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1. Introduction

The classical Kloosterman sum is defined by

Smnc)= Y e (am:—dn)

@

1

1
)=
ad=1(modc)

where m,neZ* and e(z)=e?"'%. It is known to satisfy [see 14]
1S(m, n, O < d(c) ¢/2(m, n, )2 (L.1)

where (m,n,c) denotes the greatest common divisor, and d(c) the number of
divisors of c.

Many problems in number theory, especially additive problems may be
reduced to estimating sums of the type

)

c=x ¢

S(m, n, ¢)

One expects considerable cancellation in this sum, and Linnik [8], and Selberg
[12] have conjectured that
S
Y MzO(xE) Ve>0
c<x 4
and x> (m, n)t+e,
Recently, Kuznetsov [7] was able to show that

Y Smme) o isre (60).

cSx ¢ £,m.n
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This result was generalized- by Deshouillers and Iwaniec [4] to Klooster-
man sums associated to congruence subgroups, and to ones associated to a
general discrete subgroup with finite volume by Proskurin [9]. In the last case
the 1/6 is replaced by 1/3 while in both generalizations exceptional eigenvalues
(see (2.1)) may create additional terms. All of the above results are based on a
general trace formula developed in [7] and [1].

In the following I" will denote a subgroup of SL,(Z) of finite index, though
there is no need to make this restriction. Let ¢ be the smallest positive integer

)
F

el et

b
As in [12] let keR*, and y be a multiplier for this k. Then for y= (Ccl d)’

and put

a! ’ . o
Y = ( , d()eF we must have the consistency condition
c

(=1 =etr
Jor @ A6 =1, @) @) 1) 1)

where j(z)=cz+d. We also fix 0=a <1 so that

1 q — p,—2mia
X«o J)—e
The notation is as in [12].

We define the generalized Kloosterman sum, ¢ >0

(m—oc)a—l—(n—oc)d)

S(mnc,x)= Y me( i

O0<a<gc
O0<d<qc
el

< HIAIA

and Selberg’s Kloosterman zeta function

S(m,n,c, x)
Zm,n(s’)()= Z — 2s

c>0 4
Our aim in this paper is to prove the following theorems.

Theorem 1. The function Z,, ,(s,x) is meromorphic in Re(s)>3% with at most a
finite number of simple poles all in (%,1), and satisfies the growth condition

12
25 01=0 (25
2

for s=ag+it, 6>% as t— . The implied constant depends on I',y,k,m,n.
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Theorem 2. Let

B _ _1‘1;{ log IS(ma n,c, X)'
oo logc

then

S(m7 n7 C’ X) —

C

)

=

i
Y x0T (6>0)
j=1

for certain constants t; and real 0<x;<1. The implied constant depends only on
I,y k,mn.

Remarks and Further Results. 1. The meromorphic continuation of Z,, (s, %) to

the entire complex plane was first obtained by Selberg [12]. The estimate on

Z, s,y for large t, which is usually difficult to develop for these types of

functions, is new. By a careful choice of constants in our proof we may replace
1/2 172

the O (L:' 1) by O (ln;;l|Vol(F\3f)|E‘ 1|) with the implied constant depend-

2 2
ing at most on k. It is likely that this is the true order of growth.

2. The number t; appears only if there are exceptional eigenvalues in the
interval (0,3) for the Laplacian onI'\# [see (2.1)].

The 1;'s are computed explicitly in (3.3). It follows from Weil’s estimate (1.1)
that B<% for congruence subgroups. In general all we know is that f<1. Thus
Theorem 2 agrees with the results in [7, 3 and 9]. As in Remark 1, the O-
constant can be changed similarly.

3. Interesting examples are the groups I'=1[;(4N), NeZ* and k=4.

It follows by [13] that f=3 for these sums.

Indeed in these cases we have been able to show that aside from the
exceptional eigenvalue at A=, due to 6-functions all exceptional eigenvalues
are greater than or equal to 15/64. It follows from Theorem 2 that

)

cEx

S(m7 n’ C) X)

= Ax2 4+ 0(x")
C

(A= A(m,n, y)).

