

Vyjayanthi Chari*

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400005, India

Introduction

A module V for a Kac-Moody Lie-algebra G is called integrable if (i) $V = \bigoplus_{\lambda \in H^*} V_{\lambda}$, (ii) the Chevalley generators e_i, f_i act locally nilpotently on G. Let \mathscr{I}_{fin} denote the category of integrable G-modules V such that dim V_{λ} is finite for all $\lambda \in H^*$. In this article we classify the irreducible objects of the category \mathscr{I}_{fin} for the non-twisted affine Lie-algebras.

Let C denote the one-dimensional center of an affine Lie-algebra $\hat{L}(g)$ and let $c \in C$ be the canonical central element [3]. If V is an irreducible object of \mathscr{I}_{fin} there exists an integer $n \equiv n(V)$ such that cv = nv for all $v \in V$. If n > 0 (resp. n < 0) we prove that V is an irreducible highest weight (resp. lowest weight) module in the category \mathscr{O} (resp. \mathscr{O}^-) [3].

Let $(\alpha_0, ..., \alpha_n)$ be the simple roots of $\hat{L}(\mathfrak{g})$ and assume that $(\alpha_1, ..., \alpha_n)$ form a simple system for the underlying finite-dimensional simple Lie-algebra g. Let $\dot{\Gamma}_+$ denote the non-negative integral linear span of $\{\alpha_i: i=1,...,n\}$. Define a category $\tilde{\mathcal{O}}$ of $\hat{L}(\mathfrak{g})$ modules by $V \in \tilde{\mathcal{O}}$ if and only if (i) cV = 0, (ii) $V = \bigoplus_{\lambda \in H^*} V_{\lambda}$, (iii) the set $P(V) = \{\lambda \in H^*: V_{\lambda} \neq 0\}$ is contained in a finite union of cones $\tilde{D}(\lambda)$ $= \{\lambda - \eta + n\delta: \eta \in \dot{\Gamma}_+, \eta \in \mathbb{Z}\}$. If $V \in \mathscr{I}_{\text{fin}}$ is irreducible and cV = 0 then we prove that $V \in \tilde{\mathcal{O}}$.

In section three we construct some examples of modules in $\tilde{\mathcal{O}}$. Let T_0 denote the homogeneous Heisenberg subalgebra of $\hat{L}(g)$ and let \mathfrak{S} denote the (graded) quotient of $U(T_0)$ by the ideal generated by the center of T_0 . For every $\lambda \in H^*$ and every ideal I of \mathfrak{S} we construct modules $M(\lambda, I) \in \tilde{\mathcal{O}}$. The construction is analogous to the one for Verma modules. We prove that the irreducible objects of $\tilde{\mathcal{O}}$ are in bijective correspondence with the set $\{(\lambda, I): \lambda \in H^*, I \text{ a maximal graded ideal in } \mathfrak{S}\}$ and determine the isomorphism classes of the irreducible modules.

In section four we classify the isomorphism classes of irreducible integrable modules in $\tilde{\mathcal{O}}$. Any such module has finite-dimensional weight spaces. For the affine Lie-algebra $A_1^{(1)}$ we see that for every n > 0 and every $a \in (\mathbb{C}^*)^n$ there exists

^{*} The author thanks the Forschungsinstitut für Mathematik ETH Zurich for their hospitality

a module $V(n, a) \in \tilde{\mathcal{O}}$ such that V(n, a) is irreducible and integrable. Further if V(n, a) and V(m, b) are isomorphic then n = m and $a = a'\sigma(b)$ for some element σ of the permutation group S_n and some $a' \in \mathbb{C}^*$.

1. Preliminaries

We recall the explicit realization of the non-twisted affine Lie-algebras (see [3], Chap. 7 for details).

Let g denote a finite dimensional simple Lie-algebra, h a Cartan subalgebra, $\dot{\Delta}$ the set of roots of g, $\dot{\pi} = \{\alpha_1, ..., \alpha_n\}$ a simple system for $\dot{\Delta}$ and $\dot{\Delta}_+$ the corresponding set of positive roots. Let θ be the highest root of $\dot{\Delta}_+$.

Let $L = \mathbb{C}[t, t^{-1}]$ be the algebra of Laurent polynomials in the indeterminate t. The loop algebra

$$L(\mathfrak{g}) = L \bigotimes_{\mathfrak{C}} \mathfrak{g}$$

is an infinite-dimensional complex Lie-algebra with the bracket $[]_0$ given by, $(P, Q \in L, x, y \in \mathfrak{g})$

$$[P \otimes x, Q \otimes y]_0 = PQ \otimes [x, y].$$

Let $d: L(\mathfrak{g}) \rightarrow L(\mathfrak{g})$ be the derivation of $L(\mathfrak{g})$ obtained by extending linearly the assignment

$$d(t^n \otimes x) = nt^n \otimes x.$$

The affine Kac-Moody Lie-algebra $\hat{L}(g)$ associated to g is obtained by adjoining to L(g) the derivation d and a central element c. Explicitly,

$$\hat{L}(\mathfrak{g}) = L(\mathfrak{g}) \oplus \mathbb{C} c \oplus \mathbb{C} d$$

with the bracket given by $(x, y \in \mathfrak{g}, \lambda, \mu, \lambda_1, \mu_1 \in \mathbb{C})$

$$\begin{bmatrix} t^m \otimes x + \lambda c + \mu d, t^n \otimes y + \lambda_1 c + \mu_1 d \end{bmatrix}$$

= $t^{m+n} \otimes [x, y] + n\mu t^n \otimes y - m\mu_1 t^m \otimes x + m\delta_{m, -n} B(x, y)c$

where $B: g \times g \mapsto \mathbb{C}$ is a non-degenerate invariant form on g.

