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Introduction 

A module V for a Kac-Moody Lie-algebra G is called integrable if (i) V 
= @ Vx, (ii) the Chevalley generators el , f  ~ act locally nilpotently on G. Let ~fin 

2~H* 
denote the category of integrable G-modules V such that dim V z is finite for all 
26H*. In this article we classify the irreducible objects of the category Jf~. for 
the non-twisted affine Lie-algebras. 

Let C denote the one-dimensional center of an affine Lie-algebra L(g) and 
let c~C be the canonical central element [3]. If V is an irreducible object of 
Jfin there exists an integer n=n(V) such that cv=nv for all veV. If n > 0  (resp. 
l~<0) we prove that V is an irreducible highest weight (resp. lowest weight) 
module in the category ~) (resp. (9-) [-3]. 

Let (c% .. . . .  c%) be the simple roots of L(g) and assume that (el . . . . .  c%) form a 
simple system for the underlying finite-dimensional simple Lie-algebra g. Let 
/~+ denote the non-negative integral linear span of {~i: i=1  .. . .  ,n}. Define a 
category ~ of L(g) modules by VegY if and only if (i) cV=O, (ii) V =  @ Vz, 

~.eH* 
(iii) the set P(V)={2~H*" Vx+0} is contained in a finite union of cones /)(2) 
={)o-q+n6: ~/z/~+, nz7Z}. If VCJri . is irreducible and cV=O then we prove 
that Vj~ .  

In section three we construct some examples of modules in (~. Let T o 
denote the homogeneous Heisenberg subalgebra of L(g) and let ~ denote the 
(graded) quotient of U(To) by the ideal generated by the center of T 0. For  
every 2zH* and every ideal I of ~ we construct modules M(2, I)z~). The 
construction is analogous to the one for Verma modules. We prove that the 
irreducible objects of (~ are in bijective correspondence with the set 
'd2,1)" 2zH*,I a maximal graded ideal in ~} and determine the isomorphism 
classes of the irreducible modules. 

In section four we classify the isomorphism classes of irreducible integrable 
modules in (~. Any such module has finite-dimensional weight spaces. For the 
affine Lie-algebra A{~ ~} we see that for every n > 0  and every a~(~*)" there exists 
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a module V(n,a)e6) such that V(n,a) is irreducible and integrable. Further if 
V(n,a) and V(m,b) are isomorphic then n=m and a=a'a(b) for some element a 
of the permutation group S, and some a'~C*. 

1. Preliminaries 

We recall the explicit realization of the non-twisted affine Lie-algebras (see [3], 
Chap. 7 for details). 

Let g denote a finite dimensional simple Lie-algebra, b a Cartan subalgebra, 
A the set of roots of g, 7i={c~ 1 . . . . .  %} a simple system for zi and A+ the 
corresponding set of positive roots. Let 0 be the highest root of zi +. 

Let L=C[t, t  -1] be the algebra of Laurent polynomials in the indeter- 
minate t. The loop algebra 

L(9) =L(~) g 
C 

is an infinite-dimensional complex Lie-algebra with the bracket [ ]o given by, 
(P,Q~L,x,y~g) 

[P| Q| = PQ| y]. 

Let d: L(g)-,L(g) be the derivation of L(.q) obtained by extending linearly the 
assignment 

d(t"|174 

The affine Kac-Moody Lie-algebra L(g) associated to g is obtained by adjoin- 
ing to L(.q) the derivation d and a central element c. Explicitly, 

Z(g) = L(.q)@ll~c@r 

with the bracket given by (x, y e g, 2,/~, 21, ]~ 1E {1~) 

[t"| + 2c + ~d, t'| + 21c + #xd ] 

= t"+" | [x, y] + nt~t"| -ml~l t"| + m6,,. _,B(x, y)c 

where B: g x gw-~112 is a non-degenerate invariant form on .q. 
From now on we assume that g is a fixed simple Lie-algebra and denote 

the algebra L(g) by G. Let H be the subalgebra 

H =b|174 

of G. Extend an element 2eb* to an element of H* by setting 2(c)=0=2(d)  so 
that b* is identified with a subspace of H*. Define be l l*  by setting 6 1 ~ , . = 0 ,  
3(d) = 1. 

Let g =b@.g~ be the root space decomposition of .q. For c~ezi, neZ,  set 
~ A  

G~+,~ = t"| 

G,0=t"|  n4:0. 

Clearly G~+,~ and G,~ are H-stable subspaces of G. Set A={c~+n6: c~eA. 
nsZ} w{n6: neZ- (0 )} .  One has the root space decomposition 

G = H@((~  G). 
TEA 
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Let s o denote the element ( i - 0  of A. 1'he subset 7r = {s o . . . . .  s,} forms a simple 
system for A and the corresponding positive system A+ is given by 

A+ ={s+n(5:  c~A,n>0} u{n6:  n>0} uA+.  

Set N+= @ G,, N = @ G ~. Clearly N+ and N are subalgebras of G and 
~ A  + ~ A  

one has G = N  |  

The Lie-algebra G admits a non-degenerate invariant bilinear form such 
that the restriction of the form to H x H is non-degenerate. Let ( , )  denote the 
form induced on H*, (s,s)=#0 for all s~m The Weyl group W of G is defined 
to be the subgroup of AutH* generated by the reflections {si: O<i<_n}, si(2 ) 

2(2, sl) 
=2 (si, si) cqV2~H*. The Weyl group leaves A invariant. The subset W~ of A 

is called the set of real roots. A root seA is imaginary if sq~W~. In fact, 

W~ ={s+ncS: seA, n~TZ}. 

Fix a Chevalley basis {e~: ~ A } u { ~ i :  i = I  . . . . .  n} for g. For s~A, k~7] define 
e~ i) elements e~,k, as follows: 

e~, k = tk| 

e(i)--tk| i= l . . . . .  n, k67l-(0).  
k - -  

For convenience, we set e~..o=ei, e . . . .  o=Ji., l < i < n ,  eo =e  0,1, jo=e0. -1  �9 The 
elements el, J), i = 0  . . . . .  n, are called the Chevalley generators of G. The sub- 
algebra H is spanned by the elements {~i: i=  1 . . . . .  n} together with the central 

element c and the derivation d. Set ~ o = - ( I + , ~ c .  For  any 7eWrc, y = s  
2 n 

+n6 the element ~ H  is defined by ~ = [ e  .... e , _ , ]  = c ~ + ~ c .  

