
Invent. math. 77, 71-84 (1984) 
mathematicae 
�9 Springer-Verlag 1984 

Noether's problem over an algebraically closed field 
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In [8], Emmy Noether asked whether the following field extension was ra- 
tional, that is, purely transcendental. Let G be a finite group, and F a field. 
Form the rational field F(x(g)lgeG). Let G act on this field via g(x(h))=x(gh). 
The extension in question is F(x(g)[geG)G/F, where the superscript denotes the 
fixed field. We denote F(x(g)[g~G) ~ by F(G). 

Noether 's  problem can be phrased, then, as asking: for which F and G is 
F(G)/F rational? Since [8], this question has been answered for various F and 
G. Virtually complete answers are known if G is abelian. To begin with, if G is 
abelian of exponent n, then Fischer, already in [6], showed that F(G)/F is 
rational if F contains a primitive n th root of one. In [13], Swan constructed the 
first example where F(G)/F is not rational. In Swan's example, F is the rational 
field Q and G is the cyclic group of order 47. Voskresenski, Endo-Miyata,  and 
Lenstra have classified the abelian groups G and global fields F for which 
F(G)/F is rational. 

The question we will deal with in this paper is the following case of 
Noether 's problem. Is there a finite group G and an algebraically closed field F 
such that F(G)/F is not rational? By Fischer's result, none of the previous 
counter-examples of Swan et al. can apply here. In this paper we construct 
groups, G, of prime power order q9, such that F(G)/F is not rational for F 
algebraically closed of characteristic prime to q. 

Our proof  makes essential use of the notion of retract rational (see [11]), 
whose definition we now recall. Let F___K be fields. K/F is called retract 
rational if and only if K is the field of fractions of a domain S such that S 
satisfies the following. There is a localized polynomial ring F[x 1 ..... x,](1/s) 
= R and F algebra maps ~0:S ~ R and ~O:R ~ S such that qJ o ~p is the identity 
on S. 

In this paper we, in fact, prove that F(G)/F is not retract rational for the 
F, G referred to above. We construct an extension K/F with the property that 
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F(G)/F and K/F are each retract rational if and only if G Galois extensions 
have the lifting property over local rings (see [11]). It then suffices to show 
that K/F is not retract rational. This is accomplished by using the explicit 
description of K/F to show that there is an element of the Brauer group of K 
which is unramified with respect to every discrete valuation F algebra domain 
with field of fractions K. This idea is a slight variant of the unramified Brauer 
group introduced in [12]. Actually, however, this phase of the argument is 
closely related to the proof  by Artin and Mumford ([13]) that a certain 
unirational field is not rational. 

It is important  to note one more aspect of the proof  in this paper. We 
construct the field K mentioned above by using an observation attributed to 
Hasse. Namely, assume G' has a normal central subgroup N _ G '  and N has 
prime order q. Then extending a G'/N Galois extension to a G' Galois exten- 
sion is equivalent to splitting a G'/N cyclotomic crossed product. The effect of 
this observation, detailed in section one, is that a description of G' Galois 
extensions can be put together from a description of G'/N Galois extensions 
and a generic splitting field. The above vague idea is made precise using the 
notions of dense representation and local projectivity introduced in [11]. This 
part  of our argument should have further applications in Galois theory. 

F is the base field throughout this paper and will always be assumed to be 
infinite. All algebras, rings or fields are F algebras. All maps between these 
objects, unless stated otherwise, are F algebra homomorphisms.  We use p(n) to 
denote a primitive n th root  of one. To say p(n)EF implies that the characteristic 
of F does not divide n. The p(n) are chosen so that p(nk)k=p(n). For any ring 
R, R* denotes the group of units of R. Local rings are displayed as T, M where 
M c_T is the maximal ideal. As a general rule, the restrictions or unique 
extensions of maps have the same symbol as the original. 

In section one of this paper we assume a bit of familiarity with the Galois 
theory of commutative rings, for which [5] Chap. 3 is a good general reference. 
Let us now mention some special notation and terminology we employ. Saying 
that S/R is a Galois extension of commutat ive rings with group G includes a 
specified action of G on S. In keeping with this, an isomorphism of G Galois 
extensions is assumed to be a G map, that is, it preserves the G action. If R 
= K  is a field, then Galois extensions L/K need not have L a field; L, however, 
must  be a direct sum of isomorphic fields. When L is not a field note that L/K 
could be a Galois extension in different ways and with different groups. 

Let q~: R ~ R  1 be a ring homomorphism.  We let the symbol |  1 mean 
tensoring by R1 viewed as an R module via q0. If SIR is Galois, then 
S| ~ is G Galois in a natural way. If S~/R~ is also G Galois and 
S| ~-S 1 as G Galois extensions, we say that q~ realizes SJRa. 

In section one we will refer to the so-called embedding problem of Galois 
theory. For  this the following definition is useful. Let G' be a finite group, N a 
normal subgroup and let G = G'/N. Suppose SIR is a G Galois extension. A G' 
-SIR Galois extension is a G' Galois extension S'/R such that S'~_S, S=(S')  N 
and such that the induced action of G on S is the given one. 

