E). Thus, 

( l(z)-a(E')) 
~ w ) = ~  ~ [E' :  E]w Tr T~,E', E=tWt,,(w*)~ 

~ W l ~ , ~ z  1" 
E E" 2 

a (E ' )  = a(E)  

1.21. Remark. We shall apply the previous l e m m a  in the case where W t is a 
product  of two commut ing  s tandard parabol ic  subgroups  W r • Wv,, and 
z=z' .  z"(z'~W1, z"~Wv, ). In that  case, we have clearly 

~(w~) _ ~(w~,) ,,~ ~(w~,,) 
- -  O~  z , k ~ )  - ' z  - ' z '  " 

1.22. Lemma.  I f  w o is the longest element of W, then ~o is the sign repre- 
sentation of W. 

Proof. If  E appears  with non-zero coefficient in awo, then, by 1.12, we have 

v-a(E) a(E)+A(E) 
- - V  

2 2 

hence A(E)=v. Applying  1.9 with x=seS,  we see that  T r ( T  s, E ) = c ' s u i / 2 + c o n s  - 

tant. But the eigenvalues fo T~ must  be - 1  or u and the previous equality 
shows that  u is not an eigenvalue of T~ on /2. Hence  T~ = - 1  on /2. This shows 
that  E is the sign representation.  Conversely,  it is clear that  the sign repre- 

sentat ion appears  with coefficient 1 in ewo, since Two acts as ( - 1 )  ~ on sign. 

2. Irreducible Representations of a Weyl Group of Type B.  

2.1 Let  W, be the group of all permuta t ions  of  the set 

, ~ = { 1 , 2  . . . . .  n, n', ... 2', 1'} 

which commute  with the involut ion i~i ' ,  i '~ i  of 5~.. A pe rmuta t ion  in W, 
defines a pe rmuta t ion  of the n element set consisting of the pairs (1, 1'), 
(2, 2') . . . . .  (n, n'). Thus we have a natural  h o m o m o r p h i s m  of W, onto ~ , ,  the 
symmetr ic  group in n letters. 

Let •: W, ~ { ___ 1 } be the h o m o m o r p h i s m  defined by 

z(~)={_ 1 if {a(1), a(2) . . . . .  a(n)} n {1', 2', . . . .  n'} 

has even cardinali ty 

1 , otherwise. 

The irreducible Q [W.]-modules  are in 1 - 1  correspondence  with ordered pairs 
a 1, a 2 of  irreducible representat ions of  ~k, ~t  (k + l =  n). The correspondence is 
defined as follows. We identify W k x W~ with the subgroup  of W, consisting of 
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all permutations in IV, which map {1, 2 . . . . .  k, k', .... 2', 1'} into itself and hence 
also may { k + l  . . . . .  n, n', .... (k+l) '}  into itself. As before, we have natural 
homomorphisms Wk-O~k, W l ~  I. We can regard a l ,a  2 as representations 
a 1, a 2 of Wk, W~, via these homomorphisms. Consider the representation 
~1 |174 of W k x W t. We induce it to W,; the resulting representation of W n 
is irreducible; it is the representation corresponding to the ordered pair 
(o- 1, a2). Now a 1 corresponds to a partition 0 < a  1 <~2 < .-. <am" of k (~  oq=k), 
in the following way: it is the unique irreducible representation of ~k whose 
restriction to ~ ,  • ~ 2  x ... x ~ , ,  c ~k contains the unit representation and its 
restriction to ~ t  • ~ x . . .  c ~k (where ~* =< ct* =<... is the dual partition) con- 
tains the sign representation. Similarly, a 2 corresponds to a partition 
O<=fll<...<=flm,, of I. Since m',m" can be increased at our will (by adding 
zeroes) we may assume that m ' = m + l ,  m"=m. We now set 2 i = ~ i + i - 1 ,  
(1 -< i < m + 1), #~ - fl~ + i - 1 (1 =< i =< m). Let A denote the tableau 

21,22 . . . . .  /~m+l t 
,//1, /12, "",  ~Im/" 

Then A is a symbol of rank n and defect 1 in the sense of [10, 3.1]. In other 
words, {21, 22 . . . . .  "~m+ ~} is a set of m+  1 distinct, > 0  integers, {#a,/~2, -- . , /~} 
is a set of m distinct, > 0  integers and ~ 2 ~ + ~ # ~ = n + m  2. Since m can be 
increased at our will, we must regard A as being equivalent to the symbol 

(0,)-1 + 1, J,2 + 1 . . . . .  )'m+~ + 1) 

0 , # 1 + 1  . . . .  , # m +  

obtained from A by a shift and also to the symbols obtained from A by iter- 
ating such shifts. We shall often identify a symbol with its equivalence class 
under shift. We shall denote by [A] the irreducible representation of W n 
corresponding to (o~, a2), constructed above. 

Thus, we have a 1 - 1  correspondence [Aq*--~A between irreducible (I~(W,]- 
modules and symbols A of rank n and defect 1, modulo shift. 

We shall regard W, as a Weyl group of type B~, with simple reflections as 
described in [10, 2.1]. The longest element of W~ is the permutation 1.-.1', 
2.--~2', ..., n*-~,n'. 

2.2. Lemma. The longest element of W, acts on [A] as multiplication by eta I = 
~ (~-i+ 1) 

( -  1) , (with the previous notations). 

Proof Assume that [A] corresponds to (0"1, 0"2) as above where a 1 is a repre- 
sentation of ~k and o2 is a representation of ~t, k + l = n. Using the definitions, 
we are immediately reduced to the case where either k =n  or 1= n. If k =n, we 
have e~A l = 1, since [A] factors through ~ ,  and the longest element of W, is in 
the kernel of W . ~ , .  Similarly, if l=n, we have etA]=ex=(--1)" and the 
lemma is proved. 

2.3. The sign character of W n is the tensor product of the sign character of ~ ,  
lifted to W,, with the character X, defined in 2.1. 
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Let A =  ( 21 . . . . .  2re+it be a symbol of rank n and defect one. 
\# 1 . . . . .  #m ! 

Let t be an integer, t>max(21, #i). We consider 

fl= { t - i lO<i<t ,  i~e#l . . . . .  ~ }  
{ t - i lO<i<t ,  i#2  x . . . . .  2,.+1 } . 

Then A is again a symbol of rank n and defect one. Its equivalence class is 
independent of the choice of t. 

2.4. Lemma. [-A] | sign = [A]. 

Proof. This can be immediately reduced to a statement on representations of 
symmetric groups, for which we can appeal to [14, (1.7)]. 

2.5. Let A=  ( 21 . . . . .  2m+1 t be a symbol of rank n and defect one. The follow- 
\ ~ 1 '  " ' ' '  #m  ] 

ing formulas follow from the results in [10, (2.8.1), 8.2]. 

a[A] =A[A] (mod 2). (2.5.1) 

(2.5.2) a[A] = inf(2,, 2j) + ~ inf(#i, #j) 
1 <i<=j<=m+ 1 1 <=i<=j<=m 

+ ~ inf(2i ,#i)- lm(m-1)(4m+l) .  
1 <--i<--m+ 1 

l <=j<=m 

(Note that this expression is invariant under shift.) 

(2.5.3) Y[al----2 -a, where  2d+1 is the number of "singles" in A (entries which 
appear in exactly one row of A). 

(Recall that ? was defined in 1.8.) 

2.6. We identify ~r x W, (r+s=n) with the subgroup of I41, consisting of all 
permutations in W, which map {1,2 . . . . .  r} into itself, (hence also map 
{1', 2', .... r'} and { r + l  . . . . .  n, n', .... (r+l) '} into themselves. This is a standard 
parabolic subgroup of IV,. We consider an irreducible representation of ~r  x W s 
of the form e(r)| [A'] where e(r) is the sign representation of ~ ,  and 

(2'1 2"+1) A t  , " ' ' ,  

~#i . . . . .  ~;. 

is a symbol of rank s and defect one. Since m can be increased at our will, we 
may take it so that 2m + 1 > r. We want to associate to A' a symbol A of rank n 
and defect one. We try to define A as the symbol obtained by increasing each of 
the r largest entries in A' by one and leaving the others unchanged. However, 
it may happen that the set of r largest entries in A' is not uniquely defined but 
there are two choices for it. Then the same procedure gives rise to two distinct 

of rank n and defect one. For example, if A '=  " - ,  .(12235 ) and symbols AI, All 

entries in A' a r e "  - - " ,  31[' . 'f] '  hence A=[12246]" - \ ] is defined. If r=2,  the r largest 
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however  r = 3 ,  the r largest entries in A' could be taken as /\|'.235 jx! or  as 

( ' 2 " 3 5 ) .  Accordingly, we have AI= (12346),  An = (13246).  

In general, we have a(e(r)| +a[A'] [ o r  a[Al]=a[An]' as one 

sees immediately from (2.5.2). Moreover ,  by (2.5.3), we have 

_ ~  _ f Y ~ A I  

]}e(r)| J/[A']-- ~or  )~[AI] + ~[Au]" 

2.7. Proposition. With the previous notations, we have 

J~"~ w~ (E(r) Q [ A']) = { ~Ar ][ AI] + [ A,,]. 

The remarks just proceding the proposition, in conjunction with (1.19.2), 
(1.19.3), show that the proposi t ion is a consequence of the following 

2.8. Lemma.  If  A is defined, then [-[A]: r I f  A is not 
defined, then [[Al] : eft) | [A']]~r ~ Ws > 1 and [[An] : eft) | [ A ' ] ] ~  ~ w~ > 1. 