The homogeneous Heisenberg subalgebra T o of G is defined by 

To=~C @ Gko" 
k ~ - - ( O )  

The elements {e~i):i=l . . . .  ,n} form a base for the space Gk~. Set T = T  o + H  
---(L| If n+ denote the subalgebras (~) g• then one has the 
decomposition of G ~ '+  

G = L @ n _ @ T @ L |  

as T-stable subalgebras. For a subalgebra B of G let U(B) denote the universal 
enveloping algebra of B. By the Poincard-Birkhoff-Witt theorem one has (set 
N ~ = L | 1 7 7  

U(G) = U(T)O(N ~ U(G) + U(G)N ~ 

as T-stable subalgebras. Let fl': U(G)-)U(T) denote the canonical projection 
onto U(T). For i~(1 . . . . .  n) let Li: U(G)-~U(G) denote left multiplication by e(~ ) 
and let D+" U(To)-+U(To) be the derivation extending D+(e(k i)) =bo(i) "~k+ 1" Set 

Q!i) (D + + Li) j 
= j! .1, i~(1 . . . . .  n) j>=0, eg. Q~)= 1, Q([)=e([ ). 
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In ([1], Lemma 7.5) H. Garland obtains the expression for the element 
e~,.,1, e~(r,s>O) in terms of the above decomposition�9 It is not hard to deduce 
from his formula that (r > 0, keig) 

--at,, 1 ei ) Oti) 
r! =(-1)r~" 

e . . . .  1 _ l ) r+l  , e:+l  
fl' e . . . .  k (r)! ( r+ l ) ! ]  =( ~" e~/)+k'Q~')-~m~176 

j=0 

(where e~)=i) .  Let 7: G~G be the automorphism of order two extending 
7(e,,,)=e . . . . .  7(e(ki)) = --e(k ;) (a~A,k, n~Z). Clearly 7(N~ N~ 7(T)= T. It is easy 
to check that the restriction of 7 to T commutes with D+ and that 7"Li=  

-Li.ri. For i~(1 . . . . .  n) and j > 0  set P~(i)= ( D + - L y .  l=7(Q}i)). Let 
j! 

tfl: U(G)~U(T) be the projection onto U(T) corresponding to the decom- 
position 

U(G)= U(T)G(N ~ U(G)+ U(G)N~ 

Then 7" fl '= fi '~/and we have: 

(1.1) Proposition. Let i~(1 .... ,n), r, keZ, r>O. Then 

St, 1 
(i) fi e,,,k r '  ( r ~ i ) U  = ( - l ) r  e")j+k'P~(~jm~ 

�9 j = O  

/ er+l f/r+l ~ 
(i i)  - ~" [~ (i; ~ ) !  ( ~ i ) !  ] : ( -  1)r+ 1Pr 

Let F+ (resp. /~+) denote the non-negative integral linear span of (a o .... ,c~.) 
(resp. (~1 . . . .  , ~.))- 

The category (9 of G-modules is defined as follows: a module Me(9 if and 
only if: 

(a) M =  @ M~, where Mx={meM: hm=2(h)mVh~:_H} and d imMx< ~ ,  
X~H* 

(b) the set P(M)={2r  Ma4=0} is contained in a finite union of cones 
D(2)={2-7 :  7~r+}. 

For 2EH* let Ix denote the left ideal in U(G) generated by N+u{h 
-2(h): hr The Verma-module M(2) is defined to be the quotient U(G)/Iz. 
M(2) has a unique irreducible quotient L(2) ([3], Chapt. 9). 

(1.2) Lemma. The set {L(2): 2sH*} exhaust all the irreducible modules in (9. 
Further a module L(2) is integrable (i.e. the elements {ei,f~: i = 0  .... ,n} act 
locally nilpotently on L(2)) if and only if (2,$i)~Z+ for all i = 0  . . . . .  n. 

2.  I n t e g r a b l e  m o d u l e s  

(2.1) Definition. A module V for the affine Lie-algebra G is called integrable 
if: 

(i) V = @ V~, where V~={v~V: hv=2(h)vVh~H}, 
).~H* 
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(ii) the elements {e:,,: c(~A, n~7/} act locally nilpotently on V, i.e. for every 
veV there exists an integer k =k(c~, n, v) such that e],,. v =0. 

Let J denote the category of integrable G-modules and let Jri ,  be the 
subcategory of integrable modules with finite-dimensional weight spaces. For 
V e J  set 

P(V)={2~H*: V~ 4: 0}. 

(2.2) Lemma ([3] Proposition 3.6). Let V e J ,  2~P(V). Then 

(a) ()., ~i)~Tl for all i~{0 . . . . .  n}, 

(b) wA6P(V) and dim Vz =dim V~ for all we W, 
(c) 2+aiCP(V) (resp. 2-a~q~P(V)) implies (2,~/)>0 (resp. (2,~i)<0). 

(2.3) Remark. From the lemma it is clear that V ~ J  if and only if the elements 
(ei,fi: i = 0  ... .  ,n) act locally nilpotently on V. Further the statements (a) and (c) 
hold for all roots a~Wu. The g-submodule generated by a vector w V  is finite- 
dimensional and hence V breaks up as the direct sum of irreducible finite- 
dimensional g-modules. 

For ~/~+,  set 

U(n+), = {x6 U(n+): [h, x] = tl(h)xVh~H }. 

Define an ordering < on H* by: 2__<2' if and only if 2'-2lae/~+. If V e J  and 0 
4:wVx, there exists r/E/~+ such that U(n+),. v4=0 and U(n+),,.v=O for all 
t/'e/~+ such that t/'>t/. Further (2+q,c~i)ET]+ for all i=  1 . . . . .  n. 

(2.4) Theorem. Let VeJrl . be irreducible and let k be the integer such that cv 
=kv for all veV. Then 

(i) /f k > 0  (resp. k<0)  there exists an element O#:v~V (resp. 04=weV) such 
that 5/+ v = 0 (resp. N w = 0), 

(ii) /f k = 0  there exist nonzero elements Vo, woe V such that N~ N~ 
= 0 .  