On several occasions we will use the following trick in order to show that 
certain G Galois extensions are isomorphic. 
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Lemma 0.1. Let S/R, SI/R 1 be G Galois extensions and ~p: R - ~ R  1 a homomor- 
phism. Then S 1 ~_S|162 1 if and only if r extends to a G preserving homomor- 
phism q~ : S ~ S 1 . 

Proof If $1 ~ S | ~R t, then the induced map S -~ S |  1 -~ $1 is G preserving. 
Conversely, let tp:S--*Sa be a G map. q~ induces a G map ( p 1 : S |  1 
such that cp 1 is the identity on R 1. If Ic_S@~R 1 is the kernel of cpl, then I is 
preserved by G and Ic~Rl=(0) .  An exercise using [5] page 81 shows that I 
=(0) and so that (p~ is injective. To show that ~01 is surjective note that 
~p~(S| 0 and S 1 must be equal modulo every maximal ideal of R~ as they 
both have the same dimension. Q.E.D. 

In constructing commutative ring extensions it is useful to make the follow- 
ing definition. Suppose R is a commutative ring and f ( z )cR[z]  is a poly- 
nomial. Set R{f (z )}=R[z] / ( f ( z ) ) .  The image of z in R{f(z)}  we call the 
canonical element. If  f~(z) . . . .  ,f~(z) are a set of polynomials, then we set 
R{fx(Z) . . . . .  fs(z)} or R{f~(z)11 __<i__<s} to be R[z I . . . . .  zs]/(f~(z 0 . . . . .  fs(zs) ). The 
canonical element of R {f/(z)[ 1 <i<s} associated with f/(z) is the image of z i- 

Finally, we require some notation from the theory of Azumaya algebras 
and the Brauer group. If R is a commutative ring, Br(R) will denote the Brauer 
group of R. If AIR is an Azumaya algebra, [A] will denote the Brauer 
equivalence class of A. Crossed products will be written A (S/R, G, e) where SIR 
is G Galois and e is a 2-cocycle of G in S*. If G is cyclic of order n, R = K is a 
field, and p(n)cK, then this crossed product also has the following form. 
Assume a,b~K* and let (a,b),,k be the algebra generated over K by r fi 
subject to the relations a'=a, fl"=b, and aft=flap(n). The subscripts n or K 
will be dropped if no confusion is possible. 

Section one: Central extensions of Gaiois groups 

We begin this section with a key observation attributed to Hasse. in order to 
make this observation, we must recall some elementary facts. Let G be a finite 
group and N the cyclic group of order q, a prime. We let G act on N trivially. 
Extensions of G by N are in one to one correspondence with the cohomology 
group H2(G, N). Explicitly, if G' is a group with central subgroup N~_G' such 
that G'/N=G, then an element of HZ(G, N) is defined as follows. For each g e G  
choose a preimage u(g)eG'. Now define c(g, h), for g, heG, via the relation 

u(g)u(h)=e(g,h)u(gh). (1) 

The elements c(g, h) are in N and form a G 2-cocycle in N. Another choice of 
the u(g)'s yields a cohomologous 2-cocycle. The cohomotogy class of c in 
HZ(G,N) is the element we are defining. Conversely, given an element of 
H 2 (G, N) one can choose a representative cocycle c: G x G -~ N and then use (1) 
to define G'. For  the rest of this section we fix G', N, G = G'/N, the u(g)'s, and 
the associated cocycle c. Since u(1) can always be chosen to be 1, we can 
assume c(1, g)=c(g,  1 ) = l  for all g~G. In this paper, all cocycles will be as- 
sumed to be normalized in this way. 
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The above observation can be used in Galois theory to construct an 
obstruction to the so-called embedding problem. Let F be a field of character- 
istic not q, and containing p(q). Choose a group embedding ~/: N~F* .  Ob- 
viously, ~/(N)_~F* is the set of qth roots of one. Let K~_F be a field and L/K a 
G Galois extension. Denote by ~/* the induced map r/*: H2(G, N)-,H2(G, L*). 
The embedding problem asks whether the G Galois extension L/K embeds in a 
G ' - L / K  Galois extension L'/K. Since L' and L need not be fields, this problem 
has an easy answer which is essentially the observation of Hasse mentioned 
above. We include a proof  because we will soon make use of the proof  as well 
as the result. 

Proposition 1.1. Let G', L/K, etc. be as above. Then E exists if and only if rl*(V) 
= 1 in H2(G, L*), where 7 is the cohomology class of c. 

Proof. Suppose E exists. Then E/L has Galois group N. We can write L '=  L[z ~ 
- a }  where aeL*. Denote by ~ the canonical element of E. We can choose a 
and ~ such that b (~)=~/ (b)  for all beN. As N~_G' is central, (u(g))(~)---~d(g) 
for some d(g)eL*. Applying (t), we have that 

u(g) (u(h) (~) )  = u (g ) (~d(h) )  = ~ d ( g ) g ( d ( h ) )  
and 

u(g)(u(h))(~) = c(g, h)u(gh)(~)= ~.(c(g, h))d(gh). 

Thus d(g)g(d(h))=~l(c(g, h))d(gh) and so the d(g)'s form a coboundary for ~/(c). 
In consequence, r/*(y)= 1. 