Proof. Assume that  [A'] corresponds to the pair a l ,  a2 of irreducible repre- 
sentations of ~a, ~b (respectively), a+b=s (see 2.1). Similarly, we assume that 
[A] (or [A~], or [Au], if defined) corresponds to the pair z~, r2 of irreducible 
representations of ~ ,  ~a (respectively), e + d = n. We must prove that 

(2.8.1) w, < Index" ~ wo ~ w~ (e (r) | ff 1 | a2" ~)' 

IndW7 ~ w~(Zl |  Z))w, > 1 

where a i, ri are defined as in 2.1, 52- z means if2 @ Z I V V b,, ~iZ means Y2 @ z IW~; 
W~ x W n is identified with the subgroup of W, consisting of all permutat ions in 
141, which map {1, 2 . . . . .  c, c', . . . .  2', 1'} into itself and hence also map 
{c + 1 . . . . .  n, n', . . . .  (c + 1)'} into itself; ~ • W, • W b is identified with the subgroup 
of  W. consisting of  all permutat ions  in W, which map {1, 2 . . . . .  a, a', ..., 1'} into 
itself, {n - b + 1 . . . . .  n, n', . . . .  ( n -  b + 1)'} into itself, {a, a + 1 . . . . .  n - b} into itself, 
hence also map {(n-b) ' ,  .... ( a+  1)',a'} into itself. The  intersection of the two 
subgroups of IV, appearing in (2.8.1) is the subgroup ~ _ ,  x W~ • ~a-b  • W~ of 
W, consisting of  all permutat ions in W, which map {1, 2 . . . . .  a, a', .... 1'} into 
itself, { n - b + l ,  . . . ,  n, n ' , . . . , ( n - b + l ) ' }  into itself, { a + l  . . . . .  c} into itself, 
{c + 1 . . . .  , n - b }  into itself, hence also {e', . . . .  (a + 1)'} into itself and {(n-b) ' ,  . . . .  
( c+ l ) ' }  into itself. (Note that a<c, b<d.) The inner product  (2.8.1) is a sum of 
contr ibut ions (>0 )  from the various double cosets of W, with respect to the 
two subgroups in (2.8.1). It is enough to show that the contr ibut ion of  the 
double  coset of  the identity element is > 1. That  contr ibut ion is an inner 
product  of two representations of  the intersections of these two subgroups. 
Thus, it is enough to show that 

<~(e-a) | al | e(d-b)| a2 Z, 

(~'1 I @c--a )< Wa) | (~'21 ~ d -  b X Wb)>~ . . . .  Wa • ~ . . . . .  Wb ~ 1 
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or, equivalently, that 

( e ( c - a ) |  l, z l ) ~  . . . .  w, " (g(d-b)@~zZ, ~2Z)~ . . . .  wb ~ 1 

or, equivalently, that 

( e ( c - - a ) |  zl)~r o • ( e ( d - b ) |  "gZ)@a b • ~ 1. 

We have 

( e ( c - a ) |  zt)~c , •  ( e ( d - b ) |  z2)ed b•  

as it is well known in the representat ion theory of the symmetric group. This 
completes the proof  of the Lemma.  

2.9. Let Z =  ( z~ z2 . . . . .  Zzm ] be a symbol of rank n and defect one. We 
\ Z I ~ Z  3 , . , Z 2 m _  1 ! 

arrange the z's in such a way that Zo<Z2<. . .<z2m,  Z t < Z 3 < . . . < Z 2 m _  1. We 
say that Z is a special symbol, if the inequalities Zo<=Zt<=z:<=z3<=... 
_-<z2,,_ 1__<z2- are satisfied. This concept is clearly invariant under  shift. The 
following result is immediate from (2.5.2). 

2.10. Lemma.  Let Z be as above. Assume that Z is special. Then 

a [Z]  = ~ (zzi_ 1 - i + 1) (mod 2). 
i = l  

In other words, we have e~z I = ( - 1 )  "lzl (see Lemma 2.2). 

2.11. Assume now that Z is special. Let  ~b be an arrangement  of the 2 d + l  
"singles" in Z into d disjoint pairs and one isolated element, such that each 
pair in �9 contains one single in the first row of Z and one in the second row 
of Z. We want to define what it means for ~b to be an admissible arrangement 
for Z. We use induction on d. If d = 1 there is a unique arrangement,  the empty 
one; it is, by definition, admissible. Assume now that d > 1. An arrangement  q~ 
for Z is admissible if ~b contains a pair of singles (z i < z~) in different rows of Z 
such that there are no singles z' in Z with z i < z ' < z j  and if the corresponding 
arrangement  for the special symbol obtained from Z by removing zi, z~ is 

example, the special symbol " "(012 ) has two admissible arrange- admissible. For  

ments" one of them consists of the pair (0, 1), the other one consists of the pair 

(1, 2). As another  example, the symbol " -(01234 ) h a s 5  admissible arrangements:  

the first one consists of (0, 1), (2, 3) 
the second one consists of (1, 2), (3, 4) 
the third one consists of (0, 1), (3, 4) 
the fourth one consists of (1, 2), (0, 3) 
the fifth one consists of (2, 3), (1, 4). 

2.12. If ~ is a subset of ~b, we denote by 7/* the set of singles in the first row 
of  Z which appear in a pair of ~ ;  we denote by tp. the set of singles in the 
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second row of Z which appear in a pair of W. Let (Zo)* (resp. (Zo),) be the set 
of elements in the first row of Z (resp. the second row of Z) which don't 
appear in any pair of 4. In particular any entry of Z which is not a single is 
in (Zo)* or (Z0) , .  

Let ~ be an admissible arrangement for the special symbol Z as above. For 
any subset ~ we define a virtual representation of IV, (n=rank of Z) by the 
formula 

q')* 
(2.12.1) c(Z, cb, ,~)=,e~,t ( -  1)ec~) 

\ (Zo) , , ,  ~u*~_(~- ~ ) , l  

where e(W)= 1~3c~ W*I. Note that c(Z, 4, ~3) is a sum of 2dterms (d=number  of 
pairs in 4) each of which is +_ an irreducible representation of IV, correspond- 
ing to a symbol of rank n and defect one. The term corresponding to ~u=r is 
[Z] itself; all other terms are of form [A] with A non-special. The c(Z, 4, ~) 
are called the virtual cells of IV,. 

2.13. Consider a virtual cell c(Z, ~, ~) as in 2.12. We define a new virtual cell 
c(Z, ~, ~) as follows. Choose an integer t>z2,  ~. Let 

( { t - i l O < i < t ,  i=I= Z1, Z3 . . . . .  Z2m_ 1} ] 
Z = \ { t - i [ O < i < t ,  i+-Zo, Z 2 . . . . .  z2,.} l" 

This is again a special symbol of rank n and defect one. There is a 1 - 1  
correspondence z,---,t-z between the singles in Z and the singles in Z. Usin_g 
this 1 - 1  correspondence we transport 4, ~ to Z and we get an arrangement ~b 
of Z and a subset ~ of ~. It is easy to see that ~3 is admissible. Using now 
Lemma 2.4, we see that the following result holds 

2.14. Lemma. c(Z, 4, ~ ) |  4, ~). 

2.15. We now consider the standard parabolic subgroup ~ r •  W~ of W, (r+s 

' z ) ZO Z 2 ... 2m 
Z ' =  < < < < < 

t t r 
z 1 z 3 Z2m_l 

= n) as in 2.6. Let 

be a special symbol of rank s and defect 1; we shall assume, as we may, that 
2m + 1 > r. We associate to Z' the special symbol 

Z =  I 
Z 7- 2 ~ Z2m) 

< < < 

Z1 Z3" " "Z2m- 1 

defined by zi=z' i(O<i<2m-r),  z i = z ' i + l ( 2 m + l - r < i < 2 m ) .  Then Z has rank 
n. Suppose we are given an admissible arrangement 4 '  for Z' and a subset ~' 
of  4'. We transport these to Z using the natural bijection z'~--~z i between Z' 
and Z. In the case where r = 2 m + l  or r<2m and Z~m_r<Z~m+X_ r (SO that 
Z, Z' have the same number of singles) we thus get an admissible arrangement 
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~b for Z and a subset 6c~b .  In the case where Zt2m_r~-Zt2m+l_r (SO that Z has 2 
new singles in addition to those coming from Z'), the set of pairs in Z coming 
from those in cb' together with the new pair (z 2 . . . .  Z2m+l_~) from an ad- 
missible arrangement  for Z. It has a subset 6 corresponding to the pairs in 6 '  
(the new pair is not in q~). Using now Proposi t ion 2.7 we see that the following 
result holds. 

2.16. Lemma.  J~,."~ w+(~(r)| ~', ~' ) )=s  ~, ~). 

2.17. Let  Z, ~, ~ be as in 2.12. Let  ~1 be the set of pairs (z i, z) in q~ such that 
zi+z j is odd. Let  q~zcq5 be defined by q~2 = ( ~ w ~ t ) - ( ~ c ~  4,~). We have 

2.18. Lemma.  ( - l )~ tz l ( (c (Z ,  ~, q~))=c(Z, q~, @2) where ~ is defined as in 1.17. 
(Note that the longest element in W, is central.) 

Proof By Lemmas  2.2 and 2.10, the left hand side of the identity to be proved 
equals 

((Zo)*,, % ~(~-  ~')*~ 
~ .  \(Zo).~ ~*,, (~ -  7'),I 

(-- 1)e'a') 

where 

e'(~'):e(~')+ E z,+ Z z,+ Z z,+ 
i odd z ~ ( Z o ) ,  z ~ e t t  t*  

-e (70+ Z zi+ Z zi (mod2)  
z,e'P* z~ etP, 

- e(hu) +[~1 c~ 7q (mod 2) 

=lr ~*J + Ir r~ q'*l 
- - I ~  r ~P*I (mod 2) 

and the lemma is proved. 

z, 
z ,  e(q~ - 7~) ,  

Remark. If, for example z~ - i (mod 2) for all i, we have ~1 = (b and ~b 2 = (b - ~. 

2.19. We now define by induction on n a certain set of involutions (2 ,~W,.  
For  n = 0 ,  we take ~2o=Wo={e }. Assume now that  n > l  and that O s c W  ~ is 
already defined for s<n. We say that weW, is in f2, if and only if there exists a 
part i t ion n=r+s ( 0 < s < n )  and an element zeO+cW~ such that w is either 
equal to W~o r~- z e ~  r x W~c W, (W~o ") is the logest element of ~ r  and ~r  x W~ is the 
s tandard parabolic subgroup as in 2.6) or it is equal to w o �9 (W~o r). z) where W~o')Z 
is as before and w 0 is the longest element of W,. 

