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w 1. Introduction 

Let p denote a fixed prime number, Z r the ring of p-adic integers, and Qv the 
field of p-adic numbers. We denote the set of m-tuples of elements of Zp (resp. 
Qp) by 7l~' (resp. Q~'). 

Let fl(x) . . . . .  fr(x) be polynomials in m variables x=(x 1 . . . . .  x,,) over Zp. For  
neN,  let IV, be the number of elements in the set 

{xmodp"lx~Z~ and f / ( x ) = 0 m o d p  ", for i=1 . . . . .  r}, 

and let N, be the number of elements in the set 

{xmodp"}xe2gp and fi(x)=O, for i=1 . . . . .  r}. 

To these data one can associate the following Poincar6 series 

n = O  n = O  

Borewicz and Shafarevi~ [6, p.63] conjectured that P(T) is a rational function 
of T. This was proved by Igusa [15, 16], in the case r =  1, using Hironaka's 
resolution of singularities. Subsequently Meuser [22] proved the conjecture for 
arbitrary r, by adapting Igusa's method. In this paper we will give a different 
proof (see w of the rationality of P(T), which does not use resolution of 
singularities. 

Recently Serre [28, w and Oesterl6 [24] investigated the behaviour of N, 
for n--* 0% and they asked the question whether P(T) is a rational function of 
T. In this paper we prove 

1.1. Theorem. P(T) is a rational function of T. 

The proof  of Theorem 1.t runs as follows: First we express P(T) as an 
integral over a certain subset D of Z~ '+1 (Lemma3.1). From a theorem of 
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Macintyre [21], on the elimination of quantifiers for Qp (see w it follows that 
,,+1 The integral over D is a boolean combination of rather simple subsets of Zp . 

such a subset is then evaluated (Theorem 3.2) by Igusa's method [16], using 
resolution of singularities. 

In w we consider some generalizations. In w 5 we prove the rationality of 
the two-variable Poincar6 series P(T, U) associated to the number of solutions 
modp" which can be lifted to solutions modp  "+J. The denominator of P(T, U) 
has a particular simple form. 

Section6 contains a result on the absolute value of a definable function, 
which will be used in w 7, and an application to the p-adic distance from a 
point to a variety. 

In w we give a different proof for the rationality of/3(T), P(T) and P(T, U) 
which does not use resolution of singularities. This proof (even for /5(T)) 
heavily relies on Macintyre's Theorem [21] on the elimination of quantifiers 
for Qp, and uses a partition (Theorem 7.3) which is similar to and completely 
inspired by P.J. Cohen's Cell Decomposition [7, p. 140]. 

The special case of a curve f (x l ,x2)  has been investigated by Driggs [9], 
Igusa [17], Meuser [23], and Strauss [29] for P(T), and by Bollaerts [5] for 
P(T). 

I am grateful to D.J. Lewis, D. Meuser, and N. Schappacher for stimulating 
conversations and for providing me with useful information. I also want to 
thank L. Br6cker for pointing out a simplification in the proofs. 

w 2. Elimination of quantifiers 

We consider the following three kinds of subsets of Q~': 
m A subset of Qp of type I is of the form 

{xeQ.~ 1 f (x) = 0}, 

for some fe~gp Ix1, ..., x,,]. 
A subset of Q~ of type II is of the form 

{xsQp }ord (f(x))> ord (g(x))}, 

for some f,  geZp[X 1 . . . . .  Xm]. Here ord denotes the p-adic valuation on Qp 
(using the convention that ord (0)= + oe). 

m A subset of Qp of type III is of the form 

X n {xeQ'~}3yeOp: f (  ) = y  }, 

for some neN,  n>2 ,  and feZp[X 1 .. . . .  x,,]. 

Lemma 2.1. A subset of Q'~, which is of type I or II, is also of type III. 

Proof. We have that f ( x ) = 0  iffp(f(x)) 2 is a square. Moreover, if p # 2 ,  then 
ord (f(x)) ~ ord (g(x)) iff 

? y e Q p :  (g(x)) 2 + p ( f ( x ) )  2 = y 2 .  
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If p = 2, then ord (f(x)) > ord (g(x)) iff 

3 y~Qp: (g(x)) 2 + 8(f(x)) 2 =y2. Q.E.D. 

m A boolean combination of subsets of Qp of type III is a subset which is obtained 
by taking intersections, unions and complements (a finite number of times) of 
subsets of Qp of type IlL 

We can now state Macintyre's Theorem [21] on the elimination of quan- 
tifiers for Qp: 

2.2. Theorem. Let S be a boolean combination of subsets of Qp+q of type III. 
Then the set 

{xeQ'~13yeQ~: (x,y)eS} 

is a boolean combination of subsets of Q~ of type III. 

Historical note. An elimination of quantifiers for Qp was first obtained by Ax 
and Kochen [2, III]. Their result differs from Macintyre's in that it uses 
subsets of a more general type. Their proof is based on the model theory of 
valued fields which was developped by Ax and Kochen [2, 20] and Ersov [10, 
11]. 

Subsequently P.J. Cohen [7] gave an elementary (but very ingenious) proofi 
Cohen's work has been generalized by Weispfenning [31]. Only much later 
came Macintyre's Theorem [21] which we stated above. Macintyre's proof is 
based on the results of Ax and Kochen and Ersov. Recently Prestel and 
Roquette [26, p. 91], have given a selfcontained proof of Macintyre's Theorem 
and generalized it to finite field extensions of Qp. Their proof uses model 
theory. Currently Weispfenning is preparing a paper [32] which will contain 
an elementary proof of Macintyre's Theorem in a more general setting. 

Remarks. It is known (see e.g. [21]) that Theorem 2.2 becomes false if one only 
works with boolean combinations of subsets of type I and II. Many of the 
results of Ax and Kochen, and Ersov fail for local fields of characteristic p+0 ,  
but the situation there is not yet well understood (see Delon [8]). 

w 3. Proof of  Theorem 1.1 

For  aEQp, let [a[ =p-ord(a). Let [dx[ = [dxxl [dx2] ... Idxml be the Haar measure on 
m m Qv such that the measure of Zp is 1. Let fl(x) .....  f,(x) with x=(x  1 ..... xm) be 

as in w 1. 
For selR, s>0,  we consider 

I(s)= ~ [wl s Idxl Idw[, 
o 

where 

D= {(x, w)eZ"~ x Z p l 3 y e Z p :  x = y m o d w ,  and f~(y)=0, for i=1,  ...,r}. 

