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Introduction

A module V for a Kac-Moody Lie-algebra G is called integrable if (i) V
= @ V,, (ii) the Chevalley generators e, f; act locally nilpotently on G. Let Sy,
AeH*

denote the category of integrable G-modules V such that dim V, is finite for all
AeH*. In this article we classify the irreducible objects of the category 4, for
the non-twisted affine Lie-algebras. .

Let C denote the one-dimensional center of an affine Lie-algebra L(g) and
let ceC be the canonical central element [3]. If V is an irreducible object of
4. there exists an integer n=n(V) such that co=nv for all veV. If n>0 (resp.
n<0) we prove that ¥ is an irreducible highest weight (resp. lowest weight)
module in the category @ (resp. ¢7) [3].

Let («g,...,2,) be the simple roots of L(g) and assume that (a,,...,a,) form a
simple system for the underlying finite-dimensional simple Lie-algebra g. Let
I', denote the non-negative integral linear span of {a;:i=1,...,n}. Define a
category @ of L(g) modules by Ve if and only if (i) cV =0, (i) V = ® Vv,

AcH*
(il) the set P(V)={ieH*: V,+0} is contained in a finite union of cones D()
={l—n+nd: yel',, neZ}. If Ves, is irreducible and cV =0 then we prove
that Ve0.

In section three we construct some examples of modules in 0. Let T,
denote the homogeneous Heisenberg subalgebra of L(g) and let © denote the
(graded) quotient of U(T,) by the ideal generated by the center of T,. For
cvery AeH* and every ideal I of & we construct modules M(A, I)e. The
construction is analogous to the one for Verma modules. We prove that the
irreducible objects of @ are in bijective correspondence with the set
(4, 1): AeH*,1 a maximal graded ideal in &} and determine the isomorphism
classes of the irreducible modules.

In section four we classify the isomorphism classes of irreducible integrable
modules in @. Any such module has finite-dimensional weight spaces. For the
affine Lie-algebra A" we see that for every n>0 and every ae(C*)" there exists
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a module V(n,a)e® such that V(na) is irreducible and integrable. Further if
V(n,a) and V{m,b) are isomorphic then n=m and a=a'o(b) for some element ¢
of the permutation group S, and some a'e C*.

1. Preliminaries

We recall the explicit realization of the non-twisted alfine Lie-algebras (see [3],
Chap. 7 for details).

Let g denote a finite dimensional simple Lie-algebra, ) a Cartan subalgebra,
A the set of roots of g, n={a,,...,%,} a simple system for 4 and A, the
corresponding set of positive roots. Let 6 be the highest root of 4, .

Let L=C[t,t~'] be the algebra of Laurent polynomials in the indeter-
minate ¢. The loop algebra L(g):L(?g

is an infinite-dimensional complex Lie-algebra with the bracket [ ], given by,
(P,QeL, x, yeq)
[P®X7Q®y]0:PQ®[x:.}]

Let d: L(g)— L(g) be the derivation of L(g) obtained by extending linearly the
assignment

dt"®x)=nt"®x.

The affine Kac-Moody Lie-algebra L(g) associated to g is obtained by adjoin-
ing to L(g) the derivation d and a central element ¢. Explicitly,

L(@)=L@@CcaTd
with the bracket given by (x,yeg, A, u, A, 1, €C)
["®@x+Ac+pud, t"®y+ A,c+pu,d]
=" [x, y]+nut" @y —mu " @x+md,, _,B(x,y)c

where B: g x g~ C is a non-degenerate invariant form on g.
From now on we assume that g is a fixed simple Lie-algebra and denote
the algebra L(g) by G. Let H be the subalgebra

H=hpCcapCd

of G. Extend an element ieh* to an element of H* by setting A(c)=0=A(d) so
that h* is identified with a subspace of H*. Define e H* by setting |, 5. =0
od)=1.

Let g=b@ g, be the root space decomposition of g. For aed, nel, set

aed
Ga+ nézt"®ga9
G,;=t"®b, n=0.

Clearly G,,,, and G,; are H-stable subspaces of G. Set A={a+nd: acA.
neZ}u{nd: neZ —(0)}. One has the root space decomposition

G=H®@G)

yed
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Let a, denote the element 6 —0 of A. The subset 7= {a,,...,a,} forms a simple
system for 4 and the corresponding positive system 4, is given by

A, ={a+nd: xed,n>0}u{nd:n>0}U4,.
Set N,= @ G,, N.= ® G._

acd ¢ aed

. Clearly N, and N_ are subalgebras of G and

one has G:N7®H@N+.

The Lie-algebra G admits a non-degenerate invariant bilinear form such
that the restriction of the form to H x H is non-degenerate. Let (,) denote the
form induced on H*, (o, )30 for all aer. The Weyl group W of G is defined
to be the subgroup of Aut H* genecrated by the reflections {s;: 0<i<n}, s,(4)

2(4, o

=)~—((—’a')) o, VAe H*. The Weyl group leaves A invariant. The subset Wr of 4
%5 O

is called the set of real roots. A root ae 4 is imaginary if a¢ Wr. In fact,

Wn={o+nd: acd, nel}.

Fix a Chevalley basis {e,: aed}u{d;:i=1,...,n} for g. For acd, keZ define
elements e, ,, e} as follows:
e, =1"®e,,

V=t*®a, i=1,...,n, keZ—(0).

