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1. Introduction 

Let G be a connected linear semisimple Lie group. (Our precise hypotheses on 
G, which are slightly more general, are described in Sect. 2.) In [14], a 
conjecture describing the characters of the irreducible representations of G was 
formulated, generalizing that of Kazhdan-Lusztig for highest weight modules. 
That conjecture will be proved here, for those representations having the same 
infinitesimal character as some finite dimensional representation of G. Very 
roughly speaking, the idea of the proof is this. If ~E(~, known results of Hecht 
and Schmid (unpublished - see for example [14], Theorem 8.1) relate the 
character of n to its Lie algebra homology. On the other hand, (deep) tech- 
niques in algebraic geometry relate the conjectured character formula to the 
cohomology of certain geometric objects ([-9, 10]). What is missing, therefore, is 
a connection between Lie algebra homology and the cohomology of the 
geometric objects. This connection is provided by the "localization" theory of 
Beilinson and Bernstein ([1]). 

This sketch seems to leave nothing to do; and in fact the gaps to be filled 
are very technical. The main difficulty is that the Lie algebra homology groups 
studied by Beilinson and Bernstein are not the ones which are known to be 
related to character formulas. A more elementary way of formulating this 
difficulty is to say that the classification of irreducible Harish-Chandra mod- 
ules given in [1] bears no obvious relation to that of Langlands. These 
matters are dealt with in Sect. 2-5; Theorem 1.13 below is the major new 
result. The last two sections reorganize the conjecture of [14] into a more 
convenient form, and prove some combinatorial results needed in [10]. 

Here is more detailed account of the proof of the character formulas. Fix a 
maximal compact subgroup K of G, and a complexification K e of K. Let 9 be 
the complexified Lie algebra of G, and ~ the variety of Borel subalgebras of 9 
(the usual flag manifold). The group K e acts in a natural way on ~,  and has 
finitely many orbits. Consider the set 
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(1.1) ~ = { p a i r s  (Q, ~r is a Kc-orbit on ~,  and ~ is a Kc-homogeneous 
line bundle on Q with a flat connection}. 

If 7=(Q,~q~)~,  we define 1(7) (the length of 7) to be the dimension of Q. Fix 
once and for all an irreducible finite dimensional representation F of G. 

Proposition 1.2 ([15], Theorem 2.2.4 and Proposition 2.3.8), The set of 
infinitesimal equivalence classes of irreducible admissible representations of G 
having the same infinitesimal character as F is in a natural one-to-one cor- 
respondence with 9.  

This is just a reformulation of the Langlands classification. If 7 ~ ,  write 

(1.3) ) ( ( j  = irreducible (g,K) module corresponding to 7 

X(7) = standard induced-from-discrete series (g, K) 
module containing ) ( ( J  as a submodule 

)((7) = standard module having X(7) as a quotient 

O(7) = character of )((7) 

0(7) = character of X(7) or 2(7). 

The problem we are interested in is expressing the irreducible characters in 
terms of the standard ones 0(7). 

Suppose now that 6=(Q,L,q)eN. Since ~ is flat, there is a notion of locally 
constant section. Accordingly we may identify 

(1.4) 6~--~sheaf of germs of locally constant sections of 5e; 

this is a locally constant sheaf on Q, and carries a natural action of K e. We 
may also regard 6 as a sheaf on all of N', extending it to have all its stalks zero 
off of Q. This extension is a constructible sheaf on N, and still carries a K e 
action. This construction makes N into a natural basis for the Grothendieck 
group of constructible sheaves on ~ having a K e action. 

The closure (~ of Q in ~ is an algebraic variety, often having rather 
complicated singularities. Because of these singularities, the line bundle 5e 
cannot in general be extended to (~. However, Goresky and MacPherson in 
]-6] (following a suggestion of Deligne to extend their own previous work) have 
shown how to attach to ~ an object which plays the role of such an exten- 
sion. It is a complex 6 of sheaves on (~, defined up to quasi-isomorphism; in 
particular, the cohomology sheaves $i of the complex are well-defined. Often 
we will regard $ as a complex of sheaves on ~ ,  extending it by zero off of Q. 
The precise characterization of $ will be recalled in Sect. 5 (see (5.13)). The 
group Kr acts on the quasi-isomorphism class of 6, and therefore on the 
various $i. These cohomology sheaves are constructible; so by the remarks at 
the end of the last paragraph, we can write 

(1.5) ~ ( - 1 ) ' Y =  ~ M(y, 6)y 

in the Grothendieck group of Kc-equivariant constructible sheaves on ~.  
(Here M(~, 6) is an integer.) We call $ the DGM extension of 6. 
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Theorem 1.6. I f  the integers M(V, fi) are defined by (1.5), then 

(9(6) = ~ ( -  I) *O>-ay) M(?, 6) O(v) 

(notation (1.3)). 
This theorem, due largely to Beilinson and Bernstein [-1], reformulates the 

problem of computing characters in a geometric way. Its proof will be com- 
pleted at the end of Sect. 5, but the idea is the following. We will show 
(following [1]) how to construct 6 from the irreducible representation )((6). 
Write 3(g) for the center of U(g), and -~o-~3(g) for the maximal ideal which 
annihilates the fixed finite dimensional representation F. Put 

(1.7) ~ = U(O) --~o 
R = U(~) / .~ .  

By the infinitesimal character assumption, the various modules of (1.3) can be 
regarded as R modules, Fix a resolution 

(1.8) P* ~ )((6)  ~ 0 

of )~(6) by finitely generated projective R-modules. 
By the Borel-Weil theorem, there is a natural Kr holomor- 

phic line bundle on ~ of which F is the space of global sections, Write to v for 
its sheaf of germs of holomorphic sections. Then (9 F has a Kr action (by 
translation) and a U(g) action (by differentiation); and it is easy to check that 
the latter lifts to an R action (see Lemma3.3 and Corollary 3.4). So we get a 
complex of sheaves 

(1.9)(a) ,Y-= HomR(P* , (_9v) , 

with cohomology sheaves 

(1.9)(b) j i =  Ext,(X(6), ~p). 

The group Kr does not act on Y- itself, but it does act on the quasi- 
isomorphism class of W. (The point is that the adjoint action of K e on g makes 
K e act on equivalence classes of U(g) modules or R modules. P* need not be 
preserved by this action, but it will obviously be moved into other projective 
resolutions of )f(6); and all of these are quasi-isomorphic.) In particular, Kr 
acts on the cohomology sheaves Yl. 

On the level of stalks, this construction is an old friend. Fix a Borel 
subalgebra b of 9, and let x be the corresponding point of ~.  Then the stalk of 
J-~ at x is 

(1. lO)(a) ~ ' =  Ext~ (s (~v)~). 

Beilinson and Bernstein have shown that 

(1.10)(b) Ext~ ()((6), ((P v)=) ~ Ext~ ()((6), (Or)=) 

(see [1]; this is their assertion that the corresponding holonomic system has 
regular singularities). Choose a Levi decomposition b=b+r t ,  and recall our 
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finite dimensional representation F. Computing the right side of (1.10)(b) 
(Proposition 4.1) leads to 

(1.10)(c) ~-~i~_ Hom~(Hi(n, )~(3)), Ho(n ' F)); 

the objects H , ( )  are Lie algebra homology groups. The connection between 
Lie algebra homology and character theory ("the Osborne conjecture") gives a 
statement like Theorem1.6, with 3 replaced by .~ (Actually one needs a 
technical extension of the results of, say, Hecht and Schmid on the Osborne 
conjecture; this extension is the content of Sect. 4.) To prove Theorem 1.6, it 
remains to show that the complexes 6 and J-  are quasi-isomorphic. Now 3 is 
characterized by certain formal properties (see (5.13)), most of which were in 
some sense already known to hold for J .  The new result needed is 

Theorem 1.11 (Beilinson-Bernstein; see [-1]). The complex 5" of (1.9) is self-dual 
(in the sense of Verdier) in the derived category of sheaves on ~d with con- 
structible cohomology sheaves. 

The next problem is to compute the integers M(7, 6) of (1.5) explicitly. Let u 
be an indeterminate, and ~ the Hecke algebra of the Weyl group of g. The 
free Z[,u] module dg with basis ~ can be made into an ~ module in a 
natural way (Definition 6.1). This gives enough structure to copy the definitions 
of [,8], and define polynomials 

P~,~(u) ~, ~ .  

This procedure is described in Sect. 6, especially Proposition 6.11. 

Theoreml.12. M(y, 6)=P~,~(1 ). More precisely, 3 i (see (1.5)) is zero if i is odd, 
and (in a Grothendieck group) 

321= y" (coefficient of u i in P~,~)y. 

The first statement is proved in [10], using a generalization of the Weil 
conjectures proved by O. Gabber. The second (which has nothing to do with 
character theory in any case) is deduced from it in Sect. 7. At the same time, 
we prove that this algorithm for computing M(7,3) coincides with the one 
conjectured in [,14] (Corollary 7.18). 

This account deliberately minimizes the work of Beilinson and Bernstein. 
There are two reasons for this. First, no proofs of their results have appeared. 
Second, it would certainly be of interest to find direct representation-theoretic 
proofs of them. The reader who is willing to rely more heavily on [1] will be 
able to omit a little of Sect. 5 (as indicated there). From this point of view, the 
main result of the first five sections is 

Theorem 1.13 (Corollary4.8 below). Suppose 7 =(Q, L)~@. Write I V for the (g, K) 
module attached to 7 in [-1], w and L~ for its unique irreducible submodule. 
Then I V is isomorphic to the Langlands induced representation X(7) of (1.3), and 
L~ is isomorphic to J~(7). 

Given this theorem, Theorem 1.6 follows from the parenthetical remark of 
[-13, w 
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At about the time this paper was written, Beilinson, Bernstein, Deligne, and 
Gabber proved a "decomposition theorem" for the direct image of an in- 
tersection homology complex under a proper projective map of algebraic 
varieties; an account is to appear in the proceedings of the C.I.R.M. conference 
"Analyse et Topology sur les Espaces Singuliers", Marseille-Luminy, 1981. I 
have been informed that Beilinson and Bernstein have used this theorem to 
give a proof of Conjecture 3.15 of [13] in the integral case; that is, of (7.5) 
below. Granting this, one could simplify Sect. 7 substantially. In the absence of 
any written proof or announcement for their result, however, it seemed better 
to leave the present paper unchanged. 

Many of these ideas are outside my own technical competence, and it is a 
pleasure to thank all of the people who offered help. G. Lusztig contributed 
directly to the formulation of Proposition 1.2 and Sects. 5 and 6. S. Kleiman 
and M. Artin provided additional guidance on geometry, and T. Kawai spent 
many hours explaining some of the mysteries of holonomic systems. O. Gab- 
ber, D. Kazhdan, and G. Zuckerman made several suggestions. Kazhdan was 
also kind enough to explain (and translate) the work of Bernstein and 
Beilinson before [1] appeared. 

2. Kr Orbits on the Flag Manifold 

The proper setting for the results of this paper is Harish-Chandra's category of 
reductive groups, and they can all be proved in that setting. However, this 
would lead to some minor technical problems which would obscure the main 
ideas. So we fix a reductive algebraic group G C defined over IR, and assume 
that G has finite index in the set of real points of Gr (We do not even want to 
allow G to be little larger than the set of real points, as one often does. What 
we want, and what this definition assures, is that the component group of any 
Cartan subgroup of G should be finite and abelian.) Fix a maximal compact 
subgroup K of G, and write Kr for its complexification. (Any finite 
dimensional representation of K extends uniquely to a holomorphic repre- 
sentation of Kr In particular, Kr acts on any (g, K) module.) 