2.20. Proposition. The following 3 sets of virtual representations of W, coincide: 

(a) {~w I w ~ . } ,  
(b) {dw I we(2,}, 
(c) the set of virtual cells of W,. 

Moreover, if c(Z, ~, ~)=dw=ew,(W, w'e~2,, Z, ~, ~ as in 2.12), then 

(2.20.1) a[Z] - l(w') (mod 2). 

(2.20.2) v - A [Z]  = l(w) (mod 2). 
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P r o o f  This is obvious when n=0.  Assume now that n >  1 and that the proposi- 
tion is already known for n ' <  n. 

First, we show that if weO, then % is a virtual cell. If  w=w~o~).ze~r 
x W ~ c W ,  (zE(2~, O < s < n ,  r + s = n )  then by 1.20, 1.21 and 1.22 we have 

Wn % =  j ~ • w, (e(r) | a~w~). 

.(w,~ is a virtual cell, hence by Lemma 2.15, c~. is By the induction hypothesis, % 
also a virtual cell. At the same time we deduce from the induction hypothesis 
that (2.20.1) holds for our w. Now let w ' = w o w  where w is the element we have 
just considered. We have 

=(-- 

=(-- 

=(-- 

= ( -  

But as (2.20.1) holds 

1) "w'~ ~(dwow,), by Lemma 1.18 

1) l~w') ~(c~ w | sign), by Lemma 1.1 6 

1) "w') ~(c(Z, 4), 43)| sign), by first part  of proof 

1) "w') ~(c(Z, 4), ~)), by Lemma 2.14 

1) "w')+"r~- virtual cell, by Lemma 2.17. 

for w, we have a ( Z ) - l ( w ) ( r o o d  2). It follows that 

l(w') + a [Z] - l(w o w) + a [Z] + n = l ( w o ) -  l(w) + n + a [Z] 

= l (wo)+n = n  2 + n = 0  (mod 2). 

Thus %, is a virtual cell. We have at the same time verified that (2.20.1) holds 
for w'. We have verified that for all we~?,, ew is a virtual cell and (2.20.1) is satis- 
fied. 

We shall now prove that any virtual cell _c(Z, 4), 43) of W,,, (notations as in 
2.12) is of the form cq~ for some we~2,. We may assume that 0 doesn't occur 
twice in Z. Let t o be the largest entry in Z. If some number i, O<=i<=to, doesn't 
appear in Z, then there is an r > l  such that Zzm_r+ 1 is >1 and appears in Z, 
but z2,,_~+1+1 doesn't appear in Z (which implies r<-_n); let s = n - r .  Then Z, 
4) is obtained from a Z', 4)' for W~ as in 2.15. Moreover, since the number of 
singles in Z is exactly the same as the number of singles in Z', 43 is also 
obtained from a subset 43'c 4)' as in 2.15. By Lemma 2.16, we have 

c(Z,  4), ^ w , , _ r 2 1 5 1 7 4  4), 43')) 

_ w, i  r (w~) -ge~•  ) |  ) , ( zeO, ) ,  by induction hypothesis 

= ~ z" 

Consider now Z, 4) defined with respect to t = t  o as in 2.13. Then 0 doesn't 
appear twice in Z and t o is the largest number in Z. By 2.14 and 2.18, there is 

a unique subset 4)~ 4) such that 

c(Z, 4), 43 )=( -  1) "tzj ~(c(g, 4), ~ ) |  sign). 

If some number i, 0 < i < t  o doesn't appear in Z, then by the previous argument 
we have c(Z, 4), ~ ) =  c~. for some w ' e O , .  Then c(Z, 4), r  "tzl ~(c~ w, | sign) 
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=(-1)atzl+~(w~ wo. If a[Z]+l(woW' ) was odd, C~w, wo would be equal to 
minus a virtual cell. By the first part of the proof it is also equal to a virtual 
cell. But minus a virtual cell cannot be equal to a virtual cell, since a virtual 
cell has a unique component corresponding to a special symbol and that 
component appears with coefficient + 1. It follows that a[Z] +l(wow' ) is even 
and c(Z, ~, 43)= c~ w, wo" 

Thus we may assume that both Z and Z contain all numbers between 0 
and t o. It follows that each of these numbers is a single in Z, hence t o = 2d and 

z = t o ,  2, 4 . . . . .  2d 
\ 1, 3 . . . . .  2 d - l / "  

(This is a symbol of rank n=dZ+d.)  By definition of an admissible arrange- 
ment there exists at least one pair (i, i+  1)~q~. Assume first that (i, i+  1)r Let 
Z' be the special symbol obtained by replacing i+1,  i+2  . . . . .  2d in Z by i, 
i+  1 . . . . .  2 d - 1  and keeping the other entries unchanged. Then (b, 05 come from 
corresponding objects ~', 43' for Z' as in 2.13, and hence 

c(Z, (/,, 43)=J~'~ ,• . . . . .  ( e (2d- i ) |  q)', 43') 
__ j w n  - | . . . .  w . . . . .  ( e ( 2 d - i ) |  

(z~2,_2~+i, by induction hypothesis) 

O~W(o2d- i)z. 

Assume next that (i, i+  1)643. We have 

_e(z, ~, 05)=(-1)~ ~(c(2, 05, 05-$). 

(For our Z, by the remark following Lemma 2.18, we have ( - 1 )  "[zl ~(c(Z, ~b, 43)) 

=s Now ( t o - i - l ,  t o - i ) c ~  hence ( t o - i - 1  , to- i ) (~43-~.  By 
the previous argument it follows that c(Z, 45, q ) - (b )=~  w for some w~? , ,  hence 
s $, 05)=(-1)"[zJ~(%| As earlier in the proof, we see that 
the sign is + 1. Thus, we have proved that each virtual cell of IV, is of the form 
% for some w~?, .  Hence the sets (a), (c) coincide. Under tensor product with 
sign, the set (c) remains stable (Lemma 2.14) while the sets (a), (b) are switched 
among them (1.16). It follows that the set (b) coincides with the sets (a) and (c). 
Finally (2.20.2) follows from (2.20.1) together with 1.14, and 2.4. This completes 
the proof of the proposition. 

2.21. Corollary. Let c be a virtual cell of W,. 7here exist two integers a(c)<A(_c) 
such that a(E)=a(c), A(E)=A(c)  for each irreducible representation E of W, 
which appears with non-zero coefficient in c. I f  w6~2, is such that c=s~w, then 

c = ~  Tr (Tw, E; l ( w ) - A ( E ) +  v) 
2 E 

(sum over all irreducible Q [W]-modules E such that A(E)=A(c)). 

Proof The definition of a virtual cell and the formula (2.5.2) show that a(E) is 
the same for all irreducible E appearing in c with non-zero coefficient. Apply- 
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ing this s ta tement  to the virtual cell c |  and  using L e m m a  1.14, we see 
that  A(E) is the same for all irreducible E appear ing  in c. The  Corol lary 
follows. 

2.22. L emma .  Let  A be a symbol of  rank n and defect one. Then there exists a 
special symbol Z o f  rank n and an admissible arrangement el)for Z such that [A] 
is the component of  c_(Z, ~, 4~) corresponding to a subset ~ c q )  in the sum (2.12.1) 
defining c(Z,  eb, ~). We then have 

(2.22.1) [A] = 2  -a  ~ ( -  1) e'~l c(Z, cb, ~) 
q)cq~ 

where 2d + 1 is the number  of singles in Z, and e'(q~)= I~*c~ ku*l. 

Proof  We may  assume that  d >  1. We take the entries in both rows of  A and 
arrange them in increasing order. We get a monoton ic  sequence of integers in 
which there may  be equalities but  no two consecutive equalities. The first, 
third, fifth, etc. term of this sequence will be the first row of Z while the 
second, fourth, etc. term of this sequence will be the second row, It  is clear that  
Z is a special symbol  of rank n. We can form a sequence of singles in 
A: x 1, x 2 . . . . .  Xg, xg+ 1 such that  x 1 is the smallest single, x a is the next smallest 
single, etc, and such that  x 1, x 2 . . . . .  xg are in the same row of x 1 but  xg+ ~ is in 
another  row. (Not  all singles can be in the same row of A.) Thus we have 
found the pair  of  singles (xg, xg+ 1) in different rows of A such that  there are no 
singles of A in between Xg, xg+ 1. We set x 1 =xg,  X 2 = Xg+ 1- We remove  (x 1, X 2) 

f rom A. We get a symbol  A' with only 2 d - 1  singles. If  2 d - 1  > 3, we do the 
same procedure  for A' as we did for A and we thus find a new pair  (x 3, x4). We 
iterate this procedure  as long as it is possible. We find d pairs, which can be 
regarded as an admissible a r rangement  q~ for Z and it is then easy to see that  
[A]  is one of the componen t s  of  e(Z, ~, q'). (See also the p roof  of  L e m m a  3.4.) 

The formula  (2.22.1) follows immediate ly  f rom (2.12.1). 

3. Lagrangian Subspaces over F 2 

3.1. Let V be a vector  space over the field F a, endowed with a basis 
et ,  e: . . . . .  e2a and with a symplectic form ( , ) :  V x V--*F 2 such that  (el, ej) 

~1 if t i - j j = l  It  is clear tha t  ( , ) i s  non-singular.  If  d > l ,  we consider for 
~o otherwise 

each i, l < i < 2 d ,  the vector  space V~=(e i ) •  of  d imension 2 d - 2 .  It in- 
herits a symplectic form (,)  f rom V, and also a basis e' 1 . . . .  , e'za_ z given by 

' <" ' ' ( i < h < 2 d - 2 ) ,  if l < i < 2 d  eh=eh(h - - t - -2  ), e i _ l : e i _ l  Wei+l,  eh=eh+2 
, < e h = e h + 2 ( l _ h < 2 d - - 2  ), if i=1 ,  e'h=e h ( l < h < 2 d - 2 ) ,  if i=2d.  We then have 

, {10 i f l h - k l = l  
again (e~, ek)= otherwise 

3.2. We define, by induction on d, a family ~ ( V )  of lagrangian ( = m a x i m a l  
isotropic) subspaces of  V, depending on the given basis (ei) of  V. I f  d = 0 ,  we set 
J ( V ) =  {0}. Assume now that  d >  1 and that  J(V~) has been already defined for 
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l < i < 2 d ( w i t h  respect to the basis of V~ described above). By definition, a 
lagrangian subspace C of V is in J ( V )  if and only if there exists i, (1 <i<2d)  
such that eieC and such that the image of C under the natural map 
( e i ) • 1 7 7  is in J(Vi). For example, if d = l ,  J (V )  consists of two 
subspaces; the first is spanned by el, e3, the second is spanned by e 2, e 4, the 
third is spanned by e 1, e4, the fourth is spanned by e 2, e I + e  3 and the fifth is 
spanned by e3, e2+e ~. 