For convenience, we set e, (=¢;, e_, (=f, 1Sisn, eg=e 4, fy=e, _;. The
elements ¢, f;, i=0,....n, are called the Chevalley generators of G. The sub-

algebra H is spanned by the elements {d;: i=1,...,n} together with the central
2
element ¢ and the derivation d. Set doz—g—%—(() 0 c. For any yeWn, y=a
. . ) . 2
+no the element yeH is defined by ¥=[e, ,,e_, _,] =oc+( n) c.
o, 0

The homogeneous Heisenberg subalgebra T, of G is defined by
T,=Cc @ Gy

keZ~(0)
The elements {e{’: i=1,...,n} form a base for the space G,;. Set T=T,+H
=(L@hPCcdCd. If n, denote the subalgebras & g.,, then one has the
decomposition of G acdy
G=L®n_®TOL®n,,

as T-stable subalgebras. For a subalgebra B of G let U(B) denote the universal
enveloping algebra of B. By the Poincaré-Birkhoff-Witt theorem one has (set
Ng =L®n,)

U(G)=U(T)@(N2 U(G)+ U(G)N?)

as T-stable subalgebras. Let f': U(G)—U(T) denote the canonical projection
onto U(T). For ie(l,...,n) let L;: U(G)— U(G) denote left multiplication by e’
and let D : U(T,)— U(T,) be the derivation extending D, (el’) =ke{", ,. Set

(D, +L)

(i) _
Q"= il

1, ie(l,...,n) j=20,eg. QP =1, QP =e?.
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In ([1], Lemma 7.5) H. Garland obtains the expression for the element
e ei(r,s>0) in terms of the above decomposition. It is not hard to deduce

—oy, 1

from his formula that (r >0, keZ)

g (&_-i.f;_):(—l)’-Qf),

rt r!

’ e—al,l e;+1 r ‘ i i .

(where el’=d,). Let n: G—G be the automorphism of order two extending

N, ) =e_yn ne)=—e (xed,k,nel). Clearly n(N9)=N°, n(T)=T. It is easy
to check that the restriction of n to T commutes with D, and that n-L,=

D, LY ‘
(_+._l)_.1_—_;1(QJ(l>), Let
_ Jj!
B: U{G)-U(T) be the projection onto U(T) corresponding to the decom-
position

—L;-n. For ie(l,..,n) and j>0 set P9=

U(G)=U(T)®(N2 U(G)+ U(G)NY).
Then 5+ =f-# and we have:
(1.1) Proposition. Let ie(l,...,n), r,keZ, r>0. Then

- e; f;r+1 . r ; ;
4 (eauk"r_lil.(r—l—l)'):(_]) ,Zoe(jlk'PermOd U(To)e,
! ! =

_ €r+11 fr+1
i .1 A — _1r+1 (i) .
) ﬁ((r+1)! (r+1)!) (=R

Let I', (resp. 11) denote the non-negative integral linear span of («g,...,a,)
(resp. (&, ..., )

The category ¢ of G-modules is defined as follows: a module M@ if and
only if:

(a) le@; M,;, where M, ={meM: hm=A(hymVheH} and dimM, < co,

(b) the set P(M)={ieH*: M,+0} is contained in a finite union of cones
DAy={A—n:nel }.

For AeH* let I, denote the left ideal in U(G) generated by N, u{h

—A(h): he H}. The Verma-module M(4) is defined to be the quotient U(G)/I,.
M (A) has a unique irreducible quotient L(4) ([3], Chapt. 9).

{1.2) Lemma. The set {L(1): AeH*} exhaust all the irreducible modules in O.
Further a module L(}) is integrable (i.e. the elements {e,f;:i=0,...,n} act
locally nilpotently on L(4)) if and only if (1,d)eZ , for all i=0,...,n.

2. Integrable modules
(2.1) Definition. A module V for the affine Lie-algebra G is called integrable
if:
(@) V=@ V,, where V,={veV: hv=AhjpVheH},
AcH*
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(ii) the elements {e, ,: aed, neZ} act locally nilpotently on V, ie. for every
veV there exists an integer k =k(o, n,v) such that & ,-v=0.

Let .# denote the category of integrable G-modules and let . be the
subcategory of integrable modules with finite-dimensional weight spaces. For

Ved set
P(Vy={AeH*: V,+0}.

(2.2) Lemma ([3] Proposition 3.6). Let Ve.#, Ae P(V). Then
(a) (A, d,)eZ for all ie{0, ..., n},
(b) wieP(V) and dimV,=dimV,, for all we W,
(c) A+o,¢P(V) (resp. A—o,¢P(V)) implies (A, %) =0 (resp. (4, 9,)<0).

(2.3) Remark. From the lemma it is clear that Ve.# if and only if the elements
(e;, fi: i=0, ..., n) act locally nilpotently on V. Further the statements (a) and (c)
hold for all roots ae Wn. The g-submodule generated by a vector veV is finite-
dimensional and hence V breaks up as the direct sum of irreducible finite-
dimensional g-modules.

For nel’,, set

Um,),={xeUm,): [hx]=nh)xVheH}.

Define an ordering < on H* by: A<’ if and only if N =il . IfVes and 0
+veV), there exists nel, such that U(n,),. v#0 and U(n,), -v=0 for all
#'el’, such that n'>#. Further (A1+#,0,)eZ , for all i=1,...,n.

