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Introduction 

To each isolated complete intersection singularity is associated the monodromy 
group F. It is a subgroup of the automorphism group of the middle homology 
group of the Milnor fibre. This homology group is provided with a bilinear 
intersection form, which is symmetric or skew-symmetric according to the 
dimension. This group, which is free abelian, with this additional structure is 
called the Milnor lattice L. The form is left invariant by the monodromy 
group. Correspondingly the monodromy group is a subgroup of the orthogonal 
resp. symplectic group of the Milnor lattice, generated by reflections resp. 
symplectic transvections corresponding to certain geometrically defined ele- 
ments in the Milnor lattice, the vanishing cycles. A natural question arising in 
this context is the question whether such a group is arithmetic or not and to 
describe this subgroup inside the automorphism group of the lattice. 

There were different efforts concerning this question in the symmetric and 
the skew-symmetric case in the last years. In the symmetric case H. Pinkham 
proved in 1977 that the monodromy groups of the 14 exceptional unimodal 
hypersurface singularities and the 8 triangle complete intersection singularities 
can be identified with certain arithmetic subgroups O*(L) of O(L) [21]. On the 
other hand it was noticed that Pinkham's characterisation is false for almost 
all hyperbolic singularities. But using a theorem of M. Kneser, we proved an 
arithmetic theorem, from which we could derive an extension of the characteri- 
sation F = O*(L) first to all singularities of Arnold's lists [7], and later to large 
classes of hypersurface singularities [8, 9], of course with the above exceptions. 
In the skew-symmetric case N. A'Campo proved in 1979 that the simple part 
(cf. Sect. 4) of the monodromy group is arithmetic for the A,-singularities [1]. 
His result was generalized by B. Wajnryb to the case of plane curve singulari- 
ties [23], and later by S.V. Chmutov to all isolated hypersurface singularities 
[6]. Our proof and the proofs in the skew-symmetric case use the existence of 
bases of vanishing cycles with certain special properties. The difficulty of 
showing the existence of such a basis was the reason, that we could not extend 
our results further in the past. 
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Recently E. Looijenga and his student W.A.M. Janssen generalized the 
results in the skew-symmetric case in the following way [13]. They introduced 
the algebraic notion of a skew-symmetric vanishing lattice and its monodromy 
group and showed that the simple parts of these monodromy groups are 
arithmetic. The basic examples for these notions are the Milnor lattice together 
with the set of vanishing cycles and the monodromy group of any odd 
dimensional isolated complete intersection singularity. 

The object of this note is to study the symmetric analogues of these notions 
and to extend in this way the results in the symmetric case. We prove that the 
characterisation F=O*(L), which implies in particular that the simple part of 
the monodromy group is arithmetic, is true for the monodromy groups of all 
symmetric vanishing lattices, which satisfy certain additional conditions, and 
which we call complete vanishing lattices (cf. Sect. 2). This theorem was already 
announced in [9, Note added in proof]. By this theorem we can on the one 
hand give a more satisfactory proof of our previous results and on the other 
hand extend these results and show F=O*(L) for all isolated hypersurface 
singularities and for all 2-dimensional isolated complete intersection singulari- 
ties in 1174 , with the hyperbolic singularities excluded. As was known before this 
yields also a purely lattice theoretical description of the set of vanishing cycles 
and of the unipotent and simple part of the monodromy group. 

The organisation of the paper is as follows. In w 1 we collect the basic 
notations and definitions we need from our previous papers. In w we define 
the notion of a complete (symmetric) vanishing lattice and state our main 
algebraic Theorem (2.3), which is proven in w 3. The proof is based among other 
things on two lemmas, (3.4) and (3.5), which are entirely analogous to Lemmas 
(2.6) and (2.7) of [13]. In w we derive a description of the unipotent and 
simple part of the monodromy group. In w we apply our results to the 
monodromy groups of singularities and also discuss the cases in the beginning 
of the hierarchy of singularities, to which our theorem cannot be applied. 
These results are summarized in Theorem (5.5). 