From now on we assume that g is a fixed simple Lie-algebra and denote the algebra $\hat{L}(g)$ by G. Let H be the subalgebra

$$H = \mathfrak{h} \oplus \mathbb{C} c \oplus \mathbb{C} d$$

of G. Extend an element $\lambda \in \mathfrak{h}^*$ to an element of H^* by setting $\lambda(c) = 0 = \lambda(d)$ so that \mathfrak{h}^* is identified with a subspace of H^* . Define $\delta \in H^*$ by setting $\delta|_{\mathfrak{h} \oplus \mathbb{C}_c} = 0$. $\delta(d) = 1$.

Let $g = \mathfrak{h} \bigoplus_{\alpha \in \dot{\mathcal{A}}} \mathfrak{g}_{\alpha}$ be the root space decomposition of \mathfrak{g} . For $\alpha \in \dot{\mathcal{A}}$, $n \in \mathbb{Z}$, set $G_{\alpha+\alpha} = t^n \otimes \mathfrak{g}_{\alpha}$.

$$G_{n\delta} = t^n \otimes \mathfrak{h}, \qquad n \neq 0$$

Clearly $G_{\alpha+n\delta}$ and $G_{n\delta}$ are *H*-stable subspaces of *G*. Set $\Delta = \{\alpha + n\delta : \alpha \in \dot{\Delta} : n \in \mathbb{Z} \} \cup \{n\delta : n \in \mathbb{Z} - (0)\}$. One has the root space decomposition

$$G = H \bigoplus (\bigoplus_{\gamma \in \Delta} G_{\gamma}).$$

Let α_0 denote the element $\delta - \theta$ of Δ . The subset $\pi = \{\alpha_0, ..., \alpha_n\}$ forms a simple system for Δ and the corresponding positive system Δ_+ is given by

$$\Delta_{+} = \{\alpha + n\delta : \alpha \in \dot{\Delta}, n > 0\} \cup \{n\delta : n > 0\} \cup \dot{\Delta}_{+}.$$

Set $N_{+} = \bigoplus_{\alpha \in A_{+}} G_{\alpha}$, $N_{-} = \bigoplus_{\alpha \in A_{+}} G_{-\alpha}$. Clearly N_{+} and N_{-} are subalgebras of G and one has $G = N \oplus H \oplus N_{-}$.

The Lie-algebra G admits a non-degenerate invariant bilinear form such that the restriction of the form to $H \times H$ is non-degenerate. Let (,) denote the form induced on H^* , $(\alpha, \alpha) \neq 0$ for all $\alpha \in \pi$. The Weyl group W of G is defined to be the subgroup of Aut H^* generated by the reflections $\{s_i: 0 \leq i \leq n\}$, $s_i(\lambda) = \lambda - \frac{2(\lambda, \alpha_i)}{(\alpha_i, \alpha_i)} \alpha_i \forall \lambda \in H^*$. The Weyl group leaves Δ invariant. The subset $W\pi$ of Δ is called the set of real roots. A root $\alpha \in \Delta$ is imaginary if $\alpha \notin W\pi$. In fact,

$$W\pi = \{\alpha + n\delta \colon \alpha \in \dot{\Delta}, n \in \mathbb{Z}\}.$$

Fix a Chevalley basis $\{e_{\alpha}: \alpha \in \dot{\Delta}\} \cup \{\check{\alpha}_i: i = 1, ..., n\}$ for g. For $\alpha \in \dot{\Delta}, k \in \mathbb{Z}$ define elements $e_{\alpha,k}, e_k^{(i)}$ as follows:

$$e_{\alpha,k} = t^{\kappa} \otimes e_{\alpha},$$

$$e_{k}^{(i)} = t^{k} \otimes \check{\alpha}_{i}, \quad i = 1, \dots, n, \ k \in \mathbb{Z} - (0).$$

For convenience, we set $e_{\alpha_{i},0} = e_i$, $e_{-\alpha_{i},0} = f_i$, $1 \le i \le n$, $e_0 = e_{-\theta,1}$, $f_0 = e_{\theta,-1}$. The elements e_i , f_i , i=0,...,n, are called the Chevalley generators of G. The subalgebra H is spanned by the elements $\{\check{\alpha}_i: i=1,...,n\}$ together with the central element c and the derivation d. Set $\check{\alpha}_0 = -\check{\theta} + \frac{2}{(\theta,\theta)}c$. For any $\gamma \in W\pi$, $\gamma = \alpha + n\delta$ the element $\check{\gamma} \in H$ is defined by $\check{\gamma} = [e_{\alpha,n}, e_{-\alpha,-n}] = \check{\alpha} + \frac{2n}{(\alpha,\alpha)}c$.

The homogeneous Heisenberg subalgebra T_0 of G is defined by

$$T_0 = \mathbb{C} c \bigoplus_{k \in \mathbb{Z} - \{0\}} G_{k\delta}.$$

The elements $\{e_k^{(i)}: i=1, ..., n\}$ form a base for the space $G_{k\delta}$. Set $T = T_0 + H$ = $(L \otimes \mathfrak{h}) \oplus \mathbb{C} c \oplus \mathbb{C} d$. If \mathfrak{n}_{\pm} denote the subalgebras $\bigoplus_{\alpha \in J_+} \mathfrak{g}_{\pm \alpha}$, then one has the decomposition of G

$$G = L \otimes \mathfrak{n}_{-} \oplus T \oplus L \otimes \mathfrak{n}_{+},$$

as *T*-stable subalgebras. For a subalgebra *B* of *G* let U(B) denote the universal enveloping algebra of *B*. By the Poincaré-Birkhoff-Witt theorem one has (set $N_{\pm}^{0} = L \otimes n_{\pm}$)

$$U(G) = U(T) \oplus (N^0_+ U(G) + U(G)N^0_-)$$

as T-stable subalgebras. Let $\beta': U(G) \rightarrow U(T)$ denote the canonical projection onto U(T). For $i \in (1, ..., n)$ let $L_i: U(G) \rightarrow U(G)$ denote left multiplication by $e_1^{(i)}$ and let $D_+: U(T_0) \rightarrow U(T_0)$ be the derivation extending $D_+(e_k^{(i)}) = k e_{k+1}^{(i)}$. Set

$$Q_j^{(i)} = \frac{(D_+ + L_i)^j}{j!} \cdot 1, \quad i \in (1, ..., n) \ j \ge 0, \ \text{eg.} \ Q_0^{(i)} = 1, \ Q_1^{(i)} = e_1^{(i)}.$$