(2.4) Theorem. Let Ve 4, be irreducible and let k be the integer such that cv
=kv for all veV. Then

(1) if k>0 (resp. k<0) there exists an element 0veV (resp. OkweV) such
that N, v=0 (resp. N_w=0),

(i) if k=0 there exist nonzero elements vy, woeV such that Nv,=0, N°w,
=0.

{2.5) Remark. Observe that if k>0 then V is an object of the intersection
F# N0 and hence by Lemma (1.2) V is isomorphic to L(4) for some ie H* with
(A, &)eZ ., for all i=0,...,n. If k<O then V is isomorphic to an integrable
irreducible lowest weight module.

We need the following Lemma:

(2.6) Lemma. Let Ve 4, . The subsets P_(V), P_(V) of P(V) defined by
P_(V)={AeP(V): V,,,=0Vnel', —(0)} ={AcP(V): n V,=0),
P_(V)={ieP(V): V,_,=0Vyel, —(0)} ={AeP(V); n_V, =0}

are non-empty.

We recall the following fact about finite-dimensional irreducible modules
for g ([2], Chap. 6, Proposition 21.3).

(27) Lemma. Let F= @ F, be an irreducible finite-dimensional representation
Aeh*

of g with highest weight p. Let veb* be such that (v,d)eZ, for all i=1,....n
and y—vel',. Then F,+{0}.
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Proof of Lemma (2.6). We prove the Lemma for P _(V), the proof for P_(V) is
similar. By Remark (2.3) we can choose AeP(V) such that (4,d)eZ, for all i
=1,...,n Since dimV, is finite, it follows that the subspace U(n,)V, is finite-
dimensional. Hence there exists an element nel’, such that

Un,),V,#0 and U(n,), V,=0 if >n

This proves that n ¥V, =0 We now establish the equivalence of the two
definitions. Let ueP(V) be such that n, V,=0. If V,,,+0 for some nel, we
choose n'el’, such that there exists O%veV, ., with n v=0. Then F="U(g)v
is a finite-dimensional irreducible module with highest weight p+#n+#%". By
Lemma (2.7) it follows that F,=FnV, is non-zero. This contradicts the fact

that n, V,=0.

Proof of Theorem (2.4)(i). Assume k>0. Let AecP (V), (Ld)eZ Vi=1,...,n.
The set
A ={yeWnnd_ :(L7)=0}

is a finite (possibly empty) subset of 4. Fix a positive integer r such that o
+soed, —A(A) for all xed, szr.

Claim 1. V,_ ;=0 for all szr. Assume that the claim is false. For some aed,,
set y=—a-+sd. Then (4,7)>0 and hence by Lemma (2.7) it follows that V,_,,
(=V,,,) is non-zero contradicting the choice of A.

Fix an integer pz0 such that V,, ;+0 and V,, s=0 for all s>p.

Claim 2. For all m>0 and aed, we have V,, ., ... s =0. Assume that the claim
is false. Since (A+a,d)>0 if acd it follows from Lemma (2.2} that V,

. . +{m+p)o
#+ 0 contradicting the choice of p.

Claim 3. For all aeA, and all integers m>r we have

v, 0.

—a+(mtp)d
The proof is similar to the proof of the Claim 2. Observe that (L —a,7)>0 if y=
—o+(m—1)0.

Let O%veV,, ;. From claims 1-3 it follows that

G,;-v=0 forall r>0
and

Ga+s¢SAD=O

for all but finitely many values of s. Since V is integrable the elements
{e, i aed, keZ} act locally nilpotently on ¥ and hence the subspace U(N,)v is
finite-dimensional. Let v,,...,v, be a basis for U(N,)v with weights py, ..., 4,
As a U(N_)-module V is generated by the elements (v, ...,v,) and hence the set

P)= U D).
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This implies that Ve® and hence by ([3], Proposition 9.3, Lemma 10.1) it
follows that V is isomorphic to L{4,) for some A,e H* with (4,,d,)eZ _ for all i
=0,...,n. This completes the proof of Theorem (2.4) (i) in the case k>0. For
k <0 the proof is similar. We work with P_(V) rather than P_(V).

(ii) Assume k=0. Let ieP (V). If V,,,, =0 for all aed, and all neZ the

theorem follows. If V, ., ,s+0 for some aed, and reZ set p=1+a+rd.

Claim. V, ;. =0 for all ﬁeA+ and all seZ. Suppose the claim is false. Since
a, fed, it follows that either (a+B,3) or (a+p,p) is positive, say (o+ f,d)>0.
Set y=o+(s+r)é. Then (u+p,7)>0 and hence by Lemma (2.2), V,

+B+sd-y
=V, ;%0 contradicting 2P (V). The claim follows and hence NV, =0. )

This completes the proof of the theorem.

3. The category

Throughout this section and the next we shall deal only with elements Ae H*
such that (4,¢)=0, ie. 2e(b@Cd)*. The category ¢ of G-modules is defined as
follows: a module M is an object of ¢ if and only 1if:

() M= & M,,
AeH*
(i) there exist finitely many elements 4,,...,4,€ H* such that the set P(M)

={ieH*: M, %0} is contained in a union

P(M)< | D(2)
i=1
where D(J,) ={4,—n+nd: nel',, neZ}.
Observe that the center of G acts trivially on all objects in 0. The mor-
phism in @ are the G-module maps. If Me( then any submodule or quotient

module is also in 0. Also finite direct sums and tensor products of modules in
¢ are in 0.

(3.1) Lemma. Any module MeQ contains elements O+meM, such that me
=0.

