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Introduction

To each isolated complete intersection singularity is associated the monodromy
group I'. It is a subgroup of the automorphism group of the middle homology
group of the Milnor fibre. This homology group is provided with a bilinear
intersection form, which is symmetric or skew-symmetric according to the
dimension. This group, which is free abelian, with this additional structure is
called the Milnor lattice L. The form is left invariant by the monodromy
group. Correspondingly the monodromy group is a subgroup of the orthogonal
resp. symplectic group of the Milnor lattice, generated by reflections resp.
symplectic transvections corresponding to certain geometrically defined ele-
ments in the Milnor lattice, the vanishing cycles. A natural question arising in
this context is the question whether such a group is arithmetic or not and to
describe this subgroup inside the automorphism group of the lattice.

There were different efforts concerning this question in the symmetric and
the skew-symmetric case in the last years. In the symmetric case H. Pinkham
proved in 1977 that the monodromy groups of the 14 exceptional unimodal
hypersurface singularities and the 8 triangle complete intersection singularities
can be identified with certain arithmetic subgroups O*(L) of O(L) [21]. On the
other hand it was noticed that Pinkham’s characterisation is false for almost
all hyperbolic singularities. But using a theorem of M. Kneser, we proved an
arithmetic theorem, from which we could derive an extension of the characteri-
sation I'=0%*(L) first to all singularities of Arnold’s lists [7], and later to large
classes of hypersurface singularities [8, 9], of course with the above exceptions.
In the skew-symmetric case N. A’Campo proved in 1979 that the simple part
(cf. Sect.4) of the monodromy group is arithmetic for the A, -singularities [1].
His result was generalized by B. Wajnryb to the case of plane curve singulari-
ties [23], and later by S.V. Chmutov to all isolated hypersurface singularities
[6]. Our proof and the proofs in the skew-symmetric case use the existence of
bases of vanishing cycles with certain special properties. The difficulty of
showing the existence of such a basis was the reason, that we could not extend
our results further in the past.
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Recently E. Looijenga and his student W.AM. Janssen generalized the
results in the skew-symmetric case in the following way [13]. They introduced
the algebraic notion of a skew-symmetric vanishing lattice and its monodromy
group and showed that the simple parts of these monodromy groups are
arithmetic. The basic examples for these notions are the Milnor lattice together
with the set of vanishing cycles and the monodromy group of any odd
dimensional isolated complete intersection singularity.

The object of this note is to study the symmetric analogues of these notions
and to extend in this way the results in the symmetric case. We prove that the
characterisation I'=0%*(L), which implies in particular that the simple part of
the monodromy group is arithmetic, is true for the monodromy groups of all
symmetric vanishing lattices, which satisfy certain additional conditions, and
which we call complete vanishing lattices (cf. Sect.2). This theorem was already
announced in [9, Note added in proof]. By this theorem we can on the one
hand give a more satisfactory proof of our previous results and on the other
hand extend these results and show I'=0*(L) for all isolated hypersurface
singularities and for all 2-dimensional isolated complete intersection singulari-
ties in €*, with the hyperbolic singularities excluded. As was known before this
yields also a purely lattice theoretical description of the set of vanishing cycles
and of the unipotent and simple part of the monodromy group.

The organisation of the paper is as follows. In §1 we collect the basic
notations and definitions we need from our previous papers. In §2 we define
the notion of a complete (symmetric) vanishing lattice and state our main
algebraic Theorem (2.3), which is proven in § 3. The proof is based among other
things on two lemmas, (3.4} and (3.5), which are entirely analogous to Lemmas
(2.6) and (2.7) of [13]. In §4 we denive a description of the unipotent and
simple part of the monodromy group. In §5 we apply our results to the
monodromy groups of singularities and also discuss the cases in the beginning
of the hierarchy of singularities, to which our theorem cannot be applied.
These results are summarized in Theorem (5.5).

The author is grateful to E. Looijenga for valuable discussions. This work
was done while the author stayed at the State University of Utrecht and was
supported by the Netherlands Foundation of Mathematics S.M.C. with finan-
cial aid from the Netherlands Organisation for the Advancement of Pure
Research (Z.W.0). The author takes the opportunity to thank these institutions
for their hospitality. He also thanks the referee for pointing out that the
condition about a sublattice of type 4, in the announcement [9, Note added in
proof] and in the earlier version was superfluous.