3.3. We now define a function fv: V ~ Z ,  as follows. Any veV  can be written 
uniquely in the form 

V= ~ (el +ei~+l+...Wej,_l) 
1 <=a<=r 

where 1 =< i I <Jl < i2 <Je <. . .  <J, < 2d. We then set 

fv(v) = ~ {c~ I i~ =j~ = 0 (mod 2)} - ~ {a [ i~ =j~ = 1 (rood 2)}. 

3.4. Lemma. Let v~V. Then fv(v)=O /f and only if there exists C ~ d ( V )  such 
that v~ C. 

Proof If (v, eh)#-O for all h, then v is uniquely determined: it is (e2+e3)+(e 6 
+ e v ) + ( e l o + e ~ 0 + . . .  if d is even and it is (el + e 2 ) + ( e s + e 6 ) + ( e 9 + e l o ) + . . .  if 
d is odd. In both cases, fv(v)#O (if s_>-l). It is also clear that such v cannot be 
contained in any C c J ( V ) .  Hence we may assume that d>__l and that (v, eh) 
=0, for some h, and that the lemma is already proved for V h. Then either 
i ~ < h < j - 1  for some ~, (l<c~<r),  o r j ~ < h < i ~ + l - 1  for some ~, (0<co<r), or 
j~=h=i~+l -1  for some c~, ( l<c~<r -1 ) .  (We agree to set j 0 = - 1 ,  i r + l = 2 d + l .  ) 
A simple computation shows that in each of these three cases, the image 
F of v in Vh=(eh)• satisfies fv~(F)=fv(V). Iffv(v)=O, then fv,(g)=0,  hence 
by the induction hypothesis, we have FeC', (C'eJ(Vh)). Then v is contained in 
the inverse image C of C' under (eh)•177 and C is in J(V),  by 
definition of J(V).  Conversely, if v e C ( C e J ( V ) )  then there exists an h such 
that ehsC and C is the inverse image of C'eJ(Vh) under (eh)•177 
The image g of v in V h is contained in C' hence, by the induction hypothesis it 
satisfies fv,(g)=0.  But then fv(v)=fv,(F)=0 and the Lemma is proved. 

3.5. Let f /={veVIfv(v)=O}.  The proof of Lemma 3.4 gives at the same time: 

3.6. Lemma. Let v~V be such that (v, eh)=O for some h, 1 <h<2d.  Then there 
exists C e J ( V )  containing v, e h and v+e h. In particular, we have also v+eheV. 

We shall now prove 

3.7. Lemma. Assume that d> l. Given i, ( l < i < 2 d )  and two elements v, v 'eV 
such that (v, ei)=(v', e~)=l, there exists a sequence of elements v=v l, v 2 . . . . .  v m 
=v' in [.1 and a sequence of subspaces C 1, C 2 . . . . .  C,~_ 1 in J ( V )  such that Vh, 
Vh+ ~ eC h (1 <h <m--1)  and (Vh, ei)= 1, (1 <h <m). 

Proof. When d = 1, we must have v = v'= basis vector e v other then e~, hence the 
lemma is obvious in this case. We now assume d>2 ,  and that the lemma is 
already proved for all Vh(1 <h<2d).  We shall make the additional assumption 
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that  v' is one of  the basis elements el+ 1 or  e~_ 1 and that basis element appears 
with coefficient 1 in v. This will certainly imply the general case, since ei_ 1, 
e~+ 1 (if both are defined) are contained in the same CeJ(V) ,  by L e m m a  3.6. 
To be definite, we assume that v'=e~ 1 hence i > 2  and that e~_ 1 appears with 
coefficient 1 in v. (The other case is entirely similar.) Since veV,, it satisfies 
(v, eh)=0 for some h. Since, by assumption, h=l=i, we are in one the four cases 
below. 

Case 1. There exists h 4=i -2 ,  i - 1 ,  i, i +  1 such that (v, e~)=0. Then v, e~_ ~, e~ 
are in (eh) 1 and their images v, e~_ 1 in V h are not or thogonal  to the image a, 
in ~ .  Moreover  ~ is one of the elements in the s tandard basis of  V h. Applying 
the induction hypothesis to V h, we find a sequence of  elements v=vl ,  v2 . . . . .  
vm=e~_ 1 in (eh) • and a sequence of  subspaces C 1 . . . . .  C m 1 c J ( V )  such that 
each C1 contains e h, v j, v j+ 1 and (v j, ei) = 1, for all j, as required. 

Case 2. (v, ei_ 1)=0. In this case, by L e m m a  3.6, there exists C c J ( V )  such that 
v, e~_ 1 are both in C. 

Case 3. (v, e~_z)=0. Since e i_ ~ appears with coefficient 1 in v, and (v, e~_2)=0, 
it follows that  e~_ 3 also appears with coefficient 1 in v (and, in particular, i>4) .  
We may assume that (v, e~ 3)= 1, otherwise we are in Case 1 and we are done. 
But then we must  have (v+e~_ z, e i _ 3 ) = l + l = 0  hence v+e~_ z satisfies the 
assumpt ion of  Case 1 with h = i - 3 .  (Note  that v+e~ 2~I 7 (by L e m m a  3.6), 
(v + e i_ 2, ei) = 1 and e~_ 1 appears with coefficient 1 in v + e~_ z.) Applying Case 1 
to v+e~_ z and using the fact that  there exists C ~ J ( V )  containing v and 
v + ei_ 2 (see L e m m a  3.6), we are again done. 

Case 4. (v, ei+l)=O. By Lemma 3.6, there exists a C e J ( V )  containing v and 
e~+ ~ and also a C ' e J ( V )  containing ei+ i and e~_ 1- Since (ei+ i, el)= l, we are 
done. The L e m m a  is proved. 

3.8. Proposition. Let x, y--+ [x, y] be a map V x f/-+ F 2 with the following proper- 
ties. 

a) For any xeV, and any C e J ( V ) ,  the function y ~ [ x , y ]  (C-+F2) is F z- 
linear. 

b) For any xeV, y e f /  and ej such that (x, ei)=0,  we have 

( - 1 )tx. ,~ + ( _ l)t~ + ~,, ,1 = ( _ 1 )~' '~ + ( - 1)~ + ~." y~ 

c) For any ye  fz,, we have 

Z ( - 1 )  [~'y]= Z ( - 1 )  (~'')" 
x e V  x ~V  

Then Ix, y]  =(x ,  y) for all xeV, ysP. 

Proof Let us fix x , x ' e V  and e~ such that x '=x+e~,  (x, e j)=0.  Let C e J ( V )  be 
such that  ejeC. Then (ej, y)=O for all yeC,  hence, by b), ( - 1 ) [ ~ ' Y I + ( - 1 )  t~''yl 
= 2 ( - 1 )  (~'r) for all yeC.  It follows that ( - l ) t ~ ' ~ ' l = ( - 1 ) l ~ " Y l = ( - 1 )  (~'yl 
= ( - 1 )  t=''r~, for all y e C  hence [ x , y ] = [ x ' , y ] = ( x ,  y)=(x ' ,  y) for all yeC.  N o w  
let C e ~ ( V )  be such that e~r C. F r o m  b) we have 

( - 1)t*' ~1 + ~. ~) + ( _ 1)~x" y~ + ~. r) = 1 + ( - 1)(e~' y) 
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hence 

(since y --*(e:, 

2 -s ~ ( -  1) t~' yI+ c'' rl +2-*  ~ ( -  1) tx'' y>~x, y)= 1 
yEC yEC 

y) is a linear function on C, not identically zero.) It follows then 
from a) that exactly one of the linear functions y--.[x, y] +(x, y), y ~ [ x ' ,  y] 
+(x, y) on C is zero. Similarly, exactly one of the linear functions y ~ [ x ,  y] 
+ (x', y), y--* Ix', y] + (x', y) on C is zero. Thus there are 2 possibilities: 

1) Ix, y] =(x, y) and Ix', y] =(x', y) for all y e C  (we then say that C is of the 
1st kind). 

2) Ix, y] =(x', y) and Ix', y] =(x, y) for all y e C  (we then say that C is of the 
2nd kind). 

We shall now show that all C e J ( V )  such that ej$ C are of the same kind. 
If this is not the case, we could find C, C 'EJ(V) ,  such that ejr C, efi~C', with 
C of the 1st kind and C' of the 2nd kind. We can find vectors ve C, v'~ C' such 
that (v, e f t= l ,  (v', e~)=l (since ejq~C, ej~C'). By Lemma 3.7, there exists a 
sequence of elements v=v l ,  v z . . . . .  v, ,=v' in ~" and a sequence of subspaces 
C1, C z . . . . .  C,, ~ in J ( V )  such that (vi, e j )= l  (l<i<:m), and vi, v i+teC i 
( l < i < m - 1 ) .  We set C = C  o, C'=C, , .  Then vi~C~_lc~C~ ( l < i < m ) .  Since 
(v i, e~)=l ( l < i < m ) ,  we have e jeC i (O<i<m). Now C o is of the 1st kind and 
C,, is of the 2nd kind. Hence there exists i ( l < i < m )  such that Ci_ 1 is of the 
1st kind and Ci is of the 2nd kind. The vector vi~C~_lC~C ~ will then satisfy 
simultaneously the equations: 

[x, vl]=(x, vl) (since l)iu_ C i 1) 

[x, vii = (x', vi) (since v i ~ Ci). 

It follows that (x, vi)=(x', vi) hence (v~, ej)=(v i, x - x ' ) = O .  This is a contradic- 
tion. 