Let P(T) be the Poincar6 series of w 1. 
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3.1. Lemma. With the above notation, we have 

Proof. 

i ( s )=p-  1 p(p_,,_ l p_,) 
P 

l(s) = ~ ~ p-'~ Idx[ Idwl 
n = O  D 

o r d ( w )  = n 

= ~ p-"~ j Idx[ ldwl 
n = 0 (x ,  pn) ~ O 

o r d ( w l  = n 

n =  0 (x ,  pn)ED o r d ( w ) =  n 

= . ~ o  p -" '  P "--~"~ P" + 1 

_ p - 1  ~ N,(p_,p_,,_l),. Q.E.D. 
P n=O 

Thus to prove Theorem 1.1 we have to show that I(s) is a rational function of 
p-S. From Lemma2.1 and Theorem2.2 it follows that D is a boolean com- 
bination of subsets of 0 "+1 of type III. Thus Theorem 1.1 reduces to ~a.p  

3.2. Theorem. Let S be a boolean combination of subsets of Q"~ of type Ill.  
Suppose that S is contained in a compact subset C of Q~. Let geQp [x], where x 
= (x 1,..., x,,). Then 

Z(s)  = ~ Ig(x)l s idxl 
S 

is a rational function of p-*. 

In the special case that S=Zp ,  this is due to Igusa [15, 16]. A related 
integral in the archimedian case has been investigated by Atiyah [1], 
Bernstein-Gel'fand [4], and Bernstein [3]. 

Proof. We calculate Z(s) by applying Igusa's method [16]. S can be written as 
a union of intersections of subsets which are of type III or the complement of 
one such. 

Since j = j + j -  j , we may suppose that S is the set of all xEQ'~ 
A u B  A B A n B  

satisfying the following conditions 

(1) fj(x) is (is not) an nj-th power in Qp, j = 1 , 2  . . . . .  q, 

where f jeZp Ix ] - .  {0}, and njeN, n j> 2. Let f = f j g .  Applying Hironaka's 

Embedded Resolution of Singularities [14, p. 176] to the locus f = 0 ,  one 
obtains a Qp-analytic manifold Y,, and a proper Qp-analytic map h: Y--*Q"~, 
with the following properties: For every b e y  there exist local coordinates y 
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= (ya . . . . .  y,,) centered at b such that,  locally a round  b, we have 

foh=e [I Y~', 
i = l  

and 

h*(dx 1A ... Adx,,)=tl y~' dy 1A ... Ady,., 
i= 

with N~, v~eN, v~> 1, and with e, t t invertible Qp-analytic functions in a neigh- 
bou rhood  of b (see [18, p. 84-87]). 

Since the ring of germs of Qp-analytic functions a round  b is a unique 
factorizat ion domain,  we have 

and 

I~ I  N jl J)o h = ej Yi , for j = 1 . . . . .  q, 
i = l  

I~ M~ g o h = 7  Yl , 
i = l  

in an open ne ighbourhood  U of b, with Nil, MIEN, and ej, 7, ~/ invertible Qp- 
analytic functions on U. 

By mak ing  U smaller, if necessary, we may  assume that  lejl, 171 and Ir/I are 
all cons tant  on U, and tha t  @y)/ej(b) is an nFth power  in Qp for all yeU, j 
= 1 . . . . .  q. Indeed every zEQp, which is sufficiently close to 1, is an nFth power. 
We m a y  also assume that  U is compact .  Since h is proper ,  h - l ( C )  is compac t  
and can be covered by a finite number  of  compac t  open sets such as U. Let 's  
call these U1, U 2 . . . . .  By replacing U 1 , U  2 , U  3 . . . .  by U a , U  2 \ U 1 , U  3 \  
(U~ w U2) . . . . .  we m a y  suppose  that  they are disjoint. Then we obtain  

/(s)--F~ S I>'1 s lYl[ M'~ I~1 _[-Ialyil~'-~ Idyl. 
U U n h - l ( S )  i= i 

Moreover ,  U~h-I(S) is the set of all yeU satisfying 

(2) @b) ~I Y~J' is (is not) an nFth power  in Qp, for j = 1 . . . . .  q. 
i = 1  

We identify each U with its image in the y-space, which is a compac t  open 
m subset of Qp. Thus each U is a finite disjoint union of sets of the fo rm a 

m m +peTZp, with a=(al,a 2 ..... a,,)eQp and e e N .  Thus  to prove  T h e o r e m  3.2 it is 
sufficient to show that  

! ( ~ '  'M's+"'-~\ldy I J(~)= llly,1 ) 
\i= 1 

is a ra t ional  function of p-S, if V is the set of  all yea +peZ'~ which satisfy (2). 
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Let n be a common multiple of n 1 . . . . .  nq. Notice that condition (2) only 
depends on the n-th power residues of the y/. Hence, summing over all the n-th 
power residues which satisfy (2), we may suppose that V is the set of all ysQp 
satisfying 

(3) Yl ~ ai + P~ Tip, 

and 

(4) Yi = 21. (nonzero n-th power), 

for some 2ieQp, i =  1 . . . . .  m. But then J(s)= 1~[ li(s), with 
i = 1  

Ii(s)-- ~ tyilM'~+~-aldyil. 
( 3 ) , ( 4 )  

If a/r then (3) implies that li(s ) is equal to a constant times la/I M`*+~'-I. If 
ai~p~Zp, then (3) is equivalent to y/~p ~Zp and 

Ii(s)= Z p-ktM,~+~,-a) ~ idyll. 
k>-e ordyi=k 

(4) 
Put y /=  pk U, then 

[ay,t=p -k (. laul. 
o r d y i =  k o r d u =  0 

(4.) u =  ~-iP - u .  ( n - t h p o w e r )  

The last integral is zero unless k - o r d  2~ rood n, and in that case its value ? is 
independent of k. Hence 

I i (s )=7 2 p-k(Mis+v~) 7P -e'(M's+~O 
1 __p-n(Mis+v~) ' k>=e 

k ~ o r d  2 i m o d n  

where e' is the smallest natural number satisfying e' > e and 
e ' - o r d  2 i mod n. Q.E.D. 

3.3. Remark. From the above proof it also follows that P(T) can be written as a 
polynomial in T divided by a product of factors of the form (1 _pa Tb), with 
a, belg. (After cancellation, a < 0  cannot appear because P(T) is a power series 
with integer coefficients). Moreover the poles of P(T) have multiplicity at most 
m. (This will be proved in 6.8). The same facts hold for/3(T). 

3.4. Remark. Let 
J(s)= ~ [f(x)l ~ Idxl, 

where If(x)l=Maxlfi(x)l. To prove the rationality of P(T), Igusa 1-16, p. 415] 
i 

(for r =  1) and Meuser [22, p. 310] (for r >  1) used the formula 

(1) p(p . . . .  )=  1 -p-~J(s)  
1 - p - ~  
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(Later Oesterl6 [25] showed that the rationality of P(T) for r > l  can be 
reduced to the case r = 1 by an elementary argument.) 

w 4. Some generalizations 

We consider the first order language (in the sense of logic) built up from the 
symbols + , - ,0 ,  1, =,  /x (and), v (or), -1 (not), and the quantifiers 3, V. Let 
q~(x) be a formula in this language with free variables x=(x  1 ..... x.,). For neN, 
let N.,o be the number of elements in the set 

{xe(Z/p"7~)"lq~(x ) is true in 7Z/p"Z}, 

and let N., o be the number of elements in the set 

{xmodp"lxeTl'~ and q~(x) is true in 7Zp}. 