§ 1. Notations

(1.1) Let L be an even lattice, ie. a free finitely generated Z-module with a
symmetric bilinear form ( , ) satisfying {(x,x>e2Z for all xeL. We denote
by O(L) the group of units (=isometries) of L. A deL with (J,8)=+2 is
called a minimal vector of square length +2. The reflection s; corresponding
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to such a é is defined by
2{x,8) 5
6,0

Let A< L be a subset of L with {0,0>= 12 for all 5e4. We denote by Z- 4 the
sublattice generated by 4, and by I; the subgroup of O(L) generated by all
reflections s, for deA. We define R_(L) to be the subgroup of O(L) generated
by all reflections s, corresponding to vectors v with {v,v>= —2. Similarly one
can define R, (L). In what follows we restrict to sets of minimal vectors of
square length —2, R_(L) etc. With a suitable modification in the definition of
the real spinor norm ¢ below (reverse the > -sign), all the results are also true
if one replaces minus signs by plus signs.

s5(x)=x—

(1.2) _Let ker L denote the kernel of L and define L=L/ker L. Moreover let
Ly=L@R =R-L. We define a homomorphism

o: O(L)-»{+1, -1}

(real spinor norm) as follows. Let geO(L). Let g be the induced element in
O(L)= O(Lg). Then g can be written g=s, o...0s, in O(Lg). Define

+1 if {v;,v;>>0 for an even number of indices,
olg)= .
—1 otherwise.

Denote by L* the dual lattice Hom(L,Z) and let j: L—L* be the natural
homomorphism. Let t be the canonical homomorphism

T O(L)— Aut(L*/j L).
We define
O*(L)y=kero nkerr.

(1.3) Let feL be an isotropic vector (i.e. {f,f>=0) and weL a vector orthog-
onal to f. Then the Eichler-Siegel-transformation [11] ¥, ,€O(L) is defined by

l!/f’w(X)=X+<X,f>W—<X,W>f—"é‘<W,W> <xsf>f

for xeL. Let U be a unimodular hyperbolic plane with a basis of isotropic
vectors {f,,f,} satisfying {f,,f,>=1. Suppose that L is the orthogonal direct
sum of U and an even lattice M, L=M 1L U. We define ¥,(L) to be the
subgroup of O(L) generated by the transformations ¥, .Y, ., for arbitrary
weM. Some properties of these transformations are listed in [8]. We recall in
particular one property, which we shall use frequently.

(1.4) Lemma. Let L=U"' L U for another unimodular hyperbolic plane U’. Then
for each vector xeU' LU there exists a oe¥,(U' L U), such that ¢(x)=uf,
+Bf, with a|B.

A proof can be found in [8].

One has the following inclusions between the various groups:

I,cR_(L)c 0%(L)=O(L),
¥y (L)=0*(L),



88 W. Ebeling

and if M is generated by minimal vectors of square length —2
Y, (L)ycR _(L).

The last inclusion follows from the fact that the mapping M — ¥,(L), w1,
is a homomorphism, and the identity

lIlf,,wz.swoswﬂfl
for weM with {w,w)=—2.

(1.5) Let finally 4 be a subset of L. We define an equivalence relation on 4,
denoted by ~,, as follows: for §,6'ed 5~ 6" if and only if there exists a
sequence 0 =20y, 0,...,0,=0" with {(6,_,,0,y=1, 6,64, for 1 Zi<k, or 6=90"

§ 2. Complete vanishing lattices

We introduce here the symmetric analogue of the basic notion of [13].

(2.1) Definition. Let L be an even lattice and AeL a subset of L. A pair (L, 4)
is called a vanishing lattice, if A satisfies the following conditions:

(i) 4 consists of minimal vectors of square length —2.
(i) A4 generates L.
(iii) 4 is a I,-orbit.
(iv) Unless rank L=1, there exist 3, d,€4 with {(§,,0,>=1.

