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If u(x,y) is a bounded harmonic function on the upper half plane and
lim u(x, yo,)=a for some y,>0, then lim u(x, y})=a for any other positive y. This
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fact easy to prove by classical methods is also a consequence of the Wiener
Tauberian theorem and the fact that the Fourier transform of the Poisson kernel
never vanishes.

By studying the commutative algebra of radial integrable functions on the
Heisenberg group, to which the Poisson kernel for the Siegel domain

Drz{(zo,z,, vy 2,)eC i Imzy > > Izj|2}
i=1

belongs, we obtain a similar result for bounded harmonic functions in D,. Using
the Cayley transform, this becomes a property of tangential convergence for
bounded harmonic functions on the balls in €"*' along appropriate surfaces.

Heisenberg Groups

Let H, be the Heisenberg group, ie. H,=C" xR with the multiplication given
by

Zwuw=(Ez+w,t+u+2Im{z, w)), 1

where z=(z,...,z,), w=(w,, ..., w,), t,ucR and
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Abusing slightly the notation, we write dzdt instead of %(dzx\df)dt for the

differential of the Lebesgue measure on €" x R, which is the Haar measure on
H
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Bargmann Representations

For a real non-zero A let #* be the Hilbert space of entire functions F on C”
such that
[ere 2MEP | F@)2 dz =2 ~"| F||

is finite. The monomials z"=2z.. 2, n;eN, are orthogonal in H* and the
functions

P =(nt)~ " (%)rh(zwz)" (nt=n,1...m1) 2
form an orthonormal basis for #%.
The group H, acts on #* for positive 4 by
Ul oy F(w)=e i+ AG0n - F(y — g) (3)
and for negative 1 by
Ul pF(w)y=e 220D R Fy 7). (4)
For 4=0 we get the 1 dimensional representations
K(z, )=~ ReEW), 5)

These are the irreducible unitary representations of H, up to equivalence.

For feL'(H,) and A+0 we write U} for the operator [f(z,t) U} ,dzdt.

Algebra of Radial Functions

This algebra, which is crucial to all what follows, has been investigated before
and various facts about it and its relation to the Szegd kernel can be found in
[3,4]. For =(0,, ...,0,), 0,cR we define an automorphism «, of H, by

ag: (2, )—(e"z, 1),

where
elz=(e"z,,...e%z).
We have
Ulo, y=A4, ' UL yA4, for 1>0, ©)
A — A -1
Ugios n =AUz 1 44 for 1<0,

where 4,F(z)=F(ez). Also, for 1=0,

Xw(eioza t):Xe"gw(Za t)
We say that a function f on H, is radial, if

f(z,t)=f(e%zt) for all 6.
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In virtue of (6), if f is radial, the operators U}, 140, and A, commute and, since

Agpr=e"" o7,
we have

Uldi=f(An) ¢,  where f(A, n)eC. (7

Also, for =0, we write

=[f(z,0) 1, (z,0)dzdt, where p=(w|,...,|w,). (8

Let .« denote the space of radial functions in L'(H,). Since «, are automor-
phisms of H,, o/ is a closed *-subalgebra of I!(H,). Formula (7) shows that the
algebra < is commutative. Since L'(H,) is symmetric [7], the *-subalgebra .o/ is
also symmetric.

Propesition 1. All non-zero multiplicative functionals on £ are either of the form
@ f=f(An) asin(])

or of the form

(b) f~f(0,p) asin(8).

Proof. Let ¢ be a non-zero multiplicative linear functional on &/ Since o is a
symmetric *-subalgebra of I'(H,) there exists an irreducible *-representation
n of L'(H,) and a unit vector ¢ in the Hilbert space #™ such that nE=y(f)<E
for fin & If #™ is one-dimensional, then ¢ has the form (b). Otherwise = U*
for some A0 and #™ =" Since {U}:fesd} is a x-algebra of operators which
are diagonal on the basis ¢}, we have 5 ¢! for some n and (a) follows.

Propesition 2 (cf. [8]). If feo, then
fum={ fztye=H e W1 TT L, (213 |z)) dz dt, ©9)
j=1
where L, is the Laguerre polynomial of degree k. that is

Lo(x)= i (j‘) (—.x)j‘

=0 J!

Proof. By (7), for A>0

SR n)= A [f(z, 1) e7 HF 22 D=ED gy — 2) pE(w) e~ 241 dzdtdw.

Thus it suffices to evaluate

X [ gy — ) gE(w) e~ AP dw (10)
2 Inj+r 21 Ipl 2
T e

Q@A+ (= 22)P

CL i ( ) [1 1z fe 24 H w2 dw,

nln” o p!
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—22lw|2

since for m#%n jw’" whe dw=0. Because

nn;!