The author is grateful to E. Looijenga for valuable discussions. This work 
was done while the author stayed at the State University of Utrecht and was 
supported by the Netherlands Foundation of Mathematics S.M.C. with finan- 
cial aid from the Netherlands Organisation for the Advancement of Pure 
Research (Z.W.O). The author takes the opportunity to thank these institutions 
for their hospitality. He also thanks the referee for pointing out that the 
condition about a sublattice of type A0 in the announcement [-9, Note added in 
proof] and in the earlier version was superfluous. 

w 1. Notations 

(1.1) Let L be an even lattice, i.e. a free finitely generated Z-module with a 
symmetric bilinear form ( , ) satisfying (x ,x)e2Z for all xeL. We denote 
by O(L) the group of units (=isometries) of L. A fieL with (6, ~ ) =  +2  is 
called a minimal vector of square length +2. The reflection sa corresponding 
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to such a 6 is defined by 
2(x,  6) 

sa(x)=x - - 6 .  <a,a> 

Let A c L  be a subset of L with <a,a>= +2 for all 6eA. We denote by Z-A the 
sublattice generated by A, and by F a the subgroup of O(L) generated by all 
reflections s~ for 6eA. We define R_(L) to be the subgroup of O(L) generated 
by all reflections s,, corresponding to vectors v with ( v , v ) = - 2 .  Similarly one 
can define R+(L). In what follows we restrict to sets of minimal vectors of 
square length - 2 ,  R_(L) etc. With a suitable modification in the definition of 
the real spinor norm cr below (reverse the >-sign), all the results are also true 
if one replaces minus signs by plus signs. 

(1.2) Let ker L denote the kernel of L and define L = L / k e r  L. Moreover let 
L ~ = L |  We define a homomorphism 

a: O ( L ) ~ { + I ,  - 1 }  

(real spinor norm) as follows. Let geO(L). Let g be the induced element in 
O(L)=O(~). Then g can be written g=s,,, . . . . .  s,,, in o(L~). Define 

a ( g ) = . [ + l  if (vi, vi)>O f o r a n e v e n n u m b e r o f i n d i c e s ,  

~. 1 -  otherwise. 

Denote by L* the dual lattice Hom(L,Z)  and let j:  L--+L* be the natural 
homomorphism. Let z be the canonical homomorphism 

z: O(L)-+ Aut(L~/jL). 

We define 
O* (L) = ker a r ker z. 

(1.3) Let f ~ L  be an isotropic vector (i.e. ( f , f ) = 0 )  and w~L a vector orthog- 
onal to f.  Then the Eichler-Siegel-transformation [11] ~s,w~O(L) is defined by 

~r = x + ( x , f )  w -  (x, w ) f  -�89 (w, w) ( x , f ) f  

for xeL. Let U be a unimodular hyperbolic plane with a basis of isotropic 
vectors {fl,f2} satisfying ( f l , f z ) =  1. Suppose that L is the orthogonal direct 
sum of U and an even lattice M, L=M_I_ U. We define ~v(L) to be the 
subgroup of O(L) generated by the transformations ~ . . . .  Oy2,w for arbitrary 
weM. Some properties of these transformations are listed in [8]. We recall in 
particular one property, which we shall use frequently. 

(1.4) Lemma. Let L = U' _1_ U for another unimodular hyperbolic plane U'. Then 
for each vector xeU' l U there exists a q)~v(U' l U), such that q~(x)=~fl 
+ flf2 with ct]fl. 

A proof can be found in [8]. 
One has the following inclusions between the various groups: 

F a c R _ (L) c O* (L) ~ 0 (L), 

~Pv(L)cO*(L), 
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and if M is generated by minimal vectors of square length - 2  

7Jv(L) c R_ (L). 

The last inclusion follows from the fact that the mapping M ~ 7Sv(L), w v-+ t~,, w 
is a homomorphism, and the identity 

~[I f,,w ~---Sw~ 

for w ~ M  with ( w , w ) =  - 2 .  

(1.5) Let finally A be a subset of L. We define an equivalence relation on A, 
denoted by ~ ,  as follows: for 3,6'~A 6~ac$' if and only if there exists a 
sequence 3 = 6 o, 61, ..., 3 k = 6' with (fii-1'  6 i ) =  1, 3 i u A  , for 1 _<i< k, or 3 =6'. 

w 2. Complete vanishing lattices 

We introduce here the symmetric analogue of the basic notion of [13]. 

(2.1) Definition. Let L be an even lattice and A~L a subset of L. A pair (L,A) 
is called a vanishing lattice, if A satisfies the following conditions: 

(i) A consists of minimal vectors of square length - 2 .  
(ii) A generates L. 

(iii) A is a F~-orbit. 
(iv) Unless rank L = 1, there exist 31, 62~A with (31, (~2)~---1. 