In ([1], Lemma 7.5) H. Garland obtains the expression for the element $e^r_{-\alpha_i,1} \cdot e^s_i(r,s>0)$ in terms of the above decomposition. It is not hard to deduce from his formula that $(r>0, k \in \mathbb{Z})$

$$\beta'\left(\frac{e_{-\alpha_{i},1}^{r}}{r!} \cdot \frac{e_{i}^{r}}{r!}\right) = (-1)^{r} \cdot Q_{r}^{(i)},$$
$$\beta'\left(e_{-\alpha_{i},k} \cdot \frac{e_{-\alpha_{i},1}^{r}}{(r)!} \cdot \frac{e_{i}^{r+1}}{(r+1)!}\right) = (-1)^{r+1} \sum_{j=0}^{r} e_{j+k}^{(i)} \cdot Q_{r-j}^{(i)} \mod U(T_{0})c$$

(where $e_0^{(i)} = \check{\alpha}_i$). Let $\eta: G \to G$ be the automorphism of order two extending $\eta(e_{\alpha,n}) = e_{-\alpha,n}, \eta(e_k^{(i)}) = -e_k^{(i)} (\alpha \in \Delta, k, n \in \mathbb{Z})$. Clearly $\eta(N_+^0) = N_-^0, \eta(T) = T$. It is easy to check that the restriction of η to T commutes with D_+ and that $\eta \cdot L_i = -L_i \cdot \eta$. For $i \in (1, ..., n)$ and j > 0 set $P_j^{(i)} = \frac{(D_+ - L_i)^j}{j!} \cdot 1 = \eta(Q_j^{(i)})$. Let $\bar{\beta}: U(G) \to U(T)$ be the projection onto U(T) corresponding to the decomposition $U(G) = U(T) \oplus (N_-^0 U(G) + U(G)N_+^0)$.

Then $\eta \cdot \beta' = \overline{\beta} \cdot \eta$ and we have:

(1.1) **Proposition.** Let $i \in (1, ..., n)$, $r, k \in \mathbb{Z}$, r > 0. Then

(i)
$$\overline{\beta}\left(e_{\alpha_{i},k}\cdot\frac{e_{\alpha_{i},1}^{r}}{r!}\cdot\frac{f_{i}^{r+1}}{(r+1)!}\right) = (-1)^{r}\sum_{j=0}^{r}e_{j+k}^{(i)}\cdot P_{r-j}^{(i)} \mod U(T_{0})c,$$

(ii) $\overline{\beta}\left(\frac{e_{\alpha_{i},1}^{r+1}}{(r+1)!}\cdot\frac{f_{i}^{r+1}}{(r+1)!}\right) = (-1)^{r+1}P_{r+1}^{(i)}.$

Let Γ_+ (resp. $\dot{\Gamma}_+$) denote the non-negative integral linear span of $(\alpha_0, \ldots, \alpha_n)$ (resp. $(\alpha_1, \ldots, \alpha_n)$).

The category \mathcal{O} of G-modules is defined as follows: a module $M \in \mathcal{O}$ if and only if:

(a) $M = \bigoplus M_{\lambda}$, where $M_{\lambda} = \{m \in M : hm = \lambda(h)m \forall h \in H\}$ and dim $M_{\lambda} < \infty$,

(b) the set $P(M) = \{\lambda \in H^* : M_{\lambda} \neq 0\}$ is contained in a finite union of cones $D(\lambda) = \{\lambda - \eta : \eta \in \Gamma_+\}$.

For $\lambda \in H^*$ let I_{λ} denote the left ideal in U(G) generated by $N_+ \cup \{h - \lambda(h): h \in H\}$. The Verma-module $M(\lambda)$ is defined to be the quotient $U(G)/I_{\lambda}$. $M(\lambda)$ has a unique irreducible quotient $L(\lambda)$ ([3], Chapt. 9).

(1.2) **Lemma.** The set $\{L(\lambda): \lambda \in H^*\}$ exhaust all the irreducible modules in \mathcal{O} . Further a module $L(\lambda)$ is integrable (i.e. the elements $\{e_i, f_i: i=0, ..., n\}$ act locally nilpotently on $L(\lambda)$) if and only if $(\lambda, \check{\alpha}_i) \in \mathbb{Z}_+$ for all i = 0, ..., n.

2. Integrable modules

(2.1) Definition. A module V for the affine Lie-algebra G is called integrable if:

(i) $V = \bigoplus_{\lambda \in H^*} V_{\lambda}$, where $V_{\lambda} = \{v \in V : hv = \lambda(h)v \,\forall h \in H\}$,

(ii) the elements $\{e_{\alpha,n}: \alpha \in \dot{\Delta}, n \in \mathbb{Z}\}$ act locally nilpotently on V, i.e. for every $v \in V$ there exists an integer $k = k(\alpha, n, v)$ such that $e_{\alpha,n}^k \cdot v = 0$.

Let \mathscr{I} denote the category of integrable G-modules and let \mathscr{I}_{fin} be the subcategory of integrable modules with finite-dimensional weight spaces. For $V \in \mathscr{I}$ set

$$P(V) = \{\lambda \in H^* \colon V_\lambda \neq 0\}.$$

(2.2) Lemma ([3] Proposition 3.6). Let $V \in \mathcal{I}$, $\lambda \in P(V)$. Then

(a) $(\lambda, \check{\alpha}_i) \in \mathbb{Z}$ for all $i \in \{0, ..., n\}$,

(b) $w\lambda \in P(V)$ and dim $V_{\lambda} = \dim V_{w\lambda}$ for all $w \in W$,

(c) $\lambda + \alpha_i \notin P(V)$ (resp. $\lambda - \alpha_i \notin P(V)$) implies $(\lambda, \check{\alpha}_i) \ge 0$ (resp. $(\lambda, \check{\alpha}_i) \le 0$).