Write G o for the identity component of G, go for Lie(G), and g for its 
complexification; similar notation is used for other groups. Fix a Cartan 
decomposition 

go=fo+Po  

G ~- K.  exp(po) 

and write 0 for the corresponding involution (of go, G, g, or Gr Fix a non- 
degenerate symmetric invariant bilinear form ( , )  on go, positive on Po and 
negative on fo. We will use some other notation as in [14]. 

Proposition 2.1 (Matsuki [11]). 
a) Every O-stable Cartan subalgebra of 9 is conjugate by Kr to the 

comptexification of a real O-stable Cartan subalgebra. 
b) If  D~ and D 2 are real O-stable Cartan subalgebras and k~Kr satisfies 

Ad(k)(bl) = D 2 , 
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then there is an element k o of K such that 

Ad(k) Ix, = Ad(ko)l~,. 

c) Every Borel subalgebra of g contains a O-stable Cartan subalgebra, whose 
Kr class is unique. 

d) Suppose B is a Borel subgroup of Gc, and H~_B is a O-stable Cartan 
subgroup. Then the natural map 

H c~K~J(H c~Kr o ~ BnKc/ (Bc~Kr o 

is an isomorphism. I f  in addition H is the complexification of a Cartan subgroup 
H a of G, then 

H a r~ K / (H ,  c~ K)o --* H r~ Ke/(H c~ Kr o 

is also an isomorphism. 

Corollary2.2. The following sets are in one-to-one correspondence (under the 
obvious maps): 

a) Ke-conjugacy classes of pairs (B, Z), with B a Borel subgroup of Gr and Z 
a character of (B n Ke)/(B c~ Kr o. 

b) Ke-conjugacy classes of triples (H, A +, Z), with H a O-stable Cartan sub- 
group of Gr A+cA(g,I)) a positive system, and Z a character of 
(H c~ Ke)/(H n Kr o. 

c) K-conjugacy classes of triples (Ha, A+,Z), with H a a O-stable Cartan 
subgroup of G, A + m_A(g, b) a positive system, and Z a character of 
(H~ n K)/(H~ n K)o. 

d) G-conjugacy classes of triples (Ha, A +, Z), with H a a Cartan subgroup of 
G, A + cA(g,  1~) a positive system, and Z a character of H~/(H~) o. 

e) G-conjugacy classes of pairs (B, Z) with B a Borel subgroup of Gr and Z 
a character of  B n G/(B ~ G)o. 

f) The set ~ (cf (1.1)) of Ke-homogeneous fiat line bundles on orbits of Kr 
on ~.  

g) The set ~ of G-homogeneous fiat line bundles on orbits of G on ~.  

Proof The equivalence (a)-(c) is essentially Proposition 2.1, and that of (c)-(e) is 
known (cf. [17]). For (f) and (g), we only have to notice that homogeneous line 
bundles on a coset space are parameterized by characters of an isotropy group. 
It is easy to see that there is an invariant fiat connection exactly when the 
character is trivial on the identity component. Q.E.D. 

Our next goal is Proposition 1.2. We recall the version of the Langlands 
classification given in [12] or [15]. 

Definition2.3. Suppose H is a Cartan subgroup of G. A regular character of H 
is an ordered pair 2=(A,2), with 2~I)* and A~I4, satisfying 

a) If ~( is an imaginary root of l) in g, then (~, J,) is a non-zero real number. 
Set 

(A +)i = {0~eA(g, D)[0~ is imaginary and (a, 2)  > O} 

(A +)l,c = {~e(A +)I[~ is compact} 
p'  = p((A +)z), pz, C=p((A+)',~). 
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(In general we write p(S) for half  the sum of the elements of  S, or  half  the sum 
of the weights of  some abelian algebra on S.) Then  

b) d A = J . + p t - 2 p  ~'c. 

The set of regular characters of H is wr i t t en /4 ' .  

Theorem2.4  (Langlands - see [12] or [15]). There is a finite-to-one cor- 
respondence 

between irreducible (g, K) modules and G-conjugacy classes of regular characters 
of Cartan subgroups. I f  2 is nonsingular, the correspondence is one-to-one. Each 
module )(i(2) has infinitesimal character 2 (with respect to the Harish-Chandra 
map from 3(g) to S(t))). 

Definition2.5. (Suppose Hc_Gr is a P-stable Car tan  subgroup,  and A + _cA(g,b) 
is a positive root  system. A root  c~eA is called 

a) real if 0 cr = - c~, 

b) complex if 0 ~ + _+ c~, 

c) compact imaginary if 0c~ = c~, and the corresponding root  vector  X~ lies in [, 

d) noncompact imaginary if 0 e =  ct and X~ep.  

We write (A+) I, (A+) I'c, pl, pl, C, p1,, as in Definition2.3.  Similarly, (A+) R, 
etc., refers to the real roots. 

Lemma2.6 .  Suppose H ~_ Gr is a P-stable Cartan subgroup, and A + -~A(g,D) is a 
positive root system. Set 

/~0={~eA+ [c~ is complex, and Oc~eA+}. 

Choose a subset Bo C_B o such that 

Bo =Bow OB o (disjoint). 

Put 

and define 

B = B o u ( A + )  I'", 

~b = ~b(d +) = 2  p(B), 

regarded as a character of H c~ Kr Then ~ is independent of the choice of Bo, 
and satisfies 

d ~ = [p( A +)+ p'  - 2 pl, C]l~,. 

The (trivial) p roof  may  be found in [153, Sect. 6.7. 
The  next result is a precise form of Proposi t ion  1.2, in light of  Theorem 2.4 

and Corol lary  2.2. 

Proposition2.7. Suppose H ~ G  is a O-stable Cartan subgroup, with Cartan de- 
composition 

H = TA = (H c~ K)(H c~ exp Po)- 
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Fix  a f ini te  dimensional irreducible representation F of  G. Put 

S 1 = {2~/~'[)((2) has the same infinitesimal character as F} 

S 2 = {(A +, x)[A + ~-A(g, b) is a positive system, and X is a character of  T/To}. 

Then S l and S 2 are in one-to-one correspondence, as follows. Given (A+,x) in $2, 
define 2 = (A, 2) by 

a) A [ r = [ # I r - ( a ( A + ) ] |  

b) AIA=IAIA--P(A+)[A 
c) ; . = d p - p ( A + ) .  

Here Ix614 is the A +-lowest weight o f  F, and (~(A +) is defined as in Lemma 2.6. 
In (b), p(A +) makes sense as a group character since A is a vector group. 

This is a formal consequence of  Lemma2 .6 ;  we refer to Sect. 6.7 of  [15] for 
details. 

3. The Beilinson-Bernstein Theory 

Recall f rom the introduct ion that we are fixing a finite dimensional irreducible 
representat ion F of G; and recall that B is the variety of  Borel subalgebras of  g. 

Definition 3.1. Let 5P F be the ho lomorphic  line bundle on ~ associated to F by 
the Borel-Weil theorem. That  is, the fiber (SPy) x at a point  x of ~ correspond- 
ing to a Borel subalgebra with nil radical 1t is F/nF.  Since K e acts on N and 
on  F, it acts on ~F.  

The group  G c need not act on LP v (al though some covering group will). 
Even if it does, this action need not extend the action of  K c when G is 
disconnected. These technicalities serve to emphasize that it is the K e action 
on LP v which is most  impor tant  here. The Borel-Weil theorem asserts that the 
space of ho lomorphic  sections of  LP v is naturally isomorphic to F:  if veF,  the 
corresponding section is defined by 

sv(x) = v + n F ~ F / n  F ~- (~v)x 

(in the nota t ion of  Definition 3.1). 

Definition 3.2. Let (9 v denote the sheaf of  germs of ho lomorphic  sections of  5~ . 
The g act ion on F makes g act by first order  differential operators on (9 F. Set 

@v = sheaf of  germs of  ho lomorphic  differential operators on Yv, 

a sheaf of  non-commuta t ive  rings on ~ .  Then (fly is a sheaf of ~v  modules - 
briefly, (9 v is a ~F module. The g act ion on (9 F gives rise to a homomorph i sm  

the right side means the global sections of  ~v-  Put 

R -- R r - -  image of  nv. 
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The  first p rob lem is to determine the kernel of r~ v. A ho lomorph ic  differential 
opera to r  on 2,r F is zero if and only if its restriction to a single stalk of  (,O r (or to 
the complet ion of  such a stalk) is zero. The comple t ion  of a stalk of a rank one 
locally free coherent  sheaf is just  a space of formal  power  series. This leads to 
the following general nonsense fact. 

L e m m a  3.3. Suppose x ~  corresponds to a Borel subalgebra b with nil radical n. 
Then, as a U(g) module (via ~zr), the completion ((~F)x of ((gF) ~ is isomorphic to 

HOmb(U(g), F/n F). 

Here U(g) is regarded as a left b module and a right g module, making the Horn 
a g module. 

The object in the l emma is the full dual  of  a Ve rma  module,  so its 
annihi lator  can be computed  as follows (see [5]). 

Corollary 3.4. Let `30 ~- 3(g) (the center of U(g)) be the maximal ideal annihilating 
F. Put 

.3 = u (g) .3 o. 

Then (cf Definition 3.2 and Lemma 3.3) 

ker ~F = Ann((~)x = `3 

R ~- U(g)/`3. 

In particular, any U(g) module having the same infinitesimal character as F may 
be regarded as an R module. 

It is shown in [1] that  7z F is actually surjective. This is impor tan t  for the 
proofs in [1], but not for stating the results. In any case, we may  now speak of 
"(R, Kc) modules"  instead of "(g ,K)  modules  having the same infinitesimal 
character  as F ' .  

Theorem3.5  (Beilinson-Bernstein [1]). Let X be an (R, Kc) module of  finite 
length. Let J r  x be the ~F module obtained from X by extension of  scalars: 
if U ~_ ~ is open, then 

~(u)= ~(u)  @ x. 
R 

a) ./r a holonomic D r module with regular singularities. 

b) RHom~F(Jr  RHomg(X, (gp)  is an element of the derived category 
of sheaves on ~ with K c action and constructible cohomology sheaves. 

c) There is a contravariant functor X --* X on (R, Kc) modules which does not 
change composition series, and which maps to Verdier duality on the derived 
category of (b). In particular, if X is irreducible, then R HOmR(X , (gF) is self-dual 
in the derived category. 

d) I f  x 6 N ,  then 
Ext , (X ,  ~ i (9 @)x = E x t g ( X , ( f ) x )  

Ext~ (X, (CR)~). 



390 D.A. Vogan, Jr. 

Holonomic systems are defined are defined and discussed in [7]. "Regular 
singularities" can be defined by the second isomorphism in (d). (The first is 
obvious.) In (b), we can more or less think of R H o m  as the set of all the Ext'; 
the assertion is that Ext,(X, (9~) is a constructible sheaf with a K~: action. In 
particular, the stalks of these Ext sheaves are all finite dimensional vector 
spaces. The duality statements of (c) make sense only in the derived category, 
however. The hardest part of this theorem is formulating it; once formulated, it 
is a fairly easy consequence of the Kashiwara-Kawai theory of holonomic 
systems (see [7]), and the Bernstein-Gelfand-Gelfand translation principle. We 
will use only parts (c) and (d), and the reader is therefore invited to look for 
direct proofs of these. 

For the benefit of the reader willing to rely more heavily on [1], we 
describe now some additional results stated there. They will not be used in the 
sequel, except to permit the omission of some references to [15]. In the setting 
of Theorem3.5, fix a K~: orbit Q ~ .  Then each of the sheaves Ext~(X,(gv) 
restricts to a locally constant sheaf on Q, which may be identified with a sum 
of elements of ~ supported on Q (see (1.1)): 

(3.6) (a) Ext,(X, (gv)l Q ~ ~ n~(7, X). 
y e n  

y supported on Q 

This leads to an identity 

(3.6) (b) Ext,(X, (gv) = ~ n~(7, X) 7 
yeN 

in the Grothendieck group of constructible sheaves with K C action on M. 

