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§ 1. Introduction

Let p denote a fixed prime number, Z, the ring of p-adic integers, and Q, the
field of p-adic numbers. We denote the set of m-tuples of elements of Z, (resp.
Q,) by Z7 (resp. Q7).

Let f(x), ..., f.(x) be polynomials in m variables x=(x,,...,x,) over Z,,. For
nelN, let N, be the number of elements in the set

{xmod p"$xeZ" and f;(x)=0modp", for i=1,...,r},
and let N, be the number of elements in the set
{xmod p"3xeZy and f;(x)=0, for i=1,...,r}.

To these data one can associate the following Poincaré series

P(T)=3 N,T", P(T)=) N, T"
n=0 n=0

Borewicz and Shafarevi& [6, p.63] conjectured that P(T) is a rational function
of T. This was proved by Igusa [15, 16], in the case r=1, using Hironaka’s
resolution of singularities. Subsequently Meuser [22] proved the conjecture for
arbitrary r, by adapting Igusa’s method. In this paper we will give a different
proof (see §7) of the rationality of P(T), which does not use resolution of
singularities.

Recently Serre [28, §3] and Oesterlé [24] investigated the behaviour of N,
for n— oo, and they asked the question whether P(T) is a rational function of
T. In this paper we prove

1.1. Theorem. P(T) is a rational function of T.

The proof of Theorem 1.1 runs as follows: First we express P(T) as an
integral over a certain subset D of Z';“ (Lemma 3.1). From a theorem of
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Macintyre [21], on the elimination of quantifiers for @, (see §2) it follows that
D is a boolean combination of rather simple subsets of Z';‘“. The integral over
such a subset is then evaluated (Theorem 3.2) by Igusa’s method [16], using
resolution of singularities.

In §4 we consider some generalizations. In § 5 we prove the rationality of
the two-variable Poincaré series P(T, U) associated to the number of solutions
mod p" which can be lifted to solutions mod p"*J. The denominator of P(T, U)
has a particular simple form.

Section 6 contains a result on the absolute value of a definable function,
which will be used in §7, and an application to the p-adic distance from a
point to a variety.

In §7 we give a different proof for the rationality of P(T), P(T) and P(T, U)
which does not use resolution of singularities. This proof (even for P(T))
heavily relies on Macintyre’s Theorem [21] on the elimination of quantifiers
for Q,, and uses a partition (Theorem 7.3) which is similar to and completely
inspired by P.J. Cohen’s Cell Decomposition [7, p. 140].

The special case of a curve f(x,,x,) has been investigated by Driggs [9],
Igusa [17], Meuser [23], and Strauss [29] for P(T), and by Bollaerts [5] for
P(T).

1 am grateful to D.J. Lewis, D. Meuser, and N. Schappacher for stimulating
conversations and for providing me with useful information. 1 also want to
thank L. Brocker for pointing out a simplification in the proofs.

§ 2. Elimination of quantifiers

We consider the following three kinds of subsets of Q7
A subset of Q7 of type I is of the form

{xeQy8 f(x)=0},
for some feZ [x,,...,x,].
A subset of Q7 of type Il is of the form

{xe@psord(f(x))zord(g(x))},

for some f, geZ [x,,...,x,]. Here ord denotes the p-adic valuation on Q,
(using the convention that ord (0)= + o0).
A subset of Q7 of type II1 is of the form

{xeQr§IyeQ,: f(x)=y"},
for some neN, n=2, and feZ [x,,...,x,].
Lemma 2.1. 4 subset of QF, which is of type I or 11, is also of type I1I.

Proof. We have that f(x)=0 iff p(f(x))? is a square. Moreover, if p#2, then
ord (f(x))z ord (g(x)) iff

IyeQ,: (8(x)*+p(f(x)* =y
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If p=2, then ord (f(x))= ord (g(x)) iff
IyeQ,: (€(x)*+8(f(x)* =y Q.E.D.

A boolean combination of subsets of Q7 of type 1l is a subset which is obtained
by taking intersections, unions and complements (a finite number of times) of
subsets of Q7' of type I1L

We can now state Macintyre’s Theorem [21] on the elimination of quan-
tifiers for Q

2.2. Theorem. Let S be a boolean combination of subsets of Q5" of type III.
Then the set

{xeQy$3yeQi: (x,y)eS}
is a boolean combination of subsets of Q7 of type I11.

Historical note. An elimination of quantifiers for Q, was first obtained by Ax
and Kochen [2, III]. Their result differs from Macintyre’s in that it uses
subsets of a more general type. Their proof is based on the model theory of
valued fields which was developped by Ax and Kochen [2, 20] and Ersov [10,
11].

Subsequently P.J. Cohen [7] gave an elementary (but very ingenious) proof.
Cohen’s work has been generalized by Weispfenning [31]. Only much later
came Macintyre’s Theorem [21] which we stated above. Macintyre’s proof is
based on the results of Ax and Kochen and Ersov. Recently Prestel and
Roquette [26, p. 91], have given a selfcontained proof of Macintyre’s Theorem
and generalized it to finite field extensions of Q,. Their proof uses model
theory. Currently Weispfenning is preparing a paper [32] which will contain
an elementary proof of Macintyre’s Theorem in a more general setting.

Remarks. 1t is known (see e.g. [21]) that Theorem 2.2 becomes false if one only
works with boolean combinations of subsets of type I and 1. Many of the
results of Ax and Kochen, and Ersov fail for local fields of characteristic p=0,
but the situation there is not yet well understood (see Delon [8]).

§ 3. Proof of Theorem 1.1

For a€Q,, let |a|=p~°"". Let |dx|=|dx,||dx,]|...|dx,| be the Haar measure on
Q7% such that the measure of Z} is 1. Let fi(x),....[,(x) with x=(x,...,x,,) be
asin §1.