(2.5) Remark. Observe that if k > 0  then V is an object of the intersection 
Jc~(9 and hence by Lemma (1.2) V is isomorphic to L(2) for some 2el l* with 
(2,~i)eZ+, for all i = 0  . . . .  ,n. If k < 0  then V is isomorphic to an integrable 
irreducible lowest weight module. 

We need the following Lemma: 

(2.6) Lemma. Let VE~ffin . The subsets P+(V), P (V) of P(V) defined by 

P+(V)={A~P(V): Vz+ ~ =0 V~/s/~+ -(0)} ={26P(V): n+ Vz =0), 

P(v)  ={~eP(v): v~_,=o v,7~/;+ -(o)} ={,~P(V); n v~ =o} 

are non-empty. 

We recall the following fact about finite-dimensional irreducible modules 
for .q ([2], Chap. 6, Proposition 21.3). 

(2.7) Lemma. Let F= @ Fx be an irreducible finite-dimensional representation 
2Eb* 

oJ .q with highest weight I~. Let v~b* be such that (v,~i)~Z + for all i=1 . . . . .  n 
and t~-v6I~+. Then F~+ {0}. 
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Proof of Lemma (2.6). We prove the Lemma for P+(V), the proof for P ( V )  is 
similar. By Remark (2.3) we can choose 2eP(V) such that (2,~i)~. + for all i 
=1 . . . . .  n. Since dimVx is finite, it follows that the subspace U(n+)V~ is finite- 
dimensional. Hence there exists an element r/e/c+ such that 

U(n+),Vx4:0 and U(n+),,V~=0 if q '>q.  

This proves that n+ Va+,=0. We now establish the equivalence of the two 
definitions. Let I~P(V) be such that n+ V,=0. If V,+,14:0 for some ~/E/~+ we 
choose r/'e/~+ such that there exists O#:v~V,+,+,, with n+v=0 .  Then F =  U(g)v 
is a finite-dimensional irreducible module with highest weight /~+q+q' .  By 
Lemma (2.7) it follows that Fu=Fr V u is non-zero. This contradicts the fact 
that n+ V,=0. 

Proof of Theorem (2.4)(i). Assume k>0.  Let 26P+(V), (2,~i)e7Z+Vi=l . . . . .  n. 
The set 

A(2)={TEWnc~A +" (2, ~) <0} 

is a finite (possibly empty) subset of A +. Fix a positive integer r such that 
+s6~A+-A(2)  for all ~ / i ,  s>r. 

Claim 1. V~+~a=0 for all s>r. Assume that the claim is Jalse. For some czcfl+, 
set 7 = -~+s(~. Then (2,~3>0 and hence by Lemma (2.7) it follows that V~_y+~ 
(= V~+,) is non-zero contradicting the choice of 2. 

Fix an integer p>=O such that V~+p~#:O and V~+.~=0 for all s>p. 

Claim 2. For all m > 0  and ~ J  + we have V~+~+{m+p)6=0. Assume that the claim 
is false. Since (~,+~,~)>0 if ~ A +  it follows from Lemma (2.2) that V~+~+pl~ 
4:0 contradicting the choice of p. 

Claim 3. For all ~6fl+ and all integers m>r  we have 

V~_~ +~,,+ ~)~ =0. 

The proof is similar to the proof qf the Claim 2. Observe that ( 2 - ~ , ~ ) > 0  if 7 = 
- ~ + ( m - l ) ~ .  

Let 04:v~Vx+pa. From claims 1-3 it follows that 

G,a -v=0 for all r > 0  
and 

G~+s, ~- v =0  

for all but finitely many values of s. Since V is integrable the elements 
{e,,k: ~zJ ,  k~7/} act locally nilpotently on V and hence the subspace U(N+)v is 
finite-dimensional. Let v I . . . . .  vq be a basis for U(N+)v with weights /q .. . .  ,#q. 
As a U(N )-module V is generated by the elements (vl, ..., Vq) and hence the set 

P(V) ~ 0 D(tO" 
i = 1  
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This implies that V~(9 and hence by ([3], Proposition 9.3, Lemma 10.1) it 
follows that V is isomorphic to L(2o) for some 20EH* with (2 o, i i ) J / +  for all i 
=0 , . . . ,n .  This completes the proof of Theorem (2.4)(i) in the case k>0.  For  
k < 0  the proof is similar. We work with P ( V )  rather than P+(V). 

(ii) Assume k=0.  Let 2~P+(V). If Vx+,+,~_0 for all c~cA+ and all na~g the 
theorem follows. If V~+~+~a@0 for some ~aA+ and rEZ set p = 2 + ~ + r 6 .  

Claim. V~+~+sa=0 for all [3eA+ and all sa7l. Suppose the claim is false. Since 
:~,[3efl+ it Jollows that either (e+fl,~) or (~+[~,[~) is positive, say (c~+/~,~)>0. 
Set 7=c~+(s+r)3.  Then (/L+/~,~2)>0 and hence by Lemma(2.2), V~+t~+s~_ ~, 
= V~+t~=t=O contradicting )~eP+(V). The claim follows and hence N ~ V,=0. 

This completes the proof of the theorem. 

3. The category (F 

Throughout this section and the next we shall deal only with elements 2e l l*  
such that (2, c)=0,  i.e. ,~e(b| The category ~ of G-modules is defined as 
follows: a module M is an object of (} if and only if: 

(i) M =  | Mx, 
A~H* 

(ii) there exist finitely many elements ,~ . . . . .  2 ~ H *  such that the set P(M) 
={2~H*:  M~=t=0} is contained in a union 

P(M) ~_ U E)().i) 
i=1 

where D(2g)={2g-rl+n3: r/~/~+, nEZ}. 
Observe that the center of G acts trivially on all objects in (}. The mor- 

phism in (~ are the G-module maps. If M~C0 then any submodule or quotient 
module is also in (~. Also finite direct sums and tensor products of modules in 
(} are in (~. 

(3.1) Lemma. Any module M6~) contains elements O:l=m6M~ such that N~ 
~0. 