(2.2) Definition. A vanishing lattice (L, 4) is called complete, if there exists an
orthogonal splitting L=L"1 U’ L U with unimodular hyperbolic planes U, U’,
such that the following conditions are satisfied:

(i) There exist w,,w,ed4nL" with {w,,w,)>=1.
(i) Let {f,.f5} resp. {f{.f,} be bases of isotropic vectors of U resp. U’ with
{Siofoy=LS,f)=1. Let

Q={w,,0,,0,—fi,.fi— 0, — f,f{= 1}

Then Q< A.
We are ready to state our main theorem.

(2.3) Theorem. Let (L, A) be a complete vanishing lattice. Then
I,=R_(L).

The proof of Theorem (2.3) will be given in Sect. 3.

Since a complete vanishing lattice contains a sublattice 4, L U’ L U, where
A, denotes a root lattice of type A4, [4] (with bilinear form multiplied by —1),
the assumptions of Kneser’s Theorem [15, Satz4] are fulfilied. This theorem is
formulated for nondegenerate lattices and uses the rational spinor norm, but
one can easily generalize it to degenerate lattices and derive the identification
R_(L)=0%*(L) under the same assumptions (cf. [7, Proof of Theorem 3.1c)]).
Combining these results, we get
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(2.4) Theorem. Let (L, A) be a complete vanishing lattice. Then
I,=0%(L).

One can also derive a purely lattice theoretical description of the set A for
a complete vanishing lattice.

(2.5) Proposition. Let (L, A) be a vanishing lattice with L=L' 1 U’ L U. Assume
Yy(LY<I,. (This condition is in particular satisfied, if I;=0*(L)). Then

A={veL{{v,v)=—2and{v,LY=1}.

Proof. This proposition follows from a more general result due to E. Looijenga
(cf. [5, 4.2]).

For the convenience of the reader we give a direct proof following the same
lines as [19, Proof of Theorem (2.4)], cf. also [22, App. to §6]. That 4 is
contained in the set on the righthand side is clear by the definition of a
vanishing lattice. Therefore let v be an element of the set on the righthand side.
We write v=0v'+v" with v'eU’ L U and v"el’. Let {f,,f,} be a basis of U as
above. By (1.4) there exists a @eW¥,(U’ LU) such that & =¢(v') satisfies
T, oo 1T, f1>. But since o(v’)=v", it follows that also #=¢{v) satisfies
(D, f51{D,f,>. We can therefore assume that this is already true for ». Since
{v,L>=Z, there exists a yelL with {v,y>=—1. Write y=y, +y,, where
v,eLl’ LU and y,eU. Then

‘/’fz,yl(v):‘o‘f1+ﬁf2+vl
with v, e’ 1 U’. Then ged(e, f)=1, since a={v,f,) and

ﬁ:<vaf1>*<U’Y1>_‘%<Y1>Y1><U>f2>

= —<{v,y;ymoda= — (v, y> mod a =1 mod a.

Again by (1.4), after an application of an element of ¥, (U’ L U) we can assume
that @=1. Then ¢, _, maps this vector to a vector of the form f; +¢f,. But

{Sfiteffitefiy={vvy=-2

implies e= —1. So each minimal vector v of square length —2 with <{v, L>=17Z
can be mapped to the vector f; — f, by an element of ¥,(L)<TI},. This proves
the proposition.

From Proposition (2.5) we immediately get the following corollary which
can be regarded as a sort of converse of Theorem (2.4).

(2.6) Corollary. Let (L, A) be a vanishing lattice. Assume that there exists an
orthogonal splitting L=L'1U' LU, such that the following conditions are
satisfied :

(i) L' contains a sublattice of type A,.
(il ¥ )T
Then (L, A) is complete.
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(2.7) Remark. Let (L, 4;) and (M, 4,,) be vanishing lattices. We say that (L, 4,)
contains (M, 4,,) if M is a primitive sublattice of L and 4,,c4,. Note that if
(L, 4;) contains a complete vanishing lattice, then it is itself complete.

§ 3. Special subsets

The proof of Theorem (2.3) will be reduced to a slight generalization of the key
theorem [8, Theorem 3]. This theorem involved the notion of a special basis.
We generalize this notion to more general subsets. As above L always denotes
an even lattice.