(2.2) Definition. A vanishing lattice (L, A) is called complete, if there exists an 
orthogonal splitting L=E'_L U ' s  U with unimodular hyperbolic planes U, U', 
such that the following conditions are satisfied: 

(i) There exist 0)1,0)2~A t'hE' with (601,0)2) = 1. 
(ii) Let {fl,f2} resp. {f;,f2} be bases of isotropic vectors of U resp. U' with 

(f~ ,f2) = ( f ; , f 2 )  = t. Let 

a =  {0),,  0)2, 0) 1 - f l  , f l  - f 2 , 0 ) ,  - f ; , f ;  - f ~ } .  

Then f2 c A. 
We are ready to state our main theorem. 

(2.3) Theorem. Let (L, A) be a complete vanishing lattice. Then 

r~ =R_(L).  

The proof of Theorem (2.3) will be given in Sect. 3. 
Since a complete vanishing lattice contains a sublattice A 2 A_ U'_I_ U, where 

A 2 denotes a root lattice of type A 2 [4] (with bilinear form multiplied by - 1), 
the assumptions of Kneser's Theorem [-15, Satz 4] are fulfilled. This theorem is 
formulated for nondegenerate lattices and uses the rational spinor norm, but 
one can easily generalize it to degenerate lattices and derive the identification 
R ( L ) = O * ( L )  under the same assumptions (cf. [-7, Proof of Theorem 3.1c)]). 
Combining these results, we get 
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(2.4) Theorem. Let (L, d) be a complete vanishing lattice. Then 

r~=o*(L). 

One can also derive a purely lattice theoretical description of the set A for 
a complete vanishing lattice. 

(2.5) Proposition. Let (L, A) be a vanishing lattice with L = E '  Z U' Z U. Assume 
~v(L) c F~. (This condition is in particular satisfied, if F a = O*(L)). Then 

d = {v~L[ (v, v) = - 2 and (v, L )  = 2g}. 

Proof This proposition follows from a more general result due to E. Looijenga 
(cf. [5, 4.2]). 

For  the convenience of the reader we give a direct proof following the same 
lines as [19, Proof of Theorem(2.4)],  cf. also [22, App. to w That A is 
contained in the set on the righthand side is clear by the definition of a 
vanishing lattice. Therefore let v be an element of the set on the righthand side. 
We write v=v '+v"  with v'eU'_l_ U and v"eE'. Let {fl,f2} be a basis of U as 
above. By (1.4) there exists a q~e~v(U' lU)  such that g'=tp(v') satisfies 
(g ' , f2)[ (g ' , f l ) .  But since tp(v")=v", it follows that also ~=q~(v) satisfies 
(~ , f z ) l (~ , f l ) .  We can therefore assume that this is already true for v. Since 
( v , L ) = Z ,  there exists a y e L  with ( v , y ) = - l .  Write y = y l + y 2 ,  where 
y leE '  L U' and y2eU. Then 

~.t f2,yl(V)--~O~ L "~ flf2 ~-Vl 

with vt6E'_l_ U'. Then gcd(~,fl)= 1, since ~ = ( v , f 2 )  and 

fl = ( v , f l )  - (v, Yl )  _1 (y1 ,  Yl )  (v , f2)  

-- (v, y l ) m o d c t - - ( v , y ) m o d c t - l m o d e .  

Again by (1.4), after an application of an element of ~Pv(U' • U) we can assume 
that c~= 1. Then ~ 2 , - v l  maps this vector to a vector of the form f l  +e  f2. But 

( J l  + ~f~,fl  + nf2) = (v, v) = - 2 

implies e = -  1. So each minimal vector v of square length - 2  with (v, L ) = Z  
can be mapped to the vector f l - f 2  by an element of Tv(L)cF  ~. This proves 
the proposition. 

F rom Proposition(2.5) we immediately get the following corollary which 
can be regarded as a sort of converse of Theorem (2.4). 

(2.6) Corollary. Let (L,A) be a vanishing lattice. Assume that there exists an 
orthogonal splitting L=E'_I_U'J_U, such that the following conditions are 
satisfied: 

(i) E' contains a sublattice of type A 2. 
(ii) Tv(L)~F ~. 

Then (L, A) is complete. 
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(2.7) Remark. Let (L, AL) and (M, Au) be vanishing lattices. We say that (L, AL) 
contains (M, AM) if M is a primitive sublattice of L and AMcA L. Note that if 
(L, AL) contains a complete vanishing lattice, then it is itself complete. 

w 3. Special subsets 

The proof of Theorem (2.3) will be reduced to a slight generalization of the key 
theorem [8, Theorem 3]. This theorem involved the notion of a special basis. 
We generalize this notion to more general subsets. As above L always denotes 
an even lattice. 