Conversely, suppose r/*(~) is split. With u(g) and c(g,h) as above we can 
conclude that there are d(g)eL* such that d(g)g(d(h))=~l(c(g,h))d(gh) for all 
g,h~G. It follows that d(g) q is a 1-cocycle. Since HI(G,L*)=(1), there is an 
a~L* such that g(a)/a=d(g) q. Set L'=L{zq-a} and let a be the canonical 
element of L'. Define (u(g))(,)=o~d(g) and b (a )=~/ (b )  for beN. It is now easy 
to check that this defines an action of G' on L' extending that of G on L and 
that L'/K is G' Galois. Q.E.D. 

The proof of 1.1 can be generalized in a number of ways. Contained in it is 
a construction of G' Galois extensions which can be done more generally and, 
over a field, is the only way to get G' extensions. For  the first part, let S/R be a 
G Galois extension, where F~_R. Defining ~/: N--+S* as above, assume that 
~/*(y)~H2(G, S*) is split. The following lemma is an easy generalization of the 
argument in 1.1. 

Lemma  1.2. Let d(g)eS* be such that d(g)g(d(h))=rl(c(g, h))d(gh). Assume aeS* 
is such that g(a)/a=d(g)L I f  S' =S{z~-a},  then S'/R is a G' Galois extension of 
S/R. 

Suppose the G Galois extension T'/T is given. We can use 1.2 to form a G' 
Galois extension in a very general way. Set S'(T' /T)= T' [y(g)lgEG] (l/s) where 
s is the product of all the y(g)'s. The action of G on T'  extends to an action on 
S'(T'/T) via g(y(h))=y(gh). Change notation by setting y=y(1) ,  so y(g)=g(y). 
Now form S(T'/T)=S"(T'/T){zq-g(y)/yl l=~geG}. For g~: l ,  set x(g)eS(T'/T) 
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to be the canonical element associated with the polynomial z q-g(y)/y. Also set 
x(1) = I. The action of G on S"(T'/T) extends to one on S(T'/T) via 

g(x(h)) = [x (gh) /x fg) ]  'l(e(g, h)). 

Finally, set R(T'/T) to be S(T'/T) G and S'(T'/T) to be S(T'/T){zq-y}.  An 
exercise using [5] page 81 shows that S(T'/T)/R(T'/T) is G Galois and so that 
S(T' /T)~-T' |  By 1.2, S'(T'/T)/R(T'/T) is Galois with group G'. 
Note that if T'  is a domain then so are S"(T'/T), S(T'/T), and S'(T'/T). In the 
rest of this section, when we make use of S'(T'/T) etc. we will assume the 
elements y and x(g) are the elements above and 7 is the canonical element of 
S'(T'/T) viewed as S(T'/T){z q-y} .  We make this assumption even when the G 
Galois extension T'/T is denoted by different symbols. 

The construction above is functorial in T'/T. That  is, if tp: T--*T 1 is an F 
map, then (p induces a G preserving map q3: T'-- .  T '  |  and this extends, in 
an obvious way, to a G preserving map qr S(T'/T)--*S(T'| and so to 
a G' map rp': S'(T'/T)--*S'(T'| T1/T O. Taking G (or G') fixed rings we have a 
map rp': R(T'/T) --* R(T' | Using this we conclude that, 

S'(T' @~ T~/T 0 ~ S'(T'/T) | R(T' |  Tt/T O. 

Consider, now, the case of a G Galois extension L/K where K is a field. 
Form R=R(L/K),  S=S(L/K) and S'=S'(L/K). Recall that F, and so K, are 
assumed infinite. 

Lemma 1.3. Suppose E~_L~_K is a G ' - L / K  Galois extension. Then there is a 
~o: R ~ K s u c h  that E~-S 'QeK and the induced G' map q~: S' ~ E  is the identity 
on L. I f  O#:s~R, we can choose such a q9 with q~(s)=~O. 

Proof. Examining the proof  of 1.1, we see that E~-L{zq-a}  where the canoni- 
cal element ~ satisfies u(g)(ct)=~d(g), g(d(h))=[d(gh)/d(g)]rl(c(g,h)), and g(a)/a 
=d(g) q. Define q~: S ' ~ E  by setting q~ to be the identity on L, q~(y)=a, q~(x(g)) 
=d(g), and q~(v)=~. Recall that y,x(g) and 7 are as in the definition of S'. 
Anyway, q~ is a well defined G' map  and so taking the restriction of ~o to R, we 
have S' | ~K _-~ E. 

