

Vyjayanthi Chari*

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhahha Road, Colaba, Bombay 400005, India

Introduction

A module V for a Kac-Moody Lie-algebra G is called integrable if (i) V $=\bigoplus_{\lambda \in H^*} V_{\lambda}$, (ii) the Chevalley generators e_i, f_i act locally nilpotently on G. Let \mathcal{I}_{fin} denote the category of integrable G-modules V such that dim V_{λ} is finite for all $\lambda \in H^*$. In this article we classify the irreducible objects of the category \mathscr{I}_{fin} for the non-twisted affine Lie-algebras.

Let C denote the one-dimensional center of an affine Lie-algebra $\hat{L}(\mathfrak{q})$ and let $c \in C$ be the canonical central element [3]. If V is an irreducible object of \mathcal{I}_{fin} there exists an integer $n \equiv n(V)$ such that $cv = nv$ for all $v \in V$. If $n > 0$ (resp. $n<0$) we prove that V is an irreducible highest weight (resp. lowest weight) module in the category \mathcal{O} (resp. \mathcal{O}^{-}) [3].

Let $(\alpha_0, \ldots, \alpha_n)$ be the simple roots of $\hat{L}(q)$ and assume that $(\alpha_1, \ldots, \alpha_n)$ form a simple system for the underlying finite-dimensional simple Lie-algebra g. Let \dot{T}_+ denote the non-negative integral linear span of $\{\alpha_i: i=1,\ldots,n\}$. Define a category \hat{U} of $\hat{L}(\hat{g})$ modules by $V \in \hat{U}$ if and only if (i) $cV = 0$, (ii) $V = \bigoplus_{\lambda \in H^*} V_{\lambda}$, (iii) the set $P(V) = {\lambda \in H^* : V_{\lambda} = 0}$ is contained in a finite union of cones $\tilde{D}(\lambda)$ $=\{\lambda-\eta+n\delta: \eta \in \mathbf{\Gamma}_+$, $n \in \mathbb{Z}\}\.$ If $V \in \mathcal{I}_{fin}$ is irreducible and $cV=0$ then we prove that $V \in \tilde{C}$.

In section three we construct some examples of modules in $\tilde{\mathcal{O}}$. Let T_0 denote the homogeneous Heisenberg subalgebra of $\hat{L}(\mathfrak{g})$ and let \mathfrak{S} denote the (graded) quotient of $U(T_0)$ by the ideal generated by the center of T_0 . For every $\lambda \in H^*$ and every ideal I of \mathfrak{S} we construct modules $M(\lambda, I) \in \mathcal{O}$. The construction is analogous to the one for Verma modules. We prove that the irreducible objects of $\tilde{\mathcal{O}}$ are in bijective correspondence with the set $\{(\lambda, I): \lambda \in H^*, I \text{ a maximal graded ideal in } \mathfrak{S} \}$ and determine the isomorphism classes of the irreducible modules.

In section four we classify the isomorphism classes of irreducible integrable modules in $\tilde{\mathcal{O}}$. Any such module has finite-dimensional weight spaces. For the affine Lie-algebra $A_1^{(1)}$ we see that for every $n>0$ and every $a \in (\mathbb{C}^*)^n$ there exists

The author thanks the Forschungsinstitut für Mathematik ETH Zurich for their hospitality

a module $V(n, a) \in \tilde{O}$ such that $V(n, a)$ is irreducible and integrable. Further if *V*(*n,a*) and *V*(*m,b*) are isomorphic then *n*=*m* and $a=a'\sigma(b)$ for some element σ of the permutation group S_n and some $a' \in \mathbb{C}^*$.

1. Preliminaries

We recall the explicit realization of the non-twisted affine Lie-algebras (see [3], Chap. 7 for details).

Let a denote a finite dimensional simple Lie-algebra, h a Cartan subalgebra, \vec{A} the set of roots of g, $\vec{\pi} = {\alpha_1, ..., \alpha_n}$ a simple system for \vec{A} and \vec{A}_+ the corresponding set of positive roots. Let θ be the highest root of \vec{A}_{+} .

Let $L = \mathbb{C}[t, t^{-1}]$ be the algebra of Laurent polynomials in the indeterminate t . The loop algebra

$$
L(\mathfrak{g})=L\underset{\mathfrak{C}}{\otimes}\mathfrak{g}
$$

is an infinite-dimensional complex Lie-algebra with the bracket $\lceil \cdot \rceil_0$ given by, $(P, Q \in L, x, y \in \mathfrak{q})$

$$
[P \otimes x, Q \otimes y]_0 = PQ \otimes [x, y].
$$

Let d: $L(g) \rightarrow L(g)$ be the derivation of $L(g)$ obtained by extending linearly the assignment

$$
d(t^n \otimes x) = nt^n \otimes x.
$$

The affine Kac-Moody Lie-algebra $\hat{L}(\hat{g})$ associated to g is obtained by adjoining to $L(q)$ the derivation d and a central element c. Explicitly,

$$
\hat{L}(\mathfrak{g}) = L(\mathfrak{g}) \oplus \mathbb{C}c \oplus \mathbb{C}d
$$

with the bracket given by $(x, y \in g, \lambda, \mu, \lambda_1, \mu_1 \in {\mathbb{C}})$

$$
\begin{aligned} \n\left[t^m \otimes x + \lambda c + \mu d, t^n \otimes y + \lambda_1 c + \mu_1 d\right] \\
&= t^{m+n} \otimes [x, y] + n\mu t^n \otimes y - m\mu_1 t^m \otimes x + m\delta_{m, -n} B(x, y)c\n\end{aligned}
$$

where $B: \mathfrak{g} \times \mathfrak{g} \mapsto \mathbb{C}$ is a non-degenerate invariant form on q.

From now on we assume that g is a fixed simple Lie-algebra and denote the algebra $\hat{L}(\mathfrak{g})$ by G. Let H be the subalgebra

$$
H = \mathfrak{h} \oplus \mathbb{C} c \oplus \mathbb{C} d
$$

of G. Extend an element $\lambda \in \mathfrak{h}^*$ to an element of H^* by setting $\lambda(c) = 0 = \lambda(d)$ so that \mathfrak{h}^* is identified with a subspace of H^* . Define $\delta \in H^*$ by setting $\delta|_{\mathfrak{h} \oplus \mathfrak{C} \cap \mathfrak{r}} = 0$. $\delta(d) = 1$.

Let $g = f(\bigoplus_{\alpha \in \Delta} g_{\alpha}$ be the root space decomposition of g. For $\alpha \in \Delta$, $n \in \mathbb{Z}$, set G^- , $= t^n \otimes \mathfrak{a}$

$$
G_{n\delta} = t^n \otimes \mathfrak{h}, \qquad n \neq 0.
$$

Clearly $G_{\alpha+m\delta}$ and $G_{n\delta}$ are *H*-stable subspaces of G. Set $\Delta = {\alpha+n\delta}$: $\alpha \in \Delta$. $n \in \mathbb{Z} \setminus \cup \{n\delta: n \in \mathbb{Z}-(0)\}.$ One has the root space decomposition

$$
G=H\oplus(\bigoplus_{\gamma\in\varDelta}G_{\gamma}).
$$

Let α_0 denote the element $\delta-\theta$ of Δ . The subset $\pi = {\alpha_0, ..., \alpha_n}$ forms a simple system for Δ and the corresponding positive system Δ_+ is given by

$$
\Delta_+ = \{ \alpha + n\delta : \alpha \in \mathcal{A}, n > 0 \} \cup \{ n\delta : n > 0 \} \cup \mathcal{A}_+.
$$

Set $N_+ = \bigoplus_{\alpha \in A_+} G_{\alpha}$, $N_- = \bigoplus_{\alpha \in A_+} G_{-\alpha}$. Clearly N_+ and N_- are subalgebras of G and one has $G = N \oplus H \oplus N$.

The Lie-algebra G admits a non-degenerate invariant bilinear form such that the restriction of the form to $H \times H$ is non-degenerate. Let (,) denote the form induced on H^* , $(\alpha, \alpha) \neq 0$ for all $\alpha \in \pi$. The Weyl group W of G is defined to be the subgroup of Aut H^* generated by the reflections $\{s_i: 0 \le i \le n\}$, $s_i(\lambda)$ $=\lambda - \frac{2(\lambda, \alpha_i)}{(\lambda - \lambda_i)} \alpha_i \forall \lambda \in H^*$. The Weyl group leaves Δ invariant. The subset $W\pi$ of Δ is called the set of real roots. A root $\alpha \in \Lambda$ is imaginary if $\alpha \notin W\pi$. In fact,

$$
W\pi = \{\alpha + n\delta : \alpha \in \mathbf{\Lambda}, n \in \mathbf{Z}\}.
$$

Fix a Chevalley basis $\{e_{\alpha}: \alpha \in \mathring{A}\}\cup \{\check{\alpha}_i: i=1, ..., n\}$ for g. For $\alpha \in \mathring{A}$, $k \in \mathbb{Z}$ define elements $e_{\alpha,k}$, $e_k^{(i)}$ as follows:

$$
e_{\alpha,k} = t^k \otimes e_{\alpha},
$$

$$
e_k^{(i)} = t^k \otimes \check{\alpha}_i, \qquad i = 1, \dots, n, \quad k \in \mathbb{Z} - (0).
$$