Proof. Recall the ordering < on H* defined by A<y if and only if u—Al,€4 .
The condition (ii) in the definition of @ implies that there exists 1€ P(M), which
is maximal with respect to <. Clearly N2 M, =0.

We construct examples of modules in @. Thus we say that a module M@
is a highest weight module of weight 4 if there exists 0% me M such that

Nom=0, hm=ih)m, M=U(G)m.

For JeH*, (4,¢)=0, let €, denote the one-dimensional B®=H®N? module
defined by
hot=Aih)1, N°-1=0.

+
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Set M(2)=U(G) ® C,, v,=1®1. Define an action of U(G) on M(4) by left

U(Bo)
multiplication. Let & denote the quotient U(T,)/U(T,)c and let p: U(T,)-—>& be
the canonical homomorphism. Set ¢(el’)=x{". It is easy to see that S is in fact
the polynomial algebra in the infinitely many variables {0 keZ, i=1,....n}.
For keZ, yel',, set

U(N®), o= {xeU(N®): [h.x]= —(n+ko)(h)xVheH},
U(Tyhs={xeU(T,): [h,x]=ko(h)xVheH}
S, =p(U(Ty)s)-

Since T, is an H-stable subalgebra of G we have a Z-grading on the rings U(T,)

and S,
U(To) = S‘DZ U(To)kaa
S=@¢,.
kel

Further there exists a bijective correspondence between H-stable left ideals in
U(T,) containing ¢ and graded ideals in €.

(3.2) Lemma. (i) As an N°-module M(J) is free and
M(A)~UNN)RSR®C,.
(i) P(M(A)=D(2). If nel',, keZ then

M(;“)l~n+k6: @ (U(Ng)rl-kpri@eq@qji)

q-p=k

(iii) Let I be any proper graded ideal in &. The G-submodule of M(A)
generated by the elements {xv,: xep~'(I)} is proper and the quotient M(A,I)
satisfies

M, D=~ UN)®(E/HRC,,

M()h, I),,+k(3: @ . U(N_(_))"er&@(e/l)q@q:l.

a-p=

Proof. Parts (i) and (ii) of the lemma are clear. For part (iii) set
M =UG)Jv, (v,=1Q1Q1eM(}),
where J=p~!(I) is a proper ideal in U(T). If v,e M’ then
v, =gXxU,
for some geU(G), xeJ. Since N%xv,=0 for all xeU(T,) it follows that
Ulzﬁ(g)xvz

where B: U(G)— U(T) was defined in Sect. 1. Part (i) of the lemma implies that
p(B(g)x)=1 and hence 1€l contradicting the fact that I is a proper ideal.
Let & denote the set of maximal graded ideals in &.
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(3.3) Corollary. Let Me0 be irreducible. There exists A H* and 1€ & such that
M is a quotient of M(A,1)

Proof. By Lemma (3.1) there exists 0=meM, such that N?m=0, M =U(G)m
From the definition of M(4) it is clear that there exists a morphism f
M(})—>M-0 with f(v,)=m. Set J= {xeU(T,): xm=0}, I=p(J). By Lemma
(3.2) the map f factors through to a morphism f: M(A, I)=»M —0.

Let I'(+1) be any graded ideal containing I and let J'’=p~'(J). Then M
=U(G)J'm (since M is irreducible) and as in the proof of Lemma (3.2) there
exists xeJ', yeU(Ty) with (yx—1)m=0 ie. (yx—1)eJ<J'. This proves that
teJ and hence I'=€.

(3.5) Theorem. Let ic(h@Td)*, IeE.
(i) Asa U(N®)y-module M(4,1) is free and dimM(A,1),,<1 for all keZ.
(i) M(A, 1) has a unique irreducible quotient V (4, I).
(1) The set {V(4,1): 2e(b@CTd)*, 1e&) exhaust the irreducible modules in
L.
(iv) The modules M(4,I) and M(X,I') are isomorphic if and only if 1=1" and
A=A"4+nd for some neZ with (&/I),+0.

(3.6) Lemma. Let IeS. As a graded ring S/I is isomorphic either 1o C (in
which case x\{’el for all i=1,...,n and all keZ) or to a Laurent subring
C[tt="] of (Il[t,t”], gradt=1.

Proof. Set A=8/I. Clearly A is a simple Z-graded algebra over € and hence
every non-zero graded element is invertible. The Lemma is a consequence of

the following fact: Let B=(3 B, be a Z-graded commutative algebra over €, B
nel

+C. Let r be the least positive, integer such that B,+0. Assume there exists an
invertible element "€ B,. Then B, =0 if p£0(r) and the homomorphism B— B,
®C[t~",t"] defined by b,—(b,t~"®t" (n=0(r)) is an isomorphism of graded
rings.

Proof of Theorem (3.5). (1) This is immediate from Lemma (3.2)(iii) and Lem-
ma (3.6).

@) If M’ is any proper submodule of M(A ) then v,¢ M’ since M(AI)
=U(G)v,. By part (i) we have M’ M(4, 1), ={0} and hence the sum M, of all
proper submodules of M(4,1) is again proper. The quotient V(4,])= M(/ H/iM,
is thus the unique irreducible one.

(1)) This is immediate from Corollary (3.3) and part (ii} above.