It remains to show that the density fact holds. For  this purpose we set V 
= Spec (R). For  any field K ' ~  K, HomK(R, K') is in one to one correspondence 
with the G preserving maps ~o:S~L|  which are the identity on L. In 
other words, the K'  points of V correspond to choices x'(g), a'~(L| such 
that g(a')/a'=x'(g) q and g(x'(h))=[x'(gh)/x'(g)]rl(c(g,h)). Now consider S 1 
=L[w(g)lg~G](1/t ) where t is the product of all the w(g)'s and G acts on S 1 
via g(w(h))=w(gh). Set w=w(1). If R~ =S~, then U = S p e c ( R  0 is a torus whose 
K'  points are (L| If(x'(g),a') is a K '  point of V a n d  w' is a K'  point of 
U, then (x'(g)g(w')/w',a'(w') q) is another K '  point of V. That  is, there is an 
algebraic group action U • V~V.  If  vEV(K') and u~U(K'), denote by uv the 
result of u acting on v. Note that, by working it through, if v corresponds to 
q~:R--* K and u v corresponds to qr  ~ K, then q~ and ~0" realize isomorphic 
extensions E. 
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From all of the above, it is clear that it suffices to prove that if w V(K), 
U(K)v~V(K)  is Zariski dense. Recall that the ground field F is assumed 
infinite, and so K is an infinite field. I f / (  _ K  is the algebraic closure, then one 
can check that U( / ( )u=  V(/(). Also, R 1 is a localized polynomial ring so U is 
an open subset of affine space. It follows that U(K) is dense in U(/(). Now the 
map  u--* uv is a regular map, so U(K)v is dense in U( / ( )v=  V(/(). Q.E.D. 

Let So/R o be a G Galois extension, with R o an affine F algebra and S o a 
domain. We next will use the above lemma to show that S'(So/Ro)/R(So/Ro) 
inherits nice properties of So/R o. To be precise, let us repeat the definitions of 
two properties that appeared in [11] in connection with retract rational fields 
and lifting problems. 

1) So/R o is called densely representing if for all fields K ~ F, all G Galois 
extensions L/K, and all 0 + s~R o, there is a qo:Ro(1/s ) ~ K such that ~o realizes 
L/K. 

2) So/R o is a local projective if the following holds. Let T, M be a local F 
algebra and let T' /T be G Galois. Set L = T ' / M T '  and K = T / M .  if ~: Ro--*K 
realizes L/K, there is a ~ ' :  R o ~ T such that ~'  realizes T' /T and 

commutes.  

Ro i 
The most important  result of this section can now be stated. 

Theorem 1.4. Let So/R o be G Galois, S'=S'(So/Ro) and R=R(So/Ro). Assume 
S o is a domain. 

a) I f  So/R o is densely representing jbr G Galois extensions, then S'/R is 
densely representing for G' Galois extensions. 

b) I f  So/R o is a local projective for G Galois extensions, then S'/R is a local 
projective for G' Galois extensions. 

Proof a) Let ElK be G' Galois and set L = ( E )  N. If O+s~R, then some 
coefficient of s, viewed as an element of S(So/Ro), is nonzero. Call it s'. Choose 
q~o: Ro--*K such that q~o realizes L/K and q~o(t)+0, where t is the G norm of 
s'. This implies that the induced map q~t: R(So/Ro)--*R(L/K) has ~Ox(S)+0. 
Now choose ~2 as in Lemma  1.3 with q~z(q)l(s))+O. The map ~o2o~01 is the one 
required. 

b) Let T, M be a local F algebra and T' /T  a G' Galois extension. Set K 
=T/M, T' /MT'=I2,  ( T ' ) N = T  '' and ( E ) N = L = T " / M T  ''. Suppose q~: R ~ K  re- 
alizes E/K. Then the restriction of ~0 to R o realizes L/K. Call this restriction 
~Po. By assumption, there is a COo: R o ~ T which realizes T"/T  and such that 

R ~  t 
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commutes. We also denote by q0 o, (p~ and ~p the corresponding G or G' maps 
( p o : S o ~ L ,  ~O'o:So~T" and ~o:S'~E. Identify T" with So| and L with 
So| The map (p: S'(So/Ro)~E is determined by x'(g)=cp(x(g)), a=~p(y), 
and e=~o(V). Once again, x(g), y and 7 are as in the definition of S'(So/Ro). 

Since T is local, T" is semilocal and so T'~T"{zq-a '} .  Let c( be the 
canonical element of T'. Then we can choose e' and a' so that n(e')=c(tl(n) for 
all heN. Arguing as before in the field case, (u(g))(e')=c(e(g) for e(g)e(T")* 
with g(e(h))=[e(gh)/e(g)]tl(c(g,h)). If ~(g) is the image of e(g) in L, then ~(g) 
and x'(g) are both coboundaries for t/(c(g,h)), so ~(g)g(b)/b=x'(g) for some 
bsL*. Choose b'~(T")* a preimage of b, and change e' to ~'b'. The new e(g) is a 
preimage of x'(g). Also, set ~ to be the image of c( in L'. One calculates that 
~-lu(g)n(~)=q(n)x'(g)=~-lu(g)n(~), so ~=c~v where v~K*. Once again, there 
is a preimage v'e(T)* and we can change e' to e'v'. In other words, we can 
assume that c( is a preimage of e. Of course, then, a' is a preimage of a. Define 
~o': S(So/Ro)-~T" by letting ~o' be ~o~ on So, setting ~p'(x(g))=e(g), and setting 
(p'(y)=a'.  Clearly ~o' is a G map and its restriction to R is the desired 
lifting. Q.E.D. 

The importance of 1.4 is that local projective densely representing G Galois 
extensions SIR are very well behaved for our purposes. The key fact is that G 
Galois extensions lift over local rings if and only if q(R)/F is retract rational 
([11]. 3.10). The actual theorem we prove in this paper is that there is a G such 
that q(R)/F is not retract rational, for F algebraically closed. To this end, we 
must describe the construction of S'(So/Ro)/R(So/Ro) in another way. 