We have proved that, given any x e V  and ej such that (x, e2)=0, we have 
either 

(3.8.1) Ix, y] =(x, y) for all yelT" 

o r  

(3.8.2) [ x , y ] = ( x + e j ,  y) for all yeV. 

We shall consider three cases for a vector xeV. 

Case 1. x e V  is such that there exist ej4=e k with ( x , e ) = ( x ,  ek)=0. Then the 
function y ~ [ x , y ]  (on ~') must be equal to one of the filnctions y ~ ( x , y ) ,  
y -+(x+ej ,  y) and it must be also equal to one of the functions y ~ ( x ,  y), 
y - + ( x + e  k, y). The functions y - , ( x , y ) ,  y ~ ( x + e j ,  y), y ~ ( x + e  k, y) (on V) are 
distinct, since ~" spans V. It follows that y-- , [x ,y]  is equal to y-~(x ,y )  (on V). 

Case 2. x e V  is such that there exists ej with (x, ej)=0, but (x, ek)= 1 for all k 4=j. 
The vector x' = x  + ej satisfies (x', e j )=0 and also (x', e j+ 1)= 1 + 1 =0. (At least 
one of e j+ 1, e j_ 1 is defined.) Hence, by Case 1, we have [x', y] = (x', y) for all 
yeP. Using now the identity b), it follows that [x, y] =(x, y) for all yel~. 
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Case 3. x 6 V  is such that (x, ej)= 1 for all j. (There is exactly one such vector x 
in V.) Since for all vectors x'~=x, the identity [x ' , y]=(x ,y )  (y~f') is already 
known, the identity c) shows that Ix, y] =(x,  y)for all y~E  

The Proposition is proved. 

4. Some Results on Reductive Groups 

4.1. Let X be a (possibly singular) algebraic variety over ffp whose connected 
components are irreducible, of the same dimension. Deligne, Goresky and 
Macpherson define a canonical complex ~Qt of 1-adic sheaves on X (l= prime 
other than p), defined in the derived category; its cohomology sheaves are 
denoted Jggi(X). (For a definition, see [4], [9, w Let IH~(X) denote the 
hypercohomology with compact support of X with coefficients in ~Qt. 

4.2. We shall apply this construction to the varieties X~ (defined in [5, 1.4]). 
Let G be a connected reductive algebraic group defined over a finite field 
F~=Fp and let F: G--*G be the corresponding Frobenius map. For  each ele- 
ment w in the Weyl group of G, let X w be the variety of all Borel subgroups of 
G such that B and FB are in relative position w. The finite group G r acts 
naturally on X w (by conjugation) and we thus have a virtual representation of 
G r defined by R ~ = ~ ( -  i i 1) H<(X w, Qz) (see [5, 1.5].) Let 3f w be the closure of 

i 

X w in the variety of all Borel subgroups of G. The following result is closely 
related to [9, 4.2, 4.3]. 

4.3. Lemma. )(~ is the union of all X r ( y < w  ) where < is the standard partial 
order on W. The i - sheaf ~ (X~) is constant over each Xy (y < w) and is zero if i is 
odd. I f  B~Xr  (y< w) then the stalks ~ 2 i ( ~ )  satisfy 

~ dim ~ 2 1 ( ~ ) i _  u - e , ,  w(u) 
i 

where Py, w are the polynomials introduced in [8, 1.1]. I f  F " B = B  and if F" acts 
trivially on the Weyl group of G, then all eigenvalues of F" on 9ffEi(Xw) are equal 
to qni. 

Proof. Let B o ~ T o be a Borel subgroup and a maximal torus of G, both defined 
over Fq. We identify the Weyl group of W with N(To)/T o, in the usual way. For 
each weW, let ~b be a representative for w in N(To), let G w = B o ~ B o c G  and let 
G'=Z#-X(G~)cG,  where ~ : G ~ G  is the Lang map s Let 
g: G-~G/B o be the natural projection. Note that both G w and G~ are stable 
under right multiplication by elements of B o. We identify X w with 

n(G'~)cG/B o under g B o ~ g B o g  -1 Then Xw becomes n(G')=n(Gw) G/B o. 
We consider the diagram 

G-7~ -~ - -  G w 

~(G'~) ~(~w) 
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where the vertical maps are locally trivial fibrations with smooth fibre (~B0) 
and the horizontal map is 6tale. The assertions of the lemma about n(G') are 
then a consequence of the analogous assertions about the Schubert variety 

n(G~) which were proved in [9, w 

4.4. The finite group G ~ acts naturally on Xw and on the corresponding 
complex of sheaves ~Q~, hence it also acts on the hypercohomology spaces 
IHi~()(w). Using the filtration of Xw by Xy(y<w) we see that we have an 
equality of virtual (G p, F")-modules 

(4.4.1) ~ ( -  1)iIHic(Xw)= ~ ~ ( -  1)'IH~(Xy, M~2J()~w) ) 
i y<w i,j 

where n is such that F" acts trivially on the Weyl group. Let ]H~()( j  h), 
lHi~(Xy) ~a) be the part of weight h of IHic(X~), IHi~(Xy), i.e. the part on which the 
eigenvalues of F ~ have all their complex absolute values equal to q"h/2(h~7l). 
Taking the part of weight h in (4.4.1), we get an equality of virtual GF-modules 

2 (-- 1)ilHic(Xw)(h)= ~ ~-~-(- 1)'. Py, ~,flH'~(Xy) ~h/z-j) 
i y ~ w  i,j 

where Py, ~, j is the coefficient of u j in Py, ~. But according to a version of the 
Well conjectures, due to Deligne (see [4], [9, 4.4]) we have IHI~(Xj 0 =lHi~()(w). 
(The assumption in [loc. cit.] is verified by )(w, see Lemma 4.3.) Moreover, 
IHi~(Xy)=HIr Ql) since Xr is non-singular. Hence, we have: 

4.5. Lemma. Given weW and he7~, the virtual Gr-module 

( -  1) h Z Z ( -  1) i Py, w,~ H~(X,, Ql) th/2-j) 
y<=w i,j 

is an actual GF-module: it is equal to IH~(Xw). 

4.6. We now assume that F acts trivially on the Weyl group W of G. For each 
virtual ~ [W]-module M, we define (cf. [11, (3.17.1)]. 

(4.6.1) R(M)=[W] -1 ~ Tr(w, M)R w 
w~W 

(an element of the Grothendieck group ~t(GV)| of virtual | 
of G v tensored with Q. It is not in general, in ~t(GV).) We now state some 
simple properties of R(M). 

(4.6.2) <R(M), R(M'))z~ = <M, M') w. 

(This follows from the orthogonality formula for R w [-5, 6.8].) 
Let P be an F-stable parabolic subgroup of G with unipotent radical Up, 

and let Wp be the corresponding standard parabolic subgroup of W. Let M' be 
a virtual ~[Wp]-module. Then R(M') is a well defined element of ~ ( L r ) |  
where L=P/Ue; we regard R(M') as an element of ~(P~) |  (via the natural 
map ~ ( P F ) ~  ~(ff)). We have 

( 4 . 6 . 3 )  Ind~(R(M'))=R(IndW(M')) (in ~(GF)QQ). 
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If p is an irreducible representation of G e, the space of its Ue F invariant vectors 
pVg is in a natural way an if-module. This extends by Q-linearity to a 
homomorphism p~pUf ' :~ (GF)QQ~(LF)QQ.  If M is a virtual Q[W]-  
module, and M IW e is its restriction to Wp, we have 

( 4 . 6 . 4 )  (R(M))V~=R(MI Wp) (in ~(LF)| 

Let D: ~(GF)~:~(G F) be defined by 

(4.6.5) D(p) = 2 (--1) r(e) mae~, -o~,tpV~,p) 
P 

P ~ B o  

where r(P) is the semisimple Fq-rank of P/Up; D extends to a Q-linear map 
D: ~ t (GF) |174  From (4.6.3), (4.6.4) we have for any virtual Q[W]-  
module M: 

hence 

D(R(M))= ~ ( -  1) ~m R(IndwW~,(M[ We) ) 
P 

P ~ B o  

= R ( M |  ~ (--1) r(P) IndWp(1))) 
P 

PD Bo 

(4.6.6) D (R (M)) = R (M | sign). 

The following result is due to Asai [2]; its proof depends on the result of 
[11, 3.9] concerning eigenvalues of Frobenius on Hic(Xw, if)l) and on the recent 
results of Kawanaka [7] concerning lifting for field extensions of odd degree in 
the case of classical groups. 

4.7. Theorem. [2, 2.4.7]. Assume that G=Sp2n, S02n+ l or SO~n. (+ stands jor 
split). Then for any h~77 we have 

(_  1)iH~(Xw, Qt)~h~= ~ Tr (Tw,/~; hi2)R(E) 
E 

(sum over all irreducible Q [W]-modules E.) 

Combining Lemma 4.5 with the previous Theorem we get 

4.8. Proposition. Let G be as in Theorem 4.7, let w~W and let h~77. Then the 
element of ~(Ge) |  given by 

(4.8.1) ( - 1)h ~ ~ ~ Pr, w, j Tr (Ty,/~; h/2 - j )  R (E) 
E y < w  j 

is a linear combination with integral positive coefficients of irreducible repre- 
sentations of G F. 

4.9. Corollary. Assume that G=SP2 ~ or S02~+1. Let c be a virtual cell of 
W=W, and let w, w'~f2~, be such that c = d  w, c |  w, (see 2.20). Let 
A=A~),  a=a(c_), (see 2.21), h=l (w) -A  + v, h'=l(w')-a. Then 

(4.9.1) R(c)+ ~ ~ ~Py, w, jTr(Tr, P~;h/2-j)R(E) 
E y < w  j 

A(E) < A 



Symplectic and Odd Orthogonal Groups Over a Finite Field 285 

and 

(4.9.2) R(c)+ ~ ~ ~Py, w,,jTr(Ty, E| 
E y ~ w "  j 

a(E) > a 

are linear combinations with integral positive coefficients of irreducible repre- 
sentations of G F. 