Proof Recall the ordering < on H* defined by 2 < #  if and only if/~-21~eA+. 
The condition (ii) in the definition of (} implies that there exists )~P(M), which 
is maximal with respect to <. Clearly N~ 

We construct examples of modules in ~. Thus we say that a module M ~ /  
is a highest weight module of weight )~ if there exists O=l:m~M such that 

N ~ m =0, hm =2(h)m, m = U(G)m. 

For 2al l* ,  (2, c)=0,  let C~ denote the one-dimensional B~176 module 
defined by 

h. 1 =2(h)l ,  N ~ 1=0.  
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Set ~/() . )= U(G) @ ~ ,  vx = 1@1. Define an action of U(G) on A7/(2) by left 
U(Bo) 

multiplication. Let  ~ denote the quotient  U(To)/U(To)c and let p: U(To)-,~ be 
the canonical homomorph ism.  Set ,~t-(i)~-~(i) It is easy to see that ~ is in fact 

" V \ ~ k  ) - - " ~ k  " 

the polynomial  algebra in the infinitely many  variables {X(k~'): keTZ, i =  1 . . . . .  n}. 
For  k~7Z, ~/~/~+, set 

U(N~ = {xe U(N~ [h,x] = -(tl + ki3)(h)xVheH}, 

g(To)k~ = {xe U(To): [h, x] = kS(h)xVheH} 

~k= P( U ( Zo)k~). 

Since T O is an H-stable subalgebra of G we have a Z-grading on the rings U(To) 
and ~,  

U(To) = @ U(To)k~, 
keg 

k e Z  

Further  there exists a bijective correspondence between H-stable left ideals in 
U(To) containing c and graded ideals in ~. 

(3.2) Lemma.  (i) As an N~ 5)(2) is fi'ee and 

~t(;~)~_ U(N~174162 

(ii) P(M(2))=/)(2) .  If qel;+, keT] then 

~ ( ~ ) ~ _ . + ~ =  @ ( u ( m _ ~ 1 6 2  
q--p=k 

(iii) Let I be any proper graded ideal in ~. The G-submodule of f4(2) 
generated by the elements {xv;: xep-l(I)} is proper and the quotient M(2, I) 
satisfies 

M(2, I)~ U(N~174174162 

M(2, I),,+k~= @ V ( X ~  �9 
q--p=k 

Proof Parts  (i) and (ii) of the lemma are clear. For  par t  (iii) set 

M'=U(G)Jv~ (v~ = 1 @ 1 | 1 ~A7/(2)), 

where J=p-l( l)  is a proper  ideal in U(To). If v~eM' then 

v~ =gxv~ 

for some geU(G), xeJ. Since N~ for all xeU(To) it follows that  

v~ =/3(g)x v~ 

where/3:  U(G)~-~ U(T) was defined in Sect. 1. Part  (i) of the lemma implies that 
p(fl(g)x)= 1 and hence 1 e l  contradict ing the fact that I is a proper  ideal. 

Let ~ denote the set of maximal graded ideals in ~.  
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(3.3) Corollary. Let Me& be irreducible. There exists 2ell* and le f~ such that 
M is a quotient of M(2, I). 

Proof By Lemma (3.1) there exists O+-meMa such that N~ M=U(G)m.  
From the definition of .M(2) it is clear that there exists a morphism f :  
~I(2)-~M-~O with f(va)=-m. Set J={xeU(To) :  xm=0}, I=p(J).  By Lemma 
(3.2) the m a p f  factors through to a morphism f :  M(2, I)-~M-,O. 

Let 1'(+I) be any graded ideal containing I and let J'=p-~(1).  Then M 
= U(G)J'm (since M is irreducible) and as in the proof of Lemma (3.2) there 
exists xeJ' ,  yeU(To) with ( y x - 1 ) m = O  i.e. ( yx -1 )eJ~_J ' .  This proves that 
l eJ '  and hence I ' =  ~. 

(3.5) Theorem. Let 2e(bQtEd)*, I e ~ .  

(i) As a U(N~ M(2,I) is free and dimM(2, I)ka < l for all keZ. 
(ii) M(,~, I) has a unique irreducible quotient V(2, I). 

(iii) The ,vet {V(2, I): 2e(b@Cd)*, l e ~ }  exhaust the irreducible modules in 

(iv) The modules M(2, I) and M(2', I') are isomorphic !1" and only if I = I' and 
2 = 2 ' + n ~  jor some ne7Z with (~/I),=1=0. 

(3.6) Lemma. Let IeU~. As a graded ring ~ / I  is isomorphic either to 112 (in 
which case x~i)eI for all i=1 . . . . .  n and all ke7l) or to a Laurent subring 
q2[t',t -r] of C [ t , t -  l], grad t=  1. 

Proof Set A=  ~/I .  Clearly A is a simple Z-graded algebra over C and hence 
every non-zero graded element is invertible, The Lemma is a consequence of 
the following fact: Let B = @ B, be a Z-graded commutative algebra over C, B 

n~Z 

+ C. Let r be the least positive, integer such that B, 4=0. Assume there exists an 
invertible element t'eB~. Then Bp=0 if p~_O(r) and the homomorphism B-*B o 
|  r, tr] defined by b,--*(b,t-')| (n=O(r)) is an isomorphism of graded 
rings. 

Proof of  Theorem (3.5). (i) This is immediate from Lemma (3.2)(iii) and Lem- 
ma (3.6), 

(ii) If M' is any proper submodule of M(2, I) then v~4M' since M(2, I) 
=U(G)v~. By part (i) we have M'r~M(2, I);={O} and hence the sum M~ of all 
proper submodules of M()~, I) is again proper. The quotient V(2, I)=M(2, I)/Mt 
is thus the unique irreducible one. 

(iii) This is immediate from Corollary (3.3) and part (ii) above. 