Theorem 1.5. Let G,G' etc. be as above and assume So/R o is a G Galois 
extension with S o a domain. Let c(g,h) be a normalized cocycle describing G' 
and let A be the central simple algebra A(q(So)/q(Ro), G, rl(e)). Then q(R(So/Ro) ) 
=K(A)(x) where K=q(Ro) , x is an indeterminant, and K(A) is the generic 
splitting field of A defined in [1] and [9]. 

Proof Considering K=q(Ro), it is easy to see that we may assume that K = R  o 
is a field. Set L=S  o. Form the ring T=L[z(g), z(g)- l[1 4:geG] with G acting 
on T via g(z(h))=[z(gh)/z(g)]tl(c(g,h)). Here we have set z(1)= 1. Now q(T 6) 
=q(T)a=K(A) by [10] pages 212-213. Consider S=S(L/K). Map ~p: T~q(S)  
by setting ~o(z(g))=x(g). As x(g)q=g(y)/y, the x(g)'s are algebraically inde- 
pendent over L for g:t: 1, and so ~0 is an injection. Use ~0 to identify q(T) with 
a subfield of q(S). Choose aeq(T) with g(a)/a=x(g) q. We have that a/y is G 
fixed; call it u. Then q(T)(u) contains x(g) for all 14:geG and contains y, 
implying that q(T)(u)= q(S). Also, q(S)/F has transcendence degree the order of 
G, which is one more than the transcendence degree of q(T). Hence u is 
transcendental over q(T). Taking G fixed fields, we are done. Q.E.D. 

Section two: Cyciotomic crossed products 

Let/~ be the group of units in the field F. We saw in the previous section that  
the Galois theory of central extensions leads one to consider crossed products 
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with cocycles taking values in It. We call these cyclotomic crossed products. If 
the cocycle takes values in #(n), the n th roots of one, we say the crossed 
product is n-cyclotomic. In this section we will characterize cyclotomic crossed 
products where the group is abelian. Some of these results are not actually 
needed but the results are suggestive and so worth writing down. 

Before stating the first theorem, let us introduce some terminology. Consid- 
er a Kummer  extension L/K  where L = K { z " ' - a ~ 4 1 < i < s } .  We say x ~ K  has 
a n  m th root in L canonically if x has the form 

, s  y~K y" a~l ... a s 

where the r~ have the following property. I f  (m, n~) is the g.c.d, of m and nl, then 
r i is a multiple of m/(m, hi). Of course, the point of all this is that x has a n  m tla 

root which is a product of an element of K* and the canonical generators of L. 
As a final bit of terminology, consider L/K  the Kummer  extension above. 

Assume p(n~)eK for all i, and set e~ to be the canonical generator associated 
with the polynomial zn'-a~. Then L/K  is G Galois where G is abelian and 
generated by gi defined as follows. Set gi(ctj)=c(~ if i#:j and gi(cq)=~ip(ni). In 
what follows, whenever we work with a Kum m er  extension L/K, this extension 
will be considered G Galois as above. (Remember L is not a field so this 
comment  is not superfluous.) Also, the elements e~ and the automorphisms g~ 
will be as defined above. 

Theorem 2.1. Let A be the abelian crossed product A(L/K, G, c), where c takes 
values in It. Then [A] is a product of cyclic algebras [(XO~,yfl)m] where x and y 
have mth roots in L canonically, and o~, fl are in It. 

Proof Of course, we can write L/K  as a Kum m er  extension which is G Galois 
as above. If the integers n~ are as above, we can assume that nj divides n i if 
i<j. 

We next use the description of abelian crossed products given in [2]. Let 
z(g) ~ A be such that z (g) z (h) = c (g, h) z (g h), and z (g) x z (g)- 1 = g (x) for x e L. We 
can assume that z(1)= 1. Set z~= z(gi). Now set, for i~:j, u~=z~zjz i- l z f l  and b i 
=(z~)"'. It was shown in [2] that the uij's and bi's are in L and completely 
describe A. In this case, the u~j's and b~'s are in It because they are products of 
the c(g, h)'s. 

The ui~'s and bi's satisfy relations which we now recall (see [2"1, page 78). 
Define Ni(x ) to be the norm of x with respect to the subgroup of G generated 
by gi. Then one relation is that Nj(uij)=gi(bj)/b j. Also, u~ l=uu .  In our circum- 
stance the uiSs and bi's are G fixed so we have (u~j)" = 1 where n = n i or n~. 