For convenience, we set $e_{\alpha_{i},0} = e_i$, $e_{-\alpha_{i},0} = f_i$, $1 \le i \le n$, $e_0 = e_{-\theta,1}$, $f_0 = e_{\theta,-1}$. The elements e_i , f_i , $i=0,\ldots,n$, are called the Chevalley generators of G. The subalgebra H is spanned by the elements $\{\check{\alpha}_i: i=1,\ldots,n\}$ together with the central element c and the derivation d. Set $\check{\alpha}_0=-\check{\theta}+\frac{2}{(\theta,\theta)}c$. For any $\gamma \in W\pi$, $\gamma=\alpha$ +n δ the element $\check{\gamma} \in H$ is defined by $\check{\gamma} = [e_{\alpha,n}, e_{-\alpha,-n}] = \check{\alpha} + \frac{2n}{\epsilon}$

The homogeneous Heisenberg subalgebra T_0 of G is defined by

$$
T_0 = \mathbb{C}c \bigoplus_{k \in \mathbb{Z} - (0)} G_{k\delta}.
$$

The elements $\{e^{(i)}_k: i=1, ..., n\}$ form a base for the space $G_{k\delta}$. Set $T=T_0+H$ $=(L\otimes \mathfrak{h})\oplus \mathbb{C}c \oplus \mathbb{C}d$. If \mathfrak{n}_+ denote the subalgebras \oplus \mathfrak{g}_{+a} , then one has the decomposition of G $^{\alpha \in A_+}$

$$
G = L \otimes \mathfrak{n}_{-} \oplus T \oplus L \otimes \mathfrak{n}_{+},
$$

as T-stable subalgebras. For a subalgebra B of G let *U(B)* denote the universal enveloping algebra of B . By the Poincaré-Birkhoff-Witt theorem one has (set $N_{+}^{0} = L \otimes \mathfrak{n}_{+}$

$$
U(G) = U(T) \oplus (N^0_+ U(G) + U(G)N^0_-)
$$

as T-stable subalgebras. Let β' : $U(G) \rightarrow U(T)$ denote the canonical projection onto $U(T)$. For $i \in (1, ..., n)$ let $L_i: U(G) \rightarrow U(G)$ denote left multiplication by $e_1^{(i)}$ and let D_+ : $U(T_0) \rightarrow U(T_0)$ be the derivation extending $D_+(e_k^{(i)}) = ke_{k+1}^{(i)}$. Set

$$
Q_j^{(i)} = \frac{(D_+ + L_i)^j}{j!} \cdot 1, \quad i \in (1, ..., n) \ \ j \ge 0, \ \text{eg. } Q_0^{(i)} = 1, \ Q_1^{(i)} = e_1^{(i)}.
$$

In ([1], Lemma 7.5) H. Garland obtains the expression for the element e^{r}_{τ} , $\cdot e^{s}_{i}(r, s > 0)$ in terms of the above decomposition. It is not hard to deduce from his formula that $(r > 0, k \in \mathbb{Z})$

$$
\beta' \left(\frac{e_{-\alpha_{1},1}^r}{r!} \cdot \frac{e_i^r}{r!} \right) = (-1)^r \cdot Q_r^{(i)},
$$

$$
\beta' \left(e_{-\alpha_{1},k} \cdot \frac{e_{-\alpha_{1},1}^r}{(r)!} \cdot \frac{e_i^{r+1}}{(r+1)!} \right) = (-1)^{r+1} \sum_{j=0}^r e_{j+k}^{(i)} \cdot Q_{r-j}^{(i)} \mod U(T_0) c
$$

(where $e_0^{(i)} = \check{\alpha}_i$). Let $\eta: G \rightarrow G$ be the automorphism of order two extending $\eta(e_{\alpha,n}) = e_{-\alpha,n}, \eta(e_k^{(1)}) = -e_k^{(1)}$ ($\alpha \in \Lambda, k, n \in \mathbb{Z}$). Clearly $\eta(N_+^0) = N_-^0, \eta(T) = T$. It is easy to check that the restriction of η to T commutes with D_+ and that $\eta \cdot L_i =$ $-L_i \cdot \eta$. For $i \in (1, ..., n)$ and $j>0$ set $P_j^{(i)} = \frac{(D_i + D_i)}{j!} \cdot 1 = \eta(Q_j^{(i)})$. Let $\overline{\beta}$: $U(G) \rightarrow U(T)$ be the projection onto $U(T)$ corresponding to the decomposition $U(G) = U(T) \bigoplus (N^0 \cup U(G) + U(G)N^0 \cup$.

Then $\eta \cdot \beta' = \overline{\beta} \cdot \eta$ and we have:

(1.1) **Proposition.** Let $i \in (1, ..., n)$, $r, k \in \mathbb{Z}$, $r > 0$. Then

(i)
$$
\bar{\beta} \left(e_{\alpha_1, k} \cdot \frac{e_{\alpha_1, 1}^r}{r!} \cdot \frac{f_i^{r+1}}{(r+1)!} \right) = (-1)^r \sum_{j=0}^r e_{j+k}^{(i)} \cdot P_{r-j}^{(i)} \mod U(T_0)c,
$$

\n(ii) $\bar{\beta} \left(\frac{e_{\alpha_1, 1}^{r+1}}{(r+1)!} \cdot \frac{f_i^{r+1}}{(r+1)!} \right) = (-1)^{r+1} P_{r+1}^{(i)}.$

Let Γ_+ (resp. $\dot{\Gamma}_+$) denote the non-negative integral linear span of $(\alpha_0, ..., \alpha_n)$ (resp. $(\alpha_1, \ldots, \alpha_n)$).

The category $\mathcal O$ of G-modules is defined as follows: a module $M \in \mathcal O$ if and only if:

(a) $M = \bigoplus M_{\lambda}$, where $M_{\lambda} = \{m \in M : hm = \lambda(h)m \forall h \in H\}$ and dim $M_{\lambda} < \infty$, $\lambda \widetilde{\in } H^*$

(b) the set $P(M) = {\lambda \in H^* : M_{\lambda} = 0}$ is contained in a finite union of cones $D(\lambda) = {\lambda - \eta : \eta \in \Gamma_+}.$

For $\lambda \in H^*$ let I_{λ} denote the left ideal in $U(G)$ generated by $N_+ \cup \{h\}$ $-\lambda(h)$: $h \in H$ }. The Verma-module $M(\lambda)$ is defined to be the quotient $U(G)/I_{\lambda}$. $M(\lambda)$ has a unique irreducible quotient $L(\lambda)$ ([3], Chapt. 9).

(1.2) Lemma. The set ${L(\lambda)}$: $\lambda \in H^*$ *exhaust all the irreducible modules in 0. Further a module L(* λ *) is integrable (i.e. the elements {e_i, f_i: i=0, ...,n} act locally nilpotently on* $L(\lambda)$ *) if and only if* $(\lambda, \check{\alpha}) \in \mathbb{Z}_+$ *for all i*=0, ..., *n*.

2. Integrable modules

 (2.1) *Definition.* A module V for the affine Lie-algebra G is called integrable if:

(i) $V = \bigoplus_{\lambda \in H^*} V_{\lambda}$, where $V_{\lambda} = \{v \in V: hv = \lambda(h)v \,\forall h \in H\},\$

(ii) the elements $\{e_{n,n}: \alpha \in \mathcal{A}, n \in \mathbb{Z}\}$ act locally nilpotently on V, i.e. for every $v \in V$ there exists an integer $k = k(\alpha, n, v)$ such that $e_{n,n}^k \cdot v = 0$.

Let $\mathscr I$ denote the category of integrable G-modules and let $\mathscr I_{fin}$ be the subcategory of integrable modules with finite-dimensional weight spaces. For $V \in \mathscr{I}$ set

$$
P(V) = {\lambda \in H^* : V_{\lambda} \neq 0}.
$$

(2.2) **Lemma** ([3] Proposition 3.6). Let $V \in \mathcal{I}$, $\lambda \in P(V)$. Then

(a) $(\lambda, \check{\alpha}_i) \in \mathbb{Z}$ *for all i* $\in \{0, ..., n\},$

(b) $w\lambda \in P(V)$ and $\dim V_1 = \dim V_{w\lambda}$ for all $w \in W$,

(c) $\lambda + \alpha_i \notin P(V)$ (resp. $\lambda - \alpha_i \notin P(V)$) *implies* $(\lambda, \check{\alpha}) \ge 0$ (resp. $(\lambda, \check{\alpha}) \le 0$).

(2.3) *Remark.* From the lemma it is clear that $V \in \mathcal{I}$ if and only if the elements $(e_i, f_i: i = 0, \ldots, n)$ act locally nilpotently on *V*. Further the statements (a) and (c) hold for all roots $\alpha \in W\pi$. The g-submodule generated by a vector $v \in V$ is finitedimensional and hence V breaks up as the direct sum of irreducible finitedimensional g-modules.

For $\eta \in \dot{\Gamma}_+$, set

$$
U(\mathfrak{n}_{+})_{n} = \{x \in U(\mathfrak{n}_{+}) : [h, x] = \eta(h)x \,\forall h \in H\}.
$$

Define an ordering \leq on H^* by: $\lambda \leq \lambda'$ if and only if $\lambda' - \lambda|_d \in \dot{\Gamma}_+$. If $V \in \mathscr{I}$ and 0 $+v \in V_{\lambda}$, there exists $\eta \in \dot{\Gamma}_+$ such that $U(\mathfrak{n}_{+})_{\eta}$, $v \neq 0$ and $U(\mathfrak{n}_{+})_{\eta}$, $v=0$ for all $\eta' \in \dot{\Gamma}_+$ such that $\eta' > \eta$. Further $(\lambda + \eta, \check{\alpha}_i) \in \mathbb{Z}_+$ for all $i = 1, ..., n$.