To these data we can associate the following Poincar6 series 

n = O  n = O  

4.1. Theorem. Po(T) and P~(T) are rational functions of T. 
An analogous theorem for finite fields has been proved by Kiefe [19]. 

Proof. Let O(x, w) be obtained from ~0(x) by replacing every occurence of = by 
= rood w. Let 

- -  r n  D o -  {(x, w)~Zp x 7Zp l~(x, w) is true in Zp} 

Do--{(x,w)~77-, p xTZpl3yEZp: x = y m o d w  and q~(y) is true in 2Ep}. 

[o(s)= ~ Iwl sldx[ Idwl, I,~(s)--- ~ Iwl sldxlldwl. 
~ D~ 

Lemma 3.1 remains valid if we replace I(s) by [,p(s) and P by Po, or if we 
replace I(s) by Io(s ) and P by P~. By repeated application of Theorem 2.2 we 
see that /)o and D o are boolean combinations of subsets of Q~+I of type III. 
We now apply Theorem 3.2. Q.E.D. 

w 5. Rationality of a two-variable Poincar6 series 

Let fl(x) . . . . .  f~(x) be polynomials in m variables x=(x  1 ..... xm) over Zp. Let f 
= ( f l  . . . . .  f,). For n,j~]N, let N,,~ be the number of solutions in Zp/p" of 

f = 0 m o d p "  which can be lifted to solutions of f = 0 m o d p  "+~. To these data 
we associate the Poincar6 series 

P(T, U)= ~ N., i T" U j. 
n, jERq 
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5.1. Theorem. P(T, U) is a rational function of  T and U, which can be written as 

(1) P(T, U)=q(T, U)(1 - U) -1 f l  (1 - p " '  T b' U~') -~, 
i = 1  

with q(T, U)eZ IT, U], a i, bl, c i sN,  and b i > 1. 
Moreover 

P( t) = lira (1 - u) P(t, u), 

if t s ~  is close enough to zero. 

Proof. Let 

and 

"x 13yeZ;': D =  {(x, wl ,  w2)~2~ p 7Zp x 7Zp 

x --= y rood Wl and f ( y )  =-- 0 rood wl. w2}, 

I(s l ,sz):~lwllSl lw2lS2[dxl ldwl[[dwz],  for s l , s2elR,  s l , s z>O.  
D 

Using the same argument as in Lemma 3.1, one easily gets 

[ P -  1~ 2 . . . . .  1 -s, l -~).  
i ( s , , s 2 ) =  ) r tp  , r -  

From Lemma 2.1 and Theorem 2.2 it follows that D is a boolean combination 
of subsets of type III. By adapting the proof of Theorem 3.2 in a straightfor- 
ward way we obtain that I(s l ,s2)  is a rational function of p-S, and p-~ ,  and 
that P(T, U) is a rational function which can be written as a polynomial in T 
and U, divided by a product of factors of the form T, U or (1 _pa T b UC), with 
b, ceN,  aeZ.  Because P(T, U) is a power series with integer coefficients, we can 
write P(T, U) as a polynomial in T and U, divided by a product of factors of 
the form (1--p~ with a,b, c e N .  To write P(T,U)  in the more precise 
form (1) we need an additional argument. For  fixed n, the sequence 
N.,o>=N.,I>. . .  stabilizes. Hence there exists fl(n)eN such that N . , j = N .  for 
j >  fl(n). 

Let 
R(T, U)= ~ ( N , , j - N , )  T" U j. 

n, j  

We have that R(T, U)~TI [U]  lET]], and 

(2) P(T, U) = R(T, U)+P(T) (1  - U)-1. 

From Remark 3.3 and (2) it follows that R(T, U) can be written as a poly- 
nomial divided by a product of factors of the form 1 _pa T b U c, with a, b, c~N. 
Moreover we can take b_>l, because R(T, U)~Z[U]  [ [T]] .  Indeed if an ele- 
ment of Z [T, U] is divisible by 1 - p "  U ~ in Z [U]  [ IT] ] ,  then it is also divisible 
by 1 __pa U ~ in Z IT, U]. The Theorem now follows from (2). Q.E.D. 

Next we discuss the relationship between Theorem 5.1 and a theorem of 
Greenberg [12]. For  nsN,  let 7(n) be the smallest natural number >n  which 
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satisfies the following: If yeZ~ and f ( y ) - O m o d p  ~("), then there exists xeZ~,' 
such that f ( x ) = 0  and x = y  mod p". (The existence of y(n) is clear because 2gffp" 
is finite.) Greenberg's theorem [12] states that y(n) can be bounded by a linear 
function of n. Thus there exist c, deN such that 7(n)<cn+d for all neN. 
Schappacher [27] has investigated the infimum of the possible values for c, 
which is an invariant of the variety f = 0. We will now prove 

5.2. Proposition. With the notation of 5.1.(1), suppose that none of the factors 1 
-p"'Tb'U ~' divides q(T,U) in 71IT, U]. Let c=l+Maxci /b  i. Then c is the 

i 
smallest real number for which there exists d e n  such that ~,(n)<cn+d for all 
neN. 

Proof. For heN, let fi(n) be the smallest natural number such that N,,j=N. for 
j>=fl(n). It is clear that 7(n)=n+fi(n). Write 

q(T, U) f i  (1 -p"' T b' UC') -1 = ~ Wn(U ) T', 

(4) 

Moreover from (3) follows 

(5) 

deg w',(U)<2n+O(1). 

w'o.,~,(u) =(p~ u")' ~'.(u), 

for all n>no=degrq(T,U), and leN. Using (5) to calculate the degree of 
W',+lbl(U), and comparing with (4), we contradict 2<cffbl ,  unless w',(U)=0 for 
all n>n o. But then (3) implies that 1--p"lTb~U cl divides q(T,U) in 
Z IT, U]. Q.E.D. 

5.3. Remark. Independently of the results of this section, but by using a 
refinement of Macintyre's Theorem which we will discuss in 6.4, one can show 

(1) 
i = 1  n=O 

with w,(U)eTl [U]. We have 

P(T, U)= w,(U) U j T". 
n = 0  j -  

Thus N.,j is equal to the sum of the coefficients of degree < j  of w.(U). Hence 
fi(n)=degw.(U). We may suppose that Cl/bl=Maxc]b~. We have to prove 

that Cl/b I is the smallest real number such that degw.(U)<ncl/bl+O(1 ). 
From (1) it easily follows that degw.(U)<ncffbl+O(1 ). Let 2OR, 2<cffbl,  
and suppose that 

(2) deg w.(U)<2n+O(1). 