(2.3) Remark. From the lemma it is clear that $V \in \mathscr{I}$ if and only if the elements $(e_i, f_i: i=0, ..., n)$ act locally nilpotently on V. Further the statements (a) and (c) hold for all roots $\alpha \in W\pi$. The g-submodule generated by a vector $v \in V$ is finite-dimensional and hence V breaks up as the direct sum of irreducible finite-dimensional g-modules.

For $\eta \in \dot{\Gamma}_+$, set

$$U(\mathfrak{n}_+)_n = \{x \in U(\mathfrak{n}_+): [h, x] = \eta(h) \times \forall h \in H\}.$$

Define an ordering \leq on H^* by: $\lambda \leq \lambda'$ if and only if $\lambda' - \lambda|_d \in \dot{\Gamma}_+$. If $V \in \mathscr{I}$ and $0 \neq v \in V_{\lambda}$, there exists $\eta \in \dot{\Gamma}_+$ such that $U(\mathfrak{n}_+)_{\eta}$. $v \neq 0$ and $U(\mathfrak{n}_+)_{\eta'} \cdot v = 0$ for all $\eta' \in \dot{\Gamma}_+$ such that $\eta' > \eta$. Further $(\lambda + \eta, \check{\alpha}_i) \in \mathbb{Z}_+$ for all i = 1, ..., n.

(2.4) **Theorem.** Let $V \in \mathscr{I}_{fin}$ be irreducible and let k be the integer such that cv = kv for all $v \in V$. Then

(i) if k > 0 (resp. k < 0) there exists an element $0 \neq v \in V$ (resp. $0 \neq w \in V$) such that $N_+ v = 0$ (resp. $N_- w = 0$),

(ii) if k=0 there exist nonzero elements $v_0, w_0 \in V$ such that $N^0_+ v_0 = 0$, $N^0_- w_0 = 0$.

(2.5) Remark. Observe that if k>0 then V is an object of the intersection $\mathscr{I} \cap \mathscr{O}$ and hence by Lemma (1.2) V is isomorphic to $L(\lambda)$ for some $\lambda \in H^*$ with $(\lambda, \check{\alpha}_i) \in \mathbb{Z}_+$, for all i=0, ..., n. If k<0 then V is isomorphic to an integrable irreducible lowest weight module.

We need the following Lemma:

(2.6) **Lemma.** Let $V \in \mathcal{I}_{fin}$. The subsets $P_+(V)$, $P_-(V)$ of P(V) defined by

$$\begin{split} P_+(V) = &\{\lambda \in P(V) \colon V_{\lambda+\eta} = 0 \ \forall \eta \in \dot{\Gamma}_+ - (0)\} = &\{\lambda \in P(V) \colon \mathfrak{n}_+ V_\lambda = 0\}, \\ P_-(V) = &\{\lambda \in P(V) \colon V_{\lambda-\eta} = 0 \ \forall \eta \in \dot{\Gamma}_+ - (0)\} = &\{\lambda \in P(V) \colon \mathfrak{n}_- V_\lambda = 0\} \end{split}$$

are non-empty.

We recall the following fact about finite-dimensional irreducible modules for g([2], Chap. 6, Proposition 21.3).

(2.7) **Lemma.** Let $F = \bigoplus_{\lambda \in \mathfrak{h}^*} F_{\lambda}$ be an irreducible finite-dimensional representation of \mathfrak{g} with highest weight μ . Let $v \in \mathfrak{h}^*$ be such that $(v, \check{\alpha}_i) \in \mathbb{Z}_+$ for all i = 1, ..., nand $\mu - v \in \dot{\Gamma}_+$. Then $F_v \neq \{0\}$. Proof of Lemma (2.6). We prove the Lemma for $P_+(V)$, the proof for $P_-(V)$ is similar. By Remark (2.3) we can choose $\lambda \in P(V)$ such that $(\lambda, \check{\alpha}_i) \in \mathbb{Z}_+$ for all i = 1, ..., n. Since dim V_{λ} is finite, it follows that the subspace $U(\mathfrak{n}_+)V_{\lambda}$ is finite-dimensional. Hence there exists an element $\eta \in \dot{\Gamma}_+$ such that

$$U(\mathfrak{n}_+)_n V_{\lambda} \neq 0$$
 and $U(\mathfrak{n}_+)_{n'} V_{\lambda} = 0$ if $\eta' > \eta$.

This proves that $n_+ V_{\lambda+\eta} = 0$. We now establish the equivalence of the two definitions. Let $\mu \in P(V)$ be such that $n_+ V_\mu = 0$. If $V_{\mu+\eta} \neq 0$ for some $\eta \in \dot{\Gamma}_+$ we choose $\eta' \in \dot{\Gamma}_+$ such that there exists $0 \neq v \in V_{\mu+\eta+\eta'}$ with $n_+ v = 0$. Then F = U(g)v is a finite-dimensional irreducible module with highest weight $\mu + \eta + \eta'$. By Lemma (2.7) it follows that $F_\mu = F \cap V_\mu$ is non-zero. This contradicts the fact that $n_+ V_\mu = 0$.

Proof of Theorem (2.4)(i). Assume k > 0. Let $\lambda \in P_+(V)$, $(\lambda, \check{\alpha}_i) \in \mathbb{Z}_+ \forall i = 1, ..., n$. The set $A(\lambda) = \{ v \in W\pi \cap A : (\lambda \ \check{v}) \leq 0 \}$

$$\Delta(n) = \{\gamma \in n \ n \mid \Delta_+, (n, \gamma) \ge 0\}$$

is a finite (possibly empty) subset of Δ_+ . Fix a positive integer r such that $\alpha + s\delta \in \Delta_+ - \Delta(\lambda)$ for all $\alpha \in \dot{\Delta}$, $s \ge r$.

Claim 1. $V_{\lambda+s\delta}=0$ for all $s \ge r$. Assume that the claim is false. For some $\alpha \in \dot{\Delta}_+$, set $\gamma = -\alpha + s\delta$. Then $(\lambda, \tilde{\gamma}) > 0$ and hence by Lemma (2.7) it follows that $V_{\lambda-\gamma+s\delta}$ $(=V_{\lambda+\alpha})$ is non-zero contradicting the choice of λ .