For seR, s>0, we consider

I(s)= [ |wl*|dx]||dwl,
where ’
D={(x,w)eZl xZ,33yeZ}: x=ymodw, and f(y)=0, for i=1,...,r}.
Let P(T) be the Poincaré series of §1.
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3.1. Lemma. With the above notation, we have
-1
1)=""= P~ p™)

Proof.
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n=0
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1
13
~
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1 >
:Lp Y Np~p" )" QED.
n=20

]

Thus to prove Theorem 1.1 we have to show that I(s) is a rational function of
p~5. From Lemma?2.l and Theorem 2.2 it follows that D is a boolean com-
bination of subsets of Q7" of type III. Thus Theorem 1.1 reduces to

3.2. Theorem. Let S be a boolean combination of subsets of Q7 of type Il
Suppose that S is contained in a compact subset C of Q7. Let geQ [x], where x
=(Xy,...,X,,). Then

Z(s)=Jlg()I*|dx]

S

is a rational function of p~*.

In the special case that S=Z7, this is due to Igusa [15, 16]. A related
integral in the archimedian case has been investigated by Atiyah [1],
Bernstein-Gel'fand [4], and Bernstein [3].

Proof. We calculate Z(s) by applying Igusa’s method [16]. S can be written as
a union of intersections of subsets which are of type III or the complement of
one such.

Since | =f+{— [, we may suppose that § is the set of all xeQ}
AuB A B AnB
satisfying the following conditions

H fi(x) is (is not) an nith power in Q,, j=1,2,....q,

q
where f;€Z,[x]~{0}, and n;eN, n,22. Let f= (H f;) g. Applying Hironaka’s
j=1
Embedded Resolution of Singularities [14, p. 1761 to the locus f=0, one
obtains a @ -analytic manifold Y, and a proper Q,-analytic map h: Y—QF,
with the following properties: For every beY there exist local coordinates y
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=,,.... ¥, centered at b such that, locally around b, we have

m
foh=e ]V,
i=1

and

h*dx A ... ndx,)=n (H le"‘l) dy, A ... Ady,,
i=1
with N, v,eN, v,z 1, and with ¢, 1 invertible Q -analytic functions in a neigh-
bourhood of b (see [18, p. 84-87]).
Since the ring of germs of Q -analytic functions around b is a unique
factorization domain, we have

froh=¢, H y¥oo for j=1,...,q,

and
goh=y ]y,
=1

in an open neighbourhood U of b, with N,
analytic functions on U.

By making U smaller, if necessary, we may assume that |¢j, |y| and || are
all constant on U, and that ¢,(y)/¢;(h) is an n;th power in Q, for all yeU, j
=1,...,9. Indeed every zeQ,,, which is sufficiently close to 1, is an n;-th power.
We may also assume that U is compact. Since h is proper, h™!(C) is compact
and can be covered by a finite number of compact open sets such as U. Let’s
call these U,,U,,.... By replacing U,,U,,U;,... by U, U,~U;,U;~
(U,uU,), ..., we may suppose that they are disjoint. Then we obtain

20=3 {1 ([T (Im] il

U Unh=L(S)

MeNN, and ¢, 7,7 invertible Q-

Moreover, U nh~1(S) is the set of all yeU satisfying
2) g;(b) [ ]y is (is not) an nyth power in Q,, for j=1,...,q.
i=1
We identify each U with its image in the y-space, which is a compact open
subset of Q7. Thus each U is a finite disjoint union of sets of the form a

+p°Zy, with a=(a,,a,,...,a,)eQ}y and eeN. Thus to prove Theorem3.2 it is
sufficient to show that

so)= (ﬁm“) 1dy]

is a rational function of p~%, if V' is the set of all yea+p®Z’ which satisfy (2).
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Let n be a common multiple of n,,...,n,. Notice that condition (2) only
depends on the n-th power residues of the y,. Hence, summing over all the n-th
power residues which satisfy (2), we may suppose that V is the set of all yeQ}
satisfying

3 vi€a;+p°ZL,,
and
(4) y;=4;-(nonzero n-th power),

for some 4,€Q,, i=1,...,m. But then J(s)= [] I;(s), with

i=1

Is)= | ipMerrtdyl
(3),4)

If a,¢p°Z ,, then (3) implies that I,(s) is equal to a constant times |aJ™=* =1 If
a;ep°Z,, then (3) is equivalent to y,ep“Z, and

Ii(S)= Z p—k(Mis+vi—1) j‘ ,dy,l

kze ordyi=k
4)
Put y,=p*u, then
—k
5 ldydi=p j |dul.
ordyi=k ordu=0
4) u= Aip ¥ (n-thpower)

The last integral is zero unless k=ord A, mod n, and in that case its value y is
independent of k. Hence

sy PP
Ii(s)=y z p K )=1__ —n(M;is+vi) °
kze p

k=ord Aymodn

—e'(Mis+vy)

i

where ¢ is the smallest natural number satisfying ¢ Ze and
¢ =ordi,modn. Q.ED.

3.3. Remark. From the above proof it also follows that P(T) can be written as a
polynomial in T divided by a product of factors of the form (1 —p®T?), with
a, beN. (After cancellation, a <0 cannot appear because P(T) is a power series
with integer coefficients). Moreover the poles of P(T) have multiplicity at most
m. (This will be proved in 6.8). The same facts hold for B(T).

3.4. Remark. Let

Js)= § 1S (x)*1dx],
Iy

where | f (x)|=M‘ax| fix). To prove the rationality of P(T), Igusa [16, p.415]
(for r=1) and Meuser [22, p. 310] (for r>1) used the formula

1—p~=J(s)

) Pp =g
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(Later Oesterlé [25] showed that the rationality of P(T) for r>1 can be
reduced to the case r=1 by an elementary argument.)