Proof First note that by (2.20.1), (2.20.2), h and h' are even. It is known [8, 1.1] 
that for y<w, we have Py w j = 0  unless j<�89 moreover, for y<w, we 
have Py, w,j=0 unless j<~(i(w)-l(y)- l)_By 1.9, we have Tr(Ty, E;h/Z-j)=O 

unless h/2-j<_ l(y)-A(E)+v Thus, Py, w, j Tr(Ty, E;h/2-j)4=O implies h/2=j 
- 2 " 

+(h/2-j)< �89 l(y)-A(E)+ v =l(w)-A(E)+ v if y<w and similarly, 
2 2 

h/2<l(w)-A(E)-I  +v, if y<w; or, in other words, that A(E)<A if y<w and 
2 

A(E)<A if y<w. Thus, for our particular h, there are no non-zero terms in the 
sum (4.8.1) corresponding to E with A(E)>A; the non-zero terms correspond- 
ing to E with A(E)=A must have y=w and j = 0 .  Their contribution to the 
sum is 

Tr (Tw, E, l(w)- 2(E)+v)R(E)= R(dw)= R(c). 

A ( E ) = A  

and hence (4.8.1) coincides with (4.9.1). 
The expression (4.9.2) is obtained by applying the operator D to the 

expression (4.9.1) with _c replaced by c| But when D is applied to an 
integral positive combination of unipotent representations (=irreducible repre- 
sentations of G e which appear as components of some Rw), then the result is 
again an integral positive combination of irreducible representations. Indeed, 
by a result of Alvis and Kawanaka (see [1]), D applied to an irreducible 
representation p of G f is ( - 1 )  r~e) times an irreducible representation of G F, 
where P is an F-stable parabolic subgroup of G such that pVf, contains a 
cuspidal representation of Pe/uF e. In our case, r(P) is necessarily even, since 
unipotent cuspidal representations of Sp2,,, SOz,, +1 can only occur for even 
values of n'. (cf. [10].) This completes the proof of the Corollary. 

5.  T h e  M a i n  R e s u l t s  

5.1. Let G=G, be either Sp2 . or S02,+1 (defined over lFq). For each partition 
n = r + s (0 < s < n) we denote by P~, ~ a maximal parabolic subgroup of G which 
is defined over IFq such that the corresponding standard parabolic subgroup of 
the Weyl group is 6 ,  x W~c W,= W(see 2.6); then P~,s has a Levi subgroup Lr, s 
defined over IFq and isomorphic to GL, x G s. 
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The unipotent representations of G. v (i.e. irreducible representations of G e 
appearing in some R w, w~W) have been classified in [10] in terms of symbols 
of rank n and odd defect. 

( T )  Recall that a symbol of rank n and odd defect is a pair A = T" consisting 

of two finite subsets T', T" of {0,1,2,3 . . . .  }, such that [T ' I+IT"I=2m+I ,  
I r ' l - m + l  (rood2), I r " l - m  (mod2), ~ 2+  ~ Ix=n+m 2. There is an equiva- 

a~r' ~T'" (T , )  ..~ (0~(T(,+ 1) ~ and w e 
lence relation on such pairs generated by the shift T" \0_u_(T + 1)! 

shall often identify a symbol with its equivalence class (compare with 2.1 where 
a special case of this notion was considered). Any symbol A of rank n and odd 
defect gives rise to a special symbol Z of rank n, by exactly the same 
construction as in the proof of 2.22: Z is the unique special symbol whose set 
of entries (some of which may be repeated twice) coincides with the set of 
entries of A (union of T' and T", with common elements repeated twice.) We 
shall then set a a=a[Z] .  (Note that, if A has defect 1, we have a a = a [ A] ,  see 
(1.8).) 
5.2. Lemma. There exists a 1 - 1  correspondence A~--+p(A) between the set of 
symbols of rank n and odd defect (up to shift) and the set of unipotent repre- 
sentations (up to isomorphism) of GV, with the following properties. 

(i) I f  Z is the special symbol corresponding to A, a = a [Z] = a A and d = d [Z] 
is such that 2d + 1 is the number of  singles of Z, then 2 a dim (p) -- qa (mod q" + 1). 

(ii) Let A = T" be a symbol of rank n and odd defect. Let t be an integer, 

t>all  entries in A. Let T'={t-ilO<=i<=t, i~r"}  T"={t-ilO<=i<=t, i~r '} ,  and 

let A =  ~,, . This is again a symbol of rank n odd defect and D(p(A))=p(Tl). 

(iii) Let A' be a symbol of rank s and odd defect. We associate to A' a symbol 
A (or two symbols A i, An) of rank n by increasing by 1 each of the r = n - s  
largest entries in A' (we may assume that A' has > r entries), as in 2.6, where the 
case of symbols of  defect 1 was considered. (The discussion in 2.6 is applicable in 
the present, more general case.) Then 

ind~2.s(St,|  p(A)+~ 
or p(Ai) + p(An) + 

where z is a Z-linear combination of representation p(Ai) such that aa >a a (or 
aa, > aai-----aa,l) , and St, is the Steinberg representation of GL,(Fq). 

Proof. The description of unipotent representations given in [10] is in terms of 
irreducible representations of certain Hecke algebras of type Bl(l<n ) arising as 
endomorphism algebras of a representation induced by a unipotent cuspidal 
representation of a parabolic subgroup. That description allows one to reduce 
(ii), (iii) to statements about representation of Weyl groups of type Bt(l<n ) 
which follow from 2.4, 2.7 respectively. (i) follows from the explicit dimension 
formulas of [10]. 
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We have: 

5.3. Lemma.  For any unipotent representation p of GF. there exist integers 
d=d(p)>O, a=a(p)>O, such that 

(5.3.1) d+d 2 <=n 

(5.3.2) 2 d dim (p) -= qa (mod qa + 1). 

Let a(n) be the largest integer such that a(n)+a(n)2<=n. I f  q > 2  ~t") then the 
conditions (5.3.1), (5.3.2) determine d(p), a(p) uniquely. 

Proof The existence of s(p), a(p) follows from Lemma  5.2. We now prove 
the uniqueness statement. We assume that d, d'<a(n) and 2aD=-q ~ (mod qa+ 1), 
2d 'D=q "" (modq"'+~), where D is an integer. If q=p~ (p odd), the p-adic 
valuation of D is a e = a ' e ,  hence a =a ' ;  but  then 2 d -  2 d ' -  0 (mod q). Since 
0 < 2  d, 2a'<q, it follows that 2d=2  ~" hence d=d'. If q=2 e, the 2-adic valuation 
of D is a e - d = a ' e - d ' ,  hence d - d '  is divisible by e; but O<=d, d '<e by assump- 
tion, hence d = d' and a = a'. 

5.4. Lemma.  (a) I f  A is a symbol of rank n and defect one, then 

f~alA] (mod qalA]+l), if  A is special 
dim R [A] - - (mod q,ta]+ 1), if A is non-special. 

(b) I f  c is a virtual cell of W, then 

dim R [c] -= q, tCl (mod qalcl+ 1). 

Proof (a) follows from [10, 2.70) ] and (b) follows from (a). 

5.5. Lemma.  Let Z be a special symbol of rank n with 2d + 1 singles, let ~ be an 
admissible arrangement for Z and let ~, ~' be two subsets of  cb. Let c 
=c(Z ,  ~0, q3), c ' = c ( Z ,  ~, ~'). Then 

~2 a, 
(R(c), R(c'))Gr = (0, 

Proof Using (4.6.2), we have 

(R(c), R(_c))o~ = (c, _C')w " 

if q3 = 43' 

if 4~ 4= ~'. 

= ~ (--1) f(~) 

where f ( g 0 = l ~ * n ~ * l + l ( ~ ' ) * n ~ * l = l J n ~ * l ( m o d 2 )  and J= (~*u (43 ' ) * )  
Z (~* n (q3')*) = #*. If 43 = #, then J # 0 and so f ( ~ )  = 0 (mod 2) for all ~u = ~. If 
# # # ' ,  then J # 0  and d > l ,  and so [Jr~(~0- ku)*l is even for 2 a-1 values of  7 j 
and is odd for the other 2 d- 1 values of ~. The L e m m a  is proved. 

5.6. Theorem. Let c = c ( Z ,  ~, q3) be a virtual cell of W,. Let a=a(c ) ,  be defined 
as in 2.21 and let d=d(_c) be such that 2 d + l  is the number of singles in Z. 
Assume that q > 2  2*t") (a(n) is as in Lemma 5.3.) Then 

2 a 

R(_O= X p, 
i = 1  
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where Pi (i <i<=2 d) are distinct unipotent representations of G~ satisfying a(pl) 
=a, d(pi)=d. 