(3.1) Definition. A subset A< L is called special, if the following conditions
are satisfied:

(i) A consists of minimal vectors of square length —2.
(if) There exist A,,4,,4;€ such that

</11,/12>=1,
g, 2>=0, Ay, A>=(As,A> for all led with A%4,,4,.

(iii) Let A'=A—{A,,4,}. Then A~ A, for all AeA".
Let A be a special subset of L. Let A'=4—{A,,4,} as above, and let

Ji= A+ 4,
fa=—Ay =2+
U=Zf,+1f,.

Then U is a unimodular hyperbolic plane and
Z-A=UL1Z A"

(3.2) Theorem. Let A< L be a special subset. Then
Y(Z-A)<T,.

If moreover another unimodular hyperbolic plane U’ is contained in Z- A’', then
R_(Z-A)=I,.

The proof of Theorem (3.2) is the same as the proof of [8, Theorem 3]
applied to the lattice K=Z- A, except that we do not have a basis B of
K'=Z- A’, but only a generating system A’. But the linear independence of the
elements of B’ is not used.

(3.3) Example. Let (L, 4) be a complete vanishing lattice and Q be the set of
Definition (2.2). Then Q is special: Let A, =f, —f,, L,=w, —f;, A3=w,. One
easily checks that all elements of Q are equivalent with respect to ~,. For
we =0 -{1,,A,} one even has w~, 4,. Moreover U' =Z-£. Theorem (3.2)
implies

Y (U LU)cYUZ- Q<.
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(3.4) Lemma. Let (L,4) be a complete vanishing lattice. Then A is an equiva-
lence class with respect to ~ 4.

Proof. Each equivalence class 4 is a I-orbit. For (8,8 >=1 implies s, 55(8)=0.
On the other hand Ij(4)= 4. To prove this, we remark first, that if de4, then
also s5(0)= —4J is in 4. For there is a yeI, with y(w,)=4 and

(@, v, — 1), 7(fi =12}

is the basis of a root system of type A4,, which is contained in A. Now let
5,8'ed. Then one can easily show by induction on the minimal length of a
sequence 6=208,,6,,...,0,=0, {§;_;,0,>=1 for 1 i<k, §,ed, that s,(5)ed.

Since I, preserves the symmetric bilinear form, I, permutes equivalence
classes. Now let 4 be an equivalence class and 6e4. 1t suffices to show, that
there exists a ded, such that s,(8)=4, ie. (8,6)=0. For this implies that T,
leaves 4 invariant, hence A=TI,- A= 4.

Let §,eA. Then there is a yel, with y(w,)=8,. Then y(Q)c 4. We may
assume without loss of generality that §, =w,, since we can replace U’ L U by
y"HU'LU) and o,,w, by y *w,), 7" '(w,). Then Q< 4. Since the lattice
U 1UcZ-Q is unimodular, we can write L=L'1 U’ L U. Write § as 6=9"
+6" with 8"eL’, e U’ L U. By (1.4) there is a ¢pe P, (U' L U)<I;, with ¢(8)eU".
But ¢(8")=4", hence @(8)eU~, where U* denotes the orthogonal complement
of U. But

G0 1= L)) =L@d).f, — f,) =0,

and f, —f,ed, and @el;. Since each equivalence class A is a I[j-orbit, the
lemma is proven.

(3.5) Lemma. Let (L, 4) be a complete vanishing lattice. Let

do:={0ed|{w,d>=1 or é=w}.
Then I, =T, and L=Z- A,
Proof. The proof is the same as that of Lemma (2.7) in [13]. For the con-
venience of the reader we repeat it here. Let de4. Let [(§) denote the minimal
length of a sequence w,=6,,0,,...,6,=0 such that {(J,_,,6,>=1, 8,4 for
1<i<k, which exists according to Lemma (3.4). We prove by induction on [(d):
0l -w,. If 1(0)=0 then d=w,. Now let k=1(6)>0 and a sequence as above

be given. By the induction hypothesis there exists a yel, such that y(d,_,)
=w,. But

w1, 700> =<0 1), (8> =<8, _ 1, 0 =1,
hence s, €I, Then

e my— 1
S5, =V S)’(ﬁk) yenio‘
Therefore

O =55, _, Sbk(ék— Vel oy .