§ 4. Some generalizations

We consider the first order language (in the sense of logic) built up from the
symbols +,+,0,1, =, A (and), v (or), 71 (not), and the quantifiers 3,V. Let
¢(x) be a formula in this language with free variables x=(x,...,x,). For neN,
let N, , be the number of elements in the set

{xe(Z/p"Z)Y"$p(x) is true in Z/p"Z},
and let N, , be the number of elements in the set
{xmod p"$xeZ? and ¢@(x) is true in Z }.

To these data we can associate the following Poincaré series

8

E(T)=Y N,,T". E(T)= ZONWT".

4.1. Theorem. I?p(T) and E,(T) are rational functions of T.
An analogous theorem for finite fields has been proved by Kiefe [19].

Proof. Let @(x,w) be obtained from ¢(x) by replacing every occurence of = by
=mod w. Let

ﬁ¢= {(x, w)eZ x Z,,E(Z)(x, w) is true in Z }
D,={(x,w)eZy xZ,33yel?: x=ymodw and ¢(y) is true in Z }.
I(s)= [ \wi*ldx|ldw], I, ()= | [w||dx]|dw].

Dy Dy

Lemma 3.1 remains valid if we replace I(s) by I »(s) and P by f:,, or if we
replace I(s) by I,(s) and P by F,. By repeated application of Theorem2.2 we
see that D, and D, are boolean combinations of subsets of Q’;‘“ of type IIL
We now apply Theorem 3.2. Q.E.D.

§ 5. Rationality of a twe-variable Poincaré series

Let f,(x),....f,(x) be polynomials in m variables x=(x,,...,x,) over Z,. Let f
=(fi,.-»f,)- For n,jelN, let N, ; be the number of solutions in Z,/p" of
f=0mod p" which can be lifted to solutions of f =0mod p"*’. To these data
we associate the Poincaré series

P(TLU)= ¥ N,,T"U’.

n, jelN
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5.1. Theorem. P(T, U) is a rational function of T and U, which can be written as

(1) P(TLU)=q(T,U)1-U)"" [[(1=p“ T U,
i=1
with g(T,U)eZ[T, U], a;, b;, c,;eN, and b; = 1.
Moreover
P(t)=lim (1 —u) P(t,u),
u—1

if teR is close enough to zero.

Proof. Let
D={(x,w,w,)eZ" xZ,x L33 yely:
x=ymodw,; and f(y)=0mod w,-w,},
and
I(sq,5,)= [ w [ lw,| |dx| |[dw | |[dw,|, for s;,5,€R, s;,5,>0.
D

Using the same argument as in Lemma 3.1, one easily gets

=N mt-s o —1-s,
I(Sla52)=(—p—) P(p Tsp ! ).

From Lemma 2.1 and Theorem 2.2 it follows that D is a boolean combination
of subsets of type III. By adapting the proof of Theorem 3.2 in a straightfor-
ward way we obtain that I(s,,s,) is a rational function of p~** and p~°2, and
that P(T,U) is a rational function which can be written as a polynomial in T
and U, divided by a product of factors of the form T, U or (1 —p* T® U°), with
b,celN, aeZ. Because P(T,U) is a power series with integer coefficients, we can
write P(T,U) as a polynomial in T and U, divided by a product of factors of
the form (1 —p°T? U°), with a,b,ceN. To write P(T,U) in the more precise
form (1) we need an additional argument. For fixed »n, the sequence
N,oZN, = ... stabilizes. Hence there exists f(n)eIN such that N, ;=N, for
jZBn).

Let )
R(LU)=Y (N, ;~N) T"U".
n, j

We have that R(T, U)eZ [U][[T]], and
@ P(T,U)=R(TU)+P(T)(1-U)~".

From Remark 3.3 and (2) it follows that R(7,U) can be written as a poly-
nomial divided by a product of factors of the form 1 —p® T® U, with a,b,ceN.
Moreover we can take b= 1, because R(T,U)eZ[U1[[T]]. Indeed if an ele-
ment of Z[T, U] is divisible by 1 —p* U¢ in ZLUJ[[T]], then it is also divisible
by 1 —p*U¢in Z[T, U]. The Theorem now follows from (2). Q.E.D.

Next we discuss the relationship between Theorem 5.1 and a theorem of
Greenberg [12]. For nelN, let y(n) be the smallest natural number =n which
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satisfies the following: If yeZ’ and f(y)=0mod p'™, then there exists xeZ’
such that f(x)=0 and x =y mod p". (The existence of y(n) is clear because Z ,/p"
is finite.) Greenberg’s theorem [12] states that y(n) can be bounded by a linear
function of n. Thus there exist ¢,delR such that y(n)<cn+d for all nelN.
Schappacher [27] has investigated the infimum of the possible values for c,
which is an invariant of the variety f=0. We will now prove

5.2. Proposition. With the notation of 5.1.(1), suppose that none of the factors 1
—p* TP U® divides q(T,U) in Z[T,U]. Let c=1+Maxc/b;. Then c is the
smallest real number for which there exists delR such that y(n)<cn-+d for all
nelN.

Proof. For neNN, let f(n) be the smallest natural number such that N, ;= N, for
jZ B(n). It is clear that y(n)=n-+ f(n). Write

(1) aLU) [[(L=p= T U= ZOW,,(U) T,
i=1 n=
with w, (U)eZ [U]. We have
P(TLU)= > w,U) (Z Uf) T
n=0 j=0

Thus N, ; is equal to the sum of the coefficients of degree <j of w,(U). Hence
p(n)= degw (U). We may suppose that ¢,/b, —Maxc/b We have to prove

that ¢ /b, is the smallest real number such that degw,(U)Snc, /b, +0(1).
From (1) it easily follows that degw, (U)<nc /b, +0(1). Let ieR, A<c,/b,,
and suppose that

) degw,(U)<An+0(1).