(iv) Let f: M(A H—»M{),I') be a G-module isomorphism. Then AeD(}),
A'eD(A) and hence A=1+nd for some neZ with (S/I)_,%0. Further there
exists geU(T,) with v}, =gf(v,). Let xel and yeU(T,) with p(y)=x. Then the

equation )
0=f(ygv,)=yef (v;)=yv;

proves that xel'. Similarly we can prove that I'=I and hence I=I'. For the
converse, observe that for any xe&,, x¢/ the map yv,—»yxv, (yeU(N®)) is a
G-module isomorphism.
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Let L, {r>0) denote the subring C{¢".t~"] of L and let &' denote the set of
graded ring homomorphisms A: &~ L with A(1)=1 and such that im(A)=L,
for some r>0. If r=0 then L,=C and 4, is the trivial homomorphism A,(1)
=1, A,(x)=0for all i=1,...,n, keZ —(0). Set H=H"U{4,}.

Given Ae$, imA=L, and Ac(h@Cd)* define a T-module structure on L,
by:

g 3= AN, xeU(Ty),
NOL, =0, hts=(A+rso)(h)t™.

Denote the corresponding module by L, ;. It is clear that L, , is an irreduc-
ible T,+ B° module and that Ly =Ly .0 for all seZ. Let M(Z, A) denote the
induced module U(G) (X L, ,. If IeS then by Lemma (3.6) it follows that

U(BY+ Tg)
I=kernel A for some Ae$. It is now not hard to see that M(4, 1) is isomorphic

to M(4, A).

(3.8) Proposition. The modules M(A, A) and M(X', A') are isomorphic if and only
if (i) A=A +nd for some neZ with A'(&,)=%0 (ii) there exists 0aeC such that

for all ke, and all xe S,
A(x)=a* A'(x).

Proof. Set I=kernel A, I'=kernel A". If the pairs (4, 4) and (1, A') satisfy con-
ditions (i) and (ii) then I =1 and hence M(4, A) and M(4', A") are isomorphic by
Theorem (3.5).

Conversely if M(4, Ay and M’(X’, A') are isomorphic then A=1"+nd for some
neZ and kernel A=kernel A'. Hence there exists » 20 such that im(A)=im{A")
=L, . If r=0then A=A" 1f r>0, then there exists xeS, with A(x)#0, A'(x)=*0.

Set
Axy=at’, A(x)=>bt", a,beC—(0).

The result is immediate from Lemma (3.6) since (&/I) is spanned by the
elements x°, and we have
A(x®) =(ab™ 1y A'(x°).

The modules M(4, A) have a unique irreducible quotient which we denote
by V(4,A). Clearly an isomorphism of M(4, 1) and M(4, A") induces an iso-
morphism of the quotients. One can imitate the proof of Proposition (3.8) to
obtain the following parametrization of the isomorphism classes of irreducible
modules in .

(3.9) Proposition. The modules V (4, A) and V(X, A') are isomorphic if and only
if

(iy A=A"+nd for some neZ, A'(S,)#*0,

(i) there exists 0aeC such that for all keZ and all xe S,

A(x)y=a* A'(x).

(3.10) Remark. If imnA=L, then M(4, A) is generated as a U(G)-module by t"*
for any seZ and hence

dim V (4, A),,;=dim M(4, A) for all seZ.

rséd
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4. Integrable modules in ¢

In this section we obtain the necessary and sufficient condition for the modules
V(4,A) to be integrable. We use the notation of Section 3. Let €* denote the
set of non-zero complex numbers.

Set P, ={e(b@Ca)*: (4, d,)eZ  Vie(l,...,n)}. For ieP_ set

Jy={ie(l,...,n): (3, 8,)>0},
r="Y (&)

iet;
If r,>0 identify the set (C*)™* with the product (C*)**) x ... x (C*)*** where
iy<..<i, are the elements of J,. For every ae(C*)", a=(a;), ieJ,,
1 <j<(4,4,), define a graded homomorphism A,: S— L by extending

AxM =0 VkeZ, i¢J,,
) (A,a0)
Aa(xg’)z( > ai-‘j)t" VkeZ, iel,.
j=1
Set 9, ={4,: ac(C*)*}. If r,=0 then set 9, ={A4,}, (where A, was defined in
Section 3). Observe that , =9, il A=p+s9, seZ.

(4.1) Lemma. For all ieP,, ae(C*)* the image of A, is a Laurent ring ie.
D, 9.
(4.2) Theorem. V(4, A) is integrable if and only if AcP, and Ae$,.

Define an equivalence relation on §, by: A,~ A4, if and only if there exists

beC* and permutations g, of (1,...,{/, &), ieJ, such that

- t
a;=ba; ;)

The following Corollary which is now a trivial consequence of Proposi-
tion (3.9) gives the parametrization of the isomorphism classes of irreducible
integrable G-modules in 0.

(4.3) Corollary. The integrable modules V (4, A,) and V{(u, A,) are isomorphic if
and only if: A=p+ko for some kel with A,(S,)*0 and A,~ A,.

To simplify the notation we prove the results for the affine Lie-algebra A{"
and sketch a proof of the general case at the end of the section. We recall the
following well-known results.

Lemma A. If a,,...,a,eC* are distinct, then, the matrix (a)1<i, j<k is non-
singular.