G =il e dw,,

(10) is equal to
n i ’ _ 2\py ! 2
Z(p) pi L7207 =11 L 20

L

For A<0 the calculation is the same, and thus Proposition 2 follows.
For s>0 a dilation of H, is defined by

a/(z,)=(s"Y?zs 1),

a, is an automorphism of H, and so (a,f)(z,t)=s""""'f(a,(z, 1)) defines an
automorphism of L'(H,) which preserves ./ For a functional { on .o let
{fya¥y>={_a,f,¥)>. a* maps the Gelfand space .# () of non-zero multiplicative
functionals on &/ homeomorphically onto itself. On the other hand, if feL'(H,)
and |f(z,t)dzdt=1, {a,f} is an approximate identity in L'(H,) as s—0.

Proposition 3. & is a (commutative ) regular algebra and the set of functions f in of
whose Gelfand transform f has compact support in M(=f)is dense in o

Proof. We apply Dixmier’s functional calculus. By [1] there exists a k such that
for f=f* in o/ with compact support in H,, the functions Fe C*(IR) which vanish
at 0 operate on finto < This proves that &f is regular.

Now let fes have compact support and f{ (0, 0)—1 Choose F in C*(R) such
that F(1)=1 and F(x)=0 for |x|<3. Then Fof=3g, where ges/ and g(z,tydzdt
-Fof(O 0)=1; also supp g is compact in (/). Thus (a,g)” has also compact
supportin .# (<) and since {a, g} is an approximate identity as s—0, Proposition
3 follows.

Corollary 4. If I is a proper closed right ideal in L'(H,), then there is a s in # ()
such thatf(x// =0 for every felnd

The proof follows from the fact that & contains an approximate identity for
L'(H,)), so In& is a proper ideal in «; also o/ has the Wiener property, as
Proposition 3 shows.

Harmonic Functions and the Poisson Kernel

The following situation has been extensively studied. We specifically refer here
to [5] and [6].

Let 5
D, ={(z,25)eC"x C: Imz,>|z|*}
on which the Heisenberg group H, acts by translations

H, x D, 3((w,u),(z,24)) > (W,u)-(2,20) =(W+2z,2o+u+ilw]* +2i{z,wd)eD
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Introducing new coordinates t, ¢, z
zg=t+i(e+]z]%)

z=2Z

D,=H xR _ and the level surfaces for the variable ¢ are the orbits of H, in D,.
Also H, is identified with the boundary éD, of D,.

Let A be the Laplace-Beltrami operator for the Bergman metric on D,. The
bounded harmonic functions u on D, i.e. Au=0, have boundary values a.e. on
oD, ie.

liné u(z, t,8)=0(z,t) ae., (11)
where @pelL* (H,). Moreover
u(z, t.e)=(@ * F)(z,1), (12)
where
Rz.)=ce (2P +e)* +1) 7!
27t
G= and the convolution is on H,.

We notice that PeL'(H,) and is radial, i.e. Pe/. P, can be expressed as
B=c 'S ) (13)
where
Sz, 0)=cle+|zl* =iy~

is the Szegd kernel for D,, which determines the orthogonal projection of L*(H,)
onto the Hardy space H*(D,). Since

¢, % 2
Sl:(Z, [):% 5 ezute'*M(EJrlzl“)'urd'u (14)
r. 0
we have
P(z,t)=c, & 1 § 5 ei(u*mte—(u+n)(6+IZIZ)ur ndudn (15)
00
Proposition 5. For every c>0é does not vanish at any point in M (7).

Proof. By Proposition 1, we check P(0, p) and P(J.n). In view of (8) and (9), for

both cases we compute
+ o0

| Plz,tye *dt
which equals, by (15)
c, e+ 1 j‘ ef(ZrH-/Z)(hL }zlz)(n_i_/{)rnrdrl (16)
max (0, — 2)

If we take A=0 and evaluate the Fourier transform in €" at p, we obtain P(0, p).
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Since the Fourier transform of e~ 2" never vanishes in €, it is immediate
to see that P(0, p)=+0 for every ¢ and p.

For 440 we proceed similarly and, using (9) and (16), we reduce ourselves to
prove that for any y>|4| and any n=(n,,...n,), n;eNN, the integral

fefvlzl2 e*IAIIzI2 H Ln,(zlil |2j|2)d2 (17)
cr i=1
is different from 0. By change of variables, (17) becomes
P oy n
(-’5) [ ez 0] L, (t))de,...dt,. (18)
A1/ 5 o o
As one can easily verify,
1 _
L, (x)= —#e *D™M(x™e™ ),

(cf. [2] vol. 2, p. 188). Thus, (18} turns into
r «© 0O | l
QM)'*f JeEm “”[ID”U”e”Odh dt,
0 0

Z.

- n] o ©

0 0
:ﬁ(w4mw
(y+1AY+

which is positive.
Theorem. Let u be a bounded harmonic function on D,. Assume that for an £,>0

lim u(zt, e5)=a.
(z,t)— 0

Then for any ¢>0

lim (u(z,t, e)=a.
(z,1)—> 0

Proof. Let ¢ be as in (11). Consider the right ideal in L'(H,)

I={fel'(H,): lim @=xf(z,t)=a(f(zt)dzdt}.

Z —'413

By assumption, (12) shows that F, eInA4. By Corollary 4 and Proposition 5,
I=L'(H,) and the theorem follows.
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