We have to derive a contradiction. Write

e ¢}

() qLUYA—p" T U~ = Z LU)T7,

with w,(U)eZ [U]. From (1) and (2) follows
4 degw (U)<An+0(1).

Moreover from (3) follows

&) Wo15,(U)=(p" Uty w,(U),

for all n>ny=degrq(T,U), and leN. Using (5) to calculate the degree of
W, 1,(U), and comparing with (4), we contradict A<c,/b,, unless w,(U)=0 for
all n>n,. But then (3) implies that 1—p*T* U divides q(T,U)
Z{TU]. QED.

5.3. Remark. Independently of the results of this section, but by using a
refinement of Macintyre’s Theorem which we will discuss in 6.4, one can show
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the following: There exists a finite partition of N in congruence classes, such
that on each such congruence class the function ny(n) is lirear for n big
enough. This follows because the function y(n) is definable in the extended first
order langunage introduced in 6.4.

5.4. Remark. For j=<n, let ; be the number of solutions in Z,/p" of
f =0mod p" whose residue mod p can be lifted to a solution of =0 in Z By
the same argument as in 5.1 one sees that P(T,U)= ) N, T" Ulis a ratlona]

jsn
function of T and U. Alternatively one can express P'(T,U) in terms of the
integral

[ If &I d(x, V)2 |dx],
23

where d{x, V) is as in 6.6.

§ 6. The absolute value of a definable function

This section contains a result on the absolute value of a definable function
(Corollary 6.5) which will be used in §7. It also contains a result on the p-adic
distance from a point to a variety (Corollary 6.6) which allows us to prove the
rationality of P(T) with less desingularization (Application 6.8). First we need
some definitions.

6.1. Definition. A definable subset of Q7 is a subset of the form {er';éqo(x) is
true}, where @{x) is a formula in the first order language (in the sense of logic)
built up from the following symbols: + (addition), - (multiplication), | (here x|y
means ord x £ord y), for every element of Q, a symbol denoting that element, =,
A (and), v (or), 71 (not), and quantifiers 3x (there exists xeQ,:) and V x (for
every xeQ,?).

From Lemma2.1 and repeated application of Macintyre’s Theorem 2.2 it
follows that a subset of Q7 is definable if and only if it is a boolean com-
bination of subsets of Q7 of type IIL. (Indeed the quantifier ¥ x can be written
as (dx)71)

A definable function from Q7 to Q, is a function whose graph is a definable
subset of Q7" 1.

6.2. Definition. 4 function 0: Q7 —Z v {+ co} is simple if there exists a finite
partition of Q7 into definable subsets A such that on each A
1 fx)

6(x)=; ord —gm, for xeA,

where eeN, e+0, f(x)eQ,[x], g(x)eQ,[x], and g(x)+0 for all xcA.

6.3. Theorem. Let S be a definable subset of Q7*'. Suppose that, for every
xeQy, the set {ord t3(x,t)eS} consists of exactly one element which we will
denote by 0(x). Then 0(x) is a simple function of x.



Rationality of Poincaré series i1

Proof. Let Z={xeQ"¥(x,0)eS}, and Z=Q"~Z. We have to prove that 6(x) is
simple on Z.

By Macintyre’s Theorem 2.2 S is a boolean combination of subsets of type
1. Let fi(x,1), j=1,2,...,1, be the polynomials which appear in the description
of these subsets. Let n, be a common multiple of all the n which appear in the
description of these subsets of type 111 (in the notation of §2).

Write

Six, t)zajo(x)+aj1(x)t+aj2(x)t2+ T

with a;€Q,[x]. We partition Z in definable subsets A, such that for each A
and for each j, i we have either

(0 a;(x)=0 forall xeA,
or
() a(x)%£0 for all xeA.

There exists AeN such that any ueZ, with u=1mod p* is an n,-th power. Let j
=1,...,0r [ let aeZ, |a| <4, and let i; #i, be such that a;; and aj;, satisfy (2).
Define

A ={xeA§3t:(x,1)eS and ord(a;,(x)t"")=ord(a;;,(x)t?)+a}.

Jiyin, iz

indeed for xe A4, we have

Jya,in, iz

0(x) is a simple function on A

Jras i, i2?

f(x)=ord t =- ! —ord (aﬁz x)p >,
iy—i, aj; (x)
because t+0, since x¢Z.
Let
B=A~UA; .. 0,
where the union is over all j,o,i,,i, as above. We have to prove that 8(x) is
simple on B. For all x,t with xeB and (x,t)eS the n,-th power residue of
fi(x,1) is equal to the ny-th power residue of the term a;(x) ¢ of minimal order,
because the orders of the terms differ by at least 4. Making a disjunction over
the different possibilities of which term a;,(x) ' has minimal order, at least A
less than the other terms, we obtain that for xeB, the relation (x,r)eS is
equivalent to a boolean combination of conditions of the form

b,(x)
3 ord "z ord 12,
® - b,(x)
and
(4) b(x)t* is an n-th power,

with b;(x), b,(x), b(x)eQ,[x], veZ, ueN, n|n,, and b,(x)%0, b,(x)+0 for all
xeB.

Making a disjunction over the different possibilities of the ny-th power
residues of t and of the b(x) in (4), we obtain that for xeB the relation (x,t)eS
is equivalent to a disjunction of conditions S;, where each S, is a conjunction
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of conditions of the form (3) and definable conditions on x and one condition
of the form

&) t=p-(non-zero n,-th power),

where pe@Q,, p+0.