Lemma B. Let (a,),. be elements of C satisfying a recurrence relation of type
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where, A;e@ (1<j<r) is independent of n. Assume that A, +0. Let am, .y, be

the (non-zero) roots of the polynomial X' — Z A; X" Then a,= Z B,a}, Vnel,
where B,,...,B,eC depend on a, ...,qa,. i=1

Lemma C. Let I be the ideal in a polynomial algebra C[X,,...,X,] generated
by elements of the form

n r
~(Lbx) e,
j=1

where b ,eC, 1<i, j<n and p is some positive integer. If the matrix (b;;) is non-
singular then I is of finite co-dimension i.e. there exists an integer 4 >0 such that
Xiel for all je(l,...,n).

From now on G denotes the affine Lie-algebra of type A\V. Let y,h,x be the
standard basis for sl(2,C) and let y,, h,, x, denote the elements t"®y, t"®h, t"®x

n>'n

of G. Set y,=y, hy=h, x,=x. Clearly,

N°=®Cy, T,=Cc @ Ch, N!’=@Cx,.
neZ neZ— (0) neZ
The algebra & is the polynomial algebra (E[En: neZ —(0)] and the
map p: U(T,)— @ satisfies p(h,)=h,
Proof of Lemma (4.1). Let AeP,, (4, h)=n>0 and let a=(a,,...,a,)e(C*)". As
sume that a,...,q, are the distinct elements in (a,,...,a,) and that a, occurs
with multiplicity p;, 1 <i<k. Then

k
i, =(Z p,u?)t’ VreZ.
=1

By Lemma A it follows that there exists i,je(l,...,k) such that A, h)+0,
A h_ A*0. Let r,se(l,...,k) be the smallest mtegers such that there exists
0eG,, Q,eG_, with 4 (QH:O and 4,(0,)#0. If r=s write r=sp+q, 0=g <s.
Smce QQ"e@ and A (QQ )+0, the minimality of r forces ¢ =0. If p>1 then
AJSQQE™ 1)#O and QQ%~ 66 (s<r). Hence p=1 and r=s. A similar argument
proves that 4,(S))=0 if q$0(r) and so A, maps onto the ring L, =C[t,t7"].
If r <s the proof is similar.

We now prove Theorem (4.2). We need the following consequence of Lem-
ma (2.2) and Theorem (3.5). Let v, denote the element 1®1 of M(4, A) and 7,
the image of v; in V(4, A). Let B: U(G)—U(T) be the canonical map defined in
§1.

Given any n-tuple of integers r=(ry,....1,) S€t X, =X, ...X, s V() =Yy, - Yy

(4.4) Lemma. Let AeP_, (A, h)=n. The following are equivalent:
(i) V(4,A) is integrable,

(i) y, -, =0 VreZ"*!,

(iii) A(E(x(,, Vi) =0 Vr,seZ" .
Proof. (i)=(ii). This is clear from Lemma (2.2)(b) and the fact that y, -7, has
weight /1 (n+ Do if reZ"*1.

(ii)=(i). This is by Definition (2.1).
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(ii)<=>(iii). By Theorem (3.5)(ii) it follows that y,,-7, =0VreZ"*" if and only
if the set {y,,-v,: reZ"*'} generates a proper submodule of M(/, A). Equiva-
lently, (by Remark (3.10))

X Vi ;=0 Vr,seZ"**
ie. A(B(x V) =0 Vr, seZ"+.

Recall the elements BeU(T,) defined in §1. Thus if D, : U(T,)— U(Ty) is the
derivation obtained by extending D_(h,)=nh,, , and L,: U(T))—U(T,) is left
multiplication by h,, then

By Proposition (1.1)}(ii) we have

P=(~ )/f(j’l j)

Set E:p(ﬁ). Proposition (1.1)(i) gives us the following recursive formula for B,
(4.5) B=— Z hiy o B

Let AeP,, (A, h)=nand A,€H,;. For 0=j<n we have

(4.6) AP =(=1Y Y a;,...a; )V

J

where the sum is over j-tuples i, <...<i;, f,e(l,...,n). If j=1 then P =—h,

n

and hence Aa(ﬁl)z (— Z ai) t. Assume that (4.6) holds for all j <i. Substituting

i=1
the values of A(h,, )= (Z a'“) '+ and A,(P)(0<j<i) in (4.5) gives (4.6) for

i+1. Conversely if for some Ae$, there exists ay,...,u,eC* such that (4.6)
holds, then,

(4.7) A(h) = (Z a{f) v

for0gjsn.

Proof of Theorem (4.2). Assume that V(4, 4) is integrable. By Lemma (2.2) we
know that leP, ie. (4, h)=neZ . Define scalars a,eC, reZ by,

A(h)=a,t", r+0, a,=(ih)=n

For reZ let (r) denote the element (r,1,...,1) of Z"*'. By Lemma (4.4)(iii) and
Proposition (1.1) (1) we have

0= A(ﬁx()y”“)zz a,, AB_ )+,
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Claim. A(P)+0.

If A(E,)z() then the preceding equality together with Proposition (1.1)(i)
implies that

n—1

0= ( Z j+r+1Rx—j‘1>:A(ﬁ(xr+1x'r1y"))'
j=0

Equivalently,
X, X7y 7, =0 VreZ.

n—1

Thus the element X}~ '-y"- 0, generates a proper submodule of V (4, A) and hence
n—1

X7y, =0. Since y_,-y"-7,=0 it follows from the standard representation
theory of s1(2,C) that y"-v,=0 contradicting (A, h)=n. This proves the claim.

