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If u(x ,y)  is a bounded harmonic function on the upper half plane and 
lim u(x, Yo)= a for some Y0 > 0, then lira u(x, y )=  a for any other positive y. This 

X ~  x ~ o c ~  

fact easy to prove by classical methods is also a consequence of the Wiener 
Tauberian theorem and the fact that the Fourier transform of the Poisson kernel 
never vanishes. 

By studying the commutat ive algebra of radial integrable functions on the 
Heisenberg group, to which the Poisson kernel for the Siegel domain 

belongs, we obtain a similar result for bounded harmonic functions in D r. Using 
the Cayley transform, this becomes a property of tangential convergence for 
bounded harmonic functions on the balls in (E r+l along appropriate surfaces. 

Heisenberg Groups 

Let H r be the Heisenberg group, i.e. H r = C r •  IR with the multiplication given 
by 

(z, t)(w, u ) = ( z + w ,  t + u + 2  Im(z ,  w)), (1) 

where z = ( z  1 . . . . .  zr), w = ( w  I . . . .  , wr), t ,u~IR and 

( z , w ) =  ~ zj.~7~. 
j = l  

i 
Abusing slightly the notation, we write d z d t  instead of ~(dz /xd2)d t  for the 

differential of the Lebesgue measure on ~r  • IR, which is the Haa r  measure on 
H r �9 

I'~fi~fi_O01 [~/~f i / f iN6")/A".19 S / ~ f l t  ,'t1~ 
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Bargmann Representations 

For a real non-zero 2 let ~r be the Hilbert space of entire functions F on C" 
such that 

is finite. The 
functions 

Jr e -  21xl Izl ~ iF(z)[2 dz = I21-~IIF l l~  

n i n monomials z"=zl  . . . z#,njcN,  are orthogonal in ~ and the 

q~,(z)=(n .) (212[z)" (n! =n  1 !... n, !) (2) 

form an orthonormal basis for ~ x .  
The group H r acts on ~ a  for positive 2 by 

U ~ F(w)=e-iat+~2<~'z>-I~F)F(w-z) (3) ~z,t) 

and for negative 2 by 

U~,,)F(w) = e-Jar- a~2<w,~>-I~l~)F(w_-~). (4) 

For 2 = 0 we get the 1 dimensional representations 

X ~ ( z ,  t ) = e  -IR~<z'~>. (5)  

These are the irreducible unitary representations of H~ up to equivalence. 
Forf~L~(Hr) and 2=#0 we write U~ for the operator Jf(z, t)U~,odzdt. 

Algebra of Radial Functions 

This algebra, which is crucial to all what follows, has been investigated before 
and various facts about it and its relation to the Szeg6 kernel can be found in 
[3, 4]. For 0=(0 a . . . .  ,0r), 0jER we define an automorphism % of H~ by 

%: (z, t)~(ei~ t), 

where 

We have 

eiO z = (e i~ z l . . . .  e i~ Zr). 

A __ -I U~.,o=.t)-Ao U~z,t)A o for 2 > 0 ,  

U~e.Oz..=AoUr 1 for ,t<0, 

where AoF(z)=F(ei~ Also, for 2=0,  

xw(ei~ z, t)=)G-,ow(z, t). 

We say that a function f on H, is radial, if 

f (z ,  t)=f(ei~ t) for all 0. 

(6) 
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In virtue of (6), i f f  is radial, the operators U), 2 4: 0, and A o commute and, since 

A ~;,__oi(O,n).,h2 
O W n  - -  ~ W n ,  

we have 

U}~b, ~ =f(2,  n)~b, ~, where f()~, n)er  (7) 

Also, for 2 = 0, we write 

fi(0, p)=~f(z, t)Zw(Z, t)dzdt, where p--(lw~l, ..., Iw, I). (8) 

Let ~r denote the space of radial functions in L ~ (H,). Since ~0 are automor- 
phisms of H,, ~r is a closed *-subalgebra of L I(H.). Formula (7) shows that the 
algebra ~ '  is commutative. Since L~(H,) is symmetric [7], the *-subalgebra ~r is 
also symmetric. 