Theorem3.7 ([1], w167 Suppose 6 ~ ,  and io=codimension of the underlying 
K~ orbit for 6. Then there is a unique (R, K 0 module I a satisfying 

a) ni(7,I6)=0 if i=t=i o or 7+6  

nlo(6,16) = 1. 

I a has a unique irreducible submodule L~, which satisfies 

b) RHomR(L6, OF) [ - i o ]  is quasi-isomorphic to the DGM extension 3 of 6. 

c) In the Grothendieck group of (R, Kc)-modules, 

Lo = ~ ( -  1) "6~-"y) m(7, 6) I v 
y e n  

(notation (1.5), (1.1)). 

Part (a) of this theorem is esentially a definition, and (c) follows from (a) and 
(3.6); the content of the result is (b). 

4. Homology of Harish-Chandra Modules 

In this section, we will study the spaces Ext~(X,((~F)x) when X is an (R, Kc) 
module, and xE~.  Let b be the Borel subalgebra corresponding to x, n its nil 
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radical, and [ a P-stable Cartan subalgebra of b (Proposition2.1(c)). Since 
H n K  e acts on X and (gv, and fixes x, Ext~(X,((~F)x) is an Hc~Kr We 
will state all of the main results before beginning the proofs. 

Proposition 4.1. I f  X is any R module, then (with notation as above) there is a 
natural isomorphism 

E i ~ Xtn(X, ((gv)x) = Homb(Hi(n, X), F/n F). 

I f  X is actually an (R,Kr module, this isomorphism respects the action of 
H c~K c. In particular, (H c~Kr o acts trivially. 

Because of this proposition, we must study the n homology of Harish- 
Chandra modules. For various special n, this has been done by Hecht and 
Schmid and in [14]; but it is important not to restrict n. The idea is to 
combine those special results with information about how homology varies 
with rc 

Definition4.2. Suppose b 1 and b 2 a r e  Borel subalgebras of 9, and D___blt~b2 is 
a Cartan subalgebra. Define 

A~z=A(bl/(bl ~b2), [)) ~-A(9, [) 

dl 2 = cardinality of A 12 = dim(b l/(b 1 c~ b2)) 

6xz=weight of b on Aa12(bl/(bl nb2))~l)*. 

We also may regard 612 as a character of the Cartan subgroup with Lie 
algebra b, or any subgroup of it. 

Proposition4.3. Suppose bl and b 2 are two Borel subalgebras of 9 containing the 
P-stable Cartan subalgebra b, with nil radicals n 1 and n 2. Let X be a (9, Kr 
module of finite length, and 2~b*. Assume that for every root ct6Aa2 
(Definition 4.2), we have 

a) /f ~=0~,  then ~ is compact; 

b) /f ct4: 0ct, then Oa~A(b I nb2); and 

c) (fi, 2) is not a negative integer. 

Write E(#) for the I~ generalized weight space of an [ module E. Then there is a 
natural isomorphism of (D, H c~ Kc)-modules 

Hp(n2,  X)(,~ + p(tt2) ) ~ Hp+a~2(ttl, X)(,~. + p(rll) ) Q Aa~2(b x/bt c~ b2). 

At this point we can proceed in two different ways. The Langlands standard 
representations may be characterized in terms of homology groups related to 
real parabolic subalgebras (Hecht and Schmid, unpublished), or in terms of 
homology groups related to P-stable parabolic subalgebras ([-15]). The former 
approach is more natural when the Langlands representations are regarded as 
induced from discrete series. The latter is more accessible in print, however, so 
we will adopt it. 

Definition4.4. Suppose 7=(Q,~~ (see (1.1)); fix a Borel subalgebra b l =  b 
+ r  h corresponding to a point x of Q, (with 1) 0-stable), and write Z for the 
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character of (Hc~Kr c~Kr o defined by Lf (Corollary 2.2). A Z-good Borel 
subalgebra for 7 is a Borel b 2 = b + n2, containing [, with the following proper- 
ties: 

a) If c~sA(b2, b), then either 0~=  -~ ,  or 0c~A(b2,[?). 

b) If c~eA(b 1 c~0bl, t)), then ~eA(b2, D)- 
c) If ~EA(bl, D) and 0 c~ = -c~, then ~eA(b 2, b). 

The terminology "Z-good" refers to the fact that b 2 is well suited to the 
Zuckerman construction of the standard representation X(7 ) (see (1.3)); b 2 is as 
close to being 0-stable as possible. 

Lemma 4.5. Z-good Borel subalgebras exist for every 7. I f  b 2 is one, then 

codim Q = dim(n 2 ~ p) - d 12 
(notation (4.2)). 

The next result is the promised relationship between standard represen- 
tations and Lie algebra homology. 

Theorem4.6. Suppose ? . = ( Q , S ) ~ .  Fix a Z-good Borel subalgebra b = b + n  2 
for ?, and use the notation of Definition 4.4. Put 

�9 , = (F/n 1 F) | 6* 2 | Z, 

a one-dimensional (b, Hc~Kr module. (Here F is our fixed finite dimensional 
representation, 612 is given by Definition4.2, and Z by Definition4.4). Recall the 
standard modules of (1.3). I f  ?' e~ ,  then 

dimHomb, n~Ke(H,(n2, X(?,')),~1,)=O if y#~ '  or i + d i m r t a n  p 

=1 if 7=7'  and i = d i m n  2rip. 

This is distilled from [15]; the proof (by concatenation of square brackets) is 
in an appendix. Using Proposition4.3 and Lemma4.5, we can rewrite it as 

Corollary 4.7. Suppose ? =(Q, 5~ 7' =(Q', ~.C,a') are in 9 .  Fix a Borel subalgebra 
b = b + n  corresponding to a point of Q (with b O-stable), and let Z be the 
character of H c~ Kr corresponding to ~ (Corollary 2.2). Then 

dimHom~,n~Ke(H~(n,X(?')),(F/rtF)| if ~#? '  or i:t=codimQ 

= 1 if ), = 7' and i=  codim Q. 

Using Proposition4.1 and Theorem 3.5(d), we deduce 

Corollary4.8. Suppose ~=(Q, SP)e~. Then Ext~(X(?),(gv) is zero unless i 
=codimQ. The stalks of Ext~~ are zero except on Q; and 
Ext~~ (~F)Ie = sheaf of locally constant sections of ~ .  

In light of the definition of I~ in Theorem3.7, this proves Theorem l.13. 
Another consequence of Corollary 4.7 is this. 

Corollary4.9. Suppose X is an (R,Kr module of finite length, with character 
O(X). Write 

O(X) = ~ M(7, X) 0(?) 
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(notation (1.3)); here M(7, X ) is an integer. Fix 7 ~ ,  and use the notation of  
Corollary 4.7. Then 

M(7 , X) = ( - l) c~ e E ( - -  1) I mult (Z, Ext~ (X, ((~F)x))" 
i 

For the reader willing to accept Theorem 3.7, this gives Theorem 1.6. We 
will give another proof of Theorem 1.6, using only Theorem 3.5, in Sect. 5. 

We turn now to the proofs, beginning with Proposition4.1. Suppose first 
that i=  0. By Lemma 3.3, 

(@)x ~ Hom~(U(g), F/rt F). 

So 

Ext~ = HomR(X, Homb (U(.q), F/n F)) 

= Homv(g)(X, Homb(U(g), F/n F)) 

Hom(X, F/n F), 

the last isomorphism being Frobenius reciprocity. Since b~b/n,  this last Horn 
is isomorphic to 

Hom~(X/n X,  F/n F) = Homb(Ho0~, X), Flu F), 

as we wished to show. For i>  0, we need a technical fact. 

Lemma 4.10 (Casselman-Osborne [4]). I f  M is any R module, then Hi(n, M) is a 
semisimple l) module. I f  M is a projective R module, then Hi(n, M) is zero for 
i>0.  

Suppose now that i>0,  and that Proposition4.1 has been proved for i - 1 .  
Choose a projective R-module P mapping onto X: 

(4.11) O ~  K - *  P ~ X ~O. 

Then i ~ _ ExtR(P,(Uv)x)-0, and Hi(n,P ) is zero by the lemma. Now write the long 
exact sequences for ExtR(,,(@)x ) and Hi(u , ,  ) associated to (4.11). By the 
lemma, we may apply Homb( , ,F /nF)  to the second without destroying its 
exactness. Comparing the two resulting complexes, and using the induction 
hypothesis, we get the proposition. To study the H n Kr action, one makes this 
group operate on the set of all projective resolutions of X; we leave the details 
to the reader. Q.E.D. 

Proposition4.3 requires a little preliminary work. 

Lemma4.11 (Hochschild-Serre spectral sequence - see for example [3], p. 351). 
Suppose n is a Lie algebra, u~_ n is an ideal, and M is any n module. Then there 
is a spectral sequence 

Hp(n/ll, Hq(ll, M)) =~ Hp+q(n, M). 

The differential d N has bidegree (N, I - N )  (N=2 ,3 ,4  . . . .  ). I f  u has codimension 
one in n, this degenerates to a family of  short exact sequences 

0 ~ H0(n/u, Hp(u, M) ~ Up(n, M) ~ n x(n/u , Up_ l(u, M)) ~ 0. 
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Since Hp(l), ,) is zero if p > dim b, the last assertion follows from the first. 
Here is the strategy of the proof of Proposition 4.3. By induction on dr2, we 

may reduce to the case d12=l .  In this case, b 1 and b 2 are contained in a 
common parabolic subalgebra q = 1 + u, with [l, I] ~ ~ I(2). Using Lemma 4.11, 
Proposition4.3 can be reduced to a fact about the representations H, (u ,X)  of 
51(2). The first problem, therefore, is to get some control on these repre- 
sentations. 

Lemma4.12. Suppose X is a (g,K) module of finite length, and [_cg is a P-stable 
Cartan subalgebra. Fix a Borel subalgebra b_D D, and a parabolic q = l + u ,  with 
q ~_ b, I ~_ D. Assume that 

[1,1] = ~ I(2) 

814:1. 

Let ~ be the unique root of b in I ~ b, and x~ a root vector. 

a) [ acts in a locally finite way on H,(u ,X) ;  that is, H , ( u , X )  is a direct sum 
of generalized weight spaces of [. 

b) I f  0c~A(u, b), x~ acts locally nilpotently on H,(u,  X). 

Proof Since 01#I, 0c~# ___c~. Put 3=center  of 1; then it follows that 3 and bc~[ 
span [. Since I1 ~ t~ acts semisimply on X and on u, it does on H ,  (u, X) as well. 
By the Casselman-Osborne theorem in [4], 3 acts in a locally finite way on 
H,(u,X).  This proves (a). For  (b), Ox~u,  so Ox~ acts by zero on H,(u,X).  So 
it is enough to show that y = x , + O x ,  acts nilpotently on H,(u,X).  But y~f, 
and y is nilpotent (since it lies in the nil radical of b); so y acts nilpotently on 
X and on tt. Therefore it acts nilpotently on the standard complex for comput- 
ing H,(u ,X) .  Q.E.D. 

If X has regular infinitesimal character, then [4] implies that 3 acts semi- 
simply on H,(a ,X) ,  so I) does as well. 