Proof. We may assume that the theorem is already proved for all virtual cells 
c' such that a(c_')>a or such that a (c ' )=a  and d(c')<d (if such _c' exist.) Let 
Pl, P2 . . . . .  Pt be the set of all unipotent representations of G, v (up to isomor- 
phism) such that (Pi, R(c))4:0 and (pi, R[c'])=0 for any virtual cell such that 
a(c')>a, (1 <i<t). If A is any symbol of rank n and defect 1 such that a[A] >a, 
then [A] is a Z-linear combination of such virtual cells c' (see Lemma 2.22) 
hence (pi, R[A])=O ( l < i < t ) .  Taking inner product with the actual repre- 
sentation ~ of G, v given by (4.9.2), we see that n~=(p~, R(c)) is an integer >0, 
and being 4:0, it is an integer >0, ( l < i < t ) .  We now show that a(&)<a 
(1 < i <  t). Indeed, on the one hand, from Lemma 5.2 we compute explicitely the 
number N of unipotent representations p satisfying a(p)>a: it is equal to 

22d(z), sum over all special symbols Z of rank n with a(Z)>a. On the other 
Z 

hand, let us fix for each such Z an admissible arrangement q~z. Then, when 
runs through the subsets of ~z, we get 2 d(z) representations R(c(Z, ~z, ~)) to 
which our induction hypothesis applies; these representations are disjoint and 
each contain 2 d(z) distinct irreducible components p each satisfying a(p)=a [Z], 
(see Lemma 5.5.) Thus, the number of unipotent representations p which satisfy 
a(p)>a and appear in some R(c') with a(c')>a is at least equal to N. We 
conclude that all unipotent representations p satisfying a(p)>a must appear in 
some R(c') with a(c ' )>a  and therefore cannot be in the set {Pl, P2 . . . . .  P,}- 

Next, we assume that min a(p~)=a'<a; we shall reach a contradiction as 
follows, a -(i__, 

We may assume that this minimum is reached precisely for Pl, P2 . . . . .  Pt, 
(t' < t). We shall consider the dimension of the G,F-module ~ given by (4.9.2), in 
two different ways. On the one hand, using Lemma 5.4, we see that 

dim ~ = qa(mod qa+ 1); 

on the other hand, by the induction hypothesis, all irreducible representations 
p appearing in ~ ,  which are different from Pl . . . . .  P, satisfy 
2 ~(") dim p -  0 (mod q~ + 1) and in particular, 2 ~ dim p = 0 (mod qa,+ 1). Also 
2~( ' )d impi -0  (modq "'+1) for t '<i<t and 2d(P')dimp~=q ~" (modq a'+l) for 
1 < i < t'. Hence 

It follows that 

t" 

2 "(") d i m ~ - -  ~ 2 d(") d(P')nlq'C (modq a'+l) 
i = 1  

------0 (mod qa'+ 1). 

t" 

2~(")-d(P*)ni=-O (mod q). 
i = l  

Therefore, if t' > l, we must have 

t" 

2~(")-d(P') ni >= q. 
i = 1  
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On the other hand by Lemma 5.5, we have: 

i n2<=(R(c), R(c)) =2 a 
i=1  

hence 
t' 

q < 2  "(") ~, n i<2  "~"~ ~ n{<2"~")+a<22~(") 
i - 1  i = 1  

a contradiction. 
We have thus proved that a(p~)=a for i=1 . . . . .  t. 
Next we show that d(pi)>d, ( l < i < t ) .  Assume that d(pi)<d, for some i, 

1 _<i___t; we have also a(p~)=a. As before, we can count explicitely the number 
of unipotent representations p of G, v satisfying a(p)=a, d(p)<d: it is given by 
v = ~ 2  za(z), sum over all special symbols Z of rank n satisfying a(Z)=a, 
d(Z)<d. On the other hand, as before, for each such Z we can construct 2 d~z~ 
representations R(c(Z, ~z, q3), (~z fixed) to which our induction hypothesis 
applies, so we see that the number of unipotent representations p which satisfy 
a(p)=a, d(p)<d and which appear in some R(c') with a(c')=a, d(c')<d, is at 
least equal to v. We conclude that all unipotent representations p satisfying 
a(p)=a, s(p)<s must appear in some R(c') with a(c')=a, d(c')<d. In particular, 
our Pi must appear in some R(c') with a(c')=a, d(c')<d. The inner product of 
the actual representations R(c'), ~ is strictly positive since p~ is a component of 
both. On the other hand, R(c') is clearly orthogonal to all terms of the sum 
(4.9.2) defining ~.  This contradiction shows that s(p~)>s for i=1  . . . .  ,t. We 
now consider, as before, the dimension of ~ in two different ways. On the one 
hand, d i m ~ - - q "  (modq"+l). On the other hand, as we have seen, we have 
2~" )d im(p) -0  (modq ~+~) for all irreducible components p of ~ other than 
Pl, P2 ..... Pt, and 2a(O') dim(pi)=-q a (modq "+1) for 1 <_iNt. Hence 

2 ~l") dim ~ - i 2~")-a~P') ni q~ (mod q"+ 1) 
i = 1  

= 2~,)q~ ( m o d  q . +  1). 

It follows that 

(5.6.1) 2 ~")- ~ 2"{")-a~P')ni=O (modq) 
i = 1  

The left hand side of (5.6.1) cannot be >0  for then it is >q, hence 2"~")>q, a 
contradiction. We have 

2 ~")-nw') n~< 2 ~")-a n~ (since d(p~)>d) 
i=1  i=1  

< i 2~")-a n2 
i=1  

< i 2~(")-a' 2a 
i = 1  

= 2a(n) 
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hence the left hand side of (5.6.1) is >0.  Therefore it must be equal to 0; it 
follows that the last 3 inequalities are equalities so that d(pi)=d for all i, 

' i 1 < i <  t, and ~ n i = n~ = 2  d i.e. n i = 1 for all i and t =  2 d. Since (R(c), R(_c))G~ 
i=1  i = l  

2 a 

= 2  d, we must then have R(c)= ~ Pi. The theorem is proved. 
i=1 

5.7. Let Z be a special symbol of rank n, and let Z a be the set of singles of Z;  
let d be defined by 2 d + l = l Z l l .  We can write ZI=Z*.t_L(Z1) , ,  where Z* is 
the set of entries of Z 1 appearing in the first row of Z and ( Z 0 ,  is the set 
of entries of Z~ appearing in the second row of Z. We have [ Z * f = d + l ,  
I(Z0,l=d. Let Z 2 be the set of elements which appear in both rows of Z. 

Thus, Z =  \ Z 2 ~ ( Z 1 ) , ] .  

Let 6a z be the set of all symbols of rank n and odd defect which contain the 
same entries as Z. There are exactly 2 2~ such symbols, one for each subset 
M c Z  1 such that [ M l = d ( m o d 2 ) :  the symbol corresponding to M is A M 

=~Z2-u-(ZI-M)~-- If  we associate to M the set M * c Z  1 defined by M* 
\ Z  2 3-.I.M ] 

= M u ( Z 1 ) , - ( M ~ ( Z O ,  ) we get a 1 - 1  correspondence AM*-~M # between 6az 
and the set Vz, of subsets of Z1 of even cardinality. The set Vz~ has a natural 
structure of F2-vector space of dimension 2d: the sum of M~ and M~ is 
defined to be ( M I ~ w M ~ ) - ( M ~ n M ~ ) .  This allows us to regard 6:  z as an F 2- 
vector space of dimension 2d. The 0 element is Z itself. (Indeed, (Z1), ~ =O.) 

The vector space Vz, has also a natural non-singular symplectic form 
(,): Vz~ x Vz--,,F2: it is given by 

(M?,  M2*)=IM~ n M ~ l  mod 2. 

We shall regard this also as a symplectic form on 5@ via the bijection 
Vz,. 

The vector space Vz~ has a natural basis e~ . . . . .  e2d defined as follows: we 
arrange the elements in Z~ in an increasing sequence; then e i is the subset of 
Z1 consisting of the i-th and ( i+ 1)-th elements in this sequence. It  is clear that 

1 if l i - j l  = 1 
(ei, ej)= 

0 otherwise 

Thus Vz, (hence 6:z) is a symplectic vector space of the kind considered in 
3.1. 

The corresponding subset Vz, ~ Vz~ (see 3.5) consists of the subsets M* c Z 1 
such that [ M * n Z ~ I = I M * n ( Z O ,  I, or equivalently, of the subsets M * ~ Z  1 
such that IMl=d.  

In other words, fez, corresponds to the subset of 6: z consisting of all 
symbols of defect one. 

The lagrangian subspace in J (Vz ,  ) (see 3.2) are in 1 - 1  correspondence 
with the admissible arrangements ~ for Z:  the lagrangian corresponding to 
is: {TJ, a_tTJ*t~Pcq ~} c Vz,. Under the bijection Vz,~--~Se z this lagrangian becomes 
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the set of all 
( (Zo)*  , , v ,  , , ( ~ -  v ) *  I ~ , ~ z ,  (q' = q'). 
\(Zo),,, q' , , ( ~ -  t/,),: 

Any subset 43c ~, gives rise to an Fz-linear form on this lagrangian, sending 
the element corresponding to 7 j to I ~ * c ~ * l  mod2~F2. This gives a 1 - 1  
correspondence between subsets of ~b and linear forms on the corresponding 
lagrangian. 

We can now state 

5.8. Theorem. Let G=G n be either SP2 n or S02n+1 (defined over lFq). Let Z be 
a special symbol of rank n, and let d = d [ Z ]  be as in 5.2. Assume that q>22a(n) 
where a(n) is defined in Lemma 5.3. Then 

1) For any AeSPz of defect one, we have 

(5.8.1) R [ A ] = 2  -a ~ (--1)(a'a')p(A ') 
A "  ~,9~ 

where (,) is the symplectie form on 5" z described in 5.7. 
2) Let ~q~ be the subspace of 5,~z corresponding to a lagrangian subspace in 

J(Vz, ), and let ~: s ~ F  2 be a linear form. Then 

(5.8.2) ~, (-1)r = Z p(A'). 
A E SF A " ~ .9~ 

~ = (  , A ' )  on.L, ~ 

Remark. By the discussion in 5.7, the left hand side of (5.8.2) is of the form R(c) 
where c is the most general virtual cell of W,. 

It is clear that (5.8.1) implies (5.8.2). Conversely, (5.8.2) implies (5.8.1) by 
Lemma 2.22. 

5.9. Corollary. We preserve the assumptions of 5.8. Let A'~5#z and let w~W,. 
Then 

(p(A'), R~)G~ =2  -a ~ ( _  1)tA, A')tr(w, [A-l). 
Ae5~z 

of defect one 

5.10. We shall now prove Theorem 5.8. We may assume that n >  1 and that the 
theorem is proved for G,, n'< n. We may also assume that 0 doesn't occur 
twice in Z. Let t o be the largest entry in Z. 

A) If some number i, 0 < i < t o doesn't appear in Z, then Z is obtained from 
a special symbol Z' of rank s <n  by increasing each of the r largest entries of 
Z' by 1 ( r=n- s ) ,  and this set of r largest entries is unambiguously defined. 
There is a unique order preserving bijection between the set Z 1 of singles of Z 
and the set Z' 1 of singles in Z'. This gives rise to a bijection, h: 5gz, ' ~ 5Pz, which 

preserves the symplectic forms and the subsets of symbols of defect 1. Let 
A'e~zl and let A" be a symbol of defect 1 in 5Pzl. By 5.2(iii), we have 

Ind~"~ p (A') = p (h (A')) + combination of p with a (p) > a = a [Z]. 
r ,  

By Theorem 5.6, all components of R[h(A")] are of form p with a(p)=a. It 
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follows that 

(R [h(A")], p(h(A')))G~ 
= (R r h ( A " ) ] ,  G~ IndT~. (St~ | p(A')))~ 
= (R [h(A")] v~r. s, St, | p(A'))LV, s 

= (R[h(A")] ~ , x  Ws] , St,| s (by (4.6.4)). 