(iv) Let f:  M(),,I)-*M(2',I ')  be a G-module isomorphism. Then 2e/)(2'), 
)Je/)(2) and hence 2=2'+n(5 for some neZ with (~ / I )_ ,+0 .  Further there 
exists geU(To) with v'~=gf(v~). Let x e l  and yeU(To) with p(y)=x.  Then the 
equation 

0 = f ( ygvx )  =ygf(va) =yv' x 

proves that xeI ' .  Similarly we can prove that I'c_I and hence I=I ' .  For the 
converse, observe that for any x e ~ , ,  x4 I  the mapyvz--*yxv" ~ (yeU(N~ is a 
G-module isomorphism. 
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Let L r (r > 0) denote the subring C It r, t -  r~ of L and let .~' denote the set of 
graded ring homomorphisms A: ~--~L with A(1)= 1 and such that im(A)=L r 
for some r>0 .  If r = 0  then Lo=tE and A o is the trivial homomorphism Ao(l) 
= 1, Ao(x~i))=0 for all i=  1 . . . .  ,n, keTZ-(0). Set S~=~'w {Ao}. 

Given As.~, i m A = L  r and 2e(b| define a T0-module structure on L r 
by: 

xt  rs = A(p(x))t rs, xe  U(To), 

N~ L =0, htrS=(2 +rs~)(h)t% 

Denote the corresponding module by LA, x. It is clear that LA, a is an irreduc- 
ible To+B ~ module and that LA,x=La.~+r ~ for all s~Z. Let M(2, A) denote the 
induced module U(G) @ L~, x. If I ~  then by Lemma (3.6) it follows that 

U (B ~ + To )  

/=ke rne l  A for some A~g3. It is now not hard to see that M(2, I) is isomorphic 
to M(2, A). 

(3.8) Proposition. The modules M(2, A) and M(2',A') are isomorphic if and only 
if (i) 2 = 2 ' + n 6  for some neTZ with A'(~,)+O (ii) there exists O:~aOE such that 
for all kEZ, and all x e ~  k 

A(x) = a k A'(x). 

Proof Set I=kerne lA,  I '=kernelA'.  If the pairs (2, A) and (2',A') satisfy con- 
ditions (i) and (ii) then I = I' and hence M(2, A) and M(2', A') are isomorphic by 
Theorem (3.5). 

Conversely if M(2, A) and M'(Z, A') are isomorphic then 2 =  2 +  n3 for some 
n~Z and kernel A=kernelA' .  Hence there exists r > 0  such that im(A)= im(A') 
=L , .  If r = 0  then A=A' .  If r>0 ,  then there exists x e ~  with A(x)+O, A'(x)~O. 
Set 

A(x)=aV, A'(x)=bV, a, belE -(0). 

The result is immediate from Lemma (3.6) since (~/I)  is spanned by the 
elements x ~, and we have 

A(x ~) =(ab- ~)S A'(x'). 

The modules M(~,A) have a unique irreducible quotient which we denote 
by V(2, A). Clearly an isomorphism of M()o,A) and M(2',A') induces an iso- 
morphism of the quotients. One can imitate the proof of Proposition (3.8) to 
obtain the following parametrization of the isomorphism classes of irreducible 
modules in (}. 

(3.9) Proposition. The modules V().,A) and V(2',A') are isomorphic iJ and only 
if 

(i) 2 = 2 ' + n 6  for some neZ, A'(~,)4:0, 

(ii) there exists 0+a~112 such that Jot all keTt and all x e $  k 

A(x) = akA'(x). 

(3.10) Remark. If i m A = L ,  then M(2, A) is generated as a U(G)-module by W 
for any sEZ and hence 

dimV(2, A)~so=dimM(2, A),~ for all se~. 
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4. Integrable modules in (~ 

In this section we obtain the necessary and sufficient condition for the modules 
V(,~,A) to be integrable. We use the notation of Section 3. Let q:* denote the 
set of non-zero complex numbers. 

Set P+ = {2e(b|  (2, ~i)~Z+ Vie(l . . . . .  n)}. For 2~P+ set 

Ja= {ie(l . . . . .  n):().,(q)>O}, 

r~ = y~ t,~, ~,). 
i6JA 

If r~>0 identify the set (r with the product (r215 ... • (~*)l~,~,kl where 
i l < . . . < i  k are the elements of Jz. For every ae(r  r~, a=(aij), i~J;~, 
l < j<(~ ,~ ) ,  define a graded bomomorphism A,: ~--*L by extending 

a,(x(k/)) = 0 Vk~7l, i(~J~, 

1(2,~,1 \ 
AoIx?)={ E Vk Z, 

\j--1 / 

Set .~a={Ao: a~(r If r~=0 then set _~={Ao}, (where A o was defined in 
Section 3). Observe that .~z =.~,  if 2=/~+sb,  se7/. 

(4.1) Lemma. For all 26P+, a~(r  ~- the image of A, is a Laurent ring i.e. 
~ ~_~. 

(4.2) Theorem. V(2, A) is integrable if and only if 26P+ and A6~, z. 

Define an equivalence relation on -~z by: Ao~A, , ,  if and only if there exists 
b~r  and permutations al of (1 . . . . .  (2,~)), i~Ja such that 

aij = ba'i,o,~j r 

The following Corollary which is now a trivial consequence of Proposi- 
tion (3.9) gives the parametrization of the isomorphism classes of irreducible 
integrable G-modules in (9. 

(4.3) Corollary. 7he integrable modules V(2, A~) and V(~,Ah) are isomorphic if 
and only if: )L=p+kc~ Jbr some kET] with Ab(~k)=~O and A , , ~ A  b. 

To simplify the notation we prove the results for the affine Lie-algebra A] ~ 
and sketch a proof of the general case at the end of the section. We recall the 
following well-known results. 

Lemma A. I f  a~ ... .  ,ak~ff~* are distinct, then, the matrix (a~)l <i, j<=k is non- 
singular. 

Lemma B. Let (a,),~ z be elements of C satisfying a recurrence relation ~)1" type 

an"= ~ Ajan-j 
j=~ 
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where, Aj~G (1 <=j<=r) is independent of n. Assume that A,+O. Let a(~) .... ,a(,) be 

the (non-zero) roots of the polynomial X ~ -  A~X ~-~. Then a.= ~ B~al~Vne7l, 
where B~,...,Br~ff~ depend on al, . . . ,a r. i=~ j=l 

Lemma C. Let I be the ideal in a polynomial algebra r  . . . . .  X,] generated 
by elements of the .form 

Yi= ~ bi;X ~ , i~(1 . . . . .  n), 
j = l  

where bijoU, 1 <=i, j < n  and p is some positive integer. I f  the matrix (bij) is non- 
singular then I is of finite co-dimension i.e. there exists an integer q > 0  such that 
xq~I  for all j~(1 . . . . .  n). 