Let B,={xeB3}3t: (x,t)eS;}. We have to prove that 6(x) is simple on B;.
For xeB;, and 6eZ, we have 0=0(x) if and if only if # satisfies a conjunction
of conditions of the form

b(x)
3 vO=ord--+=
®) - b,(x)
and one condition
{59 f#=xmod ng,

where v, b,(x), b,(x) are as in (3), and y=ord p.
The conjunction of the conditions (3') can be written as

Min ord ¢,(x),

1
;M_ax ordg,(x)<0=

~2 | o=

with a;(x), ¢;(x)eQ,(x), yeN, y=+0.
Write §(x)=n+ q(x)ny, then for xeB; we have
(Minord ¢;(x))—#n 7
q(X)=[ ‘ ]

AL

where [ ] denotes the greatest integer function. We have to prove that g(x) is
simple on B,. But this is clear, by covering B; with definable subsets on which
a particular ¢;(x) has minimal order and constant (yn,)-th power residue (this
implies that ord ¢;(x) mod y n, is constant on such a subset). Q.E.D.

6.4. Remark. Theorem 6.3 can also be proved from the following refinement of
Macintyre’s Theorem 2.2: @, admits elimination of quantifiers® in the extended
first order language with the following symbols: There are variables which run
over @, and variables which run over Z. There are symbols for + and - in @,
and for +, —, and £ in Z, and for the function ord from @~ {0} to Z. For every
element of Q, or Z there is a symbol to denote that element. For every neN,
n22 there is a relation symbol to denote the set of n-th powers in Q,. For
every nelN, n=2 there is a symbol to denote the function which maps an
integer y to the greatest integer < y/n. Finally there are the symbols =, A, v,
71 and quantifiers 3xeQ , IyeZ, VxeQ,, Vyek.

This refinement of Macintyre’s Theorem can be proved by adapting
Macintyre’s proof [217]. An elementary proof will be contained in Weispfenning
[32].

! This means that every formula in that language is equivalent to a formula without quantifiers
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6.5. Corollary. Let f: Q7' —Q, be a definable function, then ordf(x) is a simple
Sfunction of x.

Proof. Trivially from Theorem 6.3. Q.E.D.

Let fi(x),....,f,(x)eZ,[x], x=(x,,...,x,). The p-adic distance d(x, V) from a
point xeQ} to the variety V, given by the equations f;=...=f =0, is by
definition

d(x,V)=Min{|x—yl$yeQy.fi(y)="... = £,(» =0},
where |x — yi=Max|x;—yl. (We will always suppose that there exists at least

one p-adic point on V).

6.6. Corollary. Assume the above notation. Then there exists a finite partition of
Q7 in definable subsets A, such that on each A

ile

h
(x) , foradll xeA,

g(x)
where eeN, e+0, h(x)eQ,[x], g(x)eQ,[x], and g(x)#0 for all xeA.

Proof. Apply Theorem6.3 to the set S of all (x,1)eQyxQ, satisfying |¢|
=d(x, V). It is clear that S is definable. Q.E.D.

d(x, V)=

The following example shows that Corollary 6.6 is best possible.

6.7. Example. Let C be the curve x3—x3=0, and let p+2,3. Let x
=(x1,x2)elf].
If x, is not a square, then d(x, C)=|x|.
If x, is a square and |x3 —x3}|=Max(|x,|?, |x,]*), then d(x, C)=|x3 —x3|'/2
If x, is a square and |x3 —x}| <Max(|x,|?,|x,]?), then d(x, C)=|(x3 —x3)/x,|.
This follows from an elementary argument, using Hensel’s Lemma.

6.8. Application. In Sect.3 we proved the rationality of the Poincaré series
P(T) of a subvariety V of Q7, by desingularizing a hypersurface of dimension
m. We will now show how we can prove the rationality of P(T) by only
desingularizing a hypersurface of dimension m —1.

Suppose there is at least one point on V with coordinates in Z ,. Let

J(s)= [ d(x,V)|dx|, for seR, s>0.
g

We have that

i mes L=p7J(s)
1) P(pm=— P
—-p

(Note the analogy with 3.4.(1).) Indeed

J)=2 p7" (W, W,.\),

nelN

where W, is the measure of the set {xeZ7 sd(x,V)<p™.
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Since W,=N,p~™", we obtain

J(=Pp~" )= (P ) —1)p’,
and hence (1).

Using Corollary 6.6 and adapting the proof of Theorem 3.2 slightly, one
obtains that J(s) is a rational function of p~* For this we only need to
desingularize a hypersurface of dimension m ~1 because the domain of integra-
tion is now a subset of Q (instead of a subset of Q';‘“ as for I(s) in Sect. 3).

From this proof also follows that the multiplicity of a pole of P(T) is at

most m.

7. Proofs without desingularization

In this section we prove the rationality of P(T), P(T) and P(T, U) without using
Hironaka’s deep theorem on the resolution of singularities. The key results
used in the proof are Macintyre’s Theorem 2.2, Corollary 6.5 and Theorem 7.3
below. Theorem 7.3 is similar to and inspired by Theorem A, of P.J. Cohen [7,
p. 140], and can be proved by suitably adapting Cohen’s method. However we
will use a different method which is simpler (but less powerful). First we need
two lemmas.

71. Lemma. Let S be a definable subset of Q7%% For xeQf, let S,

={yeQ43(x, y)eS}.
Let aeN, a2 1. Suppose, for all xeQY, that S, is nonempty and that

(1) Card S, <,

where Card denotes the cardinality. Then there exist definable functions
S1(x), <, fo(x) from Q7 to Q, such that (X,f(x), ....f,(x)€S for all xeQ7.

Proof. This lemma is a special case of a result of van den Dries [30] which
states that 7.1 is true even without supposing (1). His proof uses model theory
and is not elementary. We will give here an elementary proof of Lemma 7.1.