(3.1) Definition. A subset A ~ L  is called special, if the following conditions 
are satisfied: 

(i) A consists of minimal vectors of square length - 2. 
(ii) There exist 21,22,23~A such that 

(21 , 22) - 1, 

( 2 1 , 2 ) = 0 ,  ( 2 2 , 2 ) = ( 2 3 , 2 )  for all 2eA with 24:21,22. 

(iii) Let A '=A-{21 , 22} .  Then 2~a,  23 for all 2~A'. 

Let A be a special subset of L. Let A ' = A - { 2 1 , 2 2 }  as above, and let 

f l  = - 2 2  + 23 

f2 = --21 --22+23 
U = Z f l + Z f 2 .  

Then U is a unimodular hyperbolic plane and 

7Z. A = U _I_Z. A'. 

(3.2) Theorem. Let A c L be a special subset. Then 

~v(Z . A ) C FA. 

I f  moreover another unimodular hyperbolic plane U' is contained in Z .  A', then 

R_(7~. A ) = F  a. 

The proof  of Theorem (3.2) is the same as the proof of [8, Theorem 3] 
applied to the lattice K = 7 . .  A, except that we do not have a basis B' of 
K' = Z .  A', but only a generating system A'. But the linear independence of the 
elements of B' is not used. 

(3.3) Example. Let (L, d) be a complete vanishing lattice and f2 be the set of 
Definition (2.2). Then I2 is special: Let ) . l = f l - f 2 ,  22=('01--fl, 23=(D1" One 
easily checks that all elements of f2 are equivalent with respect to N o. For 
09~f2'=I2-{21,22} one even has o9~o, 23. Moreover U'cZ. I2 ' .  Theorem(3.2) 
implies 

%(U'_L %(Z. a) 
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(3.4) Lemma. Let (L, A) be a complete vanishing lattice. Then A is an equiva- 
lence class with respect to ,,~. 

Proof. Each equivalence class `] is a F~-orbit. For (3, 6'> = 1 implies s~, s~(3')= 3. 
On the other hand Ff(`])=`]. To prove this, we remark first, that if fie,], then 
also s,(6)= - 6  is in ,]. For  there is a VeF~ with ~;(o~2)=6 and 

{~(m2), 7(c~ - f l ) ,  7(f,  - f2)}  

is the basis of a root system of type A3, which is contained in `]. Now let 
3,3'e,] .  Then one can easily show by induction on the minimal length of a 
sequence 3=3o,31 . . . . .  3k=6', <3i_1,3i> = 1 for 1 <<_i<k, 3ie,], that sa(3')e,]. 

Since F~ preserves the symmetric bitinear form, F~ permutes equivalence 
classes. Now let `] be an equivalence class and 3cA. It suffices to show, that 
there exists a g e ` ] ,  such that s~(g)=g, i.e. (3 ,g>=0.  For  this implies that F~ 
leaves `] invariant, hence `] = F z �9 `] = a. 

Let 31e,]. Then there is a 7eF~ with ~(09~)=61. Then V(f2)c,]. We may 
assume without loss of generality that 3~ =co 1, since we can replace U ' •  U by 
?-I(U'_I_U) and e)l,co 2 by 7-~(091), 7-~(co2). Then f2=,].  Since the lattice 
U'_I_UcTg.f2 is unimodular, we can write L=E'LU'_I_U.  Write 3 as 3=3" 
+3'  with 3"eE', 6 ' e U ' •  U. By (1.4) there is a q~eg.'v(U'• U)=F a with r 
But ~o(6")=6", hence q~(6)eU', where U ~ denotes the orthogonal complement 
of U. But 

(3, q~- ~(fl - f2)) = <r (6),fl - f2> = 0, 

and f l - f ~ e , ] ,  and ~peF~-. Since each equivalence class ,] is a Fz~orbit, the 
lemma is proven. 

(3.5) Lemma. Let (L, 3) be a complete vanishing lattice. Let 

Ao:={6eAl<o~l ,3>=l or 3=o91}. 

Then Fzo = F~ and L = 7g. A o. 

Proof. The proof is the same as that of Lemma(2.7) in [13]. For  the con- 
venience of the reader we repeat it here. Let 6cA. Let 1(f) denote the minimal 
length of a sequence ~ = 6 o , 6 1  . . . . .  6k=6 such that <3i_~,3i>=1, 3~eA for 
1 < i<k,  which exists according to Lemma (3.4). We prove by induction on l(6): 
3eFzo.o91. If l (3)=0 then 3=~ol. Now let k = l ( 3 ) > 0  and a sequence as above 
be given. By the induction hypothesis there exists a veFao such that ~'(fk_~) 
=CO 1 . But 

<co 1 , V(3~)> = <?(3 k_ 1), ?(fk)> = <fk- ~, 6k> = 1, 

hence s~(ak)eFao. Then 

Therefore 

3k=S~k_ ~ S,k(fk_ 1)er~ o.~ot. 