From now on G denotes the affine Lie-algebra of type A] 1). Let y,h,x be the 
standard basis for sl(2, ~) and let y,, h,, x, denote the elements t"| t"| t"| 
of G. Set Yo =Y, ho =h, x o =x. Clearly, 

N~ To=~C (~) ~h, ,  N ~  
nEZ neT7-- (0) ne7l 

c[#.: n~Z-(o)] The algebra ~ is the polyn_omial algebra and the 
map p: U ( T o ) ~  satisfies p(h,):h, .  

Proof of Lemma (4.1). Let 2~P+, ( z , h ) = n > 0  and let a=(a 1 . . . . .  a,)~(C ) . As- 
sume that a I . . . .  ,a k are the distinct elements in (a 1 . . . . .  a.) and that a~ occurs 
with multiplicity Pi, 1 _< i_< k. Then 

k 

Aa(h-r) = Piai t Vr~Z. 
i _  

By L e m m a A  it follows that there exists i,j~(1 .. . .  ,k) such that Aa(hi)#=0, 
A,(/~_j)=t=0. Let r, sE(1 . . . . .  k) be the smallest integers such that there exists 
Q6~, ,  Q , ~ - s  with Aa(Q)+O and Aa(Q,)+O. If r>=s write r=sp+q,  O<=q<s. 
Since QQ~e| and Aa(QQP,)+O, the minimality of r forces q=O. If p >  l then 

p- -1  A~(QQ, ) + 0  and Q Q P - l c ~  s (s<r). Hence p = l  and r=s .  A similar argument 
proves that A,(~q)=O if q~-o(r) and so A, maps onto the ring Lr=~[tr,  t-r]. 
If r<=s the proof is similar. 

We now prove Theorem (4.2). We need the following consequence of Lem- 
ma (2.2) and Theorem (3.5). Let va denote the element 1 | of M(2,A) and ~ 
the image of va in V(2, A). Let /~: U(G)~ U(T) be the canonical map defined in 
w 

Given any n-tuple of integers r =(r 1 .. . .  , r,) set xl~ )-- x , . . .x r . ,  Y~I =Y,,"  'Y~,,' 

(4.4) Lemma. Let 2eP+, (2,h)=n. The Jollowing are equivalent: 

(i) V(2, A) is integrable, 

(ii) y~). ~ =0  VrE2~ "+ l, 

(iii) A(fi(x(,) y(~))) = 0 Vr, sr + 1. 

Proof. (i)~(ii). This is clear from Lemma (2.2)(b) and the fact that y{~l. Fx has 
weight 2 - ( n +  1)~ if re7/"+1. 

(ii)~(i). This is by Definition (2.1). 
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(ii)<=~(iii). By Theorem (3.5)(ii) it follows that Y~t" va =0Vre7l"+~ if and only 
if the set {ylrl'Va: reZ "+1} generates a proper submodule of M(2, A). Equiva- 
lently, (by Remark (3.10)) 

x(~). y(~)- vx =0 Vr, se7ZY + 1 

i.e. A(fi(xt,~y(~)=0 Vr, seZ "+ 1. 

Recall the elements Pje U(To) defined in w 1. Thus if D+: U(To)o U(To) is the 
derivation obtained by extending D+(h,)=nh,+l, and L1: U(To)oU(To) is left 
multiplication by h 1, then 

p (D+ -LI)j 
.i= j! �9 l, j>=O. 

By Proposition (1.1)(ii) we have 

Set P1 =p(Pj). Proposition (l.1)(i) gives us the following recursive formula for/~, 

(4.5) /~= _ !  j ~ l _  i=ohi+l.P, i 1. 

Let 2eP+, ( ) ,h)=n and A , e ~ .  For O<j<n we have 

(4.6) A,(/~) = (( - 1) j ~aix...ai,)t ~ 

where the sum is over j-tuples il<...<ij, ike(1 . . . . .  n). If j = l  then t 5 1 = - h  1 

and hence A,(P1)=(- ~ ai)t. Assume that (4.6) holds for all j<i. Substituting 
i=1 

the values of Ao(h-i+ 1)= aj +1 t i+1 and A,,(Pfl(0<j < i ) i n  (4.5) gives (4.6) for 
\ j =  1 

i+1. Conversely if for some Ae.~a there exists a 1 . . . . .  a ,eC* such that (4.6) 
holds, then, 

for O<j <n. 

Proof of Theorem (4.2). Assume that V(2, A) is integrable. By Lemma (2.2) we 
know that 2eP+ i.e. (2, h )=neZ+ .  Define scalars a~ell?, reT/by, 

A(17r)=af, r~O, ao=(2,h)=n. 

For re~Z let (r) denote the element (r, 1 .... ,1) of7/"+1. By Lemma (4.4)(iii) and 
Proposition (1.l)(i) we have 

0 =A(fl(x,r)y "+ 1))= ~, aj+rA(~_~)tj+r. 
j = o  
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Claim. A(~ )  4 = O. 

I f  A(fi,)=O then the preceding equality together with Proposition (1.1)(i) 
implies that 

0 = A  /~j+r + t/~,_ j_ 1 =A([~(xr+lx]-'y")). 
j=O 

Equivalently, 
xr+ 1" x]-  1. y,. vz =0 Vr~TZ. 

Thus the element x"~-1, y,.~x generates a proper submodule of V(2, A) and hence 
x]-1 . y, .  vx =0. Since y_ 1" Y"" vx =0  it Jollows Jrom the standard representation 
theory of sl(2, C) that y". ~ = 0  contradicting (2,h)=n. This proves the claim. 