It follows from 2.7 that [h(A")] I ~ ,  • W~ = e(r) | [A"] + combination of irre- 
ducible representations E with a(E)<a. Using again Theorem 5.6, we see that 
the last inner product is equal to 

( R(e(r) | [A"]), St, | p(A ' ) )L~ ,  ~ 

= (St, @ R [A"], St, | p(A'))LV,, 
= (R [A"], p(A'))~ 

= ( - 1 )  tA'''a'~ 2 -d (by the induction hypothesis). 

= ( _  1)(h(a").h(a')) 2- a" 

Thus, we have 2 zd distinct irreducible representations of G, v which appear 
with coefficients +2  -d in R[h(A')] .  Since (R[h(A")],  R [ h ( A " ) ] ) = I  there can- 
not be other irreducible representations appearing in R[h(A")], and the Theo- 
rem follows for our Z. 

B) Assume now that 2 (defined with respect to t = to) has the property that 
some i, 0 < i  < t o doesn't appear in 2. Then the Theorem is true for Z. We shall 
deduce from this that it is also true for Z. We have a natural (order reversing) 
involution z~--~t-z between the sets of singles in Z and in Z. This gives rise to 
the bijection A,--,A between 5ez and 5 z which preserves the symplectic forms 
and the subsets fo symbols of defect one. 

Let A be a symbol of defect 1 in Sf z. We have 

R [ A ] = 2  -a ~ (--1)(A'~')p(A'). 
A' r 

We apply the operator D (see 4.6.5) to both sides of this equality. Using (4.6.6), 
(5.2(ii)) and the identity (A,A')=(A,A'),  the required identity (5.8.1) for A 
follows. 

C) I f Z  is in neither case A) or B), then to=2d 

[ 0,2,4 . . . . .  2d 
Z = \ l , 3  . . . . .  2d-1]" 

We can still apply the method of A) to get information on the multiplicities 
(p(A'), R [ A ] )  for Z, starting from information for smaller groups. We obtain 
the following weaker result: Let A', A " e ~  z be such that for some j, (1 <j<2d), 
we have that j -  1,j are in different rows of A' and A" is obtained from ,t' by 
switching j with j - 1  and leaving the other entries unchanged. Let As6P z be of 
defect 1. Then 

(5.10.1) (p(A')+p(A"),R[A])~K=2-d((--1)(A"A)+(--1)(A'"A)). 
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Now, let cb be an admissible arrangement for Z. The 2 ~ representations 
R(c(Z, cb, ~)) of G,V(~m cb) are disjoint (Lemma 5.5) and each contains precisely 
2 ~ unipotent representations (with multiplicity one). These must be of the form 
p(A'), A'eSP z, since all other unipotent representations of G, v are already ac- 
counted for by A) and B). It follows that, for cb and A'sS~ z fixed, p(A') has 
multiplicity one in R(c(Z, 4~, ~0)) for a unique ~0~4~ and has multiplicity zero 
in R(c(Z, ~b, ~)) for all ~mq~, ~ + ~ o .  Hence, if A~, is a symbol of defect I, such 
that [A~e] is the component of c(Z, cb, ~), corresponding to ~umq~ in the sum 
(2.12.1) defining c(Z, ~, ~), we have: 

(5.10.2) 

In particular, we have 

<p(A'), R [As.] )a~ = 2 -d(_ 1)1~*1.  

<p(A'), R [ , t]  >G~ = ( -  1) [A'' A]. 2 -a, 

where [A', A]6F  2 is an unknown function. If we identify 5P z with the symplec- 
tic vector space V z (see 5.7) then the function [A' , , t ]  becomes a map V z 
x Vz--,F2. This map satisfies the conditions of Proposition 3.8. Indeed con- 
dition (b) is just (5.10.1), condition (a) follows from (5.10.2). Finally condition 
(c) is the equality. 

(5.10.3) <p(A'),R 
A'eSaz 

={20a if A = Z  
if AESPz, A ~:Z, of defect one. 

The left hand side of this equality can be written 

< ~ p(A'), R[A])G~= ~ <c(Z, eb, ~), R[A])G~ (for a fixed ~b). 
A' e,~z ~ m ~  

= <2dR [Z],  R [A])G~ 

which is the right hand side of (5.10.3). We may therefore apply Proposition 3.8 
and get the formula [A', , t] = (A', A). The Theorem is proved. 

6. An Application 

6.1. We preserve the notations in 5.7. In addition, we shall assume, as we may, 
that the special symbol Z (of rank n) has 2 m + l  entries where m - n  (mod 2). 
To the symbol 

"4M = \Z 2.ELM 

(M=Z1, tML-d (rood 2)) we associate the symbol AM,~Se z where 
M'=M~vaZ(Z 1-M)odd (i.e. the set of even entries in M union odd entries in 
Z 1 - M ) .  Note that M ' ~  Z 1 satisfies again ]M ' I -d  (mod 2) since 

]M] + [m'l = I(Z1)oddl = ~', Z -- (sum of all entries in Z) = n + m 2 - 0 (mod 2). 
z~Z1 
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6.2. Lemma. With the notations of 6.1 and the assumptions of 5.9, we have 

(P(AM), Rw)G~ = (-- 1) atzl (p(AM,), Rwow)G~ 

for all we I41,. 

Proof. Using 5.9 and the formula Tr(wow,[Ap])=etAp~ Tr(w,[Ae]), (PcZ1,  
[Pl=d) we see that it is enough to show that 

( __ 1 ) ( a e ,  AM) = ( __ 1)atz~(_ 1 ) ( a e ,  AM,) ~[AP] 

for any PcZ1 ,  ]P]=d. 
But this follows immediately from definitions and from 2.2, 2.10. 

6.3. Theorem. We preserve the assumptions of 5.8. Let h be an integer, and let 
A~6SPz (M~Z1,  [ M [ - d  (mod 2)) be as in 6.1. Then the multiplicity of p(AM) in 
the virtual Gt-module Z(--1)iH~(Xwo )(h) (=part of weight h) is equal to 

a[Z]+A[Z] (where Z is as in 6.1) and [M'l=d ( -  1) ~tzj dim JAM, ] if h = v 2 
(see 6.1); otherwise, it is zero. 

Proof. By 4.7, this multiplicity is given by 

Tr (Two, E; h/2) (p(AM), R(E))G~ 
E 

(sum over all irreducible Q[WJ-modules E). If the term corresponding to E is 
a(E)+A(E) 

non-zero, then, using 1.11 and 5.8, we have h=v (since 
2 

Tr(Two, E; h/2)4:0) and a[Z] =a(E), A[Z] =A(E) (since (p(AM), R(E))6~4:0 ). 
a [Z] + A [Z] 

Hence the multiplicity is zero unless h=v . Hence the multi- 
2 

a [Z] + A [Z] 
plicity for h=  v -  2 is equal to the sum of multiplicities over all h, 

i.e. to (p(AM), Rwo)~. By Lemma 6.2, the last inner product is equal to 
(-1)~tZl(p(AM,), Rx)G~ .. It remains to use the formula 

= ~dim JAM, ] if IM'I = d  
(P(AM')' RX~GV" ~0, otherwise" 

6.4. Remark. It seems likely that for A M as above such that IM'I =d, we have 
i (p(AM), Hr 4= 0 if and only if i = 2v - A [Z]. 

6.5. According to [11, 3.91, to each unipotent representation p of G~ (as in 5.8) 
one can associate a sign 2p= _1 such that, whenever p is contained in a 
generalized eigenspace of Frobenius F: ~ H~(X~)~H~(Xw), the corresponding 
eigenvalue of F is of the form 2p. qk, where k is an integer. It also follows from 
[11, 3.331 that, if p=p(AM) (McZ~,  I M I - d  mod 2), as in 6.1, then 2p depends 
only on the integer �89 We shall prove the following result (which was 
proved in a different way in [2, 2.5.31 assuming the conjecture [11, 4.31.) 
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6.6. Proposition. With the previous notations, and assumptions of  5.8, we have 
2p __ ( _ l)�89 

Proof. The Frobenius map  F :  Xwo--*Xwo has no fixed points. Therefore, the 
fixed point  formula, together with 6.3 shows that 

a[Zl + AtZ] 

~ ( -  1) "tzl dim [AM, ] 2e(A~,)q~ 2 dim p(AM) = 0 
Z M 

(the first sum is over all special symbols Z of rank n, up to equivalence, the 
second sum is over all subsets M cZ1 ,  [M[ = d ( m o d 2 )  such that  [M'l =d ,  see 
6.1.) 

It is enough to show that the same identity holds with J~p(AM) replaced by 
( - 1 )  ~(IMI-d), for then the desired formula would follow by induct ion on 
�89 Moreover,  it is enough to prove this identity with q replaced by 
( - q ) .  Under  this change, ( - 1 )  atz] dim p(AM) becomes dim p(AM, ). Thus, we 
must  prove 

a[Z] + A[ZI 
~" ~" ( -  1)HMI-d)dim[AM,] (--q)~ 2 dim p(AM,)=O 
Z M 

(the summat ion  is as before). 
A direct computa t ion  shows that  

a[Z] + a[Z] 
( _  1)~(IMI-a)+v 2 ----eAM, " (-- 1)". 

Hence the identity to be proved is 

a(E) + A(E) 

(-- 1)" ~ e E dim(E) q~ 2 d im(pE)=0  
E 

(summation is over all irreducible Q[W ]-m odu l e s  E) where PE is the irreduc- 
ible principal series representation of  G, v corresponding to/~. 

But this identity simply expresses the fact that, in the s tandard repre- 
sentation of  the Hecke algebra H on the space of  functions on complete flags, 
the trace of Two is equal to zero. 

This completes the proof. 
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