Using further work of Vardi [13], one finds that the last asymptotic
relation is closely related to the distribution of solutions of certain quadratic
congruences.

4. In the case of weight k=1, there are no exceptional eigenvalues [11]. Let
NeN, and let ¥ be an odd Dirichlet character to modulus N, ie. x(—1)=—1.
Define the Kloosterman sums (see [2])

ma+nd
¢

smaNen= ¥ e
amod Nc¢

dmod Nc¢
ad=1(mod Nc¢)

), m,n,c>0

It follows from Weil’s estimates that f=1, and since these sums come up in
odd weight, we obtain using Theorem 2,
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Theorem 4.
S(m,n,Nc,y)

c

<x¥rt Yex>0.

X

C:

2. Proof of Theorem 1
Let I2(I\.#, y, k) be the Hilbert space of functions g: # — C satisfying

i cz+d\* a b
() g(y2)=x(y) (m) g(2), V=(c d)er
.. dxd
(i) [fle@P = <o
Dr y

where D, is a fundamental domain for I'\J#.
The operator
2 0
— 2 —_ —_ = k —— .
4=r (Fa+2) ks 2.

has a self acjoint extension to I*(I\J#,x, k), with real spectrum. As pointed
out in [12], the spectrum below 1/4 is finite dimensional. Let u ,u,,...,u, and
Asoe, 4<%, with

du+iu;=0, 15j<l

be the corresponding normalized eigenfunctions and eigenvalues. By separation
of variables, such an eigenfunction has a Fourier expansion of the type

()= 3 anecifﬂ (2.2)

n=—o00
y)

2(0,)=p,0) ¥ +p{(0)y* =, if n=a=0,

where
n—ao

q

A. = <l W n—a
D=0 ) Ws ey 1 (47

if n—a40 and

where 4;=s{1-s), p;(n) are constants, and W, (y) is the Whittaker function
which decays exponentially in y as y— oo and satisfies the ordinary differential
equation

aw 1 L2
d2+( ﬁ s H
y

We shall have frequent recourse to the following Mellin transform [5, p.
860]

O’—;g

e~ 2Ny s VVI,,“(47tNy)£1-)i
d (2.3)
F(s+3+wI's+3—w
Ir'is—p+1)

which holds for N>0 and Re(s+3+4 p)>0.

=(4nN)~
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Following Selberg [12], we introduce the nonholomorphic Poincaré series
for m>0, meZ,

B.(z,5,0)=F,(z,s,x, k)

el () (=290) i

d
Just as in the case of ordinary Eisenstein series the above converges
absolutely and uniformly in Re(s)>1. Since m>0 it is also clear that
P(z,s,x)e (T\#, 1, k). Furthermore, B(z,s,%) satisfies the following recursion
relation,

b
where y= (Z )

qu&ﬂ=—4n(m;a)G—s)Rm_J&&J+L1» (2.9)

for Re(s)>1, where
R,=(4,+1)!

is the resolvent of 4,. By the remark following (2.1) it is clear that R ,_ is

holomorphic in Re(s)>3 except possibly at the points s;, j=1,2,...,L It then

follows from (2.4) that P (z,s, x) may be meromorphically continued to Re(s)>1

with at most a finite number of simple poles at the points s=s; for 1 3<s;<1.
The residue is given by the following

Res (B,(+,8, ), u;) uy(2)

Here T
d
(B s, ) = [ Bz, 1) 02) o
o0 m—a an("%)y o, dy
= ; w q -
qpxm)g %»fé Gr( . )Y)e ¥y’ .
B dnm—a)\' " I(s+s,—1)I'(s—s)
"qu(m) ( q ) T(s—k/2)
after using (2.3). Hence
S —a\!=% [(2s,—1
RAes P(z,5,x)=qp;(m) 4n (mq 0‘) F((s Si k/2)) u;(z) (2.5)