Let (4,)g<,<, be such that A(P)=4,t. The scalars (a,),.z satisfy
n—1
Gein™= — 2 aj+rAn—j
=0
and hence by Lemma B it follows that

n
a,= Yy B, Vrel,
i=1

where B,,...,B, are determined by a,,...,q, and q,...,q,, are the roots of
n—1

the polynomial (X"+ > A"_ij). Further for 0<j<n,
j=0

A=(-1 ¥ gy
By (4.7) we have B;=1 for all ie(l,...,n) and hence A=A, where a
=(ayys > A E(CH)"
We now prove the converse. Thus let AeP,, (L, h)=n=0 and A=A4,9H,. If
n=0 then A=A,. For all p,qeZ we have,

X, Vg Uy =h, 0 0;=0

and hence the elements {y, -v,: geZ} generate a proper submodule of M(4, 4,).
Thus by Theorem (3.5)(ii)

¥, 0,=0
for all peZ and V(4, A4,) is the trivial G-module.

Assume now that n>0 and A=A, for some a=(a,,...,a,)e(C*)". Let r>0
be such that A, maps onto L, =C[t,t""]. Let Z, denote the set of residues
modulo r. For every ieZ, define a linear map ¢,;: M(i+id, A)» U(N°)®L by
extending

p(g@1*) =g@1PT!

for all p,qeZ, ge U(N?),, where U(N?), is the subspace {xe U(N®): [d,x]=px}.
Clearly ¢, is injective and ¢,(M(/.+id, A)) acquires a natural G-module struc-
ture so that ¢, is a G-module map. Denote this module by M, Set
=¢(0,,:5); notice that v;=1Q@t', icZ,. Let M denote the G-module (P M,; the

ik,
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underlying vector space of M is U(N°)®L. We shall prove that M has an
integrable quotient M such that if n: M—M—0 denotes the canonical map,
then n(M;)=#0 for all ieZ,. Thus M,=n(M,) is an integrable quotient of M, and
the theorem follows since V(A+id, A) is a further quotient of M,.

We have the following explicit formulae for the action of G on M. Let

g€ U(N®),,m, p,q€Z, then,

d(g®t")=(A+md)(d)g®t"
Y, (g®t")=y g@1" "4

h(8@1™) =g ®A(hy)t" + [h,, g]@1"+1
X, (¥,8®t™)=(y, X, +h,, Jg®t"F).

(4.8)

(49) Lemma. Let ge U(N®) be an element of degree one i.e. g=)Y c,;y; where F
ieF

is some finite subset of the integers. For any positive integer p and any qeZ, the

action of x, and h, on the element g’ ®1 of M is given by:

xq(gp+ '@h)=p+D[g"! Z Cicj(yi/lj-q-q _pyi+j+q)]®lqa

i, jeF

h(g ' @1)=(g" ) clyidy—2(p+ 1) y;, ) ®L,
ieF

where 4,€C is defined by A(h,)=1,t%
The proof of the Lemma is an easy induction on p>0.
(4.10) Proposition. There exists a proper ideal I = U(N®) such that

(a) the quotient R=U(N®)/I is finitely generated,
(b) I®Lis a G-stable subspace of M.

Let M’ denote the G-module R®L and #': M—M’ be the natural map,
Then #'(v,)+0 and hence n'(M,)(=M)) is non-zero for all i€Z,.

(4.11) Corollary. M; has finite dimensional weight spaces for all i€Z,.
(4.12) Proposition. There exists a proper ideal J <R such that

(a) the quotient F=R/J is finite-dimensional,
(b) J®Lis a G-stable subspace of R®L.

Let M denote the G-module F®L and let #: M'>M be the natural map.
As before #(M])=M, is non-zero for all ieZ,. Set v;=¥'(v), 7;=7(v). For all
p.q€Z, p>0, we have from (4.8) that

Vi U= @,
Vo' b =()7q)p®tpq+i

where y, =n'(y,), y,=#(y;). By Proposition (4.12) there exists an integer >0
such that 3! =0 for all peZ and hence

yyl-5,=0 Vpek, iek,.
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Since the adjoint representation of G on U(G) is integrable and M= @ U(G)7,
ieZ,
it follows that the elements (y,),.z act locally nilpotently on M and hence M is
integrable. This proves the theorem modulo Proposition (4.10)-4.12).
Recall that A=A, for some a=(a,,...,qa,)e(C*)". Let (a,,...,a,) be the
distinct elements in (a,,...,a,) and assume that q; occurs with multiplicity p,,
1 £i<k. Then for all geZ we have,

k
A= (Z pia‘i‘> “.
i=1
k
Set }tqzzl p;al. Let Q denote the polynomial (X —a,)...(X —a,) and (Q,) be
polynomials such that Q=(X —a,)Q,. For je(l,...,k) let 4; (resp. B;) denote

the coefficient of X*~/ in Q (resp. Q). Set 4,=1, B;,, =0 for all ie(1,...,k).
Then

for all i,je(l, ..., k).
By definition

j=0
k-1
B;,_;a,=0 Vpe(l,...,k), p+i
j=0
and hence, we have
k
) 2 Ak Az, =0
j=0
k-1 k—1 .
(+%) Z Bi,k—j)"j+p=pi Z Bi,k~jaji+p
j=0 j=0

for all peZ, ie(l, ..., k).

(4.13) Remark. 1t is not hard to see that the matrix B=(B,)), 1 i, j<k is non-
singular. In fact if A'=(q,) is defined by a;;=d} '1<i, j<k, then BA' is a
diagonal non-singular matrix.