(2.4) **Theorem.** Let $V \in \mathcal{I}_{fin}$ be irreducible and let k be the integer such that cv *=kv for all veV. Then*

(i) if $k>0$ (resp. $k<0$) there exists an element $0+v\in V$ (resp. $0+w\in V$) such *that* $N_+ v = 0$ (resp. $N_- w = 0$),

(ii) *if* $k=0$ *there exist nonzero elements* $v_0, w_0 \in V$ *such that* $N_+^0 v_0 = 0$, $N_-^0 w_0$ $=0.$

(2.5) *Remark.* Observe that if $k>0$ then V is an object of the intersection $\mathcal{I} \cap \mathcal{O}$ and hence by Lemma (1.2) V is isomorphic to $L(\lambda)$ for some $\lambda \in H^*$ with $(\lambda, \check{\alpha}_i) \in \mathbb{Z}_+$, for all $i=0, \ldots, n$. If $k<0$ then V is isomorphic to an integrable irreducible lowest weight module.

We need the following Lemma:

(2.6) **Lemma.** Let $V \in \mathcal{I}_{fin}$. The subsets $P_+(V)$, $P_-(V)$ of $P(V)$ defined by

$$
P_{+}(V) = \{\lambda \in P(V): V_{\lambda + \eta} = 0 \,\forall \eta \in \dot{\Gamma}_{+} - (0)\} = \{\lambda \in P(V): \pi_{+} V_{\lambda} = 0\},
$$

$$
P_{-}(V) = \{\lambda \in P(V): V_{\lambda - \eta} = 0 \,\forall \eta \in \dot{\Gamma}_{+} - (0)\} = \{\lambda \in P(V); \,\pi_{-} V_{\lambda} = 0\}
$$

are non-empty.

We recall the following fact about finite-dimensional irreducible modules for $g([2]$, Chap. 6, Proposition 21.3).

(2.7) **Lemma.** Let $F = \bigoplus_{\lambda \in \mathbb{N}^*} F_{\lambda}$ be an irreducible finite-dimensional representation *of* **g** with highest weight μ . Let $v \in \mathfrak{h}^*$ be such that $(v, \check{\alpha}_i) \in \mathbb{Z}_+$ for all $i=1, ..., n$ *and* $\mu - \nu \in \Gamma_+$. Then $F_v \neq \{0\}$.

Proof of Lemma (2.6). We prove the Lemma for $P_+(V)$, the proof for $P_-(V)$ is similar. By Remark (2.3) we can choose $\lambda \in P(V)$ such that $(\lambda, \check{\alpha}) \in \mathbb{Z}_+$ for all i $=1, ..., n$. Since dim V_1 is finite, it follows that the subspace $U(\mathfrak{n}_+)V_1$ is finitedimensional. Hence there exists an element $\eta \in \dot{\Gamma}_+$ such that

$$
U(\mathfrak{n}_{+})_{n}V_{\lambda}+0
$$
 and $U(\mathfrak{n}_{+})_{n}V_{\lambda}=0$ if $\eta' > \eta$.

This proves that $\pi_+ V_{\lambda+\eta}=0$. We now establish the equivalence of the two definitions. Let $\mu \in P(V)$ be such that $n_{+} V_{\mu}=0$. If $V_{\mu+n}$ +0 for some $\eta \in \Gamma_{+}$ we choose $\eta' \in \Gamma_+$ such that there exists $0 + v \in V_{u+n+m'}$ with $\eta_+v=0$. Then $F= U(g)v$ is a finite-dimensional irreducible module with highest weight $\mu + \eta + \eta'$. By Lemma (2.7) it follows that $F_u = F \cap V_u$ is non-zero. This contradicts the fact that $\mathfrak{n}_+ V_n = 0$.

Proof of Theorem (2.4)(i). Assume $k>0$. Let $\lambda \in P_+(V)$, $(\lambda, \check{\alpha}_i) \in \mathbb{Z}_+ \forall i=1, ..., n$. The set $\Delta(\lambda) = \{ \gamma \in W \pi \cap \Delta_+ : (\lambda, \check{\gamma}) \leq 0 \}$

is a finite (possibly empty) subset of
$$
\Delta_+
$$
. Fix a positive integer r such that

 $+s\delta \in A_+ - A(\lambda)$ for all $\alpha \in \Lambda$, $s \geq r$.

Claim 1. $V_{\lambda+s\delta}=0$ *for all s* \geq *r. Assume that the claim is false. For some* $\alpha \in \mathring{A}_+$ *, set* $\gamma = -\alpha + s\delta$. Then $(\lambda, \tilde{\gamma}) > 0$ *and hence by Lemma (2.7) it follows that* $V_{\lambda - \gamma + s\delta}$ $(= V_{\lambda+\sigma})$ is non-zero contradicting the choice of λ .

Fix an integer p \geq 0 *such that* $V_{\lambda + p\delta}$ \neq 0 *and* $V_{\lambda + s\delta}$ \geq 0 *for all s* $>$ *p.*

Claim 2. For all $m>0$ and $\alpha \in \mathcal{A}_+$ we have $V_{\lambda+\alpha+(m+p)\delta}=0$. Assume that the claim *is false. Since* $(\lambda + \alpha, \check{\alpha}) > 0$ *if* $\alpha \in \Lambda_+$ *it follows from Lemma (2.2) that* $V_{\lambda + (m+n)\delta}$ *4:0 contradicting the choice of p.*

Claim 3. For all $\alpha \in \Lambda_+$ and all integers $m > r$ we have

$$
V_{\lambda-\alpha+(m+p)\delta}=0.
$$

The proof is similar to the proof of the Claim 2. Observe that $(\lambda - \alpha, \gamma) > 0$ if $\gamma =$ $-\alpha+(m-1)\delta.$

Let $0+v\in V_{\lambda+n\delta}$. From claims 1-3 it follows that

$$
G_{r\delta} \cdot v = 0 \qquad \text{for all } r > 0
$$

and

$$
G_{\alpha+s\delta}\cdot v=0
$$

for all but finitely many values of s. Since V is integrable the elements ${e_{a,k}: \alpha \in \mathbf{A}, k \in \mathbf{Z}}$ act locally nilpotently on V and hence the subspace $U(N_+)v$ is finite-dimensional. Let $v_1, ..., v_a$ be a basis for $U(N_+)v$ with weights $\mu_1, ..., \mu_q$. As a $U(N_{-})$ -module V is generated by the elements $(v_1, ..., v_q)$ and hence the set

$$
P(V) \subseteq \bigcup_{i=1}^q D(\mu_i).
$$

This implies that $V \in \mathcal{O}$ and hence by ([3], Proposition 9.3, Lemma 10.1) it follows that V is isomorphic to $L(\lambda_0)$ for some $\lambda_0 \in H^*$ with $(\lambda_0, \check{\alpha}) \in \mathbb{Z}_+$ for all i $=0,\ldots,n$. This completes the proof of Theorem (2.4)(i) in the case $k>0$. For $k < 0$ the proof is similar. We work with $P_{-}(V)$ rather than $P_{+}(V)$.

(ii) Assume $k=0$. Let $\lambda \in P_+(V)$. If $V_{\lambda+\alpha+n\delta}=0$ for all $\alpha \in \mathcal{A}_+$ and all $n \in \mathbb{Z}$ the theorem follows. If $V_{\lambda+\alpha+\alpha}=0$ for some $\alpha \in \mathcal{A}_+$ and $r \in \mathbb{Z}$ set $\mu = \lambda + \alpha + r\delta$.

Claim. $V_{\mu+\beta+s\delta}=0$ *for all* $\beta \in \mathcal{A}_+$ *and all s* $\in \mathbb{Z}$ *. Suppose the claim is false. Since* $\alpha, \beta \in \mathcal{A}_+$ *it follows that either* $(\alpha + \beta, \check{\alpha})$ *or* $(\alpha + \beta, \check{\beta})$ *is positive, say* $(\alpha + \beta, \check{\alpha}) > 0$. *Set* $\gamma = \alpha + (s+r)\delta$. *Then* $(\mu+\beta,\tilde{\gamma})>0$ *and hence by Lemma* (2.2), $V_{\mu+\beta+\delta\delta-\gamma}$ $= V_{\lambda+\beta}$ \neq 0 contradicting $\lambda \in P_+(V)$. The claim follows and hence $N^0_+ V_u = 0$.

This completes the proof of the theorem.

3. The category $\tilde{\mathcal{C}}$

Throughout this section and the next we shall deal only with elements $\lambda \in H^*$ such that $(\lambda, c) = 0$, i.e. $\lambda \in (\mathfrak{h} \oplus \mathbb{C} d)^*$. The category $\tilde{\mathcal{C}}$ of G-modules is defined as follows: a module M is an object of $\tilde{\theta}$ if and only if:

(i) $M = \bigoplus_{\lambda \in H^*} M_{\lambda},$

(ii) there exist finitely many elements $\lambda_1, \ldots, \lambda_r \in H^*$ such that the set $P(M)$ ={ $\lambda \in H^*$: M_{λ} \neq 0} is contained in a union

$$
P(M) \subseteq \bigcup_{i=1}^r \tilde{D}(\lambda_i)
$$

where $\tilde{D}(\lambda_i) = {\lambda_i - \eta + n\delta : \eta \in \mathbf{\Gamma}_+ , n \in \mathbf{Z}}.$

Observe that the center of G acts trivially on all objects in $\tilde{\varrho}$. The morphism in $\tilde{\mathcal{O}}$ are the G-module maps. If $M \in \tilde{\mathcal{O}}$ then any submodule or quotient module is also in $\tilde{\varrho}$. Also finite direct sums and tensor products of modules in \tilde{O} are in \tilde{O} .