Fix an integer $p \ge 0$ such that $V_{\lambda+p\delta} \ne 0$ and $V_{\lambda+s\delta} = 0$ for all s > p.

Claim 2. For all m > 0 and $\alpha \in \dot{\Delta}_+$ we have $V_{\lambda+\alpha+(m+p)\delta} = 0$. Assume that the claim is false. Since $(\lambda+\alpha,\check{\alpha}) > 0$ if $\alpha \in \dot{\Delta}_+$ it follows from Lemma (2.2) that $V_{\lambda+(m+p)\delta} \neq 0$ contradicting the choice of p.

Claim 3. For all $\alpha \in \dot{A}_+$ and all integers m > r we have

$$V_{\lambda-\alpha+(m+p)\delta}=0.$$

The proof is similar to the proof of the Claim 2. Observe that $(\lambda - \alpha, \tilde{\gamma}) > 0$ if $\gamma = -\alpha + (m-1)\delta$.

Let $0 \neq v \in V_{\lambda+p\delta}$. From claims 1-3 it follows that

$$G_{r\delta} \cdot v = 0$$
 for all $r > 0$

and

$$G_{\alpha+s\delta} \cdot v = 0$$

for all but finitely many values of s. Since V is integrable the elements $\{e_{\alpha,k}: \alpha \in \dot{A}, k \in \mathbb{Z}\}$ act locally nilpotently on V and hence the subspace $U(N_+)v$ is finite-dimensional. Let v_1, \ldots, v_q be a basis for $U(N_+)v$ with weights μ_1, \ldots, μ_q . As a $U(N_-)$ -module V is generated by the elements (v_1, \ldots, v_q) and hence the set

$$P(V) \subseteq \bigcup_{i=1}^{q} D(\mu_i).$$

This implies that $V \in \mathcal{O}$ and hence by ([3], Proposition 9.3, Lemma 10.1) it follows that V is isomorphic to $L(\lambda_0)$ for some $\lambda_0 \in H^*$ with $(\lambda_0, \check{\alpha}_i) \in \mathbb{Z}_+$ for all i = 0, ..., n. This completes the proof of Theorem (2.4)(i) in the case k > 0. For k < 0 the proof is similar. We work with $P_-(V)$ rather than $P_+(V)$.

(ii) Assume k=0. Let $\lambda \in P_+(V)$. If $V_{\lambda+\alpha+n\delta}=0$ for all $\alpha \in \dot{\Delta}_+$ and all $n \in \mathbb{Z}$ the theorem follows. If $V_{\lambda+\alpha+r\delta} \neq 0$ for some $\alpha \in \dot{\Delta}_+$ and $r \in \mathbb{Z}$ set $\mu = \lambda + \alpha + r\delta$.

Claim. $V_{\mu+\beta+s\delta}=0$ for all $\beta\in\dot{\Delta}_+$ and all $s\in\mathbb{Z}$. Suppose the claim is false. Since $\alpha,\beta\in\dot{\Delta}_+$ it follows that either $(\alpha+\beta,\check{\alpha})$ or $(\alpha+\beta,\check{\beta})$ is positive, say $(\alpha+\beta,\check{\alpha})>0$. Set $\gamma=\alpha+(s+r)\delta$. Then $(\mu+\beta,\check{\gamma})>0$ and hence by Lemma (2.2), $V_{\mu+\beta+s\delta-\gamma}=V_{\lambda+\beta}\pm0$ contradicting $\lambda\in P_+(V)$. The claim follows and hence $N^0_+V_{\mu}=0$.

This completes the proof of the theorem.

3. The category $\tilde{\mathcal{O}}$

Throughout this section and the next we shall deal only with elements $\lambda \in H^*$ such that $(\lambda, c) = 0$, i.e. $\lambda \in (\mathfrak{h} \oplus \mathbb{C}d)^*$. The category $\tilde{\mathcal{V}}$ of G-modules is defined as follows: a module M is an object of $\tilde{\mathcal{V}}$ if and only if:

(i) $M = \bigoplus_{\lambda \in H^*} M_{\lambda}$,

(ii) there exist finitely many elements $\lambda_1, ..., \lambda_r \in H^*$ such that the set $P(M) = \{\lambda \in H^*: M_\lambda \neq 0\}$ is contained in a union

$$P(M) \subseteq \bigcup_{i=1}^{r} \tilde{D}(\lambda_i)$$

where $\tilde{D}(\lambda_i) = \{\lambda_i - \eta + n\delta : \eta \in \dot{\Gamma}_+, n \in \mathbb{Z}\}.$

Observe that the center of G acts trivially on all objects in $\tilde{\mathcal{O}}$. The morphism in $\tilde{\mathcal{O}}$ are the G-module maps. If $M \in \tilde{\mathcal{O}}$ then any submodule or quotient module is also in $\tilde{\mathcal{O}}$. Also finite direct sums and tensor products of modules in $\tilde{\mathcal{O}}$ are in $\tilde{\mathcal{O}}$.

(3.1) **Lemma.** Any module $M \in \tilde{O}$ contains elements $0 \neq m \in M_{\lambda}$ such that $N^0_+ m = 0$.

Proof. Recall the ordering \leq on H^* defined by $\lambda \leq \mu$ if and only if $\mu - \lambda|_d \in \dot{\Delta}_+$. The condition (ii) in the definition of $\tilde{\mathcal{O}}$ implies that there exists $\lambda \in P(M)$, which is maximal with respect to \leq . Clearly $N^0_+ M_\lambda = 0$.

We construct examples of modules in $\tilde{\mathcal{O}}$. Thus we say that a module $M \in \tilde{\mathcal{O}}$ is a highest weight module of weight λ if there exists $0 \neq m \in M$ such that

$$N^0_+ m = 0$$
, $hm = \lambda(h)m$, $M = U(G)m$.