We have to derive a contradiction. Write 

(3) q(T, U)(1 _p.1Tbl UCa)-l= ~ w',,(U) T", 
n=O 

with w',,(U)e7Z [U]. From (1) and (2) follows 
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the following: There exists a finite partition of N in congruence classes, such 
that on each such congruence class the function nv--~7(n ) is linear for n big 
enough. This follows because the function y(n) is definable in the extended first 
order language introduced in 6.4. 

5.4. Remark. For j<n, let N~,j be the number of solutions in triP" of 
f -=  0 rood p" whose residue mod pJ can be lifted to a solution of f = 0 in 7~p. By 
the same argument as in 5.1 one sees that P'(T, U)= ~ Nj,, T" U ~ is a rational 

j<n 

function of T and U. Alternatively one can express P'(T, U) in terms of the 
integral 

[f(x)[ ~' d(x, V) "~ [dxl, 

where d(x, V) is as in 6.6. 

w 6. The absolute value of a definable function 

This section contains a result on the absolute value of a definable function 
(Corollary 6.5) which will be used in w 7. It also contains a result on the p-adic 
distance from a point to a variety (Corollary 6.6) which allows us to prove the 
rationality of P(T) with less desingularization (Application 6.8). First we need 
some definitions. 

6.1. Definition. A definable subset of Q"~ is a subset of the .form {xeQ'~lqg(x) is 
true}, where tp(x) is a formula in the first order language (in the sense of logic) 
built up from the following symbols: + (addition),. (multiplication), I (here xly 
means ord x < o r d  y), for every element of Qp a symbol denoting that element, =, 
/x (and), v (or), --1 (not), and quantifiers 3x (there exists xeQp:) and Vx (for 
every x~Qp:). 

From Lemma2.1 and repeated application of Macintyre's Theorem2.2 it 
m follows that a subset of Qp is definable if and only if it is a boolean com- 

bination of subsets of Q~ of type III. (Indeed the quantifier Vx can be written 
as 7(3 x) --1.) 

A definable function from Q~ to Qp is a function whose graph is a definable 
subset of Q~+ t 

6.2. Definition, A function O: O ' ~ w {  + oo} is simple /f there exists a finite r.cp 

partition of Qp into definable subsets A such that on each A 

O(x)=lord f(x) for xeA, 
e - ~ '  

where eeN, e*O, f(x)eQp[x], g(x)eQ~[x], and g(x)+0  for all xeA. 

6.3. Theorem. Let S be a definable subset of Q,~+I. Suppose that, for every 
xeQ'~, the set {ordt}(x,t)eS} consists of exactly one element which we will 
denote by O(x). Then O(x) is a simple function of x. 
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Proof. Let Z={xsQ'~l (x ,O)~S} ,  and 2 = Q ~ - Z .  We have to prove that O(x)is 
simple on Z. 

By Macintyre's Theorem 2.2 S is a boolean combination of subsets of type 
III. Let f f lx ,  t), j = 1, 2 . . . . .  l, be the polynomials which appear in the description 
of these subsets. Let n o be a common multiple of all the n which appear in the 
description of these subsets of type III  (in the notation of w 2). 

Write 
f f lx ,  t) = ajo(X ) + ail(x) t + a j2 (x  ) t 2 + . . . .  

with ajzeQp[x]. We partition Z in definable subsets A, such that for each A 
and for each j, i we have either 

(1) a j & ) = 0  for all x e A ,  

or 

(2) a~i(x).O for all x e A .  

There exists 2 e N  such that any u e Z  e with u -  1 m o d p  ) is an n0-th power. Let j 
=1 .. . .  , or l, let c~eZ, Ic~l<L and let il+-i 2 be such that ajh and ai~ satisfy (2). 
Define 

A j, ~, i,, i2 = { x E A  1 :q t; (x,  I)GS and  ord  (aji , (x)  t il) = ord(aji2(x ) t i2) + c~}. 

O(x) is a simple function on As,~,il,i 2, indeed for xeA~,~,i,,i 2 we have 

O ( x ) = o r d t =  1 ord ( am(x)p~] 
i l - i  2 \ ajil(X) / '  

because t4:0, since xq~Z. 
Let 

B = A \  DA~,~,h,~2 , 

where the union is over all j, ce, i l , i  2 as above. We have to prove that O(x) is 
simple on B. For all x , t  with x e B  and (x , t )eS the no-th power residue of 
f j(x,  t) is equal to the no-th power residue of the term aji(x ) t ~ of minimal order, 
because the orders of the terms differ by at least 2. Making a disjunction over 
the different possibilities of which term aj~(x)t ~ has minimal order, at least 2 
less than the other terms, we obtain that for xeB ,  the relation (x , t )eS is 
equivalent to a boolean combination of conditions of the form 

(3) ord t ~ > ord bl (x) 
b2(x ) ' 

and 

(4) b(x)t" is an n-th power, 

with bl(x), b2(x), b(x)eQp[x],  veZ ,  l i eN ,  nln o, and bl(x)+O, b2(x)+0 for all 
xeB.  

Making a disjunction over the different possibilities of the no-th power 
residues of t and of the b(x) in (4), we obtain that for x e B  the relation (x , t )eS 
is equivalent to a disjunction of conditions Si, where each Si is a conjunction 
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of conditions of the form (3) and definable conditions on x and one condition 
of the form 

(5) t = p- (non-zero no-th power), 

where peQp, p4=0. 
Let B i = { x s B l 3 t :  (x,t)~Si}. We have to prove that O(x) is simple on B i. 

For xeB  i, and 0eTZ, we have O=O(x) if and if only if 0 satisfies a conjunction 
of conditions of the form 

bdx) 
(3') v 0 > ord b2(x) , 

and one condition 

(5') 0 - t/rood n o, 

where v, bl(x), b2(x ) are as in (3), and r /=ordp.  
The conjunction of the conditions (3') can be written as 

! 
Max ord ai(x)<= O< 1- Min ord ci(x ), 

7 i 7 i 

with ai(x), ci(x)~Qp(x), TeN, ?~0.  
Write O(x)=rl+q(x)no, then for xeB  i we have 

[(Min ord ci(x))-rl 7] 

q(x)=[ i ],rt 0 ] , 

where [ ] denotes the greatest integer function. We have to prove that q(x) is 
simple on B i. But this is clear, by covering B i with definable subsets on which 
a particular ci(x ) has minimal order and constant (),no)-th power residue (this 
implies that ord ci(x ) mod ? n o is constant on such a subset). Q.E.D. 