(3.1) **Lemma.** *Any module M* $\in \tilde{C}$ contains elements $0 \neq m \in M_{\lambda}$ such that N_{+}^{0} m *~0.*

Proof. Recall the ordering \leq on H^* defined by $\lambda \leq \mu$ if and only if $\mu - \lambda \leq \lambda + 1$. The condition (ii) in the definition of $\tilde{\mathcal{O}}$ implies that there exists $\lambda \in P(M)$, which is maximal with respect to \leq . Clearly $N_{+}^{0}M_{\lambda} = 0$.

We construct examples of modules in $\tilde{\mathcal{O}}$. Thus we say that a module $M \in \tilde{\mathcal{O}}$ is a highest weight module of weight λ if there exists $0+m\in M$ such that

$$
N^0_+ m = 0, \quad hm = \lambda(h)m, \quad M = U(G)m.
$$

For $\lambda \in H^*$, $(\lambda, c) = 0$, let \mathbb{C}_{λ} denote the one-dimensional $B^0 = H \oplus N^0$ module defined by

$$
h \cdot 1 = \lambda(h) 1, \qquad N^0_+ \cdot 1 = 0.
$$

Set $M(\lambda) = U(G) \bigotimes_{U(B_0)} \mathbb{C}_{\lambda}$, $v_{\lambda} = 1 \otimes 1$. Define an action of $U(G)$ on $M(\lambda)$ by left multiplication. Let \mathfrak{S} denote the quotient $U(T_0)/U(T_0)c$ and let p: $U(T_0) \rightarrow \mathfrak{S}$ be the canonical homomorphism. Set $\phi(e_k^{(i)}) = x_k^{(i)}$. It is easy to see that \Im is in fact the polynomial algebra in the infinitely many variables $\{x_k^{(i)}: k \in \mathbb{Z}, i = 1, ..., n\}$. For $k \in \mathbb{Z}$, $\eta \in \dot{\Gamma}_+$, set

$$
U(N_{-}^{0})_{\eta+k\delta} = \{x \in U(N_{-}^{0}) : [h, x] = -(\eta + k\delta)(h)x \,\forall h \in H\},
$$

$$
U(T_{0})_{k\delta} = \{x \in U(T_{0}) : [h, x] = k\delta(h)x \,\forall h \in H\}
$$

$$
\mathfrak{S}_{k} = p(U(T_{0})_{k\delta}).
$$

Since T_0 is an *H*-stable subalgebra of G we have a **Z**-grading on the rings $U(T_0)$ and \mathfrak{S} ,

$$
U(T_0) = \bigoplus_{k \in \mathbb{Z}} U(T_0)_{k\delta},
$$

$$
\mathfrak{S} = \bigoplus_{k \in \mathbb{Z}} \mathfrak{S}_k.
$$

Further there exists a bijective correspondence between H-stable left ideals in $U(T_0)$ containing c and graded ideals in \Im .

(3.2) **Lemma.** (i) As an N^0 -module $\tilde{M}(\lambda)$ is free and

$$
\tilde{M}(\lambda) \simeq U(N^0_-) \otimes \mathfrak{S} \otimes \mathbb{C}_{\lambda}.
$$

(ii) $P(\tilde{M}(\lambda)) = \tilde{D}(\lambda)$. If $\eta \in \Gamma_+$, $k \in \mathbb{Z}$ then

$$
\tilde{M}(\lambda)_{\lambda-\eta+k\delta} = \bigoplus_{q-p=k} (U(N^0_-)_{\eta+p\delta} \otimes \mathfrak{S}_q \otimes \mathbb{C}_\lambda)
$$

(iii) Let I be any proper graded ideal in \mathfrak{S} . The G-submodule of $\tilde{M}(\lambda)$ generated by the elements $\{xv_1: x \in p^{-1}(I)\}$ is proper and the quotient $M(\lambda, I)$ *satisfies*

$$
M(\lambda, I) \simeq U(N^0_-) \otimes (\mathfrak{S}/I) \otimes \mathbb{C}_{\lambda},
$$

$$
M(\lambda, I)_{\eta + k\delta} = \bigoplus_{q-p=k} U(N^0_-)_{\eta + p\delta} \otimes (\mathfrak{S}/I)_q \otimes \mathbb{C}_{\lambda}.
$$

Proof. Parts (i) and (ii) of the lemma are clear. For part (iii) set

$$
M' = U(G)Jv_{\lambda} \qquad (v_{\lambda} = 1 \otimes 1 \otimes 1 \in \tilde{M}(\lambda)),
$$

where $J=p^{-1}(I)$ is a proper ideal in $U(T_0)$. If $v_1 \in M'$ then

$$
v_{\lambda} = g \, x \, v_{\lambda}
$$

for some $g \in U(G)$, $x \in J$. Since $N^0_+ x v_\lambda = 0$ for all $x \in U(T_0)$ it follows that

$$
v_{\lambda} = \bar{\beta}(g) x v_{\lambda}
$$

where $\bar{\beta}$: $U(G) \mapsto U(T)$ was defined in Sect. 1. Part (i) of the lemma implies that $p(\bar{\beta}(g)x)=1$ and hence $1 \in I$ contradicting the fact that I is a proper ideal.

Let $\hat{\mathfrak{S}}$ denote the set of maximal graded ideals in \mathfrak{S} .

(3.3) **Corollary.** Let $M \in \mathbb{Q}$ be irreducible. There exists $\lambda \in H^*$ and $I \in \mathbb{Q}$ such that *M* is a quotient of $M(\lambda, I)$.

Proof. By Lemma (3.1) there exists $0+m \in M$, such that $N_{+}^{0}m=0$, $M=U(G)m$. From the definition of $\tilde{M}(\lambda)$ it is clear that there exists a morphism f: $\hat{M}(\lambda) \rightarrow M \rightarrow 0$ with $f(v_1)=m$. Set $J=\{x \in U(T_0): xm=0\}$, $I=p(J)$. By Lemma (3.2) the map f factors through to a morphism \bar{f} : $M(\lambda, I) \rightarrow M \rightarrow 0$.

Let $I'(\pm I)$ be any graded ideal containing I and let $J' = p^{-1}(I)$. Then M $= U(G)J'm$ (since M is irreducible) and as in the proof of Lemma (3.2) there exists $x \in J'$, $y \in U(T_0)$ with $(yx-1)m=0$ i.e. $(yx-1) \in J \subseteq J'$. This proves that $l \in J'$ and hence $I' = \mathfrak{S}$.

(3.5) **Theorem.** Let $\lambda \in (\mathfrak{h} \oplus \mathbb{C} d)^*$, $I \in \mathfrak{S}$.

(i) As a $U(N^0_-)$ -module $M(\lambda, I)$ *is free and dim* $M(\lambda, I)_{k\delta} \leq 1$ *for all k* $\in \mathbb{Z}$ *.*

(ii) $M(\lambda, I)$ has a unique irreducible quotient $V(\lambda, I)$.

(iii) The set $\{V(\lambda, I): \lambda \in (\mathfrak{h} \oplus \mathbb{C} d)^*, I \in \mathfrak{S} \}$ exhaust the irreducible modules in Õ.

(iv) The modules $M(\lambda, I)$ and $M(\lambda', I')$ are isomorphic if and only if $I = I'$ and $\lambda = \lambda' + n\delta$ for some $n \in \mathbb{Z}$ with $(\mathfrak{S}/I)_n \neq 0$.

(3.6) Lemma. Let $I \in \mathfrak{S}$. As a graded ring \mathfrak{S}/I is isomorphic either to $\mathbb C$ (in *which case* $x_k^{(i)} \in I$ for all $i=1,\ldots,n$ and all $k \in \mathbb{Z}$) or to a Laurent subring $\mathbb{C}[t^r, t^{-r}]$ of $\mathbb{C}[t, t^{-1}]$, grad $t = 1$.

Proof. Set $A = \mathfrak{S}/I$. Clearly A is a simple **Z**-graded algebra over C and hence every non-zero graded element is invertible, The Lemma is a consequence of the following fact: Let $B = \bigoplus B_n$ be a \mathbb{Z} -graded commutative algebra over \mathbb{C} , B n~Z

 $\pm \mathbb{C}$. Let r be the least positive, integer such that $B_r \neq 0$. Assume there exists an invertible element $t' \in B_r$. Then $B_p = 0$ if $p \neq 0$ (*r*) and the homomorphism $B \rightarrow B_0$ $\mathcal{D}\mathbb{C}[t^{-r}, t']$ defined by $b_n \rightarrow (b_n t^{-n}) \otimes t^n$ ($n \equiv 0(r)$) is an isomorphism of graded rings.

Proof of Theorem (3.5). (i) This is immediate from Lemma (3.2)(iii) and Lemma (3.6),

(ii) If M' is any proper submodule of $M(\lambda, I)$ then $v_{\lambda} \notin M'$ since $M(\lambda, I)$ $=U(G)v_{\lambda}$. By part (i) we have $M' \cap M(\lambda, I)_{\lambda} = \{0\}$ and hence the sum M_{I} of all proper submodules of $M(\lambda, I)$ is again proper. The quotient $V(\lambda, I)=M(\lambda, I)/M_I$ is thus the unique irreducible one.

(iii) This is immediate from Corollary (3.3) and part (ii) above.

(iv) Let f: $M(\lambda, I) \rightarrow M(\lambda', I')$ be a G-module isomorphism. Then $\lambda \in \tilde{D}(\lambda')$, $\lambda' \in \tilde{D}(\lambda)$ and hence $\lambda = \lambda' + n\delta$ for some $n \in \mathbb{Z}$ with $(\mathfrak{S}/I)_{-n} \neq 0$. Further there exists $g \in U(T_0)$ with $v'_2 = gf(v_2)$. Let $x \in I$ and $y \in U(T_0)$ with $p(y) = x$. Then the equation

$$
0 = f(yg v_\lambda) = ygf(v_\lambda) = yv_\lambda'
$$

proves that $x \in I'$. Similarly we can prove that $I' \subseteq I$ and hence $I = I'$. For the converse, observe that for any $x \in \mathfrak{S}_n$, $x \notin I$ the map $yv_1 \rightarrow yxv'_1$ ($y \in U(N^0)$) is a G-module isomorphism.