But A =Fao. A o implies Fdo=F A and L = Z .  A = 7 .  (Fao. A o )=Z .  A o. 
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Proposition. Let (L, A) be a complete vanishing lattice. Let 

ao. .= {(sea h( f , ,  (5) = ( fa ,  (57 =0} 

A':= {(SeAoI(5~ AoO91} 

A: = A' ~ {c~ f l , f l  --f2}" 

Then A is a special subset of L with Q c A c A, U' c Z .  A' and L = Z .  A. 

Proof. It is clear that A is special and that (2cA.  Since U ' c T / . O ,  also U' 
c Z . A ' .  Thus we have only to show that L = Z . A .  By the previous lemma it 
suffices to show that A o c 7/. A. 

Let (SeA o, (5=~:(D 1. We have L = E ' •  U'_I_ U. As above, applying (1.4) shows 
that there exists a ~oeTv(U'_l_ U) with ~o(6)eU • and 

(~o (6), ~o~) = (~o ((5), ~o(~o~)) = ((5, e) 1) = 1 

since o ) leE '  and (seA o. Thus 6=~o((5)eA'. But ~ o e F ~ F  a. Hence 

(5=q)- I(~)eFA(A')=7/. A. 

This proves the proposition. 
Theorem (2.3) now follows from Proposition (3.6) and Theorem (3.2). 

w 4. The unipotent and simple part of the monodromy group 

(4.1) Let (L,A) be a vanishing lattice. The group F=F~ acts on L = L / k e r L  
with its induced symmetric bilinear form. The image of F in O(L) is denoted by 
F~, the kernel of this representation by F u c F. One refers to Fu ~-) resp. F~ as the 
unipotent resp. simple part of the monodromy group. We have F~=F/F., but a 
priori it is not clear whether F is the semidirect product of F~ and F.. 

We let k e r ( L ) |  act on L by 

v|  

Note that v Q w  corresponds to the Eichler-Siegel-transformation ~ . . . .  defined 
in Sect. 1. 

(4.2) Proposition. Let (L, A) be a complete vanishing lattice. Then 

F" = ker (L) | L. 

In particular F" is abelian. Moreover F~=O*(L) and F=F~F~. In particular F~ is of 
finite index in O(L) and hence arithmetic. 

Proof. Let e 1 . . . .  ,em be a basis of kerL.  One can easily show that for each 7eF~ 
there exist unique v 1 . . . .  , vmeL such that 

y(x)=x+ ~ (x, vi)el. 
i = l  
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On the other hand, ke r (L) |  is generated by the transformations q* . . . . .  
where w k e r L  and w~L. By [8, Property (a)] cr(O . . . .  )=1,  and obviously 

. . . . .  eker r. Here ~, ~ are the homomorphisms defined in w 1. Hence 

. . . .  ~O*(L). 

By Theorem(2.4) F=O*(L), and therefore @ . . . .  ~ (cf. also [-7, Proof of 
Theorem 3.1 c)]). 

Finally a given splitting 

0 ~ k e r L ~ L  ~ L ~ 0 ,  i.e. L=LOkerL,  

leads to a split short exact sequence 

1 ~ker(L)| ~O*(L)~ 1 
(cf. [7, Sect. 3]). 

w 5. Applications 

(5.1) Now let X be an n-dimensional complete intersection in 112 k with an 
isolated singularity xeX. Let F: ~ - + S  be a suitable representative of the 
semiuniversal deformation of the germ (X,x) and denote by D e S  the corre- 
sponding discriminant. Put S '=S-D,  2F '=F- I (S  ') and F'=Fbc,. Then F': 
s S' is a Ca-fibre bundle, where each fibre is a smooth manifold diffeomor- 
phic to the Milnor fibre, which is defined by [20], [12]. Fix a point teS'. The 
corresponding fibre X t of F' has the homotopy type of a bouquet of / t  n-spheres. 
The only interesting homology group is therefore H,(X,Z). This is a free Z- 
module of rank /~, endowed with a bilinear form ( , ), given by the in- 
tersection product. This form is symmetric resp. skew-symmetric, if n is even 
resp. odd. We consider here the symmetric case, for the skew-symmetric case 
see [13]. Then the above group is an even lattice, which we denote by L and 
call the Milnor lattice. It is generated by the set A of vanishing cycles. These 
are defined as follows: Choose a regular point c on the discriminant D and a 
path 17: [0, 1]--+S from c to t, such that q((0,1])cS' .  The fibre over c has only 
one singular point, which is an ordinary double point. The fibre over tt(r), r 
small, contains a distinguished n-sphere, which vanishes, as r approaches 0. 
After the choice of an orientation and transport along q to t, one gets an 
element of A. For a vanishing cycle 6eA 