But 4=T, - A, implies I; =Iy and L=Z - A=Z-(I,- d))<Z- A,,.
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(3.6) Proposition. Let (L, 4) be a complete vanishing lattice. Let
Ao ={0€4|{f1,0)=<f,,8)=0}
A'r={0eA,|6~,, w1}
A=A iw, - [1.fi—fr}
Then A is a special subset of L with Qc AcA, U cZ-A" and L=Z - A.

Proof. Tt is clear that A is special and that Q< A. Since U'cZ-Q, also U’
cZ-A'. Thus we have only to show that L=Z-A. By the previous lemma it
suffices to show that A, <Z- A.

Let dedy, d+w,. We have L=L"LU'LU. As above, applying (1.4) shows
that there exists a pe ¥,(U’' L U) with ¢(8)eU* and

p),w» =) olw))={,w,)=1
since w, e’ and ded,. Thus §=¢(8)eA’. But gel,=I,. Hence
d=p Y(S)el(A)<Z- A.

This proves the proposition.
Theorem (2.3) now follows from Proposition (3.6) and Theorem (3.2).

§ 4. The unipotent and simple part of the monodromy group

(4.1) Let (L,4) be a vanishing lattice. The group I'=TI, acts on L=L/ker L
with its induced symmetric bilinear form. The image of I' in O(L) is denoted by
I, the kernel of this representation by I = I One refers to [!™ resp. I, as the
unipotent resp. simple part of the monodromy group. We have I;=I"/I’, but a
priori it is not clear whether I' is the semidirect product of I and I.

We let ker(L)® L act on L by

vRw(x)=x+<{x,w)v.

Note that v® w corresponds to the Eichler-Siegel-transformation v _, ,, defined
in Sect. 1.

(4.2) Proposition. Let (L, A) be a complete vanishing lattice. Then
L=ker(L)®L.

In particular I, is abelian. Moreover [=0*L)and I =L,I,. In particular I is of
finite index in O(L) and hence arithmetic.

Proof. Let ey, ..., e, be a basis of ker L. One can easily show that for each yel,
there exist unique v,,...,v,,€L such that

P(X)=x+ i {x, 0 e
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On the other hand, ker_(L)®i is generated by the transformations ¥ _, ,
where veker L and welL. By [8, Property (a)] o(y_, ,)=1, and obviously
¥ _, wekert. Here g, T are the homomorphisms defined in §1. Hence

¥ _, »€0*(L).

By Theorem(2.4) I'=0*(L), and therefore ¢_, ,el, (cf. also [7, Proof of
Theorem 3.1¢)]).

Finally a given splitting
0—kerL—»L®L-0, ie L=L®kerL,
leads to a split short exact sequence
1->ker(L)®L—0*L)20*(L)—1
(cf. [7, Sect. 3]).

§ 5. Applications

(5.1) Now let X be an n-dimensional complete intersection in €* with an
isolated singularity xeX. Let F: & —S be a suitable representative of the
semiuniversal deformation of the germ (X, x) and denote by D<S the corre-
sponding discriminant. Put §'=S—D, Z'=F~'(S") and F'=F|,.. Then F’:
Z'— S is a C™-fibre bundle, where each fibre is a smooth manifold diffeomor-
phic to the Milnor fibre, which is defined by [20], [12]. Fix a point teS’. The
corresponding fibre X, of F’ has the homotopy type of a bouquet of un-spheres.
The only interesting homology group is therefore H,(X,,Z). This is a free Z-
module of rank p, endowed with a bilinear form < , >, given by the in-
tersection product. This form is symmetric resp. skew-symmetric, if n is even
resp. odd. We consider here the symmetric case, for the skew-symmetric case
see [13]. Then the above group is an even lattice, which we denote by L and
call the Milnor lattice. It is generated by the set A of vanishing cycles. These
are defined as follows: Choose a regular point ¢ on the discriminant D and a
path #: [0,1]— S from c¢ to ¢, such that #((0,1])<S’. The fibre over ¢ has only
one singular point, which is an ordinary double point. The fibre over n(r), r
small, contains a distinguished n-sphere, which vanishes, as r approaches 0.
After the choice of an orientation and transport along # to t, one gets an
element of 4. For a vanishing cycle de4