Let (Ai)oaj<=, be such that A(/})=AjP. The scalars (ar)~ z satisfy 

n - - 1  

ar+n= -- 2 a j + r A n - j  
j = o  

and hence by Lemma B it follows that 

a , = ~ B  r VrcZ, ia(i) 
i=1 

where B1, . . . ,B . are determined by al , . . . ,a  . and a<l ~ .. . .  ,a~,) are the roots of 

the polynomial X ' +  ~ A , _ j X  j . Further for 0<=j'<n,= 
j=O 

Aj =( -- 1/ 2 %1'"%1" 
il  < . , .  < i j  

By (4.7) we have Bi=l  for all iz(1 . . . . .  n) and hence A = A .  where a 
: (a(1) . . . . .  a (n) )Z(r  

We now prove the converse. Thus let 2eP+, ( 2 , h ) = n > 0  and A=A,r163 If 
n = 0  then A = A  o. For all p, qe~  we have, 

Xt~" yq" v~ =hp+q" V k = 0  

and hence the elements {yq-Va:  qe/g} generate a proper submodule of M(2, A0). 
Thus by Theorem (3.5)(ii) 

yp" V;t : 0 

for all peZ  and V(2, Ao) is the trivial G-module. 
Assume now that n > 0  and A = A  a for some a=(a~ .. . . .  a,)e(ll2*)". Let r > 0  

be such that A, maps onto Lr=ll2[K,t-~]. Let Z~ denote the set of residues 
modulo r. For every ieTl define a linear mapqb~: M(2+i6,  A)--*U(N~174 by 
extending 

C~i(g@tqr ) = g @ t  p+q~ + i 

for all p, q J I ,  gr U(N_~ where U(N~ is the subspace {xeU(N~ [d,x]=px} .  
Clearly ~b z is injective and 4)~(M()~+ih, A)) acquires a natural G-module struc- 
ture so that ~b~ is a G-module map. Denote this module by M~. Set v~ 
=qb~(~x+~); notice that v i=l@t  i, ieT~ r. Let M denote the G-module @ M i ;  the 

ieT~ 
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underlying vector  space of M is U(N~174 We shall prove  that  M has an 
integrable quot ient  M such that  if t/" M---,M---,O denotes the canonical  map, 
then t / (Mi)+0 for all i e Z  r. Thus  Mi=t/(M~) is an integrable quot ient  of  M i and 
the theorem follows since V(2 + i6 ,  A) is a further quot ient  of M i. 

We have the following explicit formulae for the act ion of G on M. Let 
ge  U(N~ m, p, q~Z, then, 

d(g| m) =(2  +m6)(d)g|  m 

yq(g@tm)= yqg@t m+q 
(4.8) 

" m _ _  - -  m hqtgNt ) - g N d ( h q ) t  +[hq,g]|  "+q 

xq(ypg| m) = (ypXq + hp+o) (g |  P). 

(4.9) Lemma.  Let geU(N2) be an element of degree one i.e. g =  y~ c~y~ where F 
i e F  

is some finite subset of the integers. For any positive integer p and any qeT/, the 
action Of Xq and hq on the element g P + l |  o[" M is given by: 

Xq(gp+ 1 | 1) = (p + 1) [gV- 1 ~ cicj(yiAj+ q --PYi+j+q)] @ tq, 
i , j e F  

hq(gV +x | 1) = (gP ~ q(Yi 2q - 2(p + l) Yi + q)) | tq, 
i e F  

where 2q~C is defined by d(hq)=2qt q. 

The p roof  of the L e m m a  is an easy induction on p > 0 .  

(4.10) Proposition. There exists a proper ideal I c_ U(N~ such that 

(a) the quotient R = U(N~ is finitely generated, 

(b) I |  is a G-stable subspace of M. 

Let M'  denote  the G - m o d u l e  R |  and r/': M-* M'  be the natural  map,  
Then rf(vi)~O and hence rf(Mi)(=M~) is non-zero for all i~7Z. 

(4.11) Corollary. M~ has finite dimensional weight spaces for all i~Z r. 

(4.12) Proposition. There exists a proper ideal J ~_ R such that 

(a) the quotient F = R/J  is finite-dimensional, 

(b) J |  is a G-stable subspace of" R@L.  

Let M denote  the G-module  F Q L  and let q: M ' ~ M  be the natural  map. 
As before q(M~)=M i is non-zero for all i~Zr. Set " ' ;~ - ' vi=~l (vi), vi=~l(vi). For  all 
p, qc2~, p > 0 ,  we have f rom (4.8) that  

.p  t d p p q + i  yq.Vi-(Yq) |  , 

y'~. ~ = (L )  v | t"~ + 

r ! - -  - -  t where yq=tl(yq) , yq=q(yq). By Proposi t ion  (4.12) there exists an integer > 0  
such that  -+ yp = 0  for all p e Z  and hence 
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Since the adjoint representation of G on U(G) is integrable and M = (~) U(G)~ i 
i~Zr 

it follows that the elements (Yp)vez act locally nilpotently on M and hence M is 
integrable. This proves the theorem modulo Proposition (4.10)-(4.12). 

Recall that A = A  a for some a=(al  . . . . .  a,)E(C*)". Let (al . . . .  ,ak) be the 
distinct elements in (a, . . . . .  a,) and assume that a~ occurs with multiplicity pi, 
l<<_i<k. Then for all q~Z we have, 

k 

Set 2q= ~ pla q. Let Q denote the polynomial (X--aj) . . . (X--ak) and (Qi) be 
i=1  

polynomials such that Q = ( X - a i ) Q r  For jE(1 . . . . .  k) let A t (resp. Bit ) denote 
the coefficient of X k-i in Q (resp. Q~). Set A o = l ,  Bi,k+ 1 = 0  for all i~(1 . . . . .  k). 
Then 

Aj-~ Bi,j+ 1 -aiBi,j 

for all i,j~(1 .. . . .  k). 
By definition 

and hence, we have 

k 

J = 0  Vp~(1 . . . . .  k), 2 Ak-jap 
j=o 

k-1 
t _ Vp~(1, ..,k), i Bi,l~_jap--O . p~ 

t = o  

k 

(*) ~ Ak-j'~i+~=0 
1=o  

k--1  k--1  

(** )  2 Bi,k-j'~j+p-~-Pi 2 Bi,k-j aj+p 
j=O j = 0  

for all p~7/, i~(1 . . . . .  k). 

(4.13) Remark. It is not hard to see that the matrix B = ( B 0 ,  l < i , j < k  is non- 
singular. In fact if A'=(alj ) is defined by aij=a~-il<=i, j < k ,  then BA' is a 
diagonal non-singular matrix. 