(6, 6) = ( -  1)"/2 2. 

If (X,x) is not an ordinary double point, then there exist 6~,62~A with 
(61 , 6 2 ) =  1. The image of the natural representation 

p: rq(S',t)~ Aut(L) 

is called the monodromy group F. It is a subgroup of O(L) generated by the 
reflections s a corresponding to the vanishing cycles 6eA. The set of vanishing 
cycles A forms one orbit under F. For more details see e.g. the forthcoming 
book of Looijenga [18]. 

It follows that (L, A) is a vanishing lattice and F its monodromy group F~. 
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(5.2) Now assume that X is an n-dimensional hypersurface, with n = 2(mod 4), 
or a 2-dimensional complete intersection in IE 4. In the hypersurface case the 
assumption that n=2(mod4)  is no restriction, because a singularity (X,x) of 
arbitrary dimension n is stably equivalent to one with n=2(mod4) .  By the 
remarks of (1.1) the case n=0(mod4)  is also covered. According to Arnold's 
and Wall's classification theorems [3], [25] we have to distinguish between 
the following classes of singularities. Here the first name refers to the type of 
the Milnor lattice, in brackets are given other usual names. 

1) Elliptic (simple) singularities 
2) Parabolic (simply elliptic) singularities 
3) Hyperbolic (cusp) singularities 
4) Others. 

The Milnor lattices, sets of vanishing cycles and monodromy groups of the 
elliptic singularities are the root lattices, root systems and Weyl groups of type 
A,, D,, E 6 ,  E 7 and E 8. One can easily check that in these cases F = O*(L). 

The Milnor lattices of the parabolic singularities are of the type L 
= Q'_L (0)_k (0) where (0) denotes a 1-dimensional zero form and Q' is a root 
lattice of type Ea,ET,E 6 or D 5. The monodromy groups are semidirect pro- 
ducts of the corresponding Weyl groups and ker(L)|  Thus also F=O*(L) 
(cf. Sect. 4). 

For the hyperbolic singularities, Gabrielov [14] in the hypersurface case, 
and Looijenga 1-16, III. 3.7] in the complete intersection case have shown that 
the monodromy group F is the semi-direct product of W by Q, where W is the 
Coxeter group corresponding to the Coxeter graphs Tp, q, r (Fig. 1) resp. Hp, q .... 
(Fig. 2), and Q is the lattice corresponding to one of these graphs. Here L 
=Q• Note that one gets the parabolic case for 1 /p+l /q+l / r= l  and 
(p, q, r ,s)=(2, 2, 2, 2). The equality F=O*(L) would imply W=O*(Q), in partic- 
ular W would be of finite index in O(Q), since Q is nondegenerate. But if W is 
of finite index in O(Q), then according to [4, Ch. V, w Exercice 12] Tp, q, r resp. 
/'/p,q .... have to define a Coxeter system of hyperbolic type. This is only the 
case for (p, q, r) = (2, 3, 7), (2, 4, 5), (3, 3, 4) and (p, q, r, s) = (2, 2, 2, 3). Therefore 
except for these cases the characterisation F=O*(L) is false. 

For the four remaining cases one can show that F=O*(L). We sketch here 
the proof, which is due to Brieskorn (unpublished) in the hypersurface case. By 
Sect. 4 it suffices to show that W=O*(Q). Here Q=Q'•  U, where Q' is a root 
lattice of type E 8, E 7, E 6 o r  D 5 . One can easily show that Q' has the property 

Tp,q,r O(.p- 1 ~p 
�9 ~ . . .  - . . .  - 

q r ..... <I 
p q r 

Fig. 1 
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,h o t  [east one > 2 
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- 0  O ,  ~ p  
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(R) of 1,24, w 5]. By 1,24, 5.22 

O(Q) = 0(9/). o(u) .  %0.). 