Lemma 4.13. Suppose Y is a module for the reductive Lie algebra 1, and 
[1, I ] ~ I ( 2 ) .  Choose a Cartan subalgebra t i l l ,  and a Chevalley basis 
{h~,x~,x_~} of [1,1] (with h~eb; here e~l)* denotes the weight of D on x~). For 
#el)*, write Y(#) for the # generalized weight space of Y. Fix #, and assume that 

h~ acts locally finitely on Y 
x~ acts nilpotently on Y 

(~, #)  + 1 is not a negative integer. 
Then 

a) x,: Y(#)~ Y(#+~) is surjective, and x_,:  Y(#+c 0 is injective. 

b) There are direct sum decompositions 

y(#) = y(p)X~ �9 (x_ ~ Y(# + cO) 

c) Ho(ll] x ~, Y)(#+~)=O 

Ul(lI~x_~, Y)(#) =0  

d) There is a natural isomorphism 

[H o ( r  x_ ~, Y)(#)] | (r  x~) -~ H ~(112 x~, Y)(# + a). 
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Proof. The assumptions on Y imply that the Casimir operator 

(4.14) 
f2=x ~x~+�88 2) 

=x~x_~+�88 

acts in a locally finite way on Y. After passing to a direct summand of Y, we 
may therefore assume that there is a constant c such that f 2 - c  acts nilpotently 
on Y Set 

/,t~ =#(h~) = (~, #). 

Then (4.14) gives 

(4.15)(a) x=x_~lr(u+.)-=c-�88 #=(#= + 2) + M ; 

here M is a locally nilpotent operator on Y(#+~). Similarly, for any integer 
k > 0, we find 

(4.15)(b) 1 x_,x=lr(u+t=)=c-a#=(#= + 2) + k(#~ + k + l) + Nk, 

with N k locally nilpotent. 
Suppose first that c#�88 Then x , x  ~[y(u+,) 

invertible; so by (4.15) (with k=0),  
and x ~x~]r(u) are 

x~: Y(#) ~ Y(# + o 0 

x_ ~,: Y(# + o 0 ~ Y(#) 

are necessarily isomorphisms; so (a) and (b) are clear. Next, suppose that 
c=�88 Since #~+1 is not a negative integer, 4.15(b) says that 
x ~X~lr(,§ is invertible, for all positive integers k. In particular, 

x~: Y(p+koO~ Y ( # + ( k + l ) a )  

is injective for k>= 1. Since x~ is locally nilpotent on Y,, this forces Y(#+a)=O. 
Now (a) and (b) are clear in this case as well. Parts (c) and (d) are immediate 
consequences of (a) and (b), respectively. Q.E.D. 

When d t : = l ,  Proposition 4.3 is an immediate consequence of Lemmas 
4.11 (with u=nlc~n2)  , 4.12, and 4.13 (with Y-Hp(nlr~n2,X)).  (Actually, we 
also need the analogue of Lemma4.12 when c( is a compact root, but this is a 
triviality: obviously H,(u,  X) is a locally finite representation of l in that case.) 
The general case follows by induction on d12; we leave the straightforward 
details to the reader. 

Proof of Lemma 4.5. In the notation of Definition 4.4, let Pt denote half the 
sum of the roots of b in r h. Choose a maximally regular element xel) c~, in the 
real span of the roots. Define b 2 by 

A(b2,b)={cteA(g,b)l(ct, pll~n~) >O; or (~ ,p l lbm)=0,  

and ( ~ , x ) > 0 ;  or e is real, and o~A(bx, D) }. 

Clearly, b 2 is Z-good. For the codimension statement, suppose b 2 is any Z- 
good Borel subalgebra. Now 
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We have 

codim Q = dim ~ - dim Kr x 

= (dim g - dim b 1) - -  (dim f - dim b i C'I [)  

= (dim g - dim [) - (dim b ~ - dim b 1 ~ [) 

codim Q = dim p - dim (b 1/(b i ('3 ~)) '  

dim b 1 ~ f = dim (b ~ [) + [{c~ e A (b 1, b) lc~ is compact  imaginary} I 

+�89 b)le is complex, and Oc~ is positive}k; 

the last set corresponds to elements X~+ OX~ of b 1 c~[. Therefore 

dim (b 1/bl c~ ~) = dim (b c~ p) + I{c~e A (b 1, b) l~ is noncompact}l  

+�89 is complex, O~ is positive} 

+ I{c~A(bl, b)l Oc~ is negative} I. 

Similarly, 

Therefore 

dim p = dim b c~ p + 21 { ce~ A (b 1' D)[ ~ is noncompact}  I 
+ I{c~A(bl, b)[c~ is complex or real}[. 

codim Q = [{c~ A (b l, b)[c~ is noncompac t  imaginary} [ 

+ll{c~eA(bl,b)[c~ is complex and 0c~ is positive}l. 

On  the other  hand 

dim n 2 ~ p = [{c~A(bl, b)[7 is noncompac t  imaginary} 

+�89 is complex} 

d12=�89 l))[c~ is complex, and 0c~ is negative}. 

These last three formulas give 

codim Q = dim n 2 c~ p - d I z, 

as we wished to prove. Q.E.D. 

5. More  about K c Orbits 

The proof  of  the Kazhdan-Lusz t ig  conjecture in [2] and [9] relies heavily on a 
knowledge of  the Bruhat  order:  that  is, a combinator ia l  description of  when 
one Bruhat  cell is contained in the closure of  another.  In this section, we 
consider the analogous problem for 9 ,  which could be formulated as follows: 
if 7 and 6 are in 9 ,  when does ? occur  in one of  the D G M  cohomology  
sheaves $i (see (1.5))? (Here "occurs"  must  be unders tood in the sense of  the 
Grothendieck  group of  constructible sheaves with a Kr action, for which ~ is 
a basis.) We would like to say that  7 < 6 if 7 occurs in some 61. Unfortunately,  
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this relation is not transitive (in contrast to the situation for Bruhat cells). Of 
course we can make it transitive by fiat. The resulting relation (which should 
be called the Bruhat order) is worthy of study - it is the smallest order relation 
with the property that 

)~(7) occurs in X(6) ~ ? < 6 

(notation (1.3)), as is proved in ]-16]. However, I know of no simple com- 
binatorial description of it: it is sometimes very difficult to distinguish two 
elements of ~ supported on the same Kr orbit. We sweep this problem under 
the rug (temporarily) by not trying to do so. The order relation to be defined 
(Definition 5.8) will be intermediate between the one given by containment of 
closures of underlying orbits and the Bruhat order. The geometry involved in 
the definition was suggested by Lusztig. 

Suppose x ~ ,  b = l ) + n  is the Borel subalgebra corresponding to x, and 
s~W(g,l)) is a reflection through a simple root. W r i t e / 2  for the projective line 
of type s through x. This is the set of all Borel subalgebras b' such that b '=b,  
or b and b' are in relative position s. If Ps = l s + G  is the parabolic subalgebra 
of type s containing b, with [ l~,Is]~l(2),  then these are exactly the Borel 
subalgebras contained in Ps- 

LemmaS.1. Suppose b = b + n  is a Borel subalgebra of  g, with D O-stable; write 
x~J3 for  the corresponding point. Suppose s is a simple reflection in the Weyl 
group, and c~ is the corresponding simple root of  b in ft. 

a) I f  ~ is compact imaginary, then 12 x c_ Kr  x. 
b) I f  c~ is noncompact imaginary, then U x m ( K e . x  ) consists o f  exactly one or 

two points. I f  there is one, we say c~ is type I. I f  there are two, we say c~ is 
type II.  

c) I f  ~ is real, then 

1 2 ~ ( K e .  x ) = 1 2 x - { y + , y - } .  

We say that ~ is type I (respectively, type I I )  i f  y +- lie in different (respectively, 
the same) Kr 

d) I f  a is complex, and O ~ A  +, then 12xc~(Kr  }. 
e) I f  c~ is complex, and Oar +, then 

I2 x r~ (Kr . x) = L s -  {y}. 

In each case, i f  I~, c~(Kc.x)  is f inite,  there is a unique Ke-orbit K c . y  such that 

/A x c~(Kr y) is open. 

Proof. Since Kr has finitely many orbits on ,~, the last assertion is clear. Let Ps 
be the parabolic subgroup of type s containing B; then 

G=Ps.x. 

To compute L~ ~ (Kr x), we must therefore find the image of 

(K C c~ P~)/(K c m B) --* Ps/B. 
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So we must determine the group (KcnP~)/(Kec~ UsHs), with U s the nil radical 
of P~, and Hs the kernel of the root ~. This may be regarded as a subgroup of 
PSL(2,11;). Its Lie algebra is easy to find; and we deduce the following 
structure for it (with cases labelled as in the lemma). 

a) PSL(2, I12), 

b) I) = c) I)  :{io 
b) I I )=c)I I )  N ( T ) = T u { ( O x _ I - ; )  x E ~ - { O } /  

x -  1 e l l ; -{0} ,  a e C  . 

So we must determine the orbits of these groups on IP1; but this is 
trivial. Q.E.D. 

DefinitionS.2. Suppose 7 e ~  corresponds to (H, A +,z) (Corollary 2.2); let 
x e ~  be the corresponding Borel subgroup. Define the weak z-invariant of ? 
(or of the underlying orbit) by 

zw(K r . x) = Zw(7) = {s e S IL~ c~ (Kr x) is infinite}. 

If s e%(7), we defne  soy to be the empty set. If s~%(),), we define 
s o(K e. x) to be the orbit Ke.y  described at the end of Lemma 5.1. Then let 
so?, be the subset of ~ consisting of flat Ke-homogeneous line bundles on 
so(Ke.x), which extend 7 to (Ke.x)u(Ke.y).  Finally, recall from (1.1) the 
length of 7, l(?,), which is the dimension of K e - x. 

We need to compute so?, explicitly. The proof of Lemma 5.1 allows us to 
reduce this problem to SL(2). The most complicated case is (b). In that case, 
the Levi factor I s of Ps is 0-stable, and I-Is, Is] is the complexification of ~I(2, IR). 
Therefore, it contains a unique (LsnK~)-conjugacy class of 0-stable Cartan 
subalgebras, distinct from the class of I). Write D" for a representative of this 
class, and (A+y for a positive root system for I)" compatible with t0 s. In case 
b) I), we have 

H'~Kc~_H~Kr 
and we define 

recall that 7 corresponds to (H, A +, Z). Set 

(5.3)(I) ?,~=element of ~ corresponding to (H ", (A+) ~, Z~). 

In the correspondence with regular characters given by Proposition 2.7, this is 
consistent with the notation of [,15], Definition 8.3.6 (to which we refer the 
reader for further details). In case b)II) H~n H r K c has index two in H'r Kr 
so we may define Z~ by 
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Set 

(5.3)(II) y~ =element of ~ corresponding to (H a, (A +)', Xg. 

The two elements 7+ and 7 ~_ are not canonically labelled: there are two of 
them, but there is no reason to prefer one over the other (as the notation 
might seem to indicate). Once these definitions are understood, it is a simple 
matter to compute soT; and we find 

Lemma 5.4. In the setting o f  Definition 5.2, suppose s~w(y  ). Then soy consists 
o f  elements o f  length 1(7 ) + 1. Let  ~ be the corresponding simple root. 

a) I f  ~ is complex, then s o 7 = {(H, sA +, X)}. 

b) I f  ~ is type I noncompact imaginary, then s o ~ = {y~}. 

c) I f  ~ is type I I  noncompact imaginary, then soy={y+ ,  ~_}. 

Lemma 5.5. Suppose x, y ~ ~ ,  and 

(K e.  y) ~_ (Kr x) 

s q~ % ( K  e �9 y) u % ( K  e �9 x). 
Then 

s o (K e . y) ~ s o (K e . x). 

(Definition 5.2). 

(Here and elsewhere, we tacitly identify simple reflections for different Borel 
subgroups in the canonical way.) 