For $\lambda \in H^*$, $(\lambda, c) = 0$, let \mathbb{C}_{λ} denote the one-dimensional $B^0 = H \oplus N^0_+$ module defined by

$$h \cdot 1 = \lambda(h)1, \quad N_+^0 \cdot 1 = 0.$$

Set $\tilde{M}(\lambda) = U(G) \bigotimes_{U(B_0)} \mathbb{C}_{\lambda}$, $v_{\lambda} = 1 \otimes 1$. Define an action of U(G) on $\tilde{M}(\lambda)$ by left multiplication. Let \mathfrak{S} denote the quotient $U(T_0)/U(T_0)c$ and let $p: U(T_0) \to \mathfrak{S}$ be the canonical homomorphism. Set $\phi(e_k^{(i)}) = x_k^{(i)}$. It is easy to see that \mathfrak{S} is in fact the polynomial algebra in the infinitely many variables $\{x_k^{(i)}: k \in \mathbb{Z}, i = 1, ..., n\}$. For $k \in \mathbb{Z}$, $\eta \in \dot{\Gamma}_+$, set

$$U(N_{-}^{0})_{\eta+k\delta} = \{x \in U(N_{-}^{0}): [h, x] = -(\eta+k\delta)(h)x \forall h \in H\},\$$
$$U(T_{0})_{k\delta} = \{x \in U(T_{0}): [h, x] = k\delta(h)x \forall h \in H\}$$
$$\mathfrak{S}_{k} = p(U(T_{0})_{k\delta}).$$

Since T_0 is an *H*-stable subalgebra of *G* we have a **Z**-grading on the rings $U(T_0)$ and \mathfrak{S} ,

$$U(T_0) = \bigoplus_{k \in \mathbb{Z}} U(T_0)_{k\delta},$$
$$\mathfrak{S} = \bigoplus_{k \in \mathbb{Z}} \mathfrak{S}_k.$$

Further there exists a bijective correspondence between *H*-stable left ideals in $U(T_0)$ containing *c* and graded ideals in \mathfrak{S} .

(3.2) **Lemma.** (i) As an N^0_- -module $\tilde{M}(\lambda)$ is free and

$$\tilde{M}(\lambda) \simeq U(N^0_-) \otimes \mathfrak{S} \otimes \mathbb{C}_{\lambda}$$

(ii)
$$P(\tilde{M}(\lambda)) = \tilde{D}(\lambda)$$
. If $\eta \in \dot{\Gamma}_+$, $k \in \mathbb{Z}$ then

$$\tilde{M}(\lambda)_{\lambda-\eta+k\delta} = \bigoplus_{q-p=k} \left(U(N^0_{-})_{\eta+p\delta} \otimes \mathfrak{S}_q \otimes \mathbb{C}_{\lambda} \right)$$

(iii) Let I be any proper graded ideal in \mathfrak{S} . The G-submodule of $\tilde{M}(\lambda)$ generated by the elements $\{xv_{\lambda}: x \in p^{-1}(I)\}$ is proper and the quotient $M(\lambda, I)$ satisfies

$$M(\lambda, I) \simeq U(N^0_{-}) \otimes (\mathfrak{S}/I) \otimes \mathbb{C}_{\lambda},$$
$$M(\lambda, I)_{\eta+k\delta} = \bigoplus_{q-p=k} U(N^0_{-})_{\eta+p\delta} \otimes (\mathfrak{S}/I)_q \otimes \mathbb{C}_{\lambda}.$$

Proof. Parts (i) and (ii) of the lemma are clear. For part (iii) set

$$M' = U(G)Jv_{\lambda} \qquad (v_{\lambda} = 1 \otimes 1 \otimes 1 \in \tilde{M}(\lambda)),$$

where $J = p^{-1}(I)$ is a proper ideal in $U(T_0)$. If $v_{\lambda} \in M'$ then

$$v_{\lambda} = g x v_{\lambda}$$

for some $g \in U(G)$, $x \in J$. Since $N^0_+ x v_\lambda = 0$ for all $x \in U(T_0)$ it follows that

$$v_{\lambda} = \overline{\beta}(g) x v_{\lambda}$$

where $\bar{\beta}$: $U(G) \mapsto U(T)$ was defined in Sect. 1. Part (i) of the lemma implies that $p(\bar{\beta}(g)x) = 1$ and hence $1 \in I$ contradicting the fact that I is a proper ideal.

Let $\hat{\mathfrak{S}}$ denote the set of maximal graded ideals in \mathfrak{S} .

(3.3) **Corollary.** Let $M \in \tilde{\mathcal{O}}$ be irreducible. There exists $\lambda \in H^*$ and $I \in \tilde{\mathfrak{S}}$ such that M is a quotient of $M(\lambda, I)$.

Proof. By Lemma (3.1) there exists $0 \neq m \in M_{\lambda}$ such that $N^0_+ m = 0$, M = U(G)m. From the definition of $\tilde{M}(\lambda)$ it is clear that there exists a morphism $f: \tilde{M}(\lambda) \to M \to 0$ with $f(v_{\lambda}) = m$. Set $J = \{x \in U(T_0): xm = 0\}$, I = p(J). By Lemma (3.2) the map f factors through to a morphism $\bar{f}: M(\lambda, I) \to M \to 0$.

Let $I'(\neq I)$ be any graded ideal containing I and let $J' = p^{-1}(I)$. Then M = U(G)J'm (since M is irreducible) and as in the proof of Lemma (3.2) there exists $x \in J'$, $y \in U(T_0)$ with (yx-1)m=0 i.e. $(yx-1)\in J \subseteq J'$. This proves that $1 \in J'$ and hence $I' = \mathfrak{S}$.

(3.5) Theorem. Let $\lambda \in (\mathfrak{h} \oplus \mathbb{C}d)^*$, $I \in \widehat{\mathfrak{S}}$.

(i) As a $U(N_{-}^{0})$ -module $M(\lambda, I)$ is free and dim $M(\lambda, I)_{k\delta} \leq 1$ for all $k \in \mathbb{Z}$.