Let L, $(r > 0)$ denote the subring $\mathbb{C}[t^r, t^{-r}]$ of L and let \mathfrak{H}' denote the set of graded ring homomorphisms $A: \mathfrak{S} \rightarrow L$ with $A(1)=1$ and such that $\text{im}(A)=L_r$ for some r>0. If r=0 then $L_0 = \mathbb{C}$ and A_0 is the trivial homomorphism $A_0(1)$ $= 1, A_0(x_i^{(i)})=0$ for all $i=1,\ldots,n$, $k \in \mathbb{Z}-(0)$. Set $\mathfrak{H}=\mathfrak{H}' \cup \{A_0\}.$

Given $A \in \mathfrak{H}$, im $A = L$, and $\lambda \in (\mathfrak{h} \oplus \mathbb{C} d)^*$ define a T_0 -module structure on L_r by:

$$
xt^{rs} = A(p(x))t^{rs}, \quad x \in U(T_0),
$$

$$
N_+^0 L_r = 0, \quad ht^{rs} = (\lambda + rs\delta)(h)t^{rs}.
$$

Denote the corresponding module by $L_{A,\lambda}$. It is clear that $L_{A,\lambda}$ is an irreducible $T_0 + B^0$ module and that $L_{A,\lambda} = L_{A,\lambda} + rs_{\delta}$ for all s $\in \mathbb{Z}$. Let $M(\lambda, \Lambda)$ denote the induced module $U(G) \otimes L_{4,2}$. If $I \in \mathfrak{S}$ then by Lemma (3.6) it follows that $U(B^0 + T_0)$ $I = \text{kernel } A$ for some $A \in \mathfrak{H}$. It is now not hard to see that $M(\lambda, I)$ is isomorphic to $M(\lambda, \Lambda)$.

(3.8) **Proposition.** The modules $M(\lambda, \Lambda)$ and $M(\lambda', \Lambda')$ are isomorphic if and only *if* (i) $\lambda = \lambda' + n\delta$ *for some n* $\epsilon \mathbb{Z}$ with $A'(\mathfrak{S}_n) \neq 0$ (ii) there exists $0 \neq a \epsilon \mathbb{C}$ such that *for all* $k \in \mathbb{Z}$ *, and all* $x \in \mathfrak{S}_k$

$$
\Lambda(x) = a^k \Lambda'(x).
$$

Proof. Set $I = \text{kernel } A$, $I' = \text{kernel } A'$. If the pairs (λ, A) and (λ', A') satisfy conditions (i) and (ii) then $I = I'$ and hence $M(\lambda, \Lambda)$ and $M(\lambda', \Lambda')$ are isomorphic by Theorem (3.5).

Conversely if $M(\lambda, \Lambda)$ and $M'(\lambda', \Lambda')$ are isomorphic then $\lambda = \lambda' + n\delta$ for some $n \in \mathbb{Z}$ and kernel *A*=kernel *A'*. Hence there exists $r \ge 0$ such that $im(A) = im(A')$ $=L_r$. If $r=0$ then $A=A'$. If $r>0$, then there exists $x \in \mathfrak{S}_r$, with $A(x)+0$, $A'(x)+0$. Set

$$
\Lambda(x) = at^r, \qquad \Lambda'(x) = bt^r, \qquad a, b \in \mathbb{C} - (0).
$$

The result is immediate from Lemma (3.6) since (\mathfrak{S}/I) is spanned by the elements x^s , and we have

$$
\Lambda(x^s) = (ab^{-1})^s \Lambda'(x^s).
$$

The modules $M(\lambda, \Lambda)$ have a unique irreducible quotient which we denote by $V(\lambda, \Lambda)$. Clearly an isomorphism of $M(\lambda, \Lambda)$ and $M(\lambda', \Lambda')$ induces an isomorphism of the quotients. One can imitate the proof of Proposition (3.8) to obtain the following parametrization of the isomorphism classes of irreducible modules in $\ddot{\theta}$.

(3.9) **Proposition.** The modules $V(\lambda, \Lambda)$ and $V(\lambda', \Lambda')$ are isomorphic if and only *if*

(i)
$$
\lambda = \lambda' + n\delta
$$
 for some $n \in \mathbb{Z}$, $\Lambda'(\mathfrak{S}_n) \neq 0$,

(ii) *there exists* $0 \neq a \in \mathbb{C}$ *such that for all k* $\in \mathbb{Z}$ *and all* $x \in \mathbb{S}_k$

$$
\Lambda(x) = a^k \Lambda'(x).
$$

(3.10) *Remark.* If $\text{im } A = L_r$, then $M(\lambda, A)$ is generated as a $U(G)$ -module by t^{rs} for any $s \in \mathbb{Z}$ and hence

$$
\dim V(\lambda, \Lambda)_{\epsilon s\delta} = \dim M(\lambda, \Lambda)_{\epsilon s\delta} \quad \text{for all } s \in \mathbb{Z}.
$$

4. Integrable modules in $\tilde{\mathcal{O}}$

In this section we obtain the necessary and sufficient condition for the modules $V(\lambda, \Lambda)$ to be integrable. We use the notation of Section 3. Let \mathbb{C}^* denote the set of non-zero complex numbers.

Set $P_+ = {\lambda \in (\mathfrak{h} \oplus \mathbb{C} d)^* : (\lambda, \check{\alpha}_i) \in \mathbb{Z}_+ \forall i \in (1, ..., n)}$. For $\lambda \in P_+$ set

$$
J_{\lambda} = \{ i \in (1, ..., n) : (\lambda, \check{\alpha}_i) > 0 \},
$$

$$
r_{\lambda} = \sum_{i \in J_{\lambda}} (\lambda, \check{\alpha}_i).
$$

If $r_{\lambda} > 0$ identify the set $(\mathbb{C}^*)^{r_{\lambda}}$ with the product $(\mathbb{C}^*)^{(\lambda, \alpha_{i_1})} \times ... \times (\mathbb{C}^*)^{(\lambda, \alpha_{i_k})}$ where $i_1 \leq \ldots \leq i_k$ are the elements of J_{λ} . For every $a \in (\mathbb{C}^*)^{r_{\lambda}}$, $a = (a_{ij})$, $i \in J_{\lambda}$, $1 \leq j \leq (\lambda, \check{\alpha}_i)$, define a graded homomorphism A_a : $\mathfrak{S} \rightarrow L$ by extending

$$
A_a(x_k^{(i)}) = 0 \quad \forall k \in \mathbb{Z}, \ i \notin J_\lambda,
$$

$$
A_a(x_k^{(i)}) = \left(\sum_{j=1}^{(\lambda, \alpha_i)} a_{ij}^k\right) t^k \quad \forall k \in \mathbb{Z}, \ i \in J_\lambda
$$

Set $\mathfrak{H}_{\lambda} = \{A_a: a \in (\mathbb{C}^*)^{r_{\lambda}}\}$. If $r_{\lambda} = 0$ then set $\mathfrak{H}_{\lambda} = \{A_0\}$, (where A_0 was defined in Section 3). Observe that $\mathfrak{H}_{\lambda} = \mathfrak{H}_{\mu}$ if $\lambda = \mu + s\delta$, se**Z**.

(4.1) **Lemma.** For all $\lambda \in P_+$, $a \in (\mathbb{C}^*)^r$ *the image of* A_a *is a Laurent ring i.e.* $\mathfrak{H}_\lambda \subseteq \mathfrak{H}.$

(4.2) **Theorem.** $V(\lambda, \Lambda)$ is integrable if and only if $\lambda \in P_+$ and $\Lambda \in \mathfrak{H}_+$.

Define an equivalence relation on \mathfrak{H}_{λ} by: $A_{a} \sim A_{a'}$, if and only if there exists $b \in \mathbb{C}^*$ and permutations σ_i of $(1, ..., (\lambda, \check{\alpha}_i))$, $i \in J_i$ such that

$$
a_{ij} = b a'_{i, \sigma_i(j)}.
$$

The following Corollary which is now a trivial consequence of Proposition (3.9) gives the parametrization of the isomorphism classes of irreducible integrable G-modules in $\tilde{\varrho}$.

(4.3) Corollary. The *integrable modules* $V(\lambda, \Lambda_a)$ and $V(\mu, \Lambda_b)$ are isomorphic if *and only if:* $\lambda = \mu + k\delta$ *for some k* $\epsilon \mathbb{Z}$ with $A_b(\mathfrak{S}_k) \neq 0$ *and* $A_a \sim A_b$.

To simplify the notation we prove the results for the affine Lie-algebra $A_1^{(1)}$ and sketch a proof of the general case at the end of the section. We recall the following well-known results.