It is sufficient to prove the lemma for g=1, because then the general case
follows by induction on g, considering the set

{910, 733,60, (X, y1, ..., ¥, )ES}

Thus suppose g=1. If a=1, there is nothing to prove. Hence suppose a>1. It
is sufficient to find a definable subset S’ of Q’I’,‘Jrl such that §'<S, and such
that, for all xeQ}, S, is nonempty and Card S,<a—1, where S
={yeQ,3(x,)eS}.

Let kelN, k> 1 be fixed. If, for each xeQ}, we have

Card S, =1, or
(2)  the elements of S, do not all have the same order, or
the elements of S, do not all have the same k-th power residue,

then it is easy to find such an §'. Indeed take only those yeS, which have
minimal order and which, if all the elements of S, have the same order, have
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minimal k-th power residue (minimal with respect to an arbitrary but fixed
ordening of the k-th power residues).

For xeQ7, let y(x) denote the mean value of the elements in S, ie. j(x)
=( ). y)/Card(S,). It is clear that j(x) is a definable function (because of (1)).

yeSx

Replacing S by {(x,y—5(x))$(x, y) €S}, we may suppose that
3) y(x)=0, for all xeQ7.

Let k= Max ordn, and let k=¢(p**'), where ¢ denotes Euler’s ¢ function.

n=1,..., a
For this value of k we will prove that (3) implies (2). Fix xeQ}. Let n
=Card S, <o, and S,={y;,y,,-.-,V,}- Suppose n>1 and ordy,==ordy,=...
=ord y,. We have to prove that not all the y, have the same k-th power
residue. Write y,=p°9 y, then ord y;=0. From (3) follows

@ ¥ yi=0.

We have to prove that not all the y; have the same k-th power residue.
Suppose they all have the same k-th power residue, then, by the special choice
of k, all the y; have the same residue mod p**! (relatively prime with p). But
then (4) would imply n=0mod p**?, which is in contradiction with the choice
of k. QE.D.

7.2. Lemma. Let f(x, 1)eQ,[x,t], x=(xy,...,x,), t one variable. Let neN, n>0,
be fixed. Then there exists a finite partition of Q';‘“ into subsets A of the form

() A={(x0eQr " 3xeC and lt—c,x)|0,,la; () for jeS, €S},

where C is a definable subset of Q7. [l;, denotes either <, =2, < or >, S and

the S; are finite index sets, and c;(x), a; (x) are definable functions from Q7 to
Q,, such that for all (x,t)e A we have

2 [ )=ulx, )" h(x) [ ]t —c;(x)),

Jjes
with u(x,t) a unit in Z,, h(x) a definable function from Q7 to Q ,, and e;eN.

Proof. There exists a finite extension K of @, such that for all xeQ7, f(x,t), as
a polynomial in ¢, splits into linear factors over K. (Because there are only a
finite number of extensions of Q, with given degree).
Choose a basis &; =1, &,,...,&, for K over Q, such that for all z,eQ, we
have
k

3) ord ( Yz ﬁ,.) =Minord(z; &),

i=1

and

4) O<ord(é)<1, for i=1,... k.
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This is possible by taking u;n’/ as basis elements, where = is a uniformizing
parameter for K, and the u; mod rn form a basis for the residue field extension.
Let f(x,0)=ao(x)t*+a,(x)t*~ " + ..., with the a,(x)eQ,[x].
Let Z={(x, t)eQ’"“an(x) O} Z Q"‘“\Z By mduct10n on d, it is suf-
ficient to find a partition of Z. For (x, t)eZ we have

d
(5) fxt)=a4(x) H (t_‘bu(x)"‘sz(x) &— _bkj(x) &b

for some functions b;;(x) from Q7 to Q. From Lemma 7.1 it easily follows that
we can take the b, (x) to be deflnable functlons From (3) it follows that we can
partition Z in subsets A of the form (1) such that on such an A we have

[t—=by;(x)=b,;(x) &, — ... = by ;(0) &
(6) =|t—b,;(x)|*+0, for jeI,,
(7) =|b;j, ;XN &5l £0,  for jel,,
=0, for jelj,

where I, ul,ul,={1,2,...,d}, and I, n1,=0.
If I,+0, then f(x,t) is zero on 4 and (2) is obvious. Thus we may suppose
that I,=0.
There exists AN such that any ueZ, with u=1mod p* is an n-th power in
Z,
p
For (x,t)e A we have

J(x, t)=a,(x) n b11(x) H b;(,) J(x) H C (x,1),

jel Jjelz
with
b, (x) by;(x) .
Cix,t)=1——2 &, -3 E—..., for jel,,
J( ) t_blj(x) 2 t__blj(x) 3 J 1
_mhylx) by &,—..., for jel,.

- by, /(%) bi(j),j(x)

From (3), (4) and (6) it follows that
by;(x)
bl](x)

and ord C;(x,t)=0, for jel,, i22, and (x,1)eA. From (3), (4) and (7) it follows
that

(8) €Z,,

t=byx) €Z,, byx) €Z,,
by, (%) by, (%)

and 0<ord Cj(x,1)<1, for jel,, i22, and (x,t)e 4.

)
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We now partition 4 with respect to the different possibilities for the residue

classes mod p**? of (8) and (9). If these residue classes are fixed then
d

[1 Ci(x,0)eZ, has constant order less than d and has constant n-th power
j=1
residue. From this (2) follows.

We still have to show that we can fix the residue classes mod p**¢ of (8)
and (9) by conditions of the form (1). For (9), this is clear. Concerning (8), we
have to express the condition

bij(x)
(19 t—by;(x)

A+d

=6 mod p**4,

where 6eZ,, in the form (1). If 6=0mod p**¢ this is clear. Thus suppose
f£0mod pf”. Then (10) implies

(11) ord(t—b,;(x))=ord b;;(x)—ord 6.