(ii) $M(\lambda, I)$ has a unique irreducible quotient $V(\lambda, I)$.

(iii) The set $\{V(\lambda, I): \lambda \in (\mathfrak{h} \oplus \mathbb{C}d)^*, I \in \mathfrak{S}\}$ exhaust the irreducible modules in \mathfrak{D} .

(iv) The modules $M(\lambda, I)$ and $M(\lambda', I')$ are isomorphic if and only if I = I' and $\lambda = \lambda' + n\delta$ for some $n \in \mathbb{Z}$ with $(\mathfrak{S}/I)_n \neq 0$.

(3.6) **Lemma.** Let $I \in \widehat{\mathfrak{S}}$. As a graded ring \mathfrak{S}/I is isomorphic either to \mathbb{C} (in which case $x_k^{(i)} \in I$ for all i = 1, ..., n and all $k \in \mathbb{Z}$) or to a Laurent subring $\mathbb{C}[t^r, t^{-r}]$ of $\mathbb{C}[t, t^{-1}]$, grad t = 1.

Proof. Set $A = \mathfrak{S}/I$. Clearly A is a simple \mathbb{Z} -graded algebra over \mathbb{C} and hence every non-zero graded element is invertible. The Lemma is a consequence of the following fact: Let $B = \bigoplus_{n \in \mathbb{Z}} B_n$ be a \mathbb{Z} -graded commutative algebra over \mathbb{C} , B

 $\pm \mathbb{C}$. Let *r* be the least positive, integer such that $B_r \pm 0$. Assume there exists an invertible element $t^r \in B_r$. Then $B_p = 0$ if $p \pm 0(r)$ and the homomorphism $B \rightarrow B_0 \otimes \mathbb{C}[t^{-r}, t^r]$ defined by $b_n \rightarrow (b_n t^{-n}) \otimes t^n$ $(n \equiv 0(r))$ is an isomorphism of graded rings.

Proof of Theorem (3.5). (i) This is immediate from Lemma (3.2)(iii) and Lemma (3.6).

(ii) If M' is any proper submodule of $M(\lambda, I)$ then $v_{\lambda} \notin M'$ since $M(\lambda, I) = U(G)v_{\lambda}$. By part (i) we have $M' \cap M(\lambda, I)_{\lambda} = \{0\}$ and hence the sum M_I of all proper submodules of $M(\lambda, I)$ is again proper. The quotient $V(\lambda, I) = M(\lambda, I)/M_I$ is thus the unique irreducible one.

(iii) This is immediate from Corollary (3.3) and part (ii) above.

(iv) Let $f: M(\lambda, I) \to M(\lambda', I')$ be a *G*-module isomorphism. Then $\lambda \in \tilde{D}(\lambda')$, $\lambda' \in \tilde{D}(\lambda)$ and hence $\lambda = \lambda' + n\delta$ for some $n \in \mathbb{Z}$ with $(\mathfrak{S}/I)_{-n} \neq 0$. Further there exists $g \in U(T_0)$ with $v'_{\lambda} = gf(v_{\lambda})$. Let $x \in I$ and $y \in U(T_0)$ with p(y) = x. Then the equation

$$0 = f(ygv_{\lambda}) = ygf(v_{\lambda}) = yv'_{\lambda}$$

proves that $x \in I'$. Similarly we can prove that $I' \subseteq I$ and hence I = I'. For the converse, observe that for any $x \in \mathfrak{S}_n$, $x \notin I$ the map $yv_{\lambda} \rightarrow yxv'_{\lambda}$ ($y \in U(N_{-}^{0})$) is a *G*-module isomorphism.

Let L_r (r>0) denote the subring $\mathbb{C}[t^r, t^{-r}]$ of L and let \mathfrak{H}' denote the set of graded ring homomorphisms $\Lambda: \mathfrak{S} \mapsto L$ with $\Lambda(1)=1$ and such that $\operatorname{im}(\Lambda)=L_r$ for some r>0. If r=0 then $L_0=\mathbb{C}$ and Λ_0 is the trivial homomorphism $\Lambda_0(1) = 1$, $\Lambda_0(\mathbf{x}_k^{(i)})=0$ for all $i=1, \ldots, n$, $k \in \mathbb{Z} - (0)$. Set $\mathfrak{H} = \mathfrak{H}' \cup \{\Lambda_0\}$.

Given $\Lambda \in \mathfrak{H}$, im $\Lambda = L_r$ and $\lambda \in (\mathfrak{h} \oplus \mathbb{C}d)^*$ define a T_0 -module structure on L_r by:

$$xt^{rs} = \Lambda(p(x))t^{rs}, \quad x \in U(T_0),$$
$$N^0_+ L_r = 0, \quad ht^{rs} = (\lambda + rs\delta)(h)t^{rs}.$$

Denote the corresponding module by $L_{A,\lambda}$. It is clear that $L_{A,\lambda}$ is an irreducible $T_0 + B^0$ module and that $L_{A,\lambda} = L_{A,\lambda+rs\delta}$ for all $s \in \mathbb{Z}$. Let $M(\lambda, \Lambda)$ denote the induced module $U(G) \bigotimes_{U(B^0+T_0)} L_{A,\lambda}$. If $I \in \mathfrak{S}$ then by Lemma (3.6) it follows that $I = \text{kernel } \Lambda$ for some $\Lambda \in \mathfrak{H}$. It is now not hard to see that $M(\lambda, I)$ is isomorphic to $M(\lambda, \Lambda)$.

(3.8) **Proposition.** The modules $M(\lambda, \Lambda)$ and $M(\lambda', \Lambda')$ are isomorphic if and only if (i) $\lambda = \lambda' + n\delta$ for some $n \in \mathbb{Z}$ with $\Lambda'(\mathfrak{S}_n) \neq 0$ (ii) there exists $0 \neq a \in \mathbb{C}$ such that for all $k \in \mathbb{Z}_k$ and all $x \in \mathfrak{S}_k$

$$\Lambda(x) = a^k \Lambda'(x).$$

Proof. Set $I = \text{kernel } \Lambda$, $I' = \text{kernel } \Lambda'$. If the pairs (λ, Λ) and (λ', Λ') satisfy conditions (i) and (ii) then I = I' and hence $M(\lambda, \Lambda)$ and $M(\lambda', \Lambda')$ are isomorphic by Theorem (3.5).