(8,85 =(—1)"22,

If (X,x) is not an ordinary double point, then there exist é,,0,€4 with
{8,,6,>=1. The image of the natural representation

p: m (S,t)— Aut(L)

is called the monodromy group I'. It is a subgroup of O(L) generated by the
reflections s; corresponding to the vanishing cycles ée4. The set of vanishing
cycles A forms one orbit under I. For more details see e.g. the forthcoming
book of Looijenga [18].

It follows that (L, 4) is a vanishing lattice and I' its monodromy group I,.
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(5.2) Now assume that X is an n-dimensional hypersurface, with n=2(mod 4),
or a 2-dimensional complete intersection in €* In the hypersurface case the
assumption that n=2(mod4) is no restriction, because a singularity (X, x) of
arbitrary dimension n is stably equivalent to one with n=2(mod 4). By the
remarks of (1.1) the case n=0(mod 4) is also covered. According to Arnold’s
and Wall’s classification theorems [3], [25] we have to distinguish between
the following classes of singularities. Here the first name refers to the type of
the Milnor lattice, in brackets are given other usual names.

1) Elliptic (simple) singularities

2) Parabolic (simply elliptic) singularities

3) Hyperbolic (cusp) singularities

4) Others.

The Milnor lattices, sets of vanishing cycles and monodromy groups of the
elliptic singularities are the root lattices, root systems and Weyl groups of type
A,,D,,Es, E,; and Eg. One can easily check that in these cases I'=0*(L).

The Milnor lattices of the parabolic singularities are of the type L
=Q’ 1(0)L(0) where (0) denotes a 1-dimensional zero form and Q' is a root
lattice of type Eg4, E,, E4 or D,. The monodromy groups are semidirect pro-
ducts of the corresponding Weyl groups and ker(L)® L. Thus also I'=0*(L)
(cf. Sect. 4).

For the hyperbolic singularities, Gabrielov [14] in the hypersurface case,
and Looijenga [16, III. 3.7] in the complete intersection case have shown that
the monodromy group I' is the semi-direct product of W by Q, where W is the
Coxeter group corresponding to the Coxeter graphs T, , (Fig. 1) resp. IT,  , ¢
(Fig. 2), and Q is the lattice corresponding to one of these graphs. Here L
=0 1(0). Note that one gets the parabolic case for 1/p+1/g+1/r=1 and
, q,7,9)=(2,2,2, 2). The equality I'=0*(L) would imply W=0%*(Q), in partic-
ular W would be of finite index in O(Q), since Q is nondegenerate. But if W is
of finite index in O(Q), then according to [4, Ch. V, §4, Exercice 12] T, , , resp.
1,, ., have to define a Coxeter system of hyperbolic type. This is only the
case for (p,q,1N=(2,3,7), (2,4,5), 3,3,4) and (p,q,r,5)=(2,2, 2, 3). Therefore
except for these cases the characterisation I'=0*(L) is false.

For the four remaining cases one can show that I'=0%*(L). We sketch here
the proof, which is due to Brieskorn (unpublished) in the hypersurface case. By
Sect. 4 it suffices to show that W=0*(Q). Here Q=0Q' L U, where Q" is a root
lattice of type Eg4, E,, Eg or Ds. One can easily show that Q' has the property

Toa.r QAp.1 Qp
- AN J
q r 12 o
P g r
p
J/

Fig. 1
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np.q.r.s p q
N r —
( p.Q.rs 22
at least one > 2
r s
G,p_‘[
Qp
Fig.2

(R) of [24, §51. By [24, 5.2]
0(Q)=0(Q)- O(U)- ¥,(Q).