A straightforward calculation shows that (10) is equivalent with

(12) ord(t —b,;(x)—b,;(x)0~ Y>i+d—ord0+ord(t— by j(x)).

Substituting (11) in (12) we see that {10) is equivalent with the conjunction of
(11) and -

ord(t —b, ;(x)—b,(x)0" )2 A+d—20rd0+ordb,(x). Q.E.D.

7.3. Theorem. Let fi(x,t)eQ[x.t], i=1,...,r, x=(xy,...,X,,), t one variable. Let
nelN, n>0, be fixed. Then there exists a finite partition of Q;‘“ into subsets A
of the form

(1) A={(x,0eQy* ' $xeCand |a;(x)|0; 1t — ()| 0y lay ()1},

where C is a definable subset of Q7, and U, resp. [I, denotes either <, <, or no
condition, and a,(x), a,(x), c(x) are definable functions from Q7 to Q,, such that
for all (x,t)e A we have

2) £ ) =u,06, )" h(x)t —c(x),  for i=1,...,r,

with u;(x,t) a unit in Z ,, h,(x) a definable function from Q7 to Q,, and v,eN.

Proof. From Lemma 7.2 it follows that there exists a finite partition of Q’;‘“ in
subsets 4 of the form 7.2.(1) such that for all (x,t)e 4 we have

3 S =ux 0" ([ [ —c; ), for i=1,...,m,

with u;(x,t) a unit in Z,, h,(x) a definable function from Q7 to @, and e;;eN.
It is easy to see that it is sufficient to prove that we can take S such that it
contains only one element (The Theorem then follows after a straightforward
further partitioning).
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Suppose that 1, 2€S, thus t—c,(x) and t—c,(x) may appear in 7.2.(1) and
(3). We will eliminate from 7.2.(1} and (3) either t—c,(x) or t—c,(x), or else
eliminate both and introduce a new c(x). This will prove the Theorem. After a
partition of A4 into the set {(x,1)eAd$c,(x)=c,(x)} and its complement in A4, we
may suppose that ¢ (x)=#c,(x) for all (x,r)e 4. There exists AeIN, A>0, such
that any ueZ, with u=1modp” is an n-th power in Z,.

To simplify the notation we will write ¢,, ¢, instead of ¢,(x), ¢,(x). We have

A A
pit—cy) pHt—cy)

] D= 2 +ph
c,—C, C,—Cy

From (4) it follows that we can partition A into subsets each of which satisfies
one additional condition (I), (II), (1II), or (IV,) below. (Indeed if neither (I) nor
(1) is satisfied, then the right hand side of (4) has nonnegative order less than
2, so that we are in case (III) or (IV))).
Case (I): ord (f:c—l) =L

€26
In this case t—c,=t—c; —(c,—¢;)= —{c, —cyulx,1)", with u(x,t) a unit. Thus
we can eliminate t —c,.

t__
Case (I1): ord( 1 )<—z.
C2—Cy
In this case t —c,=t—c, —(c,—c)=(t—c)ulx, )", with u(x,¢) a unit. Thus we

can eliminate t —c,.

A
t_.
Case (I11): ME 0 modp?%.
274
In this case, (4) implies
Z’ —
P (t cl) =p}.u(x’ t)n,
€—Cy

with u(x,t) a unit. Thus we can eliminate t —c,.

A
t_.
Case (IV): usamodp“,
C2—Cy
where a is a fixed residue class of Z, modp®* with ax0modp?*, and a%
—p*modp?

In this case we have

A
t._
plizcy) +p*=a+p*modp3*
Cy—Cy
%0 modp?*
=(a+pHu(x,1)",

with u(x,t) a unit. Hence from (4) it follows that

(5) t——cl=p“(c2—cl)(a+p’1)u(x,t)".
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Moreover
pHi—c,) =amodp*
Cr—Cy
#£0modp?*
=av(x,1)",
with v(x,t) a unit. Hence
(6) t—c,=p *c,—cy)av(x, 1)

Now use (5) and (6) to eliminate t—c¢, and r—c, However, to express the
condition (IV,), we need a new t—c. Q.E.D.

We will now prove the rationality of P(T) and P(T) without using
Hironaka’s theorem on the resolution of singularities. For this we have to
prove Theorem 3.2 without desingularization. In the same way, the results of
§5 can be proved without desingularization, but we leave this to the reader. To
prove Theorem 3.2, we will prove

7.4. Theorem. Let S be a definable subset of Q7, which is contained in a compact
subset. Let h(x) be a definable function from Q7 to Q, such that |h(x)| is
bounded on S. Let ecN, e=1. Suppose that ordh(x)eeZ u {+ o}, for all xeS.
Let x=(x,,...,x,,). Then

Zg(s)=[h(x)I"?|dx|, (for seR,s>0)
S

is a rational function of p~°.

Proof. Let x=(x,,...,x,,_,). We will first separate the variable x,, from £ in the
integral Zg(s).
From Corollary 6.5 it follows that we may suppose that

1/e’

81(x) , for all xeS,

1/e=
(1) [R(x)| ()

with e'eN, e'2 1, g,(x), g,(x)eQ,[x], and g,(x)+0 for all xeS.
From Macintyre’s Theorem 2.2 it follows that S is a boolean combination
of subsets of type III. Since | ={+{— [, we may suppose that § is the set
AUB A4 B AnB
of all xeQ7 satisfying
(2) fi(x) is (is not) an ny-th power, for j=1,...,],

where feQ,[x], n,eN, n;z 1.
Apply Theorem 7.3 on the polynomials g,, g,, f;, with ¢ replaced by x,, m
replaced by m—1, and n=]_[nj. We partition S in subsets of the form Sn A,

J
with A as in 7.3. Thus 4 is the set of all xeQ} satisfying Xe C and

) ord(x,,—c(X))0;orda,(X), for i=1,2,
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where C is a definable subset of Q';“l, and ¢(X), a,(%) are definable functions
from Q7! to Q,, and [,, resp. 0,, denotes either <, <, =, or >. From (1)
and 7.3 it follows that for all xeSn A4

|h()Me =] ho (R |x,, — (R) ",

with veZ and h,(X) a definable function. Also, for all xeA, condition (2) is
equivalent with

(2) h(£)(x,,—c(X))" is (is not) an n;-th power, for j=1,...,1,

where the h;(X) are definable functions and v;eNN.