Proof. The set A =  U L~ 

zelK~.x) 

is obviously closed, and contains s o (K c �9 y). But 

A=UL  
z~KI2.x 

is dense in A, and s o ( K  c.  x) is dense in A. The lemma follows. Q.E.D. 

Write S for the set of reflections around simple roots (with respect to any 
pair l )c  b of Cartan and Borel subalgebras). 

Definition 5.6. Suppose ~ E ~  corresponds to (H, A +, X). The strong z-invariant 
o f  7 is defined by 

L(7)={sES[7~so(~ ' ) ,  for some ~ ' ~ }  

= {seSIL~x~(Ke  �9 x) is a proper open subset of L~, 

and the flat bundle on it extends to all of L~x}. 

Set 
z(y) = Borho-Jantzen-Duflo z-invariant of X(7) ~ S. 

Proposition 5.7 ([15], Theorem 8.5.18). We have 
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More precisely, 

z(7) = zs(7) w {s ~ S[corresponding root ~ is compact imaginary} 

Zw(7) = z(7) u {s e S lcorresponding root e is real}. 

Definition 5.8. The Bruhat N-order on 9 is defined to be the smallest order 
relation with the following properties. 

a) If 7 '<6 ' ,  7~so7', and 6~so6', then 7<6.  

b) If 7<6 ' ,  and 6~so7', then 7<6.  
Here 7, 3, 7', and 3' are in 9 ,  s eS, and we use the notation of Definition 

5.2. 

The difference between this order and the Bruhat order (described at the 
beginning of the section) is this. In (a), suppose that s o 3 ' =  {6, 6"}. If 7 '<  3' in 
the Bruhat order, then it can be shown that 7 < 6  or 7<6" ;  but it is not easy to 
tell which of these relations holds. We therefore weaken the Bruhat order by 
including both. 

Lemma 5.9. Suppose 7=(Q1, ~Q~Pl), 6 ~-~(Q2, ~P2) are in 9 ,  and 7<6  (in the Bruhat 
N-order). Then 

a) 1(7)< 1(6), 

b) Qlc_Qz. 

Proof. This follows from Lemma 5,5, just as one proves the relation between 
the Bruhat order and containments of Schubert varieties. Q.E.D. 

Theorem 5.10. Suppose 7, 6 ~ 9 ,  and X(7) occurs in X(6) (see (1.3)). Then 7<=3. 

This is a consequence of the proof of Theorem 8.6.6 of 1-15]; in fact those 
familiar with that argument will see that Definition 5.8 is tailored exactly to fit 
it. 

The reader who believes Theorem 3.7 may now proceed to Sect. 6. The rest 
of this section is devoted to proving a version of Theorem 3.7 from Theo- 
rem 3.5. As in Sect. 4, the main step is taken from [15], and we relegate the 
proof to an appendix. 

Theorem 5.11. In the setting and notation of Theorem 4.6, let X be an (R, Ke) 
module of finite length; and suppose that 

Homb. n ~ K~2( H i( lt 2 , X ) ,  11~ , )  =I = O. 

Then there is an irreducible subquotient X(6) of X (some 6 ~ 9 ) ,  with 

a) 7<6, 
b) dim 1t 2 t~ p - -  (I(6) - 1(7)) < i < dim n2 c~ p. 

I f  actually i=d imnzc~p ,  then X(7) is an irreducible subquotient of X. Con- 
versely,/f i = dim n 2 c~ p, then 

dim H o m ~ , H ~  (HI(n 2, Jr(7)), ~ , )  = 1. 
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Corollary 5.12. Suppose 9;=(Q, ~Lf) and 6=(Q', ~ ' )  are in H. Fix a Borel sub- 
algebra b = I ) + n  corresponding to a point of Q (with b O-stable), and let )~ be 
the character of H c~ Kr corresponding to ~ (Corollary 2.2). Suppose that 

Homb,/t~ Kr (Hi(n,)((5)), (F/n F) | Z) 4 = O. 
Then 

a) ~,_<_6. 

b) Q~_~'. 
c) codim Q' < i < codim Q. 

d) I f  i = codim Q, then ? = 6. 
e) I f  i = codim Q, and ? = ~5, then 

dim Hom~,n~Kr , X((~)), (F/nF) | X) = 1. 

Proof. Using Proposition 4.3 and Lemma 4.5, we find that everything but (b) is 
contained in Theorem 5.11. Part (b) follows from (a) and Lemma 5.9. Q.E.D. 

Fix 6 = ( Q ' , ~ ' ) ~ H ,  and write 3 for the DGM extension of 6 to Q' (dis- 
cussed before (1.5)). We extend 6 by zero off of Q', to regard it as a complex of 
sheaves on ~, with a Kr action defined up to quasi-isomorphism. As is shown 
in [6], $ is characterized by the following properties: 

(5.13) i) g is self-dual in the sense of Verdier, up to a Tate twist. 

ii) 6~ is supported on Q'. 

iii) 3~163 
iv) codim supp 3 i_> codim Q' + i + 1 (i > 0). 
v) 3i=0, i<0.  

Corollary 5.14. Suppose 6 =(Q', Lf ' )e l l .  Then 

R Horn e ()((~), CF) [ - codlin Q'] 

is quasi-isomorphic to the DGM extension 6 of 6. 

Proof. We have to verify the properties (5.13)(i)-(v). The first is Theorem 
3.5(b). The rest are statements about the cohomology sheaves Ext~(2r CF). 
By Theorem 3.5(d) and Proposition4.1, they amount to statements about 
Hom~.u~Ke(Hi(n, X(~)), (F/nF)|  (as D+n and Z vary). As such, they are 
exactly the conclusions of Corollary 5.12: (5.13)(ii) is (5.12)(b), (iii) is (e), and 
(iv) and (v) are (c) and (d). Q.E.D. 

Theorem 1.6 is a consequence of Corollary 5.14 and Corollary 4.9. 

6. The Polynomials P~,~ 

In this section we will set up the combinatorial formalism underlying the 
computation of the DGM extension of 5. In [-8], Kazhdan and Lusztig did this 
for the Weyl group (corresponding to the case of Schubert varieties) in a self- 
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contained way. Here we are not so successful. We will prove the uniqueness of 
our proposed P>,~; but the proof of existence is postponed to [10], and uses 
algebraic geometry. To understand the definition in detail, we need a slight 
extension of Lemma 5.4. 

Lemma6.1 ([15], Proposition 8.3.18). Suppose 7 c ~  corresponds to (H, A+,Z) 
(Corollary 2.2). Fix a simple reflection s~S,  and let et6A + be the corresponding 
simple root. Assume that s~zs(7); that is, that s~z(7), but ~ is not compact 
imaginary. 

a) I f  ~ is complex, then there is a unique element 7 ' E ~  such that 7~s~ 
The root for 7' corresponding to c~ is also complex. 

b) I f  ~ is type I I  real (Lemma 5.1(c)), there is a unique element 7 ~ c ~  such 
that 7 ~ s o 7~- The root for 7~ corresponding to ~ is type I I  noncompact imaginary. 

c) I f  ~ is type I real (Lemma 5.1(c)), there are exactly two elements 7 f of 
such that 7 Es o 7 +. The roots for 7 + corresponding to c~ are type I noncompact 
imaginary. 

The elements 7+ and 7+ may be constructed by Cayley transforms, in 
analogy with the discussion before (5.3). Write x 6 ~  for the point correspond- 
ing to (H, A+), and Q = K c . x  for the underlying orbit of 7. Let Q', Qc~, Q+ be 
the underlying orbits of 7', 7,, 7~. The Q c~L~x is open (by Definition 5.6); and 

IYx=(Q nl2x) u(Q' ~ I2 ~) 

(6.2) I25 =(Q n L~) ~ (Q~ n L~) 

L~ = (Q n e . )  ~ (Q+ ~ L%) 

(This is clear from Lemma 5.1). 

(case (a) of Lemma 6.1) 

(case (b)) 

(case (c)). 

Definition 6.3. Suppose 7 ~  corresponds to (H, A +, Z), and s ES is a simple 
reflection. Define s • 7 to be the element of ~ corresponding to (H, sd +, )0. In 
terms of notation already developed, this can be described as follows. Write 

e A + for the corresponding simple root. 

a) Suppose ~ is complex. If O~eA +, then { s x y } = s o  7. I f O ~ r  +, then {7} 
=so(s  x 7) (Lemma 5.4(a)). 

b) If e is type I noncompact imaginary, write {6}=so7. Then {6~}={7, 
s x 7}; that is, s x 7 is the unique element distinct from 7 such that so(s x T) 
= s o 7 (Lemma 6.1 (c)). 

c) If ~ is type II real, write 6=7 ,  (Lemma 6.1(b)). Then s o 6 = {7, s x 7)- 

d) In all other cases, s x 7 = 7. 

The assertions in (b)-(d) are verified in Proposition 8.3.18 of [15]. We are 
now in a position to formulate the first main definition: that of an analogue of 
the Hecke algebra. 

Definition 6.4. Let ~ / b e  the free 7/[u, u -1]  module with basis 9 ;  here u is an 
indeterminate. More generally, fix an abelian group B, and an element u e B of 
infinite order; and let ~ "  be the free Z [ B ]  module with basis 9 .  We identify 
~ '  as a 7/[u,u -1]  submodule of ~ "  by identifying the indeterminate u with 
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u~B. If  seS is a simple reflection, we define a Z[u,  u-1]-l inear map T~ on ~ /  
(or a 71[B]-linear map on J / ' )  on basis elements ~,, as follows. We use the 
notation of Lemma 5.4 and 6.1. 

a) I f ,  is compact imaginary, T~ 7 = u 7. 

b l )  I f ~  is complex and O~eA +, then T ~ 7 = s o T = s x  7. 

c 1) If ~ is type II noncompact  imaginary, then 

<7=7 + Z 

=7+7% + ~ .  

d 1) I f .  is type I noncompact  imaginary (so that s o V = {~'~}), 

e) I f ,  is real, but sr 

T~7=7=+sx 7. 

T~y= - 7 .  

b2) If ct is complex and OczCA +, 

T,~,=u(s x ~,)+(u-1)~,. 

c2) If ~ is type II real, and sez(7), 

T~y=(u -1 )y - sx  T+(u-1)7 ~. 

d2) If ~ is type I real, and s e v(y), 

T~7=(u-2)7+(u-1) ~ 7' 
~E$oy' 

= ( u - 2 )  7 + ( u -  1)(7 + +72).  

For the moment,  this definition cannot be very well motivated. A geometric 
explanation of it is given in [10]. The point of Lemma 7.8 is that this de- 
finition captures the inductive formulas for computing homology given in 
Theorem 7.2 of 1-14]. 

Lemma 6.5. The operators T~ satisfy (T~+I ) (T~-u)=0 .  

Proof. By Definition 6.4, the matrix of T~ is a direct sum of matrices of the 
form 

1 )  0 1 , 
(u), ( - 1 ) ,  u - 1  ' 

u 1 u - 1  u - 2  - 1  - 1  u - 1  

All of these satisfy the desired relation. Q.E.D. 

It is also true that the operators {T~[seS} satisfy the braid relations, so that 
we have defined a Hecke algebra action. This can be checked by hand - with 
some effort because of the large number of cases - but a conceptual geometric 
proof  is given in [10]. In any case we do not need this fact. 
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Definition 6.6 ([15], Definition 8.3.1). Let ~ denote the equivalence relation on @ 
generated by relations ? ~ s  x ? whenever s corresponds to a simple real root 
for ? (Definition 6.3); and let N(?) be the equivalence class of 7- 

The next lemma is used to guarantee that inductive arguments on the 
Bruhat ~f-order of Definition 5.8 can be kept going. The analogous statement 
for the Bruhat order on W is that if w eW, w # l ,  then there is a simple 
reflection s with l(s w) < l(w). 