Proposition 1. All non-zero multiplicative functionals on dare  either of the form 

(a) f~ f (2 ,  n) as in (7) 

or of the form 

(b) f--,J*(0, p) as in (8). 

Proof. Let $ be a non-zero multiplicative linear functional on d .  Since d is a 
symmetric ,-subalgebra of L~(H,) there exists an irreducible *-representation 
n of LI(Hr) and a unit vector ~ in the Hilbert space ~ such that n:~=~k(f)~ 
for f in d .  If ~ is one-dimensional, then $ has the form (b). Otherwise n = U ~ 
for some ,~4:0 and ~ = ~ .  Since {U):f~i} is a ,-algebra of operators which 
are diagonal on the basis q~, we have ~ = ~b~ for some n and (a) follows. 

Proposition 2 (cf. [8]). I f  f ~ d ,  then 

f(2, n)=Sf(z,t)e-la'e -Izjl'l' f i  L,,(21211zal2)dzdt, (9) 
j - - 1  

where L k is the Laguerre polynomial of degree k, that is 

k k ( - x )  j 

Proof By (7), for 2 > 0 

f(2, n)=2"Sf(z,t)e -ia'+at2<w''>-I'l=) (&(w-z)dp,(w)e ~ a - 2 ; . I w ]  2 dzdtdw. 

Thus it suffices to evaluate 

r 2 2 ( w  z'> 2 )~ ~e ' (a.(w-z)(9~.(w)e-Z~lwl~dw (10) 

(22) j"l+" (S,(22)1Pl p 
-n]Tz~ ~ \ , - - ~ .  w 2P)(~(~)(-1)lqtw"-~zq) ~"e-zzlw'2dw 

-(22)["I+'S'(-2'~)tP' ( ; )  ]LI [zjj2pJ~e-ZX'~'2fi [wjj2"~dw, 
n T Tz r ~-~ p l 

�9 �9 j = l  j = l  
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since for m:~n ~wm~"e-ZZl~12dw=O. Because 

7~nj ! = S [w j[ 2n.t e -  221w.'12 d w  j, 
(22),,+ 1 

(10) is equal to 

n r 

For 2 < 0  the calculation is the same, and thus Proposition 2 follows. 
For s > 0 a dilation of H r is defined by 

as(z, t )=(s -  1/z z, s-  1 t). 

a s is an automorphism of H, and so ( a J ) ( z , t ) = s - ' - l f ( a s ( z , t ) )  defines an 
automorphism of LI(Hr) which preserves ~'. For a functional ~ on M let 
( f ,  a s q,) - ( asJl tp ). a* maps the Gelfand space ~ ' ( d )  of non-zero multiplicative 
functionals on d homeomorphically onto itself. On the other hand, if f eL  1(I-1.) 
and Sf(z, t ) d zd t=  1, {a J }  is an approximate identity in L~(14,) as s-~0. 

Proposition 3. d i s  a (commutative) regular algebra and the set of functions f in d 
whose Gelfand transform f has compact support in Jg(~r dense in ~. 

Proof  We apply Dixmier's functional calculus. By [1] there exists a k such that 
f o r f = f *  in d with compact support in Hr, the functions FE Ck(IR) which vanish 
at 0 operate o n f i n t o  ~ This proves that d is regular. 

Now let f e d  have compact support and f(O, 0)= 1. Choose F in Ck(IR) such 
that F (1 )= I  and F ( x ) = 0  for ]xJ<�89 Then Fof=~,, where g e d  and Sg(z, t )dzdt  
=Fof (0 ,  0)= 1; also supp ~ is compact in Jg(sr Thus (a s g)A has also compact 
supportin J l / (d )  and since {asg } is an approximate identity as s--,0, Proposition 
3 follows. 

Corollary 4. I f  l is a proper closed right ideal in L1(14,), then there is a tp i nJ g (d )  
such that f(~9) = 0 for every f~Ic~d.. 

The proof follows from the fact that d contains an approximate identity for 
L1(Hr), so I m d  is a proper ideal in d ;  also ~ '  has the Wiener property, as 
Proposition 3 shows. 

Harmonic Functions and the Poisson Kernel 

The following situation has been extensively studied. We specifically refer here 
to [5] and [6]. 