We partition SnA into subsets S’ on which h;(X) and x,—c(X) have
constant n-th power residue. Such an § is the set of all xeQ7 satisfying (3),
xeD, and

4 X,,—c(X)=A-(nonzero n-th power),

where D is a definable subset of Q7 ', and 1€Q,.
Put v=x,—c(X), then

Zg(5)=[lho(®T [ (o] |dv]|dR],
D (3),(4)

=l§)lho(>3)ls’“'( 2 pme § |dv])|d%],

ke ordv= Kk,
(5) v= A-(n-thpower)

where (5) is the condition
(5 k,0;orda,(x), for i=1,2.
Put v=p*~u, then

f |dv|=p~Fn | |dul.
ordv=ky, ordu=0
v= A (n-thpower) u= Ap=Km-(n-thpower)
The last integral is zero unless k,,=ordimodn, and in that case its value y is
independent of k,,. Hence

Zs()=y[lheIFC Y pTIE I dR),
D

(5)
km=ord Amodn

=y T pEhn | kg (R4S,

kyn=ord Amodn D,(5)

Repeating this process, but now also applying Corollary 6.5 and Theorem 7.3
to a,(X) in (5), we can separate the variable x,_,. Continuing in this way we
can express Zg(s) as a linear combination of convergent series of the form

(6) Z p(-—qul—m—qum)s—-kx—u.—km

(k1y....km)eL
ki = pimoda;

>
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where q,...,9,€0, w,eZ, o,cN, and L is the set of all integers k,,...,k,
satisfying a system of linear inequalities in k,, ..., k, with integer coefficients.

Let d be a common denominator of the rational numbers g; which appear
in the expressions (6). Write k,=p;+a,k;. Then Lemma 7.5 below implies that
Z(s) is a rational function of p~¢,

Put T=p~° Thus Z(s) is a rational function of i’/? On the other hand,
Z(s) is a power series in T times an integral power of T, indeed

Zys)=YT | |dx|.
keZ ordh(x)=ek
xe§
Since |h{x)| is bounded on S, only finitely many negative k appear in the above
series. Thus Z(s) is a rational function of T Q.E.D.

The following Lemma (in a slightly less general form) is contained in
Meuser [22].

7.5. Lemma. Let L be the set of all integers ky, ..., k, satisfying a finite system
of linear inequalities in ki, ..., k, with integer coefficients. Let A,(s), ..., A,(s) be
linear polynomials in s with integer coefficients. Let peIN, p> 1. Suppose that

) Jo= Y p =Y

is convergent for seS, with S an open subset of R.
Then J(s) is a rational function of p~* on S.

Proof. The proof is by induction on m. Summing over a finite number of cases,
we may suppose that k,....k,=0 if (k,,...,k,)eL. If all the A4, are identically
zero, then there is nothing to prove. Hence suppose that A4,,(s) is not identically
ZEeT0.

The system of inequalities which determines L consists of inequalities not
involving k, and some inequalities

(2) ykméBj(kla---’km~1)’ jzla"'sqa
3) VhnZ Cilkys ook 1) =1y,

with B;, C, linear polynomials with integer coefficients, and yelN, y= L.
Summing over a finite number of cases and adding inequalities in
ky,....k,_y, we may suppose in (2), (3) that g=1 or g=0 (ie. no B; is
involved), and [=1. And we may also assume that the inequalities in
ki,....k,_, imply C,<B, (if ¢=0).
Summing over all the possible residue classes of k,,...,k, _, mody and by
substituting yk;+r, for k;, we may suppose in (2), (3) that y=1. Thus
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where L' is a system of linear inequalities in k,...,k,_, with integer coef-
ficients, and where B is either +co or a linear polynomial in k,,...,k,_, with

integer coefficients. (We have written A,, C, instead of A,(s), C,(k,,...,k,,_ )
Let S,={seS3A4,(s)+0}. For seS, we have

4) J(s):( y p‘(‘,l"-"‘f)‘ct%)“ Ay

(K1seeskm—1)el’

—( Y k4,)~B4

p (£44) m>p"‘"'(1—p‘A'")‘1-

(If B= + oo, then from the convergence of (1) it follows that 4, >0 on S, and
the second series in (4) is zero). The two series in (4) are convergent, hence we
can apply the induction hypothesis. Thus J(s) is a rational function of p~* on
So, and hence on S, since J(s) is continuous on S (because J(s) can be written
as a Laurent series in T=p~%). Q.E.D.

7.6. Remark. The above proof of Theorem 7.4 also implies Remark 3.3, indeed
it shows that

(i) Zg(s) can be written as a polynomial in p~* and p°® divided by a product
of factors of the form (1 —p®**?), with a, beZ, and
(ii) the poles of Z(s) have multiplicity at most m.

7.7. Remark. Theorem 7.4 and 7.6 (i) remain true when S and h(x) are definable
in the richer language built up from the symbols mentioned in 6.4 and an
additional symbol to denote the function n: Z—Q,: n—p”". Ax and Kochen [2,
1] proved that @, admits elimination of quantifiers in this language. However
7.6 (ii) does not remain true. We will return to this in a future paper.
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