Lemma6.7 ([153, Chapter9). Suppose 7 , 6 ~ ,  and 7<(5 (in the Bruhat (q- 
order). Then at least one of the following conditions holds. 

a) For some s ~ z(6), the corresponding simple root is complex. 

b) For some sez(?), the corresponding simple roots for ? and 6 are complex 
and real, respectively. 

c) There is an s e v(?) such that the corresponding simple root is noncompact 
imaginary, and a 6' ~fr such that s~ v(6'), and the corresponding simple root is 
real. 

Lemma 6.8. There is at most one 7Z-linear map D: J g ' ~ J g '  with the following 
properties. Write (that is, define R,r by) 

D(6) = u -l~) ~ R~,~(u) 7. 
? 

a) D(bm)=b- lD(m)  (mE~/',  b~B). 

b) D((T~+ I )m)=u-  I(T~ + I)D(m) (m6dg', s6S). 

c) R~,~= 1. 

d) R~,,,5#O only if 7<=6. 

Suppose D exists. Then there is an algorithm for computing the various R,~,o; 
they are polynomials in u, of degree at most l(fi)-l(7 ). Furthermore, 

e) D 2 is the identity. 

f) D preserves dg ~_ J//l'. 

g) On Jg, the specialization of D to u = 1 is the identity. 

Proof. Assuming that D exists, we will show how to compute R?,a from (a)-(d). 
The algorithm will show that R~,o is a polynomial in u of degree at most 1(6) 
-l(?), and that 

(6.9) R,,~(1) = { ;  7=6 
7#6.  

Then (f) and (g) follow. By (c) and (d), D is invertible. Its inverse will have the 
same properties, and so must coincide with D by the uniqueness. So the main 
problem is to find the algorithm. It proceeds by induction on l(6); and then for 
fixed 6, by downward induction on l(?). By (c) and (d), we may assume that 
7<6. We will use Lemma 6.7. Suppose first that z(6) contains a reflection s 
such that the corresponding simple root for 6 is complex. Then 

l(s x 6) = l(6) - 1 

r A  s x 3) = 3. 
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The identity (b) for m = s x 6 can be writ ten as 

D ( 6 ) = u  l ( T ~ + l - u ) D ( s x 6 )  
o r  

2 ( -  l)m')R,,,.67 = - ~ ( -  1)'(:') R,,,.s x 6 [(T~ + 1 - u ) 7 3 .  

Equat ing the coefficients of 7 gives formulas for RT, 6. Next,  if s corresponds to 
a real root  in ~(6), then the a rgument  above gives 

(6.10) R.,, 6+R~ ,~•  polynomial  in u. 

Suppose there is a reflection sCz(7 ) as in L e m m a  6.7(b). I f  we apply (b) with 
m = &  and equate coefficients of  s x 7 =  T~7 on both  sides, we get a formula  for 
R.~, 6 in terms of known Ry,o,. Finally, suppose s and 6' are as in L e m m a  6.7(c). 
By (6.10), it is enough to compute  R~,6,. For  concreteness, we suppose s is type 
II  for 6' and type I for 7; the other  cases are easier. Recall that  

T~6' = (u  - 1) 6 ' - s  x 6' +(u  - 1)6'~ 

T ~ 7 = s x  7+7L 

Apply (b) to m=s x 6'. Equat ing coefficients of  s x y gives 

(6.11)(a) R~,~•215215 polynomial  in u. 

Equat ing coefficients of 7 ~ gives 

(6.11)(b) uRr,6,+Rs•215 polynomia l  in u. 

Then combining (6.10) and (6.11) gives 

(u+  1)RT, 6, = k n o w n  polynomia l  in u. 

Such an equat ion forces (u+  1) to divide the right side. The  degree est imate 
and (f) follow by writing this out more  explicitly. Q.E.D. 

F rom now on, we assume that our  abelian group B (Definit ion 6.4) has a 
multiplicative norm, written I L; and that  Lul > 1. In  the appl icat ion in [10], B is 
the group of non-zero algebraic numbers  modulo  roots of unity;  u is the image 
of a pr ime power  q; and the no rm is the geometr ic  mean  of  the absolute values 
of  the conjugates in r 

Corollary 6.12. Suppose D exists; and suppose that for some 6 ~  there is an 
element 

G = Y~ B,6~a'r 
i,<6 

with the following properties. 
a) D(Co)=u -1{6) C~. 

b) g,,=L 
c) I f  7#=~, then P7 6 is a 2Glinear combination of elements of B of norm 

between 1 and ]uJ 1/2(1(6) '-1(~)- 1). 

Then P~,6 is a computable polynomial in u. (In particular, C 6 is unique.) 
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The proof, by downward induction on t(5), is almost word-for-word the 
same as that of Theorem 1.1 in [8], and we leave it to the reader. A different 
computation of P is contained in Proposition 6.14. 

Definition 6.13. Suppose 7<6,  and C a exists. Let /~(7, 5) be the coefficient of 
ul/2(l(O)--l(y)-- 1) in P~,o. 

Proposition 6.14. Suppose that D and all the C a exist. Fix ~ and 6 in 9 .  Then the 
polynomials of Corollary 6.12 satisfy the following formulas, which (together 
with P~,r=l, and P~,o@O only if 7<5)  characterize them completely. More 
precisely, if Pr',x is known whenever 1(6')< 1(6), or 1(6')= 1(6) and 1(7' ) > l(v), then 
the formulas determine P~,o. Fix s, and define c~ to be the simple root correspond- 
ing to s for ~. 

Case I. s r z(6). Write 

a) e~ 

P~,~oO = ~ Pr, o' 
y'ESo~ 

U~,6-=- E ,tl(Z, 6) ul/2(l(O)-l(z)+l) P~',z" 

s~ t(z) 
y<z<t~ 

is complex, and s q~ z(7). 

P~,~o~ = P~.,,~.o = u P~~ + ~ , o  - u~,0. 

b) a~ is compact imaginary. 

P~,,.~ = ( u  + 1 ) g . o -  u;,~.  

c) ~ is type I noncompact. In the notation of Definition 6.4(d 1), 

g,~~ = p~o,~~ = p ~  ~,~oo = (u - 1)p~%o + P~,o + P~• ~ ,~-  u~,~. 

d) ar is type II  noncompact. Write {7~} = {7', 7"}. Then 

P~,~oO = P~,,~oO + P~,,,~oO = ( u -  1)(P~,,0 + P~,,,0 ) + 2 P~,o- U~,~ 

e) a~ real, s(~ z(7 ). Then P~,~~ 

Case II. sEz(6). We use notation for 7 as in Case I, and letter the cases in the 
same way. 

a) P~,~=P~.,,o. 
c) p~,o=e~o o = ~ •  

d) Pr,~=P~, ~+P~.,,o({7~} =17', 7"}). 
e) P~,0 = 0. 

Proof. That the formulas characterize P follows from Lemma 6.7, by an argu- 
ment formally similar to (but in detail simpler than) that given for Lemma 6.8. 
To prove them, we recall from [10], Sect. 5, the formulas 
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(6.15) (T~+I)Co= ~ Co,+ ~ #(z,f)ul/2('~)-t(z)+l)C~ (sr 
t~'~so6 z<6 

se~(z) 

(6.16) (T~-u)Co=O (sez(6)). 

(To avoid circular reasoning, it is important to recall that the proofs of these 
formulas did not rely on Theorem 1.12 of [10], whose proof is to be given 
below.) Most of the formulas of the proposition follow from Definition 6.4 by 
comparing coefficients of 7 on the two sides of these identities (compare [8]), 
and we leave them to the reader. Those of Case II(c) are slightly more subtle, 
however. By (6.16) and Definition 6.4(d), comparing coefficients of 7, s x V, and 
7 ~ gives 

-uP~,a+P~• 1) P~,~ = 0 

- u ~  ,,~ + ~,~ + ( u -  1)go,~ = o 

P~,~ + P~ • , ,~-  2 P~,,o = 0. 

Subtracting the first two of these gives 

(u + 1)P~.~-- (u + 1) P~ • 

It follows that Py,o=P~• Inserting this in the last of the three formulas 
above gives II(c). Q.E.D. 

7. Proof of  Theorem 1.12 

Since the material in this section is only of very technical interest, we have 
essentially assumed that the reader is quite familiar with [14] or Chapter 9 of 
[15]. The proofs really require this. We first recall the main results of [10]. 

Theorem 7.1 ([10]). The map D of Lemma 6.8, and the elements C a of Corollary 
6.12 both exist. Write c~ for the DGM extension of 6 to the closure of the 
underlying orbit (see (5.13)). Then 

~ ( -  1) i (multiplicity of y in c~ ~) = P~,~(1). 

Because of Corollary 5.14 and Corollary 4.9, this is equivalent to 

Corollary 7.2. 6~(6) = ~ ( - 1) I(~)- t(~) p~, 0(1) 7- 
7 

Our goal is to deduce Theorem 1.12, in the following equivalent form 
(compare Proposition 4.1 and Corollary 5.14). 

Theorem 7.3. Fix 6, 7 ~ ,  x ~ in the underlying orbit of 7, and a Levi decom- 
position 

~=b+n 

of the BoreI subaIgebra corresponding to x, with l?O-stable. Write d for the 
codimension of the support of 3 in ~. Let )~ be the character of 
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(H c~ Kc)/(H c~ Kr 0 corresponding to 7. Then 

dim Hom~,H~Kc(Hq(, , )~(6)), (F/nF) | ~) 

=coefficient of u 1/2(q-d) in P~,a. 

For convenience, we define (with d the codimension of supp(b)) 

(7.4)(a) Q~,~ = ~ uX/Z~q-d)(dim Homb, n~K(Hq(U , X(6)), (F/nF) | 7~), 
q 

an element of 7l[u 1/2, u-a~2]. Then we want to show that P=Q. Put 

(7.4)(b) if(7, 6)=coefficient of u 1/2"(~-"~)-1} in QT,~" 

To clarify the argument, we separate two inductive hypotheses. 

(7.5) A(m) If l(6)<m, sr and a is the corresponding simple root, 
then U~()((c~)) is completely reducible. 

Here U~(X) is the (9,K) module constructed in [13] or [15] using tensor 
products with finite dimensional representations. It is defined whenever X is 
irreducible with regular infinitesimal character, and a is a simple integral root 
not in the v invariant of X. 

(7.6) B(m) If l(b)<m, then P~,~=Q~,~. 

The idea of the proof of Theorem 7.3 is this. In [14], there is an algorithm 
for computing the polynomials Q~,~ (or something equivalent) under the assump- 
tion (7.5) (for all m). We will show that this algorithm corresponds exactly to 
the recursion formulas for P~,a given in Proposition 6.14. On the other hand, we 
already know (by Theorem 7.1) that ~,6(1)=Q~,6(1). We will show roughly that 
if (7.5) fails, then the algorithm for computing Q~,6 is so seriously affected that 
even the value at 1 must change; this was stated without proof in [14]. So (7.5) 
cannot fail, and we will be done. 

There is a problem of exposition here. The arguments of [14] are stated in 
terms of 0-stable parabolic subalgebras exclusively. The Beilinson-Bernstein 
theory shows that this is not very clever; and when rephrased in terms of the 
homology groups appearing in Theorem 7.3, the proofs often become simpler 
and clearer. They do not become trivial, however, and we do not propose to 
rewrite [14] here: it is much faster to make do with the results proved in [14] 
than to start from scratch. This has the effect of obscuring the ideas almost 
completely. For example, Lemma 7.8 could be proved by reduction to SL(2), if 
[14] had been written from the Beilinson-Bernstein point of view. Apologies 
are tendered to the reader for this situation. 