Proof of Proposition (4.10). For p6Z let gp denote the element 

k 

gp= 2 Ak-jYj+p 
j = 0  

of U(N~ For q~2g observe from (4.8) and (.) that 

xq(g, |174 

hq(gp| 1) =(2qgp - 2gp+q)| q. 
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Let I be the ideal in U(N~ generated by the elements (gp)peZ" Clearly I is 
proper (I~_U(N~176 and the preceding equalities prove that I |  -1] is 
G-stable. If R denotes the quotient U(N~ and y'p the image of yp in R, then 

k--1 
ytp+k ~ -- Z "' Ak-jYj+p. 

j=o 

Since Ak=(--l)k(aa...ak) is non-zero it follows that the set {y'p: p671} is span- 
,t t ned by any k-consecutive elements {Yq+l .... , Yq+k}" Hence R is finitely generat- 

ed; in fact R is isomorphic to the polynomial algebra in k-variables. 
The proof of Corollary (4.11) is immediate since R is finitely generated and 

(M)_p~+.o = U(N~174162 q 

where U(N~ p = {x~ U(N~ [h, x] = -p~(h)}. 

Proof of Proposition (4.12). For  q~Z, i~(1 . . . . .  k), define elements Vq,i~R by: 

k--1 
%~= Z Bi,k-jYi+.. 

j=0 

,t ,r Observe that: Vq,i--aiVq_l,i .-~- Z Ak-jYj+q=O recall that gq= ~ Ak_jyj+qEI . 
j=O j=O 

Hence for all q > 0 we have 

Vq,i:oqLli ,  U _ q , i : a i q l ) i  

where vi=vo, i for i~(1 . . . . .  k). 
Let J be the ideal of R generated by the elements {v~ '+1" i~l . . . . .  k}. We 

show that J satisfies the conditions of Proposition (4.12). Let q ~ .  The follow- 
ing equalities prove that J|  C[t, t -  1] is G-stable. 

(h~vV,+ 1 | 1)_-v~ ',+ 1(2q- 2(pl + 1)a~)Qt q, 

(Xql)P,+ 1 ~) 1) = 0 .  

The first equality follows immediately from Lemma (4.10) and the definition of 
the elements vq,~. For  the second observe (from Lemma (4.9)) that: 

(t') xqvP'+l=(pi+l)v p'-I Bi,k-#2#+q--Pi ~, Bi.k-I i,k-jYj+q+, | 
j,l=O 

By the equality (**) we have 

k--1 k -1  

Z Bi,k-j2j+q=Pi 2 Si,k-jai +q" 
j=O j=O 

Also, by the definition of Vq.~ we have 

k ~ l  r k -  1 ( k ~ l  ) 
B i , k - j B i . k - l Y j + q + l  = Z Bi ,k - j l ; j+q, i  = B i , k - j a i  +q Vi" 

j,l=O j=0  j=O z 

This proves that the expression on the right hand side of (t') is zero. 
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The matrix (B~j)I <i, j<k  is non-singular (see Remark (4.13)) and hence by 
Lemma C we conclude that the quotient R/J is finite dimensional. This proves 
the proposition. We have proved Theorem (4.2) in the case when G is of type 
A~ 1). 

Let G now denote an arbitrary non-twisted affine Lie-algebra, we use the 
notation of Sect. 1. It is clear from the proof given for A] t) that in general 
.~_~.~ and that if V(2,A) is integrable then 2~P+ and A~.~ .  We deduce the 
converse from the A] 1~ case. For iE(1 . . . . .  n) let G i denote the subalgebra of G 
spanned by the elements {| k, | k, e~i): k ~ }  together with c and d. Then 
G i is isomorphic to an affine Lie-algebra of type A] ~). Set 

Hi=ffJc@Hd~C~i, 

Ti=r i). 
k~Z 

Let 2~P+, A~-~ z and let 2i(resp. Ai) denote the restriction of 2 (resp. A) to 

H i resp. ~ 1 .  Then the Gi-module M(2i, Ai) is a Gg-sub-module of M(2,A). 

Since Agc.~z, we know that M(2 i, Ai) has an integrable quotient. Set (2,~g)=r~. 
Equivalently, 

(t) the submodule generated by the elements {f~'k+mV~: k~Z} intersects the 
weight spaces M(2i, Ai)z,+s ~ trivially for all s~Z, where fi.k=tk| 

If we prove that in fact the elements {f.~+l: i~(1 . . . . .  n), k~Z} generate a 
proper G-submodule of M(2, A) then it follows that V(2, A) is integrable. 

For  simplicity we take i=1,  k = 0  and set f / ,0=f ,  ri+l=r. The proof for 
any i, k is similar. Suppose that there exists gc U(G) with 

g frY =v~. 
Write g as a sum 

g =~yjxj  
J 

where y~ U(N~ x~  U(TGN~ rljEF+, pj~Z. 
Since the weights of M(2, A) are in/)(2) it follows that 

xjf~v~ = 0  

if rlj*m~ for some O<_m<_r; in fact, we have, 

vz = g f ' v  a =xf~v~. 

for some x~U(T@N~ [Note that if tlj=rn~, m<r then yjxjf%a has 
weight tess than 4]. Write x as a sum 

X = s P_qxq  
qsZ 

corresponding to the decomposition 

U(T |176 =@(U(T)_q~|176 
qeTZ 



lntegrable representations of affine Lie-algebras 335 

C h o o s e  q e Z  s u c h  t h a t  Xqfr1.);~@O. Since  U(N~ U(G1)  it fo l lows  t h a t  the  

G l - m o d u l e  g e n e r a t e d  by  f ry  a i n t e r s e c t s  t he  w e i g h t  s p a c e  M()LI,A1)x,+q,~ c o n -  

t r a d i c t i n g  (t)- T h i s  p r o v e s  t he  t h e o r e m .  
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Oblatum 1-VII-1985 

Note added in proof 

(i) In [4] we obtain explicit realizations of the modules V()., A,), ~ P + ,  aE(~*) r~. The modules are 
unitary for a compact form of G if and only if tall =lajt V i,j, where a =(a l, ..., ar~). 
(ii) In [5] we prove analogous results for the twisted affine Lie-algebras. 