(This result is only formulated for unimodular lattices, but the proof goes also 
through for Q.) This implies 

O*(Q) = O*(Q'). O*(U). 7Sv(Q). (1) 

But O*(Q')=W', where W' is the Weyl group of Q', and O*(U)={1,s:,_:2 }, 
where f l , f2 is a basis of isotropic vectors of U. Here f l , f z  can be taken as f l  
= ~ + %-1, fz = % + f l ,  where ~ is the longest root of Q' 1,4]. The group ~v(Q) 
is generated by transformations 

~/ f i,o~ : So~ SoL-- f i 

where ~ is a root of Q'. Using these facts, one can easily show that all groups 
on the right hand side of (I) are contained in W. 

In the hypersurface case the results up to now are already stated in 1,7, 8]. 

(5.3) We consider now the remaining singularities, namely class 4). Assume 
first that X is a hypersurface. Then it follows from Arnold's classification 
theorems [2], that (X,x) deforms into a unimodal exceptional singularity (Y,y). 
This was shown by D. Siersma (personal communication to E. Brieskorn). As 
each unimodal exceptional singularity deforms into one of the unimodal excep- 
tional singularities E12, Z a 1 and Q10, the statement above can even be strength- 
ened. But this implies that the vanishing lattice (Lx, A x) of (X, x) contains the 
vanishing lattice (Lr,Ay) of one of these singularities. But Lr=E'r-l-U'A_ U, A 2 
c U  r and F~,=O*(Ly) by our earlier results [7, Theorem 3.1] (cf. also [8, 9]). By 
Corollary (2.6) and Remark (2.7) it follows that (Lx,Ax) is a complete vanishing 
lattice. Therefore Theorem (2.4) implies Fx= O*(Lx). 

Now let X be a 2-dimensional complete intersection in IE ~ with a singu- 
larity x of class 4). Then it follows easily from Wall's classification results, that 
(X,x) deforms into the triangle complete intersection singularity J~ in Wall's 
notation 1-25], given by a mapping 

f :  1~4 -* 1~2, f (w,x ,y ,z)=(xy+z2,  w2+xz+y3), 
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which is D2,a. lo in Looijenga's notation [17]. We are grateful to C.T.C. Wall 
for pointing this out to us. (The main point here is that the property of an 
isolated singularity defined by a map-germ f:  (C 4, 0 )~  (C 2, 0) being hyperbolic 
is characterised at the 2-jet level [25]. So one only has to show that the 2-jet of 
the map-germ defining (X, x) can be simplified to that defining the J'-series, 
and then apply the classification of the Y-series [loc. cit.].) This again implies 
(see e.g. [18]) that the vanishing lattice (Lx, Ax) of (X, x) contains the vanishing 
lattice (Lv,dy) of J9. The following Proposition (5.4) shows that (Ly,Ay) is 
complete. Therefore we get as above by Remark(2.7) and Theorem(2.4) F x 
= O*(Lx). 

We remark that for the 22 triangle complete intersection singularities (for 
the definition see [17]), which include the 14 exceptional unimodal hyper- 
surface singularities, this was already proven by Pinkham [21] using algebraic- 
geometric methods. 

(5.4) Proposition. Let (L, A) be the vanishing lattice of the singularity J~. Then 
(L, A) is complete. 

Proof In order to show that (L,A) is complete, we want to apply Corol- 
lary (2.6). Let (Z,z) be any of the 8 triangle complete intersection singularities, 
which are not hypersurface singularities, and L z be the corresponding Milnor 
lattice. As already noted by Pinkham [21], there exists a basis of minimal 
vectors of square length - 2  of Lz, such that the matrix of the bilinear form 
with respect to this basis is described by the following "Dynkin diagram" (as 

k 
II 

\ Z5 
p i 

Fig. 3 

q 

usual the sign (dotted=minus) and number of edges between vertices i,j is 
given by the corresponding entry of the matrix) for a certain quadruple 
(p,q,r,s) with p,q,r,s>2 and at least one >2 (cf. also [10]). In particular this 
basis is a special subset of L z in the sense of Definition (3.1). For (Z,z)=J~ one 
has (p,q,r,s)=(2,2,2, 3). From the remarks following Definition (3.1) and from 
(5.2) it follows that 

L=Lz=D53_U'ZU.  