Lemma 7.7. Assume A(m). Then the vanishing results and induction formulas of 
Theorem 7.2 in [14] hold for 1(71)<m. 

These results state that the various cohomology groups are completely 
reducible and vanish in every other degree; and then show how to compute 
the cohomology of U~()((7~)) from that of )((7l). (A typical example is written 
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before (7.11) below.) They are based on the hypothesis  that  certain U~(*) be 
completely reducible: A(m) is precisely what  is used, as the reader  can check. 

L e m m a  7.8. Assume A(m). Then the Q~,6 satisfy all the fl~rmulas of Proposi- 
tion 6.14 when / (3 )<m (in Case I) or l(6)<m (in Case lI), with t~ replaced 
by p'. 

Proof. The idea is that the formulas of Propos i t ion  6.14 correspond exactly to 
the induction formulas ment ioned in the previous lemma. Those induction 
formulas are for 0-stable parabol ic  subalgebras,  however,  so we have to use the 
ideas of Sect. 4 and the appendix to transfer the homology  appear ing in (7.4) to 
a 0-stable setting. To do this for (6.14)(I)(a), (b), (e) and (6.14)(II) is rather  easy; 
so we will concentrate  on (for definiteness) (6.14)(I)(c). Fix 7, 6 ~ .  Choose x, b, 
b + n  at tached to 7 as in Theorem 7.3. Let c~A(b,n)  be the simple root  corre- 
sponding to s; to be in the setting of (6.14)(I)(c), we assume a is type I 
noncompac t  imaginary. Let  G ~ _ H be generated by the SL(2) through this root  
cq and let H ~ be a 0-stable Car tan  in G ' -ob ta ined  by Cayley t ransforms 
through e. Fix 

b~=ll~+n~ 

so that  n~c~n has codimension one in n, and define 7 ~ by (5.3). Choose q ~ = P  
+ u  ~ for 7 ~ as in (A2) and Corol lary 4.10, and choose 

q0 __l+uOc_i ~ 

for 7 in L ~ in the same way. Then (since the Car tan  involutions for b and b ~ 
differ only by s), the parabol ic  

q=l+(u~ 

has the corresponding propert ies  for ~. By Corol lary  A10(c) and Proposi-  
t ion 4,3, if we write 

r = l(6) - l(7) - d im(u c~ p), 
then 

Q~,o=~u ~j2(q+~) (multiplicity of  J(L(Tq) in Hq(u, J((6)); 

here 7q is defined by in Corol lary  (A4). Similarly, if 

r ~ = 1(6) - l(7 ~) - dim(u~ c~ p) 

(7.9) Q~,~=Vu 1/2~q+~ (multiplicity of XL~(7~)in Hq(u ~, X(3)). 
q 

We need to relate Q~,,~ to q~ as well. We use the Hochschi ld-Serre  spectral  
sequence ( L e m m a  4.11); so we have to compute  

multiplicity of  XL(7,) in Hp(u ~ Y)=  rap(Y), 

for any irreducible (P ,L~K)  module  Y. We will use Theo rem 5.11 for the 
group  L ~, with 7q~ playing the role of 7. Since H" is split in L ", ?~, is maximal  
for the Bruhat  N-order  for L% Since 
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it is easy to check that 7~- is the only regular character for U (up to conjugacy) 
which follows ?~. in this order. By Theorem5.11 and Corollary A10(c), 
we conclude that 

mdlm(u ~ n v)(xL= (Tq~)) ----- 1 

mi(RL'(yq~))=O, i#d imu~ 

mi(RL'(?~,))=0, i # :d imn~  
mi(Y)=O, Y irreducible, y~=~L'(?~,), )~L-, , (?q~). 

Finally, notice that )~L'(7,. ) occurs once as a composition factor of XL'(y~,) (by 
induction by stages from SL(2,~()). Now XL(?,) cannot occur in 
H . ( u  ~ XL'(7~,)) (Corollary A10(b) and Theorem 4.6). The formulas above there- 
fore force 

- - L  ~ ~ _ mdim(uOc~p)_ 1X (yq~)-- 1. 

NOW Lemma 4.11 gives 

multiplicity of )(L(yq) in Hq(u, X(5)) 

=multiplicity of ,~L~(yq,) in Hq.dlm(uOc~p)(U a, S((~)) 

+ multiplicity of ~L-(y~) in Hq_dim(uOr~p) + l(U ~, )((0)). 

In terms of the Q polynomials, this is 

(7.10) Q~,z = 2tl 1/2(q-r'+ 1) (multiplicity of )~L-(y:) 
q 

in Hq(u ~, R(6))) + Q:,0. 

Now suppose sq~z(5), and l(6)<m. Set 

Q~,0 = ~" u ~/2 (q-a) dim(Homb ' r(Hq(n, U~(R(5))), (F/rt F) | Z)) 
q 

in analogy with (7.4); here ~ is the simple root corresponding to s, d is the 
codimension of the support of 6 minus one, and other notation follows (7.4). 
Suppose y is of the type considered above, so that we are in Case I(c) of 
Proposition 6.14. Then Theorem 7.2 of [14] shows how to compute Q~0. The 
formula in question is 

m[xL ' (y~ , ) ,  Hq(n ~, U=(X(a)))] 

= m[ff~L'(Y~.), (Ha. 1 (~ H q_  1 ) ( U  a,  X ( ( ~ ) ) ]  

+ m [#L'(yq.), Hq(u ~', )~(6))3 

+ m [.~L'(s • ~,,.), H , (u ' ,  .~(~))3. 

Now (7.9) and (7.10) give 

Q~.,a = (u + 1) O:,0 + (Or,~- Q:,~) + (Q, • ~,0 - Q:,~), 
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o r  

(7.11) Q;,,o = ( u -  1) Q~,,~ + Qe.~ + Q~ • e,o. 

By A(m), U~(X(6)) is completely reducible; so 

m [)((?~), U~()~(6))] = dim Hom,,K(X(?'), U,(R(6)). 

By Corollary A18, this is 

=coefficient of u ~/2"(~)-z(~)+ 1) in Q~,a. 

By (7.11), this is 

=coefficient of u t/2"(a)-~(~'~-l~ in Q~,~ 

mEX(~) ,  v,(X(~))]  = ~'(y~, ~). 

Combined with analogous results for other ~, this gives 

(7.12) U~()~(6))= ~ X(6')@ ~ ~'(z, 6)X(~). 
6' Eso~ z e ~  

set(z) 
z<,~ 

Now (7.11) and (7.12) imply the analogue of Proposition 6.14(I)(c), with (P,g) 
replaced by (Q,#'). Q.E.D. 

Lemma 7.13. A(m) and B(m-  1) imply B(m). 

Proof Fix ? '<5' ,  with l(6')<m; we want to show P~,,,~,=Qr By B(m-1),  we 
may assume /(5')=m; and we may assume the result is known for (7",6") 
whenever l(?") > /(?'). By Lemma 7.8, we are done if Py,,o, can be computed 
using only the formulas in Case ! of Proposition 6.14, wi th/(6)<m; or those in 
Case II, with l(6)<m. Using Lemma 6.7, we may therefore assume that there is 
an sCt(5')ut(?'), with the corresponding simple root ~ for 6' real; the corre- 
sponding root for ?' is complex or noncompact imaginary; and there is a 
second simple reflection s'~t(6'), with the corresponding simple root type II 
real. By Lemma 7.8 and Proposition 6.14(I), 

e,, ~, +e , ,  ~,~0, = O,, ~, + Q,, ~,• 

(notation 6.3). If set(s 'x6 ') ,  then Lemma7.8 and Proposition 6.14(II) give 
P~,, ~,• o,=Q~, ~,• and we are done; so we may suppose sCt(s'x 6'). To compute 
P~,o,, we would use Proposition6.14(I)(a) or (c). To prove the analogous 
formulas for Q, we need to know that U,(J((6')) is completely reducible. This is 
part of A(m+l),  which is not yet available. However, since we know the 
homology of X(b')@X(s' x 6'), we can argue as in the proof of (7.14) below to 
deduce that U,(X(6')@X(s'x 6')) is completely reducible. The desired formula 
for Q follows. Q.E.D. 

Proof of Theorem 7.3. We will show that 

(7.14) A (m) + B (m) ~ a (m + 1), 
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using Corollary 7.2. Since A(0) is empty, Lemma 7.13 implies that B(m) is true 
for all m; and this is the conclusion of the theorem. The proof of (7.14) is based 
on the following fact. 

Lemma 7.15. Let X be an (R, K O module such that 

a) dim Hom(~,K)(l, X) = dim Hom~g,K)(X, I) 
for any irreducible I. Suppose further that for any 7 ~ ,  

b) m()((7 ), X) = dim Hom(g,K)(X, )((7)). 
Then X is completely reducible. 

We leave the (formal) proof to the reader. So suppose 6e@, l(6)=m. Fix 
sCz(6), and let c~ be a corresponding simple root. We will apply Lemma 7.15 to 
U~()((6)); hypothesis (a) follows from Proposition 3.17 of [13]. By Lemma 7.7, 
we can compute the homology of U=()((6)) by the formulas of Theorem 7.2 in 
[14]. Since we already know the homology of J~(6) is given by P (this is B(m)), 
the proof of Lemma 7.8 shows that, if qo is the codimension of supp(7), 

dim H om~,H ~ ~ ( H  qo (1t, Ua (if(6))), F/n F @ Z) = # (7, 6) 

(notation as in Theorem 7.3). By Corollary A 18 and Proposition 4.3, 

(7.16) dim Hom,,K(U~(ff(6)), n(7)))=#(7, 6). 

Write 

(7.17) /~(7, 6) = m(ff(7), U~(ff(6))). 

By Lemma7.15, we only have to show that #(7,6)=fi(7,6 ). In the Grothen- 
dieck group of (R, Kr modules, 

R(a')= u~(R(a))- ~ F,(z,a)g(z). 
6'~so,~ z < 6 

se~(z) 

But we know also the cohomology of U~()((3)) and of all the )((7) with 7<6;  
so with notation as in the proof of Lemma 7.8, 

y, R(6 ' )= y~ EP~D(1)- Y~ p(z, 6)P~.A1)] ( -  1) " ' - " ~ - '  x(7); 

set(z) 

here P~:~ is computed from P as Q~,~ is from Q. In light of the recursion formulas 
(6.14) for R and Corollary 7.2, 

Z R(5 ' )= Z [-P~:A1) - ~ #(z,6)P~,~(1)](- |)l(7)-l(6)-lx(~). 
6'eso6 7 e ~  z _< 3 

se~(z) 

So 
#(~,6)~,=(1)= y~ ~(z,6)~,=(1) 

z < 6  z<,~ 
set(z) se~(z) 

for all Y. Now (7.16) and (7.17) imply tha t /5>#;  so we deduce that 
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E~(z, 6)-~(z, ~)] ~,,~(1)=0 

fo r  al l  z a n d  7- T a k i n g  z = 7  g i v e s / ~ = f i  a s  d e s i r e d .  Q . E . D .  

A s  a c o n s e q u e n c e  o f  t h e  p r o o f ,  w e  o b t a i n  

C o r o l l a r y  7 .18 .  I f  X is an irreducible (g, K)  module having the same i~finitesimal 
character  as F, and ~r  then U~(X) is comple te ly  reducible; that is, Colqec- 
ture 3.15 o f  [ 1 3 ]  is true for  integral i t f in i tes imal  character. 

