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1. Introduction 

The classical K loos t e rman  sum is defined by 

a = t  
(a, c) = t 

a d  = - 1 (modc) 

where m,n~Z + and e(z)=e 2'~iz. It is known to satisfy [see 14] 

IS(m, n, c)[ < d( c) cl/2(m, n, c) 1/2 (1.1) 

where (m,n,c) denotes the greatest  c o m m o n  divisor, and d(c) the number  of  
divisors of c. 

Many  problems in number  theory, especially additive problems may be 
reduced to est imating sums of the type 

y~ S(m, n, c) 

c < x  C 

One expects considerable cancellat ion in this sum, and Linnik [8], and Selberg 
[12] have conjectured that  

S(m'n'C)=o(x~) r e > 0  
c<=x C 

and x > (m, n) *~+ ~. 
Recently,  Kuzne tsov  [7] was able to show that  

~, S(m,n,c) xl/6+~ (~ > o). 
c ~ x  C s  
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This result was generalized-by Deshouillers and Iwaniec [4] to Klooster- 
man sums associated to congruence subgroups, and to ones associated to a 
general discrete subgroup with finite volume by Proskurin [9]. In the last case 
the 1/6 is replaced by 1/3 while in both generalizations exceptional eigenvalues 
(see (2.1)) may create additional terms. All of the above results are based on a 
general trace formula developed in [7] and [1]. 

In the following F will denote a subgroup of SL2(Z ) of finite index, though 
there is no need to make this restriction. Let q be the smallest positive integer 
such that 

and put 

As in [12] let keR +, and z be a multiplier for this k. Then for 7 = (a 

t c' d' eF we must have the consistency condition 

X(- 1) = eik= 

J,~'(z) k Z(77')=J~(7'(z))kJ/(z) k Z(7) Z(}") 

where jr (z )=cz+d.  We also fix 0 < a < l  so that 

~ ( ( ;  el)) = e - ~  

The notation is as in [-12]. 
We define the generalized Kloosterman sum, c > 0 

O<=a<qc q c  
O<d<qc 

7EF 

and Selberg's Kloosterman zeta function 

z,.,.(s, z) = ~ S(m, n, c, z) 
C 2s 

c>O 

Our aim in this paper is to prove the following theorems. 

Theorem 1. The function Zm,,(s,z ) is meromorphic in Re(s)>�89 with at most a 
finite number of simple poles all in (�89 1), and satisfies the growth condition 

IZm'"(s'~)l=O \c~-�89 

for s = a  +it, a>�89 as t ~ .  The implied constant depends on F,z,k,m,n.  
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T h e o r e m  2. Let 

then 

/3 = lira log IS(m, n, c, Z)l 
c ~  ]ogc 

I 
S(m,n,c,z) ~ vjx~J+O(xa/3+~ ) (e>0) 

c < x  C j - 1  

for certain constants zj and real 0 < 7 i < 1 .  The implied constant depends only on 
F,z,k,m,n. 

Remarks and Further Results. 1. The meromorphic continuation of Z,,.,(s,z) to 
the entire complex plane was first obtained by Selberg [12]. The estimate on 
Z~.,(s,x) for large t, which is usually difficult to develop for these types of 
functions, is new. By a careful choice of constants in our proof we may replace 

the O by O , _z Vol(F\W) with the implied constant depend- 
\ q I - 2 1 /  

ing at most on k. It is likely that this is the true order of growth. 
2. The number r; appears only if there are exceptional eigenvalues in the 

interval (0,�88 for the Laplacian on F \ J g  [see (2.1)]. 
The z/s are computed explicitly in (3.3). It follows from Well's estimate (1.1) 

that/3 <�89 for congruence subgroups. In general all we know is that/3 < 1. Thus 
Theorem 2 agrees with the results in [7, 3 and 9]. As in Remark 1, the O- 
constant can be changed similarly. 

3. Interesting examples are the groups F=Fo(4N), N e Z  + and k=�89 
It follows by [13] that/3=�89 for these sums. 
Indeed in these cases we have been able to show that aside from the 

exceptional eigenvalue at 2=i-3, due to 0-functions all exceptional eigenvalues 
are greater than or equal to 15/64. It follows from Theorem 2 that 

S(m'n'c'X)-Axl/Z +O(xl/4) 
c<=x C 

(A = A(m, n, )~)). 
Using further work of Vardi [13], one finds that the last asymptotic 

relation is closely related to the distribution of solutions of certain quadratic 
congruences. 