6.4. Remark. Theorem 6.3 can also be proved from the following refnement of 
Macintyre's Theorem 2.2: Qp admits elimination of quantifiers * in the extended 
first order language with the following symbols: There are variables which run 
over Qp and variables which run over 7Z. There are symbols for + and - in Q~, 
and for +,  - ,  and < in Z, and for the function ord from Qp"-, {0} to Z. For every 
element of Op or Z there is a symbol to denote that element. For every neN,  
n > 2  there is a relation symbol to denote the set of n-th powers in Qp. For 
every neN,  n > 2  there is a symbol to denote the function which maps an 
integer y to the greatest integer <y/n. Finally there are the symbols =,  A, v ,  
-1 and quantifiers ~xEQp, 3 ye7,,, V xeQp, V y~Z. 

This refinement of Macintyre's Theorem can be proved by adapting 
Macintyre's proof [21]. An elementary proof will be contained in Weispfenning 
[323. 

1 This means that every formula in that language is equivalent to a formula without quantifiers 
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6.5. Corollary. Let f: Q'~--+ Qp be a definable function, then ordf(x) is a simple 
function of x. 

Proof Trivially from Theorem 6.3. Q.E.D. 

Let f l (x)  . . . . .  fr(x)SZp[X], x=(x 1 .. . . .  Xm). The p-adic distance d(x, V) from a 
point xeQ"~ to the variety V, given by the equations f 1 = . . . = s  is by 
definition 

m d(x, V)= Min {[x-  yi I Y Qp,fl(Y) = ... = s  

where [x-y[=Maxix i -Y i l .  (We will always suppose that there exists at least 
i 

one p-adic point on V). 

6.6. Corollary. Assume the above notation. Then there exists a finite partition of 
Q"~ in definable subsets A, such that on each A 

= h ( x )  lie 
d(x, V) g(x) ' for all xeA, 

where e~lN, e=t=O, h(x)eQp[x], g(x)eQp[X], and g(x)=t=0 for all xeA. 

Proof Apply Theorem6.3 to the set S of all (x,t)eQ"v'• satisfying ]ti 
=d(x, V). It is clear that S is definable. Q.E.D. 

The following example shows that Corollary 6.6 is best possible. 

6.7. Example. Let C be the curve x 2 - x 3 = 0 ,  and let p4=2,3. Let x 
= (x , ,  Xz)eZ~.  

If x I is not a square, then d(x, C)=lx[. 
If x~ is a square and Ix2-x~l--Max(ix2[ 2, [xl13), then d(x, C)=[x2-x~l ~/2. 
If x I is a square and Ix 2 -x~[  < Max(Ix212, LXll3), then d(x, C)= I(x 2 -x~)/x21. 
This follows from an elementary argument, using Hensel's Lemma. 

6.8. Application. In Sect. 3 we proved the rationality of the Poincar6 series 
P(T) of a subvariety V of Q~, by desingularizing a hypersurface of dimension 
m. We will now show how we can prove the rationality of P(T) by only 
desingularizing a hypersurface of dimension m -  1. 

Suppose there is at least one point on V with coordinates in Zp. Let 

J(s)= 5 d(x,V)SldxL, for selR, s>0 .  

We have that 

1 -p-SJ(s)  
(1) P(p . . . .  ) -  

1 -p-S 

(Note the analogy with 3.4. (1).) Indeed 

J(s) = ~ p-"s(W,-  IV,+ 1), 
n~N 

where W, is the measure of the set {xeZ";}d(x, V)=<p-"}. 
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Since W,=N,p  -m", we obtain 

J(s) = P(p . . . .  ) -  (P(p . . . .  ) - 1) pS, 
and hence (1). 

Using Corollary 6.6 and adapting the proof of Theorem 3.2 slightly, one 
obtains that J(s) is a rational function of p-S. For  this we only need to 
desingularize a hypersurface of dimension m -  1 because the domain of integra- 

m tion is now a subset of Qp (instead of a subset of =rom+~ as for l(s) in Sect. 3). 
F rom this proof also follows that the multiplicity of a pole of P(T) is at 

most m. 

7. Proofs without desingularization 

In this section we prove the rationality of/5(T), P(T) and P(T, U) without using 
Hironaka 's  deep theorem on the resolution of singularities. The key results 
used in the proof are Macintyre's Theorem 2.2, Corollary 6.5 and Theorem 7.3 
below. Theorem 7.3 is similar to and inspired by Theorem A, of P.J. Cohen [7, 
p. 140], and can be proved by suitably adapting Cohen's method. However we 
will use a different method which is simpler (but less powerful). First we need 
two lemmas. 

7.1. Lemma.  Let S be a definable subset of  ~pO m+q. For xeQ'~, let S x 
= {yeQ~ l(x, y)eS}. 

Let eelN, ~>>_ 1. Suppose, for all xeQ'~, that Sx is nonempty and that 

(1) Card S~_<_ ~, 

where Card denotes the cardinality. Then there exist definable functions 
f l(x)  .. . .  ,fq(X) from Q'~ to Qp such that (x,fl(x), ...,fq(x))eS for all xeQ'~. 

Proof. This lemma is a special case of a result of van den Dries [30] which 
states that 7.1 is true even without supposing (1). His proof  uses model theory 
and is not elementary. We will give here an elementary proof  of Lemma 7.1. 

It is sufficient to prove the lemma for q--1,  because then the general case 
follows by induction on q, considering the set 

{(x,y 1 . . . . .  yq_ x)l~ yqeQp: (x, y 1 . . . . .  yq)eS}. 

Thus suppose q = 1. If cr 1, there is nothing to prove. Hence suppose cr 1. It 
is sufficient to find a definable subset S' of 0 "+~ such that S ' c S ,  and such ~ . , p  

that, for all xeQ~, S'~ is nonempty and Card S'~<cr where S'~ 
= {ye Qp l(x, y)eS'}. 

Let keN,  k >  1 be fixed. If, for each xeQrfl, we have 

Card S~ = 1, or 
(2) the elements of Sx do not all have the same order, or 

the elements of S~ do not all have the same k-th power residue, 

then it is easy to find such an S'. Indeed take only those yeS~ which have 
minimal order and which, if all the elements of S~ have the same order, have 
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minimal k-th power residue (minimal with respect to an arbitrary but fixed 
ordening of the k-th power residues). 

For  xeQ'~, let y(x) denote the mean value of the elements in Sx, i.e. y(x) 
=(  ~ y)/Card(Sx). It is clear that y(x) is a definable function (because of (1)). 

y~Sx 
Replacing S by {(x, y - ;(x)) 1 (x, y) e S}, we may suppose that 

(3) y(x)=0,  for all xeQ';. 