Appendix: An Introduction to [15] 

We give here proofs of Theorems 4.6 and 5.11. Fix once and for all 7E~. Choose a 0-stable Cartan 
subgroup H = TA of G, a positive root system A + _cA(g,b); write 

(Al)(a) b l = b + n  1 

for the corresponding Borel subalgebra. Fix a character 

(A1)(b) zc(H/Ho) ^ ~(T/To)" 

and assume that (H, A +,)~) corresponds to 7 under tlle equivalences of Corollary 2.2. Finally, fix a 
Z-good Borel subalgebra 

(Al)(c) b 2 = b + n  2 

for )' (Definition 4.4). The first point is to construct an intermediate parabolic subatgebra for 
induction by stages. Set 

(A2) I= centralizer of t in O, L =  centralizer of t in G 
U=l~2u~0n 2 
q = I + n .  

L e m m a A 3 .  In the notation just defined, q = l + u  is a O-stable Levi decomposition of a O-stable 
parabolic subalgebra of g. The group L is split, with maximally split Cartan subgroup H= TA. The 
intersection b z c~ 1 o = p~ is the Lie algebra of a Borel subgroup pL= TAN L of L. 

This is elementary, and we leave the argument to the reader. Next, we define the character of 
H which will define the representation of L we wish to consider. Recall the one-dimensional 
representation ~ ,  of H defined in Theorem 4.6. Write p(l) for half the sum of the roots of b in hL; 
this is zero on t. and so can be regarded as a character of H trivial on T. Set 

(A4)(a) "~,. = character of  H on 112. | C_p~i)~/4. 

Since H is split in L, a character of H may be regarded naturally as a regular character with 
respect to L (Definition 2.3); so we may sometimes write 

(1  4)(b) yq = (~, ~q). 

Here Fq is just the character G, and yq is its differential. Put 

(A5) pc = half sum of roots of b in n i (i = 1, 2) 
p (u )=ha l f  sum of roots of b in u 

=P(n2)--p(l)  
) .=weight of b or H on F/nlF. 

The differential of  the weight 612 of Definition4.2 is easily seen to be P~-P2. Using this, we 
calculate 

d ~ = , ; . - p  t + p2 

(16)  ~.=(2-  p O +(p2- p(l)) 

= ( ~ - p 0 + p ( n ) .  
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Lemma A 7. 

a) I f  ~sA +, < ~ , 2 - p t > < 0  
b) I f  c~A+c~A(I), <a, yq><0 

c) I f  c(~A(u), then either < ~ , 2 - p 1 > < 0  , or <0c~,2-p1> <0. 

Proof Part(a)  follows from the Cartan-Weyl theory: since 2 is the lowest weight of a finite 
dimensional representation - 2  is dominant. Parts(b) and (c) then follow from 
Definition 4.4. Q.E.D. 

Define (using normalized, L c~ K-finite induction) 

(A8) XL(7,)=Ind~L(7,) 
)~z(~,) = Langlands subrepresentation of XL(Tq). 

By Lemma A7(b), )~L(y,) really has a unique Langlands subrepresentation. 

Theorem A9 (Schmid, Casselman - see [15], Sect. 6.4). With notation as above, suppose Y is an I, 
L c~ K module of finite length. Define II; u by Theorem 4.6 

a) Hom~,r(Hp(n z, Y), (I?,) =0,  p>0 .  

b) Homb, r(Ho(n L, Y),Cu)~--Homt.LoK(Y, XL(Tq) ). 
C) The dimension of the #-isotypic subspace of H0(n z, Y) is the multiplicity of XL(G ) in Y 
d) I f  Ext[L~K(Y, xL(3',))+O, then XL(G ) occurs in Y 

Part (b) is an observation of Jacquet, and is easy to prove; it is included mainly to motivate (c). 

Corollary A10. In the setting of Theorems 4.6 and A9, let X be any (g,K) module of finite length. 
Then 

a) Hp(u2, X) ~ Ho(n L, Hp(U, X)) 
b) Homb.r(H p(n2, X), ~ ~) ~- Hom,.L~r( H p(u, X), XL(yq)). 
c) I f  X is actually an (R, Kr module, then 

dim Hom~.r(Hp(n2, X), (12~) = multiplicity of y~z(~,q) in Hp(n, X). 

Proof Part (a) follows from Theorem A9(a), the Hochschild-Serre spectral sequence (Lemma 4.11) 
and [15], Lemma 6.3.33 (which guarantees that Hp(n,X) has finite length as an (I, Lc~K) module). 
Part (b) follows from (a) and Theorem A9(b). Part (c) follows from (a), Lemma 4.10 (semisimplicity 
of homology for R modules), and Theorem A9(c). Q.E.D. 

Next, we need the results of [15] about constructing the standard representations by coho- 
mological parabolic induction. Proposition 2.7 associates to ~ (and our fixed b , - b )  a regular 
character in /4'. In the long run, confusion seems to be minimized by a rather serious abuse of 
notation at this point. We will write ~ for this regular character, as well as the element of 9 :  

(A11)(a) ~ =(F, 7-)E/~'. 

For technical reasons, we also need to consider 

(Al l ) (b)  7~=(F -1, - y)e/4' 

(A 11)(c) ~,~ = (F,- ' ,  -yq) 

(cf. (A4)), the latter being a regular character for H with respect to L. 

Lemma h12.  The definitions (A4) and ( A l l )  are related by 

FI T = Fqir | {Adi . . . .  (u ~ p)*} 

7=?q--p(u)=X--pp 

The second assertion is immediate from Proposition 2.7 and (A6). The first is elementary (compare 
[15], proof of Lemma 9.4.9). We leave the details to the reader. 
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Theorem A13 ([15], Theorem 8.2.4). The standard representation X (~ c) for G is obtained from xL(7~q) 
by cohomological parabolic induction: 

X(~ 0 = ~(X~(7;)), 

and all other ~t i are zero on xL(~).  

Proof. Lemma A 12 guarantees that 7~ is (as the notation suggests) the character for L constructed 
in Lemma 8.1.2 of [15]; and Lemma A7(c) is exactly the positivity hypothesis needed in Theo- 
rem 8.2.4 of [15]. Q.E.D. 

Theorem A14 (Zuckerman's spectral sequence - [15], Proposition 6.3.2). Suppose X is any (~,K) 
module. Then there is a f irst  quadrant spectral sequence 

EXt[LnK(H almtun~)-~(u, X), xL(y~)) 

Ext[,~q(X, X (Yg). 

Proposition A 15 ([15], Proposition 8.5.6). Write yc for the K-finite dual of the (~, K) module Y Then 
the standard module )((7) containing R(7) as a quotient (notation (1.3)) is 

Y~ ( j  ~ x(~c) c 

We need two more formulas about X< 

Lemma A16. Suppose X and Y are (g, K) modules. 

a) Extlg,i((X, YO~Extia,K(Y, X9 
b) H,(u, X' )~ H'(u, X)% 

Proof. Part (a) is 1-15], Corollary 9.2.5. Part (b) may be proved by a similar argument, or simply by 
inspecting the standard complexes (as Hi(u,X*)~-H~(u,X) * is proved). We leave this to the 
reader. Q.E.D. 

If we use Proposition A15 and Lemma A16 to rewrite Theorem A14, we obtain 

Corollary A17. Suppose X is any (g,K) module of f inite length. There is a f irst  quadrant spectral 
sequence 

EXt[L~r(gr(yq), Hdim~p)_q(n, X)) ~ Ext[]:q(X(r), X). 

Corollary A18. Suppose X is an (R, Ke) module of finite length. Then Ext~*x(2(J X)4:0/f  and only 
if 

Hom~.r(H .(n2, X), IE ~) 4: O. 

Suppose both are non-zero; let n be the lowest degree in which the f irst  does not vanish, and m in the 
highest degree in which the second does not. Then 

n+m=dimu~p ,  

and the two spaces have the same dimensions in this degree. 

Proof. Suppose Ext* x(3((j, X)4:0. By Corollary A 17, we find p and q with 

Ext[t.~ x(xL(yq), ndim(u r~ p )_q(u, X)) 4: 0. 

By Lemma A 16 and Proposition A 15, 

EXt[Lc~K(H dim(unp)_cl(U, X) c, XL(Tc~)) 4: O. 

By Theorem A9(d), 3(L(y~) occurs in Hdlm(uc~p)_q(U,X) c. By PropositionAl5, .~L(yq) occurs in 
Hdim(uc~)_q(U , X). By Corollary A 10(c), 

Homb, r(Hdlm~,~_~(n:, X), IE~) 4: 0. 
In particular, 

Hom~,T(H. ("2, X), C J  4: 0, 
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proving half of the first assertion. Conversely, suppose this Horn is non-zero in degree m, and m is 
as large as possible with this property. Set 

d = dim Hom~, T(H~Ot2, X), 1121~ ). 

By Corollary A10(c), j~L(.y,) occurs in H,,(u,X) with multiplicity d, and not at all in higher 
degrees. By Proposition A 15 and Theorem A9, it follows that 

dim Hom E L ~ r(H,,( u, X) ~, xL(7,~)) = d 

EXtlP.t.~ K(Hr (U X)~, xZ(yq)) = 0, r>m.  

Using Lemma A 16 to rewrite this, we get 

dim Hom,,L~ , K(2L(Y,), H,,(U, X)) = d 

Ext~.L~K(J~r(7q),H~(u,X))=O, r>m.  

By Corollary A 17, 

(**) dim Ext e~m(" ~p)- ~ (2(7), X) = d 

ExU(X(7), X) =0, s<dimuc~ p - m .  

By inductive hypothesis, 

or 
dim(u c~ p) - (n(Y) - l(y)) < i + 1, 

dim(u c~ p) - (1(6) - l(y)) < i + (n(Y) - 1(6)) + 1. 

The inequality on n(Y) mentioned above gives 

dim(u n p) - (1(6) - 1(7)) < i 

So Ext*(2(7), X)4:0, completing the proof of the first claim; and (**) is the rest. Q.E.D. 

Theorem A19 ([15], Lemma 9.2.18). Suppose X(O) is a standard (g,K) module distinct from X(7). 
Then 

Ext*, r (2  (7), X (0)) = 0. 

TheoremA20 ([15], Corollary8.1.21). Suppose Y=X(7), Jr(y), or 2(7 ). Then .~L(y~) occurs in 
H.(u,  Y) exactly once, in degree dimuc~p. 

Actually, the result cited concerns the occurrence of j~L(~,~) in H*(u, yc); but by Lemma A16, the 
results are equivalent. Theorem 4.6 is a consequence of Corollary A18, Theorem Al9, 
Theorem A20, and Corollary A 10(b). 

Proof  of Theorem 5.11. Under the hypothesis of the theorem, Corollary A 18 shows that (since n c~ p 
=rt2 c~p) 

Ext.i~o~.,-,0(s x) 4= 0 

for some io>=i. In particular, it follows that i<d imuc~p;  and the statements about the case 
i=dimuc~p are clear. For  the rest, we proceed by induction on the maximum n(X) of the numbers 
1(3), for those 6eN such that )((6) occurs in X. Using the long exact sequence in homology, we 
reduce to the case X=A~(6). If 6=7, Theorem A20 and Corollary A10(b) show that i=d imuc~p 
(as desired). So suppose 64='~. Consider the long exact sequence 

0 ~ Z ( , ~ ) ~ X ( 6 ) ~  Y~0. 

By [15], Proposition 8.6.19, n(Y)<-l(,~)- 1. By Theorem 4.6, 

Hom~,w(H , (n2, X (6)), Cu) = 0. 

By the long exact sequence in homology, 

H om~. r (Hi + 1 (n 2, Y), IEu) 4: O. 
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as desired. The inductive hypothesis also provides a constituent )((0) of Y such that 7<~p. Since Y 
is a quotient of J((6), Theorem5.10 says that ~<6.  Since < is defined to be transitive, 
~<6. Q.E.D. 
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