Proof of Proposition (4.10). For peZ let g, denote the element

k
&p= _ZOAk—ijp

J

of U(N®). For geZ observe from (4.8) and () that
k
Xq(gp@l) :1® ( Z Ak—jlj+p+q) 11=0,
j=0

h(g,®1)=(4,8,—2g,,,)®.
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Let I be the ideal in U(N°) generated by the elements (8,)pez- Clearly I is
proper (I<U(N°)N?®) and the preceding equalities prove that IQ C[t,t7'] is
G-stable. If R denotes the quotient U(N®)I and y, the image of y, in R, then
k—1
ylp+k: - Z Ak—jy/j+p'
j=0

Since A, =(—1)"(a,...a,) is non-zero it follows that the set {y,: peZ} is span-
ned by any k-consecutive elements {y, ,...,¥, ;. Hence R is finitely generat-
ed; in fact R is isomorphic to the polynomial algebra in k-variables.

The proof of Corollary (4.11) is immediate since R is finitely generated and

(M)_ s 05= UINPRC1
where U(N°Y ={xcU(N®): [h,x]= —pa(h)}.
Proof of Proposition (4.12). For qeZ, ie(l, ..., k), define elements v, ,€R by:

k—1
00 = 2, BikoVisa
j=0
k k
Observe that: v, ,—a;v, ;= .ZOAk_jy}H:O (recall that g = .ZOAkAij’.HeI).
i= j=

Hence for all g>0 we have

— qd o —pn 4
v i=ate,  v_,=a

where v;= v, ; for ie(l, ..., k).

Let J be the ideal of R generated by the elements {v7**':iel,...,k}. We
show that J satisfies the conditions of Proposition (4.12). Let geZ. The follow-
ing equalities prove that JQ C[t,t~1] is G-stable.

(hoP 1@ 1) =vP* (4, —2(p;+ Dah) @17,
(x, P ®1)=0.

The first equality follows immediately from Lemma (4.10) and the definition of
the elements v, ;. For the second observe (from Lemma (4.9)) that:

k-1 k-1
(" xqvf"“ =(p;+ ol (”i Z B;y_jdjvq—Pi Z Bi.k—tBi,k—j)’}+q+l)®tq'
j=0 Jl=0
By the equality (**) we have
k—1 k—1 )
Z By il q=D; Z Bi,k‘ja{+q'
j=0 j=0

Also, by the definition of U, We have

k-1 k—1 k—1
4 — = Jj+4q
Z Bi,k—jBi.k—lyj+q+l— Z Bi,k_jvj+q.i—( Bi.k—jai )Ui-
il=o j=0 0

J=

This proves that the expression on the right hand side of (') is zero.
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The matrix (B;))1<i, j<k is non-singular (see Remark (4.13)) and hence by
Lemma C we conclude that the quotient R/J is finite dimensional. This proves
the proposition. We have proved Theorem (4.2) in the case when G is of type
AD.

Let G now denote an arbitrary non-twisted affine Lie-algebra, we use the
notation of Sect. 1. It is clear from the proof given for A{" that in general
$,<9 and that if V(4 A) is integrable then AleP, and Ae®,. We deduce the
converse from the A4{" case. For ie(l,...,n) let G; denote the subalgebra of G
spanned by the elements {®e;t*, ® f,t*, e: keZ} together with ¢ and d. Then
G, is isomorphic to an affine Lie-algebra of type 4. Set

H,=CcdCdad T4,
T,=Cc@Ce.

keZ

Let AleP,, Ae$, and let A,(resp. A,) denote the restriction of A (resp. 4) to

u u(Ty

: (resp. UT)e

Since 4,€H, we know that M(4;, A) has an integrable quotient. Set (4,d;)=r;.
Equivalently,

). Then the G,-module M(4;, A} is a G-sub-module of M(4, A).

(f) the submodule generated by the elements {f/}*'v,: keZ} intersects the
weight spaces M(4;, 4)), , , trivially for all seZ, where f, , =t*® f;.

If we prove that in fact the elements {f7*':ie(l,...,n), keZ} generate a
proper G-submodule of M(4, A) then it follows that V (4, A) is integrable.

For simplicity we take i=1, k=0 and set f; ,=f, r,+1=r. The proof for
any i,k is similar, Suppose that there exists ge U(G) with

gf v, =v,.
Write g as a sum

g=;n&
where y,eU(N?), x;,e U(T@N),, pyor €L, 062
Since the weights of M(4, A) are in D(4) it follows that
x;f"v,;=0
if ;% ma, for some 0=<m<r; in fact, we have,
v,=gf"v,=xf"v,

for some xeU(T@®NY),,,. [Note that if n,=mo,, m<r then y;x;f"v, has
weight less than A]. Write x as a sum

x=yP_ x,

qeZ

corresponding to the decomposition

U(T@N)a, =@DU(T)_ s ®UND)r, 4 40)

qeZ
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Choose qeZ such that x, f"v, +0. Since U(Nf)mﬁqé; U(G,) it follows that the
G,-module generated by f"v, intersects the weight space M(4,,4,);, ,,5 con-
tradicting (}). This proves the theorem.
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Oblatum 1-VII-1985

Note added in proof

(1) In [4] we obtain explicit realizations of the modules V(4, A,), 1P, , ae(C*)"*. The modules are
unitary for a compact form of G if and only if |a;| =|aj] Vi,j, where a=(ay, ..., q,,).
(if) In [5] we prove analogous results for the twisted affine Lie-algebras.