Let ~c= Max ordn, and let k=4~(p~+~), where q5 denotes Euler's q5 function. 
n= 1, . . . ,~ 

For this value of k we will prove that (3) implies (2). Fix xeQp. Let n 
= C a r d S x < ~ ,  and S~={yl ,y2 , . . . , y , } .  Suppose n > l  and o r d y l = o r d y  2 . . . .  
= o r d y , .  We have to prove that not all the yi have the same k-th power 
residue. Write Yl =pOrdy~ y,, then ord y'g=0. From (3) follows 

(4) ~ y'i=O. 
i = 1  

We have to prove that not all the Y'i have the same k-th power residue. 
Suppose they all have the same k-th power residue, then, by the special choice 
of k, all the Y'i have the same residue mod p~+l (relatively prime with p). But 
then (4) would imply n = 0  modp  ~+ 1, which is in contradiction with the choice 
of to. Q.E.D. 

7.2. Lemma. Let f (x , t )eQp[x , t] ,  x=(x  1 . . . . .  xm), t one variable. Let heN,  n>0,  
be fixed. Then there exists a finite partition of Qp + 1 into subsets A of the form 

(1) A={(x , t )eQ'~+l lxeC and It-c~(x)lrlt, ilaj,~(x)l, for jeS ,  leSt} , 

where C is a definable subset of Qp, ~t,z denotes either <, >, < or >, S and 
the S t are finite index sets, and ct(x), aj.t(x ) are definable functions from Q'~ to 
Qp, such that for all (x, t)eA we have 

(2) f ( x ,  t) = u ( x ,  t) n h ( x )  I-I (t - c j ( x ) )  e j, 
j ss  

with u(x, t) a unit in 7Z v, h(x) a definable Junction from Q'~ to Qp, and e tsN.  

Proof. There exists a finite extension K of Qp such that for all xeQ'~, f (x ,  t), as 
a polynomial in t, splits into linear factors over K. (Because there are only a 
finite number of extensions of Qp with given degree). 

Choose a basis 41= 1, 32 . . . . .  ~k for K over Qp such that for all zleQp we 
have 

(3) 

and 

(4) 

~ ( ~ zi~i) i 

0~ord(~ i )<  1, for i=1  . . . . .  k. 
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This is possible by taking ul # as basis elements, where zc is a uniformizing 
pa ramete r  for K, and the u~ m o d  ~ form a basis for the residue field extension. 

Let  f ( x ,  t) = ao(X ) t d + a 1 (x) t ~- 1 + .... with the ai(x)eQ~ Ix] .  
Let  Z =  {(x,t)~Q"~ +1 lao(X)=0},_ Z=~ "-.z. By induction on d, it is suf- 

ficient to find a par t i t ion of Z. For  (x, t )eZ we have 

d 

(5) f ( x ,  t) = a o(x) [I  ( t -  b l j ( x ) -  b2j(x ) 3 2 - . . .  --bkj(X) ~k), 
j = l  

for some functions bij(x ) f rom Q~ to Qp. F r o m  L e m m a  7.1 it easily follows that  
we can take the bij(x ) to be definable functions. F r o m  (3) it follows that  we can 
par t i t ion Z in subsets A of the form (1) such that  on such an A we have 

It - b l j (X) -  b2j(x ) ~ 2 - - " "  - -  bka(x) ~k[ 
(6) = l t - b l j ( x ) l * O  , for je I1 ,  

(7) =lbi(j),j(x)] [~.j)] #0,  for j~I2,  

=0 ,  for jr  

where 11 u I  2 ~ I  3 = {1, 2 . . . .  ,d}, and I 1 c~I 2 =0 .  
If  1 3 . 0 ,  then f (x , t )  is zero on A and (2) is obvious.  Thus  we m a y  suppose 

that  13=0.  
There  exists 2 e N  such that  any ueTlp with u = 1 m o d p  z is an n-th power  in 

Z p .  

F o r  (x, t)eA we have 

d 

f (x , t )=ao(X) 1-I ( t-baj(x))  I-I bi(j),j(x) 1-[ Cj(x,t), 
jEI I j~12 j= 1 

with 

b2)(x) b3j(x) 
C j ( x , t )= l -  t_bxj(X) 32 t_blj(X) ~3 " " ,  for j e l l ,  

t--blj(X) b2j(x) ~ 2 - " ' ,  for jEI  2. 
b,j~.j(x) b,~.j(x) 

F r o m  (3), (4) and (6) it follows that  

(8) ~ eZ v, 
t - b l j (  ) 

and ord Cj(x, t )=0 ,  for j~11, i>2, and (x, t)eA. F r o m  (3), (4) and (7) it follows 
that  

t -  blj(x) ~ bit(x)-eZp, 
(9) - -  ~ eLp,  b/~,j(x) b.~), j(x) 

and 0 < o r d  Cj(x, t )<  1, for j~ I  z, i>=2, and (x, t)6A. 
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We now part i t ion A with respect to the different possibilities for the residue 
classes m o d p  x+d of (8) and (9). If these residue classes are fixed then 

d 
11 Cj (x , t )eZp  has constant  order  less than d and has constant  n-th power 

j=l 
residue. F rom  this (2) follows. 

We still have to show that  we can fix the residue classes mod p ~+d of (8) 
and (9) by conditions of the form (1). For  (9), this is clear. Concerning (8), we 
have to express the condit ion 

(10) bij(x) = O mod  p ~ +a, 
t - b l j ( x  ) 

where 0EZ_, in the form (1). If O=_-Omodp a+d, this is clear. Thus suppose 
0 ~ 0 rood p/'+ d. Then  (10) implies 

(11) ord ( t - b xj(x)) = ord b i ~(x ) -  ord 0. 

A straightforward calculation shows that (10) is equivalent with 

(12) ord(t  - b lj(x ) - blj(x ) O- 1) >= 2 + d - o r d  0 + ord (t - b 1 j(x)). 

Substituting (11) in (12) we see that  (10) is equivalent with the conjunct ion of 
(11) and 

o r d ( t - b l j ( x ) - b o ( x ) O - 1 ) > = 2  + d - 2 o r d O + o r d b l j ( x ) .  Q.E.D. 

7.3. Theorem. Let f i (x , t )eQp[x , t ] ,  i = l  . . . . .  r, x = ( x  1 . . . . .  xm), t one variable. Let 
nelN, n > 0 ,  be f ixed.  Then there exists a f inite partition of  Qp+l into subsets A 
of  the form 

(1) A = {(x, t)sO~ '+1 l x e C a n d  lal(x)l •1 It - c (x ) [  [12 ]a2(x)]}, 

m where C is a definable subset of  Qp, and [31 resp. [32 denotes either <,  <,  or no 
condition, and al(x),  a2(x), c(x) are definable functions J~om Q'~ to Qp, such that 
for all (x, t)EA we have 

(2) j i ( x , t )=u i ( x , t ) "h i ( x ) ( t - c ( x ) )  ~', Jbr i = l  . . . . .  r, 

with ui(x, t) a unit in Zp, hi(x ) a definable function from Q"~ to Qp, and v ieN.  