(This result is only formulated for unimodular lattices, but the proof goes also
through for Q.) This implies

0*(Q)=0%(Q)-0*(U)- ¥,(Q). 1)

But 0*(Q')=W’, where W’ is the Weyl group of @', and O*(U)={l,s;,_,},
where f,,f, is a basis of isotropic vectors of U. Here f,,f, can be taken as f;
=&+a,_;, f,=a,+f;, where & is the longest root of Q' [4]. The group ¥,(Q)
is generated by transformations

l//fiy‘1=sas1‘fi

where a is a root of Q. Using these facts, one can easily show that all groups
on the right hand side of {1) are contained in W.
In the hypersurface case the results up to now are already stated in [7, 8].

(5.3) We consider now the remaining singularities, namely class 4). Assume
first that X is a hypersurface. Then it follows from Arnold’s classification
theorems [2], that (X, x) deforms into a unimodal exceptional singularity (¥, y).
This was shown by D. Siersma (personal communication to E. Brieskorn). As
cach unimodal exceptional singularity deforms into one of the unimodal excep-
tional singularities E,,, Z,, and @, ,, the statement above can even be strength-
ened. But this implies that the vanishing lattice (Ly, 4,) of (X,x) contains the
vanishing lattice (Ly, 4,) of one of these singularities. But L, =L, LU’ LU, A4,
< L} and I; =0*(Ly) by our earlier results [7, Theorem 3.1] (cf. also [8, 9]). By
Corollary (2.6) and Remark (2.7) it follows that (Ly,A4,) is a complete vanishing
lattice. Therefore Theorem (2.4) implies I, = O*(L,).

Now let X be a 2-dimensional complete intersection in €* with a singu-
larity x of class 4). Then it follows easily from Wall’s classification results, that
(X,x) deforms into the triangle complete intersection singularity Jj in Wall’s
notation [257, given by a mapping

[r @ -C fw,x,p2)=(xy+2%,w +xz+)?),
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which is D, ; ;, in Looijenga’s notation [17]. We are grateful to C.T.C. Wall
for pointing this out to us. (The main point here is that the property of an
isolated singularity defined by a map-germ f: (C*, 0)— (C?,0) being hyperbolic
is characterised at the 2-jet level [25]. So one only has to show that the 2-jet of
the map-germ defining (X, x) can be simplified to that defining the J’'-series,
and then apply the classification of the J’'-series [loc. cit.].) This again implies
(see e.g. {18]) that the vanishing lattice (Ly, 44) of (X, x) contains the vanishing
lattice (Ly,4y) of J;. The following Proposition (5.4) shows that (Ly,4y) is
complete. Therefore we get as above by Remark(2.7) and Theorem (2.4) I}
=0*(Ly).

We remark that for the 22 triangle complete intersection singularities (for
the definition see [17]), which include the 14 exceptional unimodal hyper-
surface singularities, this was already proven by Pinkham [21] using algebraic-
geometric methods.

(5.4) Proposition. Let (L, A) be the vanishing lattice of the singularity Jg. Then
(L, 4) is complete.

Proof. In order to show that (L, A) is complete, we want to apply Corol-
lary (2.6). Let (Z,z) be any of the 8 triangle complete intersection singularities,
which are not hypersurface singularities, and L, be the corresponding Milnor
lattice. As already noted by Pinkham [21], there exists a basis of minimal
vectors of square length —2 of L,, such that the matrix of the bilinear form
with respect to this basis is described by the following “Dynkin diagram”™ (as

-

Fig.3

usual the sign (dotted =minus) and number of edges between vertices i,j is
given by the corresponding entry of the matrix) for a certain quadruple
(p,q,r,5) with p,q,r,s=2 and at least one >2 (cf. also [10]). In particular this
basis is a special subset of L, in the sense of Definition (3.1). For (Z,z)=J; one
has (p,q,r,5)=(2,2,2,3). From the remarks following Definition (3.1) and from
(5.2) it follows that

L=L,=D,1 U’ LU.