Lemma A. If $a_1, ..., a_k \in \mathbb{C}^*$ are distinct, then, the matrix $(a_i^j)1 \leq i, j \leq k$ is non*singular.*

Lemma B. Let $(a_n)_{n \in \mathbb{Z}}$ be elements of $\mathbb C$ satisfying a recurrence relation of type

$$
a_n = \sum_{j=1}^r A_j a_{n-j}
$$

where, $A_i \in \mathbb{C}$ $(1 \leq j \leq r)$ is independent of n. Assume that $A_r \neq 0$. Let $a_{(1)}, \ldots, a_{(r)}$ be *the (non-zero) roots of the polynomial* $X^r - \sum A_i X^{r-j}$. Then $a_n = \sum B_i a_{i}^n \forall n \in \mathbb{Z}$, *where* $B_1, ..., B_r \in \mathbb{C}$ depend on $a_1, ..., a_r$. $i=1$ $j=1$

Lemma C. Let I be the ideal in a polynomial algebra $\mathbb{C}[X_1, \ldots, X_n]$ generated *by elements of the .form*

$$
Y_i = \left(\sum_{j=1}^n b_{ij} X_j\right)^p, \quad i \in (1, ..., n),
$$

where $b_{ij} \in \mathbb{C}$, $1 \leq i, j \leq n$ and p is some positive integer. If the matrix (b_{ij}) is non*singular then I is of finite co-dimension i.e. there exists an integer* $q>0$ *such that* $X^q \in I$ for all $j \in (1, \ldots, n)$.

From now on G denotes the affine Lie-algebra of type $A_1^{(1)}$ *. Let y,h,x be the standard basis for sl(2, C) and let y_n, h_n, x_n denote the elements* $t^n \otimes y$ *,* $t^n \otimes h$ *,* $t^n \otimes x$ *of G. Set* $y_0 = y$, $h_0 = h$, $x_0 = x$. Clearly,

$$
N^0_-=\bigoplus_{n\in\mathbb{Z}}\mathbb{C}\,y_n,\qquad T_0=\mathbb{C}\,c\bigoplus_{n\in\mathbb{Z}-\,(0)}\mathbb{C}\,h_n,\qquad N^0_+=\bigoplus_{n\in\mathbb{Z}}\mathbb{C}\,x_n.
$$

The algebra \mathfrak{S} *is the polynomial algebra* $\mathbb{C}[\bar{h}_n : n \in \mathbb{Z} - (0)]$ *and the map p:* $U(T_0) \rightarrow \mathfrak{S}$ *satisfies* $p(h_n) = h_n$.

Proof of Lemma (4.1). Let $\lambda \in P_+$, $(\lambda, h) = n > 0$ and let $a = (a_1, \ldots, a_n) \in (\mathbb{C}^*)^n$. Assume that a_1, \ldots, a_k are the distinct elements in (a_1, \ldots, a_n) and that a_i occurs with multiplicity p_i , $1 \leq i \leq k$. Then

$$
A_a(\widehat{h_r}) = \left(\sum_{i=1}^k p_i a_i^r\right) t^r \quad \forall r \in \mathbb{Z}.
$$

By Lemma A it follows that there exists $i, j \in (1, ..., k)$ such that $A_a(\bar{h_i}) \neq 0$, $A_n(\tilde{h}_{-i})=0$. Let $r, s \in (1, ..., k)$ be the smallest integers such that there exists $Q \in \mathfrak{S}_r$, $Q_* \in \mathfrak{S}_{-s}$ with $A_a(Q) + 0$ and $A_a(Q_*) + 0$. If $r \geq s$ write $r = sp + q$, $0 \leq q < s$. Since $QQ_{*}^{p} \in \mathfrak{S}_{q}$ and $A_{a}(QQ_{*}^{p})+0$, the minimality of r forces $q=0$. If $p>1$ then $A_q(QQ_*^{p-1})+0$ and $QQ_*^{p-1} \in \mathfrak{S}_s$ (s < r). Hence $p=1$ and $r=s$. A similar argument proves that $A_a(\mathfrak{S}_a)=0$ if $q\neq o(r)$ and so A_a maps onto the ring $L_r=\mathbb{C}[t^r, t^{-r}]$. If $r \leq s$ the proof is similar.

We now prove Theorem (4.2). We need the following consequence of Lemma (2.2) and Theorem (3.5). Let v_{λ} denote the element 1 \otimes 1 of $M(\lambda, \Lambda)$ and \bar{v}_{λ} the image of v_{λ} in $V(\lambda, \Lambda)$. Let $\overline{\beta}$: $U(G) \rightarrow U(T)$ be the canonical map defined in § 1.

Given any *n*-tuple of integers $r = (r_1, ..., r_n)$ set $x_{(r)} = x_{r_1}...x_{r_n}$, $y_{(r)} = y_{r_1}...y_{r_n}$.

(4.4) **Lemma.** Let $\lambda \in P_+$, $(\lambda, h) = n$. The following are equivalent:

- (i) $V(\lambda, \Lambda)$ *is integrable,*
- (ii) $y_{(r)} \cdot \bar{v}_\lambda = 0 \ \forall r \in \mathbb{Z}^{n+1}$,
- (iii) $A(\bar{\beta}(x_{(r)}, y_{(s)})) = 0 \ \forall r, s \in \mathbb{Z}^{n+1}$.

Proof. (i) \Rightarrow (ii). This is clear from Lemma (2.2)(b) and the fact that $y_{(r)} \cdot \bar{v}_{\lambda}$ has weight $\lambda - (n + 1)\alpha$ if $r \in \mathbb{Z}^{n+1}$.

 $(ii) \Rightarrow (i)$. This is by Definition (2.1).

(ii) \Leftrightarrow (iii). By Theorem (3.5)(ii) it follows that $y_{(r)} \cdot \bar{v}_1 = 0 \forall r \in \mathbb{Z}^{n+1}$ if and only if the set $\{y_{(r)}, v_{\lambda} : r \in \mathbb{Z}^{n+1}\}$ generates a proper submodule of $M(\lambda, \Lambda)$. Equivalently, (by Remark (3.10))

$$
x_{(s)} \cdot y_{(r)} \cdot v_{\lambda} = 0 \,\forall r, s \in \mathbb{Z}^{n+1}
$$

i.e. $A(\bar{\beta}(x_{(n)}y_{(n)})=0 \ \forall r, s \in \mathbb{Z}^{n+1}$.

Recall the elements $P_i \in U(T_0)$ defined in §1. Thus if $D_+ : U(T_0) \to U(T_0)$ is the derivation obtained by extending $D_+(h_n) = nh_{n+1}$, and $L_1: U(T_0) \to U(T_0)$ is left multiplication by h_1 , then

$$
P_j = \frac{(D_+ - L_1)^j}{j!} \cdot 1, \quad j \ge 0.
$$

By Proposition (1.1)(ii) we have

$$
P_j = (-1)^j \overline{\beta} \left(\frac{x_1^j}{j!} \frac{y^j}{j!} \right).
$$

Set $\overline{P}_i = p(P_i)$. Proposition (1.1)(i) gives us the following recursive formula for \overline{P}_i ,

(4.5)
$$
\bar{P}_j = -\frac{1}{j} \sum_{i=0}^{j-1} \bar{h}_{i+1} \bar{P}_{j-i-1}.
$$

Let $\lambda \in P_+$, $(\lambda, h) = n$ and $A_n \in \mathfrak{H}_2$. For $0 \leq j \leq n$ we have

(4.6)
$$
A_a(\bar{P}_j) = ((-1)^j \sum a_{i_1} \dots a_{i_j}) t^j
$$

where the sum is over *j*-tuples $i_1 < ... < i_j$, $i_k \in (1, ..., n)$. If $j = 1$ then $\overline{P}_1 = -h_1$ and hence $A_a(P_1) = \{-\sum a_i\}t$. Assume that (4.6) holds for all $j \leq i$. Substituting $i=1$ the values of $A_a(h_{i+1}) = \left(\sum a_i^{i+1}\right)t^{i+1}$ and $A_a(P_i)(0 \leq j \leq i)$ in (4.5) gives (4.6) for $\sqrt{j} = 1$ i+1. Conversely if for some $A \in \mathfrak{H}_{\lambda}$ there exists $a_1, ..., a_n \in \mathbb{C}^*$ such that (4.6) holds, then,

for $0 \leq j \leq n$.

Proof of Theorem (4.2). Assume that $V(\lambda, \Lambda)$ is integrable. By Lemma (2.2) we know that $\lambda \in P_+$ i.e. $(\lambda, h) = n \in \mathbb{Z}_+$. Define scalars $a_r \in \mathbb{C}$, re \mathbb{Z} by,

$$
\Lambda(h_r) = a_r t^r, \ r \neq 0, \qquad a_0 = (\lambda, h) = n.
$$

For $r \in \mathbb{Z}$ let (r) denote the element $(r, 1, ..., 1)$ of \mathbb{Z}^{n+1} . By Lemma (4.4)(iii) and Proposition $(1.1)(i)$ we have

$$
0 = A(\bar{\beta}(x_{(r)}y^{n+1})) = \sum_{j=0}^{n} a_{j+r} A(\bar{P}_{n-j}) t^{j+r}.
$$

Claim. $A(\overline{P}) = 0$.

If $A(\overline{P_n})=0$ then the preceding equality together with Proposition (1.1)(i) *implies that*

$$
0 = A \left(\sum_{j=0}^{n-1} \overline{h}_{j+r+1} \overline{P}_{n-j-1} \right) = A(\overline{\beta}(x_{r+1} x_1^{n-1} y^n)).
$$

Equivalently,

$$
x_{r+1} \cdot x_1^{n-1} \cdot y^n \cdot \overline{v}_\lambda = 0 \,\,\forall r \in \mathbb{Z}.
$$

Thus the element $x_1^{n-1} \tcdot y^n \tcdot \overline{v}_\lambda$ generates a proper submodule of $V(\lambda, \Lambda)$ and hence $x_1^{n-1} \cdot y^n \cdot \bar{v}_2 = 0$. *Since* $y_{-1} \cdot y^n \cdot \bar{v}_2 = 0$ *it follows from the standard representation theory of sl*(2, **C**) *that* $y^n \cdot \overline{v}_1 = 0$ *contradicting* $(\lambda, h) = n$ *. This proves the claim.*

Let $(A_i)_{0 \le i \le n}$ be such that $A(\overline{P}) = A_i t^j$. The scalars $(a_r)_{r \in \mathbb{Z}}$ satisfy

$$
a_{r+n} = -\sum_{j=0}^{n-1} a_{j+r} A_{n-j}
$$

and hence by Lemma B it follows that

$$
a_r = \sum_{i=1}^n B_i a_{(i)}^r \quad \forall r \in \mathbb{Z},
$$

where B_1, \ldots, B_n are determined by a_1, \ldots, a_n and $a_{(1)}, \ldots, a_{(n)}$ are the roots of the polynomial $(X^n + \sum A_{n-i}X^j)$. Further for $0 \leq j \leq n$, $j=0$

$$
A_j = (-1)^j \sum_{i_1 < \ldots < i_j} a_{(i_1)} \ldots a_{(i_j)}.
$$

By (4.7) we have $B_i = 1$ for all $i \in (1, ..., n)$ and hence $A = A_a$ where a $=(a_{(1)},...,a_{(n)})\in (\mathbb{C}^*)^n$.