Proof  F r o m  L e m m a  7.2 it follows that there exists a finite part i t ion of Qp+l in 
subsets A of the form 7.2.(1) such that for all (x , t )~A we have 

(3) Ji(x, t )=ui (x  , t)nhi(x)l-I(t-cj(x)) eJi, for i =  1, ... ,r, 
jeS 

with ui(x, t) a unit in Zp, hi(x ) a definable function from Qp to Qp, and e j ieN.  
It is easy to see that  it is sufficient to prove that  we can take S such that it 
contains only one element (The Theorem then follows after a straightforward 
further partitioning). 
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Suppose  that  1, 2~S, thus t -c~(x)  and t--c2(x ) may  appear  in 7.2.(1) and 
(3). We will el iminate f rom 7.2.(1) and (3) either t - C l ( X  ) o r  t--Cz(X), or else 
el iminate bo th  and int roduce a new c(x). This will prove the Theorem.  After a 
par t i t ion of A into the set {(x,t)~A l e~(x)=cz(X) } and its complemen t  in A, we 
m a y  suppose that  Cx(X)+C2(X ) for all (x,t)~A. There  exists 2 e N ,  2 > 0 ,  such 
that  any U~Zp with u - 1  m o d p  a is an n-th power  in Z v. 

To  simplify the no ta t ion  we will write cl,  c 2 instead of cl(x ), c2(x ). We have 

(4) Pa(t -cO _Pa(t-c2)  ~_p,l. 
C 2 - - C  1 C 2 --C 1 

F r o m  (4) it follows that  we can par t i t ion A into subsets each of which satisfies 
one addi t ional  condi t ion (I), (II), (III), or (IVy) below. (Indeed if neither (I) nor  
(II) is satisfied, then the right hand side of  (4) has nonnegat ive  order  less than 
22, so that  we are in case (III)  or OVa) ). 

Case (I): ord ( t - c ~  ] > 2. 
\C 2 - -  C 1 l 

In  this case t - c 2 = t - C a - ( C 2 - C x ) = - ( c 2 - c l ) u ( x , t ) " ,  with u(x,t) a unit. Thus  
we can el iminate t - c  2. 

Case (II): ord ( t - c ,  I - - -  < 2 .  
\C  2 - - C  1 ! 

In this case t - c 2 = t - c l - ( c 2 - C x ) = ( t - c O u ( x , t ) " ,  with u(x,t) a unit. Thus  we 
can el iminate t - c  2. 

Case (III):  Pa(t-c2) - 0 m o d p  2x. 
C 2 - - C  1 

In this case, (4) implies 

PZ(t--Cl) =pZu(x,t)", 
C2 --Cl 

with u(x, t) a unit. Thus  we can el iminate t - c  1. 

Case (IVa): Pa(t--C2) =-a m o d p  3z, 
e 2 - e l  

where a is a fixed residue class of  Z v m o d p  3~, with a ~ 0 m o d p  2a, and a ~  
_ p a  modp2a.  

In this case we have 

f ( t - c 9  - -  +p~=a+pamodp 3z 
C 2 --e I 

0 modp 2a 

= (a + p ~) u (x, t)", 

with u(x, t) a unit. Hence  from (4) it follows that 

(5) t - c  a =p-a(c2-c l ) (a  + pa)u(x,t)". 
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Moreover  

pZ(t --C2) ----~a m o d p  3~ 
C 2 - - C  1 

~s 0 m o d p  2a 

=av(x,t)", 

with v(x, t) a unit. Hence  

(6) t - c  2 = p -  X(c 2 - c l ) a v ( x ,  t)". 

N o w  use (5) and (6) to el iminate t - c  1 and t - c  2. However ,  to express the 
condit ion OVa), we need a new t - c .  Q.E.D. 

We will now prove  the rat ional i ty  of P (T)  and P(T) without  using 
H i ronaka ' s  theorem on the resolut ion of singularities. Fo r  this we have to 
prove  T heo rem 3.2 without  desingularization.  In the same way, the results of  
w 5 can be proved  without  desingularization,  but  we leave this to the reader. To  
prove  T h e o r e m  3.2, we will prove  

m 7.4. Theorem. Let S be a definable subset of Qp, which is contained in a compact 
subset. Let h(x) be a definable function from Qp to Qp such that Ih(x)[ is 
bounded on S. Let eeN,  e> l. Suppose that o r d h ( x ) e e Z u {  +oe}, for all xeS.  
Let x = (x 1 . . . . .  Xm). Then 

Zs(s)=~lh(x)l~/eldx[, (for selR, s >0 )  
S 

is a rational function of p-S. 

Proof Let 2 = ( x ~  . . . . .  Xm_l). We will first separate  the var iable  x m from 2 in the 
integral Zs(s ). 

F r o m  Corol lary  6.5 it follows that  we may  suppose that  

gx(X) 1/e' 
(1) Ih(x)ll/e= ~ , for all xES, 

with e ' e N ,  e ' >  1, gl(x), g2(x)eQp[X], and gz(X)#0  for all xeS.  
F r o m  Macintyre ' s  T h e o r e m  2.2 it follows that  S is a boolean  combina t ion  

of subsets of t y p e I I I .  Since ~ = ~ + ~ -  ~ , we may  suppose that  S is the set 
A w B  A B Ac~B 

of all x~Q~ satisfying 

(2) fj(x) is (is not) an n f t h  power,  for j = 1 . . . . .  l, 

where f jeQp[x],  njeN, nj> 1. 
Apply  T h e o r e m  7.3 on the polynomials  g~, g2, fj, with t replaced by x,,, m 

replaced by m - l ,  and n = I ~ n  j. We par t i t ion S in subsets of the form Sc~A, 
J 

with A as in 7.3. Thus A is the set of all xeQ~ satisfying 2 e  C and 

(3) ord(x,,-c(2))rliordai(:~), for i= 1,2, 
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m - 1  where C is a definable subset of Qp , and c(2), ai(;c ) are definable functions 
m -  from Qp ~ to Qp, and ~ ,  resp. D2, denotes either < ,  < ,  > ,  or > .  F r o m  (1) 

and 7.3 it follows that  for all xeSc~A 

Ih(x)l ~/~= Iho(2)l ~/~' Ix,, -c(2)r/e', 

with v e Z  and ho(~ ) a definable function. Also, for all xeA,  condit ion (2) is 
equivalent with 

(2') hi(2)(x m -c(2)) ~j is (is not) an n l t h  power, for j = 1 . . . .  , l, 

where the hi(2) are definable functions and v f i N .  
We par t i t ion Sc~A into subsets S' on which h~(:~) and  xm-c(~ ) have 

constant  n-th power  residue. Such an S' is the set of  all xeQp satisfying (3), 
ReD, and 

(4) x m - c(2) = 2. (nonzero n-th power), 

where D is a definable subset  of  Q ~ - I ,  and 2eQp. 
Put  V=Xm--C(2), then 

Zs,(S)=~lho(~)l~/e" [. Ivl~/~'ldvlld~l, 
D ( 3 ) , ( 4 )  

=Ilho(~)l~/e'( Z p-k.vs/e' 
D kraeZ o rd  v = k m 

(5)  v =  2 . ( n - t h p o w e r )  

where (5) is the condit ion 

(5) kmniordai(~), for i=  1,2. 