The idea now is to change the u's and b's so as to construct a cyclic 
subalgebra of A. In general, one can replace z(g) by any element of z(g)L*. In 
particular, if ?eL*, we can change z(gl) to ?z(gl) and leave all other z's the 
same. One can then calculate that u~j changes to u~j(?/g~(?)), b~ changes to 

1 becomes, of course, (ui-j1)(?/gj(?)) - 1, and all other u's and b's remain Nl(7)b ~, uj 
the same. We saw above that each u~j was an n i root of one. It follows that we 
can choose ? to be a product  of the a~'s for i#: 1, so that u~(?/gj(),))= 1 for all 
j .  1. With this choice of ?, N~(?)b~ will have the form 

a~2 ~ ... a~*b~=(say) yb~ (2) 
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since Nl(~i)=(%)"'.  Also, it is clear that y is an n~ root in L canonically. 
Change notation so that uaj and u~l are 1, b 1 is (2), and all the other u's and 
b's are the same. Set A 1 to be the subalgebra of A generated by the new z~ and 
~ .  Then Aa~(a~,bl). l  where aa and b~ are as required. Let A 2 be the 
subalgebra generated by the zi's and the ~i's for i>2 .  Since the u~Ss are 1, A~ 
and A 2 centralize each other. Checking degrees we have that A~-A~(~KA2 . 
Also, A 2 is a cyclotomic crossed product and we can proceed by 
induction. Q.E.D. 

What  we actually require in this paper is the converse to 2.1. That  is, we 
are about to observe that products of cyclic algebras are similar to cyclotomic 
crossed products in the Brauer group. 

Theorem 2.2. Let a 1 . . . . .  as~K*, and set L = K  {z "~ -a~[ 1 <i<=s} for some n i such 
that p(ni)eF. Assume that ( - 1 ,  -1)2,K is split. Let [A]~Br(K) be such that [A] 
is a product of algebras [(xct, yfl),,] where p(m)~F, x and y have mth roots in L 
canonically, and ~, fie#. Let G be the (abelian) Galois group of L/K. Then A is 
Brauer similar to an n cyclotomic crossed product, where ~, fl and all the P(ni) 
are in #(n). 

Proof We will repeatedly use two reduction facts. If  A~, A 2 satisfy the con- 
clusion, then so does A1QKA 2. Second, let H ~ G  be a subgroup, and E = L  n. If 
A(E/K,G/H,c')  is an n cyclotomic crossed product, then so is the algebra 
A (L/K, G, c) gotten by inflation. It will also be useful to recall that, if d divides 
m, then [(x a, Y)m] = [(x, ya),.] = [(x, Y)m/d] and [(x, - x),,] = 1. 

- -  r Using the first reduction fact, we can assume that either A - ( a  i, a~) m, A 
=(a[, e)m or A =(e, fl),, where r=m/(m, hi), q=m/(m, nj) and e, fls#(n). In the last 
case, a straightforward exercise shows that [ A ] = I  or = [ ( - 1 , - 1 ) 2 . K  ]. By 
assumption, then, [A] = 1 and so we can eliminate the last case. 

For any x, [(a~,x)m]=[(al, x),,,] where m'=(m, ni). Since m' divides 
m, m'/(m', n j) divides m/(m, n i ). Hence [(ai, a~),,,] is a power of [(ai, a~'),,,] where 
q'=m'/(m',nj). This last algebra equals [(al,aj),,,,] where m"=(m',nj). Altho- 
gether, we can assume that either A =(e~, e)m for m dividing n~ or A =(a~, at),, for 
m dividing n i and n~. In this last case, if i=j, then (ai,a~),,=(a~, - I ) .  Since this 
is covered by the first case, we may assume i+j. 

If E = L { z " - a i } ,  then we can identify L' with L u for some subgroup Hc__G. 
The algebra (a~, e)~ is clearly a cyclotomic crossed product with respect to 
E/K,  and so our inflation reduction fact eliminates this case. If E = L { z m - a i ,  
zm-aj},  E is again of the form L H. We set u=p(m), b l = b 2 = 1  and use these to 
form the cyclotomic abelian crossed product B = A (ELK, G/H, e). The proof of 
2.1 shows that [B]=[(a~,a~),,]. Once again, the inflation fact eliminates this 
last case. Q.E.D. 

Remark. Hidden in the above proof is the following fact. If  G is a finite abelian 
group of exponent n, and G acts on Q/Z  trivially, then H2(G,Q/Z) has 
exponent dividing n. The exact sequence 

0 ~ Z /nZ  -~ Q / Z ~  Q/Z  -~ 0 
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shows that the map H2(G, Z/nZ)- -*H2(G,Q/Z)  is onto. Thus if F has enough 
roots of one, it can be seen directly that any cyclotomic crossed product using 
G is also an n cyclotomic one. 

Section three: The unramified Brauer group and the example 

We will show in this section that certain fields are not retract rational, and so 
not rational. We will do this by using the Brauer group to construct an 
invariant of fields which is zero for retract rational fields, and then show it is 
nonzero for our field. For  convenience sake, from now on, assume F is an 
algebraically closed field. 

The invariant we will define is almost identical to the invariant defined in 
[12]. To make the definition, recall the following fact. If  R is a discrete 
valuation domain with field of fractions q(R)=K, then the Brauer group map 
Br(R)~Br(K) is a injection. Thus we can and will identify Br(R) with a 
subgroup of Br(K). 

Definition 3.1. Suppose K/F is an extension of fields. Define Brv(K)~_Br(K) to 
be the intersection of all Br(R) where R is a discrete valuation domain with 
q(R)=K and F~_R. 

Note that the above definition differs from the one in [12] because in [12] 
we considered all valuation domains, and not just the discrete ones. The two 
definitions coincide if K is the function field of a smooth proper F variety. 

The following elementary properties of Br~(K) will be most  useful to us. 