Lemma 1. Let s=o+it, for <o <2 and |t|>1

dxdy m?
I 15,0 557 =0 ()
Dr

=1

where the implied constant depends only on I', y and k.
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Proof. First for 2<6<3

|B.(z, )| =0(1)

uniformly in z and ¢ since the series converges absolutely.
It then follows from (2.4) and the bound [10, pp. 342]

1
1 I_d1stance (4, spectrum (4,))
that
S k
dxdy\'/? m—o 2
s ) o) A
(fpj &0F = g 2o

since dist(s(1 —s), spectrum A4,) = Im(s(l —s3))=[t(2c —1)|.
Lemma 2. For m,n>0, ¢ >3, we have

“P (8,0 P(z,5+2,7%) dxdy

=(~i)k4*s—1nfl("‘°‘)’2 : r@2s+1)

1 I(s+k2)T(s—-k2+2) Z,, (5, 0)+R(s),

where R(s) is holomorphic in ¢ >1 and |R(s)|=0(1/c —3|) in this region.
Proof. We compute

————dxdy An(n—a)\' @ -
“P(z 5,70 B(z, 0, %) ——5— = =0, (T) I's+d—1)
Stm,n,c,y) = - x+i \7F
« 3 s )

.e[~— (m;a) (ycz(i—”)) B (n;oc) (xy—iy)] .dxydy

Using the formula [5, p. 321],

)Y gy = Wi
_jm(x2+1)s-"/2e o I'(s+k/2) £s-1

T+ nmee - (yn (mq—“>)s‘1 (4n(m—a)y)

in conjunction with (2.3) it follows on setting w =5+2 that
4 — —2s-1
B R+ =8, (T00) T rase)
n—oa\~2 I'(2s+1)
Z
q ) TG kR TG—kaga) Zmn&0)

+(_i)k4*s‘1n~1 (

S(m,n,c)

c*0 |C|25

R, .(5,0)
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where

:f O:o (x2 —il)s ((x2x++1;”2)‘k
. (exp{—2ni (m;“) yc;(cx_zil)}—l)

.exp{—Zni (n_a) (xy—iy)} dxdy
q y

Now

[y
0

exp{—2ni(mq_a) ycz)(cx_zi—l)}ﬂl exp{ 2n (nqa)y}dy
n—o
B Y

<[ ydy+ |y 5 dy<c?
0 c~2 cy

Therefore |R,, (s, c)l <c™2/lc —3] which implies that

S(m, n, c, x)

c£0 |C[ZS

Rm, "(S, C)

is holomorphic in ¢>41 and O(1/s —1) in this region. Q.E.D.
Theorem 1 follows easily from Lemmas 1 and 2 and Stirling’s formula

| r@2s+1) |l
IF(s+k2)T(s—k2+2)| /27

|t]— o0.

3. Proof of Theorem 2

Choose ¢>0. By Theorem 1 and the Phragmén Lindeldf principle [6, Th. 14]

it follows that
1+s
7 -2
)

for 0<¢=o=f+e Now proceeding as in the proof of the prime number
theorem [3, p. 104]

_ SBiT s pre
5 Stm,nc.y) 1 (" z,, (s+1,x)x?ds+0 (xT )

T c 2ni 5 2

1 el
<tz 25" (3.1)

1
As was shown before, the function Z, , (%,x) has poles at s=2s5;—1

and a computation shows
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1
Res Z,,,,,,(H,x) 7(m, n)

s=2s5;—1 2

qz;j(rf)pj(n)(( “) (" °‘>>_S’+lF(sj+k/2)r(2sj—1)
- —l)k42317t351+1 I(s;—k/2)

(3.2)

Now shifting the line of integration in (3.2) to Re(s)=¢, using (3.1) and (3.3)
we obtain

S 2s5,—1
("””) S emmy

$<s; <1

B+
+0 (x5T1/2+£+'—‘x ’ )
T

Choosing T=x%#/3 proves the theorem.
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