Let 
D r=  {(z, z o ) e c  r x ~ :  Imz o>[z[ 2} 

on which the Heisenberg group H r acts by translations 

H, x D,~((w, u), (z, Zo) ) ~ (w, u). (z, Zo) = (w + z, z o + u + ilw] z + 2i ( z, w) )eD r. 



Bounded Harmonic Functions on Balls in ~" 329 

In t roducing new coordinates  t, e, z 

Zo= t + i(e, + lzl 2) 

Z = Z  

Dr_~H ~ x IR+ and the level surfaces for the variable e are the orbits of  H~ in D r. 
Also H r is identified with the bounda ry  ~D~ of  D r. 

Let A be the Laplace-Bel t rami  opera tor  for the Bergman metric  on D,.. The 
bounded  ha rmonic  functions u on D r, i.e. A u = O ,  have boundary  values a.e. on 
~3D~, i.e. 

lira u(z, t, e)= q0(z, t) a.e., (11) 
e ~ O  

where q~eL ~ (Hr). Moreover  

u(z, t, e) = (q0 * P) (z, t), (12) 

where 

~(z , t )=crer+ i((lz[2 +e,)2 A-t2) r x 

2 r l r !  
c r -  =r+ * and the convolut ion is on H r. 

We notice that  P~eL *(H~) and is radial, i.e. ~e~4.  ~ can be expressed as 

where 

we have 

(13) 

which equals, by (15) 

Cr ~ r +  I 

~ ( z , t ) = c r e / + 1  5 ei(V-"~te lu+")(~+lzle)l~rq~dl~dr 1 (15) 
0 0 

Proposit ion 5. For  every g > 0  P~ does not vanish at any point in ~#(~4). 

Proof. By Proposi t ion 1, we check ~(0, p) and ~(2, n). In view of (8) and (9), for 
bo th  cases we compute  

+ ocj 
f - i2t P~(z, t )e dt  

- -  ct~ 

e (2n + "~'){e + Jz 12)(r/-l- ,)~)r r/r dr/ 
max(O, - 2) 

(16) 

If  we take 2 = 0 and evaluate the Four ier  t ransform in 117 at p, we obtain  ~(0, p). 

S ~ ( z , t ) = c r ( g + [ z l Z - i t )  r 1 

is the Szeg6 kernel for D r, which determines the or thogonal  project ion of L z (Hr) 
onto  the Hardy  space He(Dr). Since 

Cr 3c, 
S,:(z, t ) = 5  ~ ei"'e "l~+l-'12'/~rd/~ (14) 

t .  0 
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Since the Fourier transform of e-2"N2 never vanishes in C r, it is immediate 
to see that ~(0, p)#:0 for every ~ and p. 

For 2 4:0 we proceed similarly and, using (9) and (16), we reduce ourselves to 
prove that for any ), >121 and any n =(n 1 . . . .  nr), njelN, the integral 

e ml~e I'qlzl2 lSI L.,(212q [zjlZ)dz (17) 
~" j -  1 

is different from 0. By change of variables, (17) becomes 

0 0 j : l  

As one can easily verify, 

Lm(x ) = ~ .  e ~ Dm(x m e ~), 

(cf. [2] vol. 2, p. 188). Thus, (18) turns into 

[ r t y 1  ~ ~'- ,-~, 
. .  e -  21Zl ( t l+ . . .+tr )  \~l ~. !. ~ -- ~ D~,(t",e-t,)dt,...dt, 

0 j = l  

: '- 
\1211n! (2121) I"l o ' " o  

(~-IAIM 

which is positive. 

Theorem. Let  u be a bounded harmonic function on D,. Assume that for an t o > 0 

lim u(z,t, eo)=a. 
(z, t)~ 

Then for  any e > 0 

lim (u(z , t ,~)=a.  
(z, t)~ 

Proof. Let (p be as in (11). Consider the right ideal in L'(Hr) 

I = { f e L l ( H r ) :  lim q g , f ( z , t ) = a ~ f ( z , t ) d z d t } .  
(z, t ) ~  co 

By assumption, (12) shows that P~oelC~A. By Corollary 4 and Proposition 5, 
I = L 1 (Hr) and the theorem follows. 
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