Put v=pk~u, then 

Idvl) ld~l, 

Idvl =p-kin ~ [dul. 
o r d e =  k ~  o r d u =  O 

v = 2.  ( n - t h p o w e r )  u= 2p- -  kin. ( n - t h p o w e r )  

The last integral is zero unless k m - o r d 2 m o d n ,  and  in tha t  case its value 7 is 
independent  of  km. Hence  

Zs,(S)=~lho(~)l~/e'( ~ p-kmw/e'-k")Ld~l, 
D (5)  

km =- o r d  2 m o d  n 

_=7 y~ p-k,,v,/e,-~,, S Iho(~)(/e'ld~l �9 
k m ~ o r d 2 m o d n  D , ( 5 )  

Repeat ing  this process, but  now also applying Corol lary  6.5 and T h e o r e m  7.3 
to ai()~ ) in (5), we can separate  the var iable  xm_l. Cont inuing in this way we 
can express Zs(s ) as a l inear combina t ion  of  convergent  series of the form 

(6) ~" p(-q,*~ . . . . .  q~k,.),-k,- .... k.,, 
(kl  . . . . .  kin)EL 
ki =-- ltimod~i 
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where ql,...,qm~Q, #i~Z, oqelN, and L is the set of all integers k~ . . . . .  k,, 
satisfying a system of linear inequalities in k 1 . . . . .  k,. with integer coefficients. 

Let  d be a c o m m o n  denomina to r  of the rat ional  numbers  qj which appear  
in the expressions (6). Wri te  ki=pi+~ik'  i. Then L e m m a  7.5 below implies that  
Zs(s ) is a ra t ional  function of p-~/d. 

Put T=p -s. Thus  Zs(S ) is a ra t ional  function of ~ - .  On the other  hand,  
Zs(s ) is a power  series in T times an integral power  of T, indeed 

Z s ( S ) =  2 T k ~ [dxl. 
keZ ordh(x)=ek 

x~S 

Since [h(x)] is bounded  on S, only finitely many  negative k appear  in the above  
series. Thus  Zs(s ) is a ra t ional  function of T. Q.E.D. 

The  following L e m m a  (in a slightly less general  form) is conta ined in 
Meuser  [22]. 

7.5. L e m m a .  Let L be the set of all integers k 1 . . . . .  k,, satisfying a finite system 
of linear inequalities in k 1 . . . . .  k m with integer coefficients. Let A l(S ) . . . . .  Am(s ) be 
linear polynomials in s with integer coefficients. Let peN,  p > 1. Suppose that 

-- ~ k, A,(s) 
(1) J(s) = y, p , = t  

(kl, ...,km)~L 

is convergent for s~S, with S an open subset of ~ .  
Then J(s) is a rational function of p-~ on S. 

Proof. The proof  is by induct ion on m. Summing  over  a finite number  of cases, 
we may  suppose that  k 1 . . . . .  kin>0 if ( k  1 . . . . .  kin)eL. If all the A~ are identically 
zero, then there is nothing to prove.  Hence  suppose that  Am(s ) is not identically 
z e r o .  

The  system of inequalities which determines L consists of  inequalities not 
involving k m and some inequalities 

(2) 7km<Bj(k 1 . . . .  ,k, ,_ 1) , j = l , . . . , q ,  

(3) 7km>=Cj(k 1 . . . . .  k,,_,), j = l  . . . . .  l, 

with B j, Cj linear polynomials  with integer coefficients, and 7elN, 7 > 1. 
Summing  over  a finite number  of cases and adding inequalities in 

k 1 . . . . .  kin_l, we may  suppose in (2), (3) that  q = l  or q = 0  (i.e. no Bj is 
involved), and  l = l .  And we m a y  also assume that  the inequalities in 
k l . . . .  , kin-1 imply C 1 _<B 1 (if q ~0).  

Summing  over  all the possible residue classes of ka, . . . ,km_x rood7 and by 
substi tut ing 7ki+r i for k i, we may  suppose in (2), (3) that  7 =  1. Thus  

m-1 
-- ~_, k, Ai 

J(s)= Z p ,-' Z p-k Am, 
(kl,...,km-1)~L' Cl <-km<=B 
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where E is a system of linear inequalities in k 1 . . . .  , km_l with integer coef- 
ficients, and where B is either + oe or a linear polynomial  in k 1 . . . . .  k~_ t with 
integer coefficients. (We have written A i, C 1 instead of At(s ), Cl(k 1 . . . . .  k,,_l)  ). 
Let S o =  {seSlA,,(s)+O}. For seSo we have 

/ - -  - ( ~ l k . A ) - C I A  \ 
(4) J ( s ) = /  L p ,-, ' ' ")(l--v-Am) -1 

\(kl,...,km- 1)eL' 

km-2 )~L , - ( ~ . k ' A  ~-BA \ Am A l 

(If B =  + ~ ,  then from the convergence of (1) it follows that A m > 0  on S, and 
the second series in (4) is zero). The two series in (4) are convergent, hence we 
can apply the induction hypothesis. Thus J(s) is a rational function of p-S on 
So, and hence on S, since J(s) is continuous on S (because J(s) can be written 
as a Laurent series in T=p-S). Q.E.D. 

7.6. Remark. The above proof of Theorem 7.4 also implies Remark 3.3, indeed 
it shows that 

(i) Zs(s ) can be written as a polynomial  in p-~ and p~ divided by a product 
of factors of the form (1 __pa+sb), with a, beZ,  and 

(ii) the poles of Zs(s ) have multiplicity at most  m. 

7.7. Remark. Theorem 7.4 and 7.6 (i) remain true when S and h(x) are definable 
in the richer language built up from the symbols mentioned in 6.4 and an 
additional symbol to denote the function ~z: Z ~ Q p :  nw-~p". Ax and Kochen [2, 
III] proved that Qp admits elimination of quantifiers in this language. However 
7.6 (ii) does not remain true. We will return to this in a future paper. 
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