In particular 4, < L’=D;.
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Thus it remains to show that there is an orthogonal splitting L
=D;1 U LU such that ¥, (L)cT'=I,. Now J; deforms into the hyperbolic
singularity I1, , , 5. Let F: % —S be a suitable representative of the semiuni-
versal deformation of a germ (Y, y) of type Jg, and assume F(y)=0€S. Let s be
a point of the discriminant D close to 0, such that the fibre of F over s has
exactly one singular point of type IT, , , ;. The multiplicity of D at O resp. s is
10 resp. 9 (1 added to the corresponding Milnor number). Then there exists a
primitive embedding i,: L— L of the Milnor lattice L of IT, , , ; into the
Milnor lattice L=D;1 UL U of J;. We may assume that L' is embedded as
K:=i (LY=D, LU LZf,, where {f,,f,} is a basis of isotropic vectors of U.
Moreover there exist vanishing cycles di,...,0,ed’cL and 6,,...,0,,ed<L
which generate L resp. L, such that i (8})=4; for i=1,...,9, and such that the
corresponding reflections s, ...,8; T€SP. S, ,...,55, , generate the monodromy
group I" resp. I of II, , , ; resp. J; (see eg. [18, (7.13)]). Let G be the
subgroup of I' generated by the reflections s; ,...,s,. Then K is G-invariant
and one has s; (i, v)=1,(s, v) for veL and 15j<9. Now let weM:=D; LU’
be arbitrary. Then ¢, |,€0*(K). But we have seen in (5.2) that I''=0*(L).
Therefore there exist reN, a,,...,2,€{d,,...,d4}, such that

r
Vi k= H Sale'
j=1

But since McK=(Zf,)* is nondegenerate, there is only one way to extend
¥ s, wlk to an element of O(L), and this is ¥, . Thus

r
V= I1 Sq €T
j=1

Since fL¢Z-{0,,...,0,}, d,0=tf,+af +v with ee{+1, —1}, aeZ and veM.
Then

l//fl,—su(élo):BfZ—EfleA,
Hence s;, _,,el’. Now let weM with {w,w)= —2. Then by [8, Formula (c2)]

‘//fzywzwfl,woswosfxwfzol//fl,w'

Since s,,|x€0*(K), s, €I’ as above, and hence y,, ,el'. Since M is generated by
such vectors w, this shows Y, (L)< T (cf. §1). The assertion now follows from
Corollary (2.6).

We summarise the above results in the following theorem

(5.5) Theorem. Let I' be the monodromy group of an evendimensional isolated
hypersurface singularity (X,x) or a 2-dimensional isolated complete intersection
singularity (X,x) in C* Assume that (X,x) is not hyperbolic or hyperbolic of
type Ty 3,75 Ty 4,50 Ts3,4 07 11, 5 5 3. Then

r=0*{L).

In particular the simple part I is arithmetic. For the hyperbolic singularities
which are not of the above types the conclusion is false: In these cases I is not
of finite index in O*(L).
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From Propositions (2.5) and (4.2) we get descriptions of the set of vanishing
cycles and of the unipotent and simple part of the monodromy group for all
singularities satisfying the conditions of the theorem and belonging to class 4).
One can show that these descriptions are also true for the other singularities,
for which the conclusion of the theorem holds, except for the set of vanishing
cycles of an ordinary double point, i.e. a singularity of type 4,. There is an
interesting consequence concerning the question, whether there exists a basis of
vanishing cycles of the Milnor lattice of a complete intersection singularity,
such that the monodromy group is generated by the corresponding reflections
(which is true for hypersurface, but in general unknown for complete in-
tersection singularities). One particular consequence of Theorem (5.5), of the
description of the set of vanishing cycles (Proposition (2.5)), and of Theo-
rem (3.2) is that the bases given above for the 8 triangle complete intersection
singularities are bases of vanishing cycles satisfying this property. In the same
way one can show the existence of such bases for other singularities (cf. [10]).
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Oblatum 24-VIII-1983 & 21-X1I-1983

Note added in proof

By Proposition (2.5) a vanishing lattice (L, 4) is complete if and only if the following two
conditions are satisfied:

(i) L contains a sublattice A, LU LU.

(i) 4 contains all minimal vectors of square length —2 of this sublattice.

(In Definition (2.2) we only claimed that A contains a basis of this sublattice consisting of such
vectors.) Note that condition (i) alone is not sufficient: One can construct examples of nonde-
generate vanishing lattices (L, 4) satisfying condition (i), where the group I, is not of finite index in
O(L).