4. In the case of weight k=  1, there are no exceptional eigenvalues [ t t ] .  Let 
N e N ,  and let X be an odd Dirichlet character to modulus N, i.e. X ( - 1 ) = -  1. 
Define the Kloosterman sums (see [2]) 

S(m, n, Nc, X)= ~ s e (ma+nd) - -  , m , n , c > O  

a rood N c 
d rood N c  

a d - z  l ( m o d  N c )  

It follows from Weil's estimates t h a t / 3 -  1 - 3 ,  and since these sums come up in 
odd weight, we obtain using Theorem 2, 
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Theorem 4. 
~, S(m,n, Nc,)O ~x}+ ~ r e > 0 .  

c < x  C 

D. Goldfeld and P. Sarnak 

2. Proof of  Theorem 1 

Let LZ(I~.~f, )~, k) be the Hilbert space of functions g: ~ - - ,  C satisfying 
( c z + d ~  k 

(i) g(yz)=z(y) \ lcz+dl/  g(z), 7 = ( ~  bd)eF 
d x d y  

(ii) ~S Ig(z)l 2 - 7 -  < oo 
D r  

where D r is a fundamental domain for F \ ~ .  
The operator 

[ 92 92 \ c3 (2.1) 
Ak = y2 ~ZXZ +~Zy2 ) - i k y  ~--~ 

has a self acjoint extension to L2(I~J~~ with real spectrum. As pointed 
out in [-12], the spectrum below 1/4 is finite dimensional. Let u~,u 2 .... ,u z and 
21, ...,21<�88 with 

AkUj+2juj=O , 1 <=j<=l 

be the corresponding normalized eigenfunctions and eigenvalues. By separation 
of variables, such an eigenfunction has a Fourier expansion of the type 

1 n= --00 
where 

(t~(n, y) = pi(n) Wk ,, ~, 1 (4re n -- o~ y) 
sgm I . ~ ) ,  sj ~- \ I q [ ' 

if n-c~=t= 0 and 

a~(O,y)=pj(O)ySJ+p)(O)y ~-Sj, if n = e = 0 ,  

where 2~=sj(1-sj), pj(n) are constants, and W~,u(y) is the Whittaker function 
which decays exponentially in y as y--+ oo and satisfies the ordinary differential 
equation 

dzW 1 2 
w = 0  d y 2 4- \ 4 y y2 ] 

We shall have frequent recourse to the following Mellin transform [5, p. 
860] 

~e-2~N'y~W~,u(4~Ny) dy 
o Y (2.3) 

=(4~ N)_~ r(s +�89 #) F(s+�89 
F ( s -  fl + 1) 

which holds for N > 0  and Re(s+�89  
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Following Selberg [-12], we introduce the nonholomorphic Poincar6 series 
for m>0,  meZ, 

era(z, s, Z) = era(z, s, Z, k) 

{ c z + d  ~-k m--c~ ~(z) 
= Z Z ( 7 ) ~ ]  e q icz+dl2~ 

? e F ~ \ F  

w ere,:(: b}. 
Just as in the case of ordinary Eisenstein series the above converges 

absolutely and uniformly in Re(s)>l .  Since m > 0  it is also clear that 
P,~(z,s,x)~L2(F\~Ut~ ). Furthermore, P~(z,s,z) satisfies the following recursion 
relation, 

m m ~  

for Re(s) > 1, where 

~ =(Ak + 2 )- a 

is the resolvent of A k. By the remark following (2.1) it is clear that Rm_s) is 
holomorphic in Re(s)>�89 except possibly at the points st, j =  1,2 . . . . .  I. It then 
follows from (2.4) that Pro(z, s, Z) may be meromorphically continued to Re(s)> �89 
with at most a finite number of simple poles at the points s = s t for �89 < s t < 1. 

The residue is given by the following 

Res (P,.(', s, Z), u j) uj(z) 
s - s  1 

Here 

D 

( m--e  ) ( 1 e -2~(~  - ) "  ~ Y,~-'dY-- =qpi(m) Wk 1 n \ ~ - - / y  
o ~,sj-~ y 

{4n(m-  ~)~ I-~ F(s + s j -  1 ) F ( s -  sj) 
=qpj(m) I \- q I z r ( s - k / 2 )  

after using (2.3). Hence 

Res Pm(z,s,x)=qpj(m) 4n (m-c~] 1-sJ F(2s~- l )  
s~sj \ q / C(sj-k/2) u~(z) 

Lemma 1. Let s = a + i t, for �89 and It[>l 

SS [P,.(z,s,z)I a dx dyy2 =0 ( m ~ )  
D r  

where the implied constant depends only on F, Z and k. 