Proposition 3.2. a) If K/E is rational, Br~(K)=(O). 
b) If K ~_L, then the natural map Br(K)-~ Br(L) sends Br~(K) into Brv(L ). 
c) If K/F is retract rational, then Brv(K)=(O ). 
d) If R is a smooth domain of finite type over F with q(R)=K, then 

Br(R)~_Br~(K). 

Proof All of the above facts were proved in [12] for the unramified Brauer 
group defined there. The proofs for Br(K) are identical, and will mostly be left 
as an exercise. Let us simply recall that part  d) above is a consequence of a 
result of Hoobler 's  ([73), namely, that if R is a smooth domain of finite type 
over F, then Br(R)= nBr(Rp), the intersection being over all height one primes 
of R. 

Of course, considering 3.2c), it is clear that we intend to show a certain 
field is not retract rational by showing that Brv of that field is not zero. The 
next l emma will give the form that our argument will take. But first, let us 
recall some notation and facts. 

Let S be a discrete valuation domain and set K=q(S). Let p be the 
characteristic of F. If A is an abelian group, let A' denote A if p = 0 and denote 
the p prime part  of A if p 4: 0. There is an exact sequence: 

0 ~Br(S)' -~Br(K) '  xs Homc(Gk, Q/Z) '  -o0 (3) 
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where k is the residue field of S, G k is the absolute Galois group of k, and 
Homc refers to continuous homomorphisms,  where Q / Z  has the discrete 
topology. As G k is compact,  any f e H o m c ( G  k, Q/Z) has finite image. Since any 
finite subgroup of Q /Z  is cyclic, each element of Homc(G k, Q/Z) defines what 
we call the associated cyclic extension of k. 

Lemma  3.3. Let L~_K be an extension of fields and denote by Res: 
Br(K)--,  Br(L) the natural map. Recall that the kernel of Res, by definition, is the 
group Br(L/K). Suppose that ~eBr(K) satisfies the following properties. First, if 
p is nonzero we assume that c~ has order prime to p. Also, that .for any discrete 
valuation domain S, with q(S)=K,  there is a f leBr(L/K) with Zs(C~fl)=l. Then 
Res(e) eBrv(L). 

Proof Let Rc_L be any discrete valued domain with q(R)=L.  Consider S 
=KerR .  If S = K ,  Res(c0eBr(R) is clear. If S + K ,  then S is a discrete valuation 
domain with q(S)=K.  Letting f leBr(L/K) be as above, we have by (3) that 
efleBr(S). Since Sc__R, Res(efl)eBr(R). Hence Res(cO=Res(efl)eBr(R). Since 
this is true for all R, we are done. Q.E.D. 

With S_cK as above, and a, beK*, it is quite easy to compute Zs([(a, b),]) if 
n is prime to p. To do this, we make use of the fact that Homc(G k,Q/Z)  
"measures"  cyclic extensions of k. In fact, if we fix a root of one, p(n), the n 
torsion part  of Hom~(G k, Q/Z) can be identified with k*/(k*)". Make this 
identification; let v be the normalized integer valued valuation of S; and 
denote by ff the image in k of xeS.  Then Zs([(a, b),]) is exactly 

(bv(a)/a v(b)) ( - 1)v~a)~(b). 

The rest of this section has three parts. We will first construct a field and 
then use 3.3 to show that it is not retract rational. Next, we will relate this field 
to the construction of section one. And third, we will show how this proves 
that a certain F(G), the field from Noether 's  problem, is not retract rational 
even though F is algebraically closed. 

In order to describe the field we are going to construct, recall that if A/K is 
central simple, then we denoted by K(A) the generic splitting field of A defined 
in [11 and [91. It  was proved in [11 that Br(K(A)/K)  was the group generated 
by [A 1. If A1/K . . . . .  As/K are a set of central simple algebras, we can define, 
inductively, the generic splitting field K(A 1 . . . . .  As) to be the usual generic 
splitting field of A , |  t, . . . ,As_l).  We note two trivial properties. First, 
that K(A~ ...... A~) is independent of the order in which we list the Ai's. Second, 
that Br(K(A 1 . . . . .  Ss)/K) is the group generated by [Al1, ..., [A~]. 

We should reemphasize that F is assumed to be algebraically closed. Let q 
be a prime unequal to the characteristic of F. 

Theorem 3.4. Let K = F(a, b, c, d) be the purely transcendental extension. Denote 
by L the generic splitting field K{(a, b)q| d)q, (a, C)q, (a, d)q, (b, c)q, (b,d)q}. 
Then L/F is not retract rational. 

Proof It  suffices to show that [L]~[(a,b)q,L]eBro(L).  Note that 
(a, b)q,r|  L. Thus to show that (a,b)q,L is not trivial we must show 
that [(q,b)q,r ] is not in the subgroup of Br(K) generated by the above five 
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algebras. Embed K into / (=F((a ,  b, c, d)), the iterated Laurent series field. Let 
HgBr( I ( )  be the subgroup of q torsion elements. By [4], H has rank 6. It is 
easy to see that {[(a, b)~], [(a, c)q], [(a, d)q], [(b, c)q], [(b, d)q], [(c, d)q]} form a 
basis of H. This clearly implies what we want. 