We now prove the converse. Thus let $\lambda \in P_+$, $(\lambda, h) = n \ge 0$ and $A = A_a \in \mathfrak{H}_\lambda$. If $n=0$ then $A=A_0$. For all $p, q \in \mathbb{Z}$ we have,

$$
x_p \cdot y_q \cdot v_\lambda = h_{p+q} \cdot v_\lambda = 0
$$

and hence the elements $\{y_q \cdot v_\lambda : q \in \mathbb{Z}\}$ generate a proper submodule of $M(\lambda, \Lambda_0)$. Thus by Theorem (3.5)(ii)

$$
\bar{y}_p \cdot \bar{v}_\lambda = 0
$$

for all $p \in \mathbb{Z}$ and $V(\lambda, \Lambda_0)$ is the trivial G-module.

Assume now that $n>0$ and $A=A_n$ for some $a=(a_1, ..., a_n) \in (\mathbb{C}^*)^n$. Let $r>0$ be such that A_a maps onto $L_r = \mathbb{C}[t^r, t^{-r}]$. Let \mathbb{Z}_r , denote the set of residues modulo *r*. For every $i \in \mathbb{Z}_r$, define a linear map ϕ_i : $M(\lambda + i\delta, \Lambda) \rightarrow U(N^0) \otimes L$ by extending

$$
\phi_i(g \otimes t^{qr}) = g \otimes t^{p+qr+i}
$$

for all $p, q \in \mathbb{Z}$, $g \in U(N_-^0)_p$, where $U(N_-^0)_p$ is the subspace $\{x \in U(N_-^0): [d, x] = p x\}.$ Clearly ϕ_i is injective and $\phi_i(M(\lambda+i\delta, \Lambda))$ acquires a natural G-module structure so that ϕ_i is a G-module map. Denote this module by M_i . Set v_i $=\phi_i(\bar{v}_{\lambda+i\delta})$; notice that $v_i=1\otimes t^i$, i $\in\mathbb{Z}_r$. Let M denote the G-module $\bigoplus M_i$; the $i \in \mathbb{Z}_r$

underlying vector space of M is $U(N^0) \otimes L$. We shall prove that M has an integrable quotient \overline{M} such that if $\eta: M \rightarrow \overline{M} \rightarrow 0$ denotes the canonical map, then $\eta(M_i)+0$ for all $i\in\mathbb{Z}_r$. Thus $\overline{M}_i=\eta(M_i)$ is an integrable quotient of M_i and the theorem follows since $V(\lambda + i\delta, \Lambda)$ is a further quotient of \overline{M}_{i} .

We have the following explicit formulae for the action of G on M. Let $g \in U(N^0)_{\nu}$, m, p, $q \in \mathbb{Z}$, then,

$$
d(g \otimes t^m) = (\lambda + m \delta)(d) g \otimes t^m
$$

 $y(\sigma \otimes t^m) = y(\sigma \otimes t^{m+q})$

(4.8)

$$
h_q(g \otimes t^m) = g \otimes A(\bar{h_q})t^m + [h_q, g] \otimes t^{m+q}
$$

$$
x_q(y_p g \otimes t^m) = (y_p x_q + h_{p+q})(g \otimes t^{m-p}).
$$

(4.9) Lemma. Let $g \in U(N^0)$ be an element of degree one i.e. $g = \sum_{i \in F} c_i y_i$ where F *is some finite subset of the integers. For any positive integer p and any q∈Z, the*

action of x_q *and* h_q *on the element* $g^{p+1} \otimes 1$ *of M is given by:*

$$
x_q(g^{p+1} \otimes 1) = (p+1) [g^{p-1} \sum_{i,j \in F} c_i c_j (y_i \lambda_{j+q} - p y_{i+j+q})] \otimes t^q,
$$

$$
h_q(g^{p+1} \otimes 1) = (g^p \sum_{i \in F} c_i (y_i \lambda_q - 2(p+1) y_{i+q})) \otimes t^q,
$$

where $\lambda_q \in \mathbb{C}$ *is defined by* $A(\bar{h}_q) = \lambda_q t^q$.

The proof of the Lemma is an easy induction on $p > 0$.

- (4.10) **Proposition.** *There exists a proper ideal* $I \subseteq U(N^0)$ *such that*
	- (a) the quotient $R = U(N_{-}^{0})/I$ is finitely generated,
	- (b) $I \otimes L$ is a G-stable subspace of M.

Let M' denote the G-module $R \otimes L$ and $\eta' : M \rightarrow M'$ be the natural map, Then $\eta'(v_i)$ + 0 and hence $\eta'(M_i)(=M_i')$ is non-zero for all $i\in\mathbb{Z}_r$.

- (4.11) Corollary. *M_i* has finite dimensional weight spaces for all $i \in \mathbb{Z}$.
- (4.12) **Proposition.** *There exists a proper ideal* $J \subseteq R$ *such that*
	- (a) *the quotient* $F = R/J$ *is finite-dimensional,*
	- (b) $J \otimes L$ is a G-stable subspace of $R \otimes L$.

Let M denote the G-module $F \otimes L$ and let $\bar{\eta}: M' \rightarrow \bar{M}$ be the natural map. As before $\bar{\eta}(M'_i) = \overline{M}_i$ is non-zero for all $i \in \mathbb{Z}_r$. Set $v'_i = \eta'(v_i)$, $\bar{v}_i = \bar{\eta}(v'_i)$. For all $p, q \in \mathbb{Z}, p>0$, we have from (4.8) that

$$
y_q^p \cdot v_i' = (y_q')^p \otimes t^{pq+i},
$$

$$
y_q^p \cdot \overline{v}_i = (\overline{y}_q)^p \otimes t^{pq+i}
$$

where $y'_a = \eta'(y_a)$, $\bar{y}_a = \bar{\eta}(y'_a)$. By Proposition (4.12) there exists an integer >0 such that $\bar{y}_n^{+1} = 0$ for all $p \in \mathbb{Z}$ and hence

$$
y_p^{+1} \cdot \overline{v}_i = 0 \qquad \forall p \in \mathbb{Z}, \ i \in \mathbb{Z}_r.
$$

Since the adjoint representation of G on $U(G)$ is integrable and $M = \bigoplus_{i \in \mathbb{Z}_r} U(G) \overline{v}_i$ it follows that the elements $(y_p)_{p \in \mathbb{Z}}$ act locally nilpotently on \overline{M} and hence \overline{M} is **integrable. This proves the theorem modulo Proposition (4.10)-(4.12).**

Recall that $A = A_a$ for some $a = (a_1, \ldots, a_n) \in (\mathbb{C}^*)^n$. Let (a_1, \ldots, a_k) be the distinct elements in (a_1, \ldots, a_n) and assume that a_i occurs with multiplicity p_i , $1 \leq i \leq k$. Then for all $q \in \mathbb{Z}$ we have,

$$
\Lambda(\overline{h}_q) = \left(\sum_{i=1}^k p_i a_i^q\right) t^q.
$$

k Set $\lambda_a = \sum p_i a_i^a$. Let Q denote the polynomial $(X-a_1)...(X-a_k)$ and (Q_i) be $i=1$ **polynomials such that** $Q = (X - a_i)Q_i$ **. For** $j \in (1, ..., k)$ **let** A_i **(resp.** B_i **) denote** the coefficient of X^{k-j} in Q (resp. Q_i). Set $A_0 = 1$, $B_{i_{k+1}} = 0$ for all $i \in \{1, ..., k\}$. **Then**

$$
A_j = B_{i,j+1} - a_i B_{i,j}
$$

for all $i, j \in (1, ..., k)$.

By definition

$$
\sum_{j=0}^{k} A_{k-j} a_p^j = 0 \quad \forall p \in (1, ..., k),
$$

$$
\sum_{j=0}^{k-1} B_{i,k-j} a_p^j = 0 \quad \forall p \in (1, ..., k), \ p \neq i
$$

and hence, we have

$$
(*)\qquad \sum_{j=0}^k A_{k-j}\lambda_{j+p}=0
$$

$$
(**)\qquad \sum_{j=0}^{k-1} B_{i,k-j} \lambda_{j+p} = p_i \sum_{j=0}^{k-1} B_{i,k-j} a_i^{j+p}
$$

for all $p \in \mathbb{Z}$, $i \in \{1, ..., k\}$.