(2.5) 
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Proof First for ~ < a < 3 

IPm(z, s)l = 0(1) 

uniformly in z and t since the series converges absolutely. 
It then follows from (2.4) and the bound [10, pp. 342] 

1 
I~1 < = distance (2, spectrum (Ak)) 

that 

(~D~n, .2 d x d y '  1/2 ~[m--o:, s - - )  
r,,tz, s,)~j ~ 7  = ~  Itll2a-ll 

since dist(s(1 - s), spectrum Ak) > Im(s(1 -- s)) = tt(2 a -- 1)l. 

Lemma 2. For m, n > O, a > �89 we have 

dxdy  
~ P.,(z,s,z)P.(z,-g+2, Z) y ~  
Dr 

= ( _ i ) k 4  ~-l~ 1 (H--O~ t 
2 F ( 2 s + l )  

\ q I F ( s+k /2 ) r ( s -k /2+2)  zm'"(s'Z)+R(s)' 

where R(s) is holomorphic in a > i  and IR(s)l = O ( 1 / a - � 8 9  in this region. 

Proof We compute 

fo dxdy  (4~(n_c0] l  s- F ( s + ~ - l )  ~[. Pro(z, s, Z) P.(z, (9, 7~) ~ - =  •,,,, \- q ! 
DF 

�9 e [ - ( m ~  -~) ( y c z ( l x + i ) ) - ( ~ - ) ( x y - i y ) ]  "dxdyy 

Using the formula [5, p. 321], 

-rc(--i) k (yrc ( ~ - )  ~- 1 
( x  + i) k _ d x _  

_ ~ (X 2 n t- 1)s_k/2 e F(s+k/2) 
Wk 1 (-47C(q-- O:) y)  

in conjunction with (2.3) it follows on setting co = g + 2  that  

, (4~(n-o : ) ]  zs-1 
(Pro(" s' Z)' P"(" g+  2' ;0} = 6" " x- q I r ( 2 s +  1) 

+ ( _  i)k 4 _ ~ _  1 re_ t (n-o:]  -2 C(Zs+ 1) 
\ q / F(s + k/2) F(s - k/2 + 2) Zm'"(s' Z) 

+ ~, S(m, n, e) R,.,.(s, c) 
c , o  Icl 2~ 



Sums of Kloosterman Sums 249 

where 

Now 

y2 ( x+i ]-k 

" ( e x p { - 2 r t i ( m ~ ) y c ~ S Z l )  } -  

"exp{-2rci(n-q~)(xy-iy)} dxdyy 

i y exp{-2rci  ( m ~ ) y c ~ x ~ / + l , }  - 1  expI-27z(%~)y}dy 

~ ~ e x p { - 2 r t ( n - ~ ) y }  

0 c 2 C 2 y  

2 / I  1 i Therefore IRm,,(s, c)l ~c -  /a-~b which implies that 

S(m, n, c, Z) 
cZ, o Rm,.(s,c) 

is holomorphic in or>�89 and O(1/a-�89 in this region. Q.E.D. 

Theorem 1 follows easily from Lemmas 1 and 2 and Stirling's formula 

r (2s + 1) Itl ' / ~  
F(s + k/2) F(s- k/2 + 2) 1/2s I t l - ,  0o. 

3. Proof of  Theorem 2 

Choose ~>0. By Theorem 1 and the Phragm6n Lindel6f principle [6, Th. 14] 
it follows that 

,x  < l t f f - ~  +~ (3.1) 

for 0 < e < a < f l + e .  Now proceeding as in the proof of the prime number 
theorem [3, p. 104] 

S(m,n,c,z) 1 +t~-ir ( s ~ l ) x  s ( ~ )  
~x c -27zi ~ Zm " ,X --ds+O 

c _  + f l - - i T  ' S 

As was shown before, the function Zm,,, - -  Z has poles at s = 2 s j - 1  
and a computation shows 
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/1 +s  \ 
Res Z~,,, ~---f-,Z)=zs(m,n) 

s=2sj- 1 

(3.2) 
(_  i)~ 42~ ~3~+ 1 r(ss-  k/2) 

Now shifting the line of integration in (3.2) to Re(s)=e, using (3.1) and (3.3) 
we obtain 

S(m, n, c)_ y~ x2Ss -1 X,6+~\ 
z j ( m , n ) ~ + O  (xe T1/2+e + ~  -) 

C h o o s i n g  T=x 2~/3 proves the theorem. 

Acknowledgements. The authors would like to thank Professor D. H6jhal for his remarks and 
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