To prove (a, b)~,L~Brv(L), we, of course, use Lemma 3.3. So let S~_K be a 
discrete valuation ring with q(S)=K. Suppose that v and k are as above. We 
consider several cases. If v(d) is prime to q, then 

Xs([(b, d)~]) = (dV(b)/b via)) mod (k*) q and Xs([(a, d)q]) = (dV(a)/a ~(a)) mod (k*) q. 

Thus 
Zs([(b, d)q] v~a) [(a, d)q] - ~ (~)) = (bv(~)/a ~ (b))- ~(d) rood (k*) ~. 

If rv(d) - 1 (q), 

Zs(E(a, b)q] [(b, d)q] v(a)r [(a, d)q] -~(b)r)= 1. 

As [(b, d)~]v(~)r [(a, d)q]-~(b)r is in Br(L/K), this case is done. 
A similar argument applies if v(c) is prime to q. Finally, if v(c) and v(d) are 

both divisible by q then Xs([(c, d)~])= 1 so Xs([(a, b)q] [(a, b)q| d)q]-1)= 1. All 
together, Lemma 3.3 is satisfied in all cases and the theorem follows. Q.E.D. 

The next step in our argument will show that the field L above is closely 
related to a densely representing local projective Galois extension SIR as 
studied in section one. 

Theorem 3.5. Let q be a prime unequal to the characteristic of F. Consider the 
field L defined above using this q. Then there is a q-group, G, and a densely 
representing local projective G Galois extension SIR such that L ~ q ( R )  and 
q(R)/L is rational. 

Proof. Let K be as in Theorem 3.4 and let D1 . . . . .  D 5 be the five central simple 
K algebras for which L is the generic splitting field K(D 1 . . . . .  D5). Set L i 
=K(D 1 . . . . .  D~) and K'  to be K with the qth roots ofa, b,c, and d adjoined. The 
proof starts by observing that K is q(Ro) where So/R o is a densely representing 
local projective Galois extension with Group Go, the elementary abelian q- 
group of rank 4. In fact, Ro=F[a,  b, e, d](1/t) where t=abcd,  and 

S 0 =Ro{z q - a ,  z q -b ,  z q -c ,  z q-d}. 

Obviously q(So)=K'. An exercise shows that So/R o is densely representing and 
local projective as claimed. 

By 2.2, D 1 is similar, in the Brauer group, to a q cyclotomic crossed 
product AI=A(K ' /K ,  Go, c ). Using 1.5 we see that there is a central extension 
of G O by Z/qZ,  call it G1, and a densely representing local projective G 1 
Galois extension S1/R1, such that q(R1)=K(A1)(x ). Set K 1 to be q(R O. As 
K(A1)/K(D1) is rational (see [9], page 413), we have that K1/L 1 is rational. 

By 2.2 again, D 2 is also similar to a q cyclotomic crossed product. Of 
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course, the same is true of  D2(~KK 1. Using inflation, D z Q K  1 is similar to A 2 
= A (q(SO/K~, G~, c) which is another  q cyclotomic crossed product.  Arguing as 
before, KI(A2)(x)=q(R2) where Sz/R 2 is a densely representing local projective 
G 2 Galois extension, G 2 being a central extension of  G~ by Z/qZ. Set K 2 
=q(R2). Again, K2/L 2 is rational. Proceeding in this way we are 
done. Q.E.D. 

There are several things which should be noted in the above proof. First, 
each cocycle arises by inflation from a G o cocycle. It follows that the group G 
has a central subgroup N such that  G/N= G o and N is an elementary abelian 
q-group of rank 5. However,  the above construct ion does not uniquely de- 
termine G because the natural  map  Hz(GI, Z/qZ)-~HZ(G~, ~) is not  injective. 
We can describe one group G fitting 3.5 as follows. G is generated by e, f, g, h, 
k, s, t, u, v such that  all these elements have order  q; e, f, g, h, k are all central, 
s t s - l t - ~ = e = u v u - l v - ~  ' su s -~u -~=f ,  svs-av l = g ,  tu t -~u-~=h,  and 
t v t - l v - l = k .  

We can now state and quickly prove the example which is the whole point  
of this paper. 

Theorem 3.6. Let F be an algebraically closed field of characteristic unequal to 
the prime q. Let G be one of the q groups arising in 3.5. Set K =F(x(g)lgEG) and 
let G act on K in the usual way. Then F(G)=K ~ is such that F(G)/F is not 
retract rational, and hence not rational. 

Proof Let L be the field of 3.4 and SIR the densely representing local pro- 
jective G Galois extension from 3.5. Since L/F is not  retract rational, and 
q(R)/L is rational, q(R)/F is not  retract rational ([11], 3.6). Hence G Galois 
extensions do not  have the lifting property over local rings ([11], 3.10). But 
then by ([11], 3.12), F(G)/F is not  retract rational. Q.E.D. 

Obviously, the method  used will apply to more  groups G than those covered 
by 3.5. For  example, it applies to certain rank two nilpotent q groups with 
Nc_G central and GIN elementary abelian of rank greater than or  equal to 
five. What  is lacking is a classification of the groups, even the rank two q 
groups, such that F(G)/F is retract rational or even such that  the above 
methods apply. 
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