(4.13) *Remark.* It is not hard to see that the matrix $B=(B_{i,j}), 1 \leq i, j \leq k$ is nonsingular. In fact if $A'=(a_{ij})$ is defined by $a_{ij}=a_i^{k-i}1 \leq i, j \leq k$, then BA' is a **diagonal non-singular matrix.**

Proof of Proposition (4.10). For $p \in \mathbb{Z}$ let g_p denote the element

$$
g_p = \sum_{j=0}^k A_{k-j} y_{j+p}
$$

of $U(N^0)$. For $q \in \mathbb{Z}$ observe from (4.8) and (*) that

$$
x_q(g_p \otimes 1) = 1 \otimes \left(\sum_{j=0}^k A_{k-j}\lambda_{j+p+q}\right)t^q = 0,
$$

$$
h_q(g_p \otimes 1) = (\lambda_q g_p - 2g_{p+q}) \otimes t^q.
$$

Let *I* be the ideal in $U(N^0)$ generated by the elements $(g_p)_{p \in \mathbb{Z}}$. Clearly *I* is proper $(I \subseteq U(N^0)N^0)$ and the preceding equalities prove that $I \otimes C[t, t^{-1}]$ is G-stable. If R denotes the quotient $U(N^0_-)I$ and y'_p the image of y_p in R, then

$$
y'_{p+k} = -\sum_{j=0}^{k-1} A_{k-j} y'_{j+p}.
$$

Since $A_k = (-1)^k (a_1...a_k)$ is non-zero it follows that the set $\{y'_p : p \in \mathbb{Z}\}\$ is spanned by any k-consecutive elements $\{y'_{a+1},..., y'_{a+k}\}$. Hence R is finitely generated; in fact R is isomorphic to the polynomial algebra in k -variables.

The proof of Corollary (4.11) is immediate since R is finitely generated and

$$
(M)_{-\rho a + a\delta} = U(N^0_-)^p \otimes \mathbb{C} t^q
$$

where $U(N^0_-)^p = \{x \in U(N^0_-): [h, x] = -p\alpha(h)\}.$

Proof of Proposition (4.12). For $q \in \mathbb{Z}$, $i \in (1, ..., k)$, define elements $v_q \in \mathbb{R}$ by:

$$
v_{q,i} = \sum_{j=0}^{k-1} B_{i,k-j} y'_{j+q}.
$$

Observe that: $v_{q,i} - a_i v_{q-1,i} = \sum_{j=0} A_{k-j} y'_{j+q} = 0$ (recall that $g_q = \sum_{j=0} A_{k-j} y'_{j+q} \in I$). Hence for all $q > 0$ we have

 $v_{a,i} = a_i^q v_i, \qquad v_{-q,i} = a_i^{-q} v_i$

where $v_i = v_{0,i}$ for $i \in (1, ..., k)$.

Let J be the ideal of R generated by the elements $\{v_i^{p_i+1}: i \in 1, ..., k\}$. We show that J satisfies the conditions of Proposition (4.12). Let $q \in \mathbb{Z}$. The following equalities prove that $J \otimes C[t, t^{-1}]$ is G-stable.

$$
(h_q v_i^{p_i+1} \otimes 1) = v_i^{p_i+1} (\lambda_q - 2(p_i+1) a_i^q) \otimes t^q,
$$

$$
(x_a v_i^{p_i+1} \otimes 1) = 0.
$$

The first equality follows immediately from Lemma (4.10) and the definition of the elements $v_{a,i}$. For the second observe (from Lemma (4.9)) that:

$$
(\dagger') \qquad x_q v_i^{p_i+1} = (p_i+1)v_i^{p_i-1} \left(v_i \sum_{j=0}^{k-1} B_{i,k-j} \lambda_{j+q} - p_i \sum_{j,l=0}^{k-1} B_{i,k-l} B_{i,k-j} y'_{j+q+l} \right) \otimes t^q.
$$

By the equality $(**)$ we have

$$
\sum_{j=0}^{k-1} B_{i,k-j} \lambda_{j+q} = p_i \sum_{j=0}^{k-1} B_{i,k-j} a_i^{j+q}.
$$

Also, by the definition of $v_{q,i}$ we have

$$
\sum_{j,l=0}^{k-1} B_{i,k-j} B_{i,k-l} y'_{j+q+l} = \sum_{j=0}^{k-1} B_{i,k-j} v_{j+q,i} = \left(\sum_{j=0}^{k-1} B_{i,k-j} a_i^{j+q}\right) v_i.
$$

This proves that the expression on the right hand side of $(†)$ is zero.

The matrix (B_i) $1 \le i, j \le k$ is non-singular (see Remark (4.13)) and hence by Lemma C we conclude that the quotient R/J is finite dimensional. This proves the proposition. We have proved Theorem (4.2) in the case when G is of type $A^{(1)}$.

Let G now denote an arbitrary non-twisted affine Lie-algebra, we use the notation of Sect. 1. It is clear from the proof given for $A_1^{(1)}$ that in general $\mathfrak{H}_2 \subseteq \mathfrak{H}$ and that if $V(\lambda, \Lambda)$ is integrable then $\lambda \in P_+$ and $\Lambda \in \mathfrak{H}_2$. We deduce the converse from the $A_1^{(1)}$ case. For $i\in(1,...,n)$ let G_i denote the subalgebra of G spanned by the elements $\{ \otimes e_i t^k, \otimes f_i t^k, e_k^{(i)}: k \in \mathbb{Z} \}$ together with c and d. Then G_i is isomorphic to an affine Lie-algebra of type $A_1^{(1)}$. Set

$$
H_i = \mathbb{C}c \oplus \mathbb{C}d \oplus \mathbb{C}\check{\alpha}_i,
$$

\n
$$
T_i = \mathbb{C}c \bigoplus_{k \in \mathbb{Z}} \mathbb{C}e_k^{(i)}.
$$

Let $\lambda \in P_+$, $A \in \mathfrak{H}_\lambda$ and let λ_i (resp. A) denote the restriction of λ (resp. A) to H_i (resp. $\frac{U(T_i)}{U(T_i)c}$). Then the G_i -module $M(\lambda_i, \Lambda_i)$ is a G_i -sub-module of $M(\lambda, \Lambda)$. Since $A_i \in \mathfrak{H}_\lambda$, we know that $M(\lambda_i, A_i)$ has an integrable quotient. Set $(\lambda, \check{\alpha}_i) = r_i$. Equivalently,

(t) the submodule generated by the elements $\{f_{i,k}^{r_t+1}v_{\lambda}: k\in\mathbb{Z}\}\$ intersects the weight spaces $M(\lambda_i, A_i)_{\lambda_i + s\delta}$ trivially for all $s \in \mathbb{Z}$, where $f_{i,k} = t^k \otimes$

If we prove that in fact the elements $\{f_{i,k}^{n+1}: i \in (1, \ldots, n), k \in \mathbb{Z}\}\$ generate a proper G-submodule of $M(\lambda, \Lambda)$ then it follows that $V(\lambda, \Lambda)$ is integrable.

For simplicity we take $i=1$, $k=0$ and set $f_{i,0}=f$, $r_i+1=r$. The proof for any *i*, *k* is similar. Suppose that there exists $g \in U(G)$ with

Write g as a sum

$$
g = \sum_j y_j x_j
$$

where $y_i \in U(N^0)$, $x_i \in U(T \oplus N^0_+)_{n_1+n_1\delta}, \eta_i \in \mathring{T}_+, p_i \in \mathbb{Z}$.

Since the weights of $M(\lambda, \Lambda)$ are in $\tilde{D}(\lambda)$ it follows that

$$
x_i f^r v_\lambda = 0
$$

if $\eta_i + m\alpha_1$ for some $0 \leq m \leq r$; in fact, we have,

$$
v_{\lambda} = gf^{r} v_{\lambda} = x f^{r} v_{\lambda}
$$

for some $x \in U(T \oplus N^0_+)_{r_{\alpha_1}}$. [Note that if $\eta_j = m\alpha_1$, $m < r$ then $y_j x_j f^r v_\lambda$ has weight less than λ]. Write x as a sum

$$
x=\sum_{q\in\mathbb{Z}}P_{-q}x_q
$$

corresponding to the decomposition

$$
U(T\oplus N^0_+)_{ra_1}=\bigoplus_{q\in\mathbb{Z}}(U(T)_{-q\delta}\otimes U(N^0_+)_{ra_1+q\delta}).
$$

$$
gf^{r}v_{\lambda} = v_{\lambda}.
$$

Choose $q \in \mathbb{Z}$ such that $x_q f^r v_\lambda \neq 0$. Since $U(N^0_+)_{r,q_1+q\delta} \subseteq U(G_1)$ it follows that the G_1 -module generated by $f^r v_\lambda$ intersects the weight space $M(\lambda_1, A_1)_{\lambda_1 + q\delta}$ contradicting $(†)$. This proves the theorem.

Acknowledgments. 1 would like to thank A. Banerjee and R.C. Cowsik for discussions. 1 would also like to thank S. llangovan for reading the manuscript and pointing out some errors in it.

References

- 1. Garland H.: The arithmetic theory of Loop algebras. J. Alg. 53, 480–551 (1978)
- 2. Humphreys J.E.: Introduction to Lie-algebras and representation theory. Berlin-Heidelberg-New York: Springer 1972
- 3. Kac V.: Infinite dimensional Lie-algebras. Prog. Math., Boston 44, 1983
- 4. Chari V., Pressley A.N.: New unitary representations of loop groups. Preprint (to appear in Math. Ann.)
- 5. Chari V., Pressley A.N.: lntegrable Representations of twisted affine Lie-algebras. (Preprint)

Oblatum 1-VII-1985

Note added in proof

(i) In [4] we obtain explicit realizations of the modules $V(\lambda, A_a)$, $\lambda \in P_+$, $a \in (\mathbb{C}^*)^r$. The modules are unitary for a compact form of G if and only if $|a_i| = |a_i| \forall i, j$, where $a = (a_1, ..., a_r)$. (ii) In [5] we prove analogous results for the twisted affine Lie-algebras.