I n  particular A 2 c L '  = D 5 . 
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Thus it remains to show that there is an orthogonal splitting L 
= D s L U ' •  such that ~v(L)cF=F~.  Now J~ deforms into the hyperbolic 
singularity //2,2,2.3. Let F: ~ S  be a suitable representative of the semiuni- 
versal deformation of a germ (Y,y) of type J~, and assume F(y)=O~S. Let s be 
a point of the discriminant D close to 0, such that the fibre of F over s has 
exactly one singular point of type//2,2,2, 3. The multiplicity of D at 0 resp. s is 
10 resp. 9 (1 added to the corresponding Milnor number). Then there exists a 
primitive embedding i,:  E ~ L  of the Milnor lattice E of //2,2,2,3 into the 
Milnor lattice L = D s •  U ' L  U of Jg. We may assume that E is embedded as 
K' .= i , (E )=Ds•177  where {fl,f2} is a basis of isotropic vectors of U. 
Moreover there exist vanishing cycles 6'~ ..... 69eA'cE and 61 . . . . .  61oeAcL 
which generate E resp. L, such that i,(6'i)=6 i for i=1  . . . .  ,9, and such that the 
corresponding reflections s0,,...,s0s resp. s6~, ...,s01 o generate the monodromy 
group F' resp. F of M2,2,2, 3 resp. J~ (see e.g. [18, (7.13)]). Let G be the 
subgroup of F generated by the reflections s6~, .... so9. Then K is G-invariant 
and one has s~,(i,v)=i,(s~,v) for v~E and l < j < 9 .  Now let w~M:=DsZU'  
be arbitrary. Then Oy,,wIKeO*(K). But we have seen in (5.2) that F'=O*(E). 
Therefore there exist r eN,  c~ 1 . . . . .  c~{61 .. . . .  69}, such that 

0s~,wl~ = ( I  s=~l~. 

But since M cK=(TIfO• is nondegenerate, there is only one way to extend 
0s~,~lK to an element of O(L), and this is 0s~,~. Thus 

~gs~,w= f i  s~EF. 
)=1 

Since f2~Z'{6a . . . .  ,69}, 6~o=e'f2+af~+v with s e { + l , - 1 } ,  a s •  and veM. 
Then 

0I,,-~(6,o)=ef2 - e f l e A .  

Hence ss~_leF. Now let weM with (w,w}= - 2 .  Then by [8, Formula (c2)] 

Os~,w=Os,,~~176176 
Since SwlKeO*(K), sweF as above, and hence Oi~,weF. Since M is generated by 
such vectors w, this shows IPv(L)cF (cf. w 1). The assertion now follows from 
Corollary (2.6). 

We summarise the above results in the following theorem 

(5.5) Theorem. Let F be the monodromy group of an evendimensional isolated 
hypersurface singularity (X,x) or a 2-dimensional isolated complete intersection 
singularity (X,x) in ~4. Assume that (X,x) is not hyperbolic or hyperbolic of 
type T2,3,7, T2,4,5, Ta, a, 4 or//2,2,2,3. Then 

F=O*(L). 

In particular the simple part F s is arithmetic. For the hyperbolic singularities 
which are not of the above types the conclusion is false: In these cases F= is not 
of finite index in O*(L). 



98 W. Ebeling 

From Propositions (2.5) and (4.2) we get descriptions of the set of vanishing 
cycles and of the unipotent and simple part of the monodromy group for all 
singularities satisfying the conditions of the theorem and belonging to class 4). 
One can show that these descriptions are also true for the other singularities, 
for which the conclusion of the theorem holds, except for the set of vanishing 
cycles of an ordinary double point, i.e. a singularity of type A 1 . There is an 
interesting consequence concerning the question, whether there exists a basis of 
vanishing cycles of the Milnor lattice of a complete intersection singularity, 
such that the monodromy group is generated by the corresponding reflections 
(which is true for hypersurface, but in general unknown for complete in- 
tersection singularities). One particular consequence of Theorem (5.5), of the 
description of the set of vanishing cycles (Proposition (2.5)), and of Theo- 
rem (3.2) is that the bases given above for the 8 triangle complete intersection 
singularities are bases of vanishing cycles satisfying this property. In the same 
way one can show the existence of such bases for other singularities (cf. [10]). 
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Note added in proof 

By Proposition (2.5) a vanishing lattice (L, A) is complete if and only if the following two 
conditions are satisfied: 

(i) L contains a sublattice A 2-1- U'-I- U. 
(ii) A contains all minimal vectors of square length - 2  of this sublattice. 
(In Definition (2.2) we only claimed that A contains a basis of this sublattice consisting of such 

vectors.) Note that condition (i) alone is not sufficient: One can construct examples of nonde- 
generate vanishing lattices (L, A) satisfying condition (i), where the group Fa is not of finite index in 
O(L). 