Conversely if $M(\lambda, \Lambda)$ and $M'(\lambda', \Lambda')$ are isomorphic then $\lambda = \lambda' + n\delta$ for some $n \in \mathbb{Z}$ and kernel $\Lambda = \text{kernel } \Lambda'$. Hence there exists $r \ge 0$ such that $\text{im}(\Lambda) = \text{im}(\Lambda') = L_r$. If r = 0 then $\Lambda = \Lambda'$. If r > 0, then there exists $x \in \mathfrak{S}_r$ with $\Lambda(x) \neq 0$, $\Lambda'(x) \neq 0$. Set

$$A(x) = at^r, \quad A'(x) = bt^r, \quad a, b \in \mathbb{C} - (0).$$

The result is immediate from Lemma (3.6) since (\mathfrak{S}/I) is spanned by the elements x^s , and we have

$$\Lambda(x^s) = (ab^{-1})^s \Lambda'(x^s).$$

The modules $M(\lambda, \Lambda)$ have a unique irreducible quotient which we denote by $V(\lambda, \Lambda)$. Clearly an isomorphism of $M(\lambda, \Lambda)$ and $M(\lambda', \Lambda')$ induces an isomorphism of the quotients. One can imitate the proof of Proposition (3.8) to obtain the following parametrization of the isomorphism classes of irreducible modules in $\tilde{\mathcal{O}}$.

(3.9) **Proposition.** The modules $V(\lambda, \Lambda)$ and $V(\lambda', \Lambda')$ are isomorphic if and only if

(i)
$$\lambda = \lambda' + n\delta$$
 for some $n \in \mathbb{Z}$, $\Lambda'(\mathfrak{S}_n) \neq 0$,

(ii) there exists $0 \neq a \in \mathbb{C}$ such that for all $k \in \mathbb{Z}$ and all $x \in \mathfrak{S}_{k}$

$$\Lambda(x) = a^k \Lambda'(x).$$

(3.10) Remark. If $\operatorname{im} \Lambda = L_r$ then $M(\lambda, \Lambda)$ is generated as a U(G)-module by t^{rs} for any $s \in \mathbb{Z}$ and hence

$$\dim V(\lambda, \Lambda)_{rs\delta} = \dim M(\lambda, \Lambda)_{rs\delta} \quad \text{ for all } s \in \mathbb{Z}.$$

4. Integrable modules in $\tilde{\mathcal{O}}$

In this section we obtain the necessary and sufficient condition for the modules $V(\lambda, \Lambda)$ to be integrable. We use the notation of Section 3. Let \mathbb{C}^* denote the set of non-zero complex numbers.

Set $P_+ = \{\lambda \in (\mathfrak{h} \oplus \mathbb{C}d)^* : (\lambda, \check{\alpha}_i) \in \mathbb{Z}_+ \forall i \in (1, ..., n)\}$. For $\lambda \in P_+$ set

$$J_{\lambda} = \{i \in (1, ..., n) : (\lambda, \check{\alpha}_i) > 0\}$$
$$r_{\lambda} = \sum_{i \in J_{\lambda}} (\lambda, \check{\alpha}_i).$$

If $r_{\lambda} > 0$ identify the set $(\mathbb{C}^*)^{r_{\lambda}}$ with the product $(\mathbb{C}^*)^{(\lambda, \check{a}_{i_1})} \times \ldots \times (\mathbb{C}^*)^{(\lambda, \check{a}_{i_k})}$ where $i_1 < \ldots < i_k$ are the elements of J_{λ} . For every $a \in (\mathbb{C}^*)^{r_{\lambda}}$, $a = (a_{i_j})$, $i \in J_{\lambda}$, $1 \leq j \leq (\lambda, \check{\alpha}_i)$, define a graded homomorphism $\Lambda_a : \mathfrak{S} \to L$ by extending

$$\begin{split} &\Lambda_a(\mathbf{x}_k^{(i)}) \!=\! 0 \qquad \forall k \!\in\! \! \mathbf{Z}, \ i \!\notin\! J_\lambda, \\ &\Lambda_a(\mathbf{x}_k^{(i)}) \!=\! \left(\sum_{j=1}^{(\lambda, \mathbf{x}_i)} a_{ij}^k \right) \! t^k \qquad \forall k \!\in\! \! \mathbf{Z}, \ i \!\in\! J_\lambda \end{split}$$

Set $\mathfrak{H}_{\lambda} = \{\Lambda_a: a \in (\mathbb{C}^*)^{r_{\lambda}}\}$. If $r_{\lambda} = 0$ then set $\mathfrak{H}_{\lambda} = \{\Lambda_0\}$, (where Λ_0 was defined in Section 3). Observe that $\mathfrak{H}_{\lambda} = \mathfrak{H}_{\mu}$ if $\lambda = \mu + s \delta$, $s \in \mathbb{Z}$.

(4.1) **Lemma.** For all $\lambda \in P_+$, $a \in (\mathbb{C}^*)^{r_{\lambda}}$ the image of Λ_a is a Laurent ring i.e. $\mathfrak{H}_{\lambda} \subseteq \mathfrak{H}$.

(4.2) **Theorem.** $V(\lambda, \Lambda)$ is integrable if and only if $\lambda \in P_+$ and $\Lambda \in \mathfrak{H}_{\lambda}$.

Define an equivalence relation on \mathfrak{H}_{λ} by: $\Lambda_a \sim \Lambda_{a'}$, if and only if there exists $b \in \mathbb{C}^*$ and permutations σ_i of $(1, \dots, (\lambda, \check{\alpha}_i))$, $i \in J_{\lambda}$ such that

$$a_{ij} = b a'_{i,\sigma_i(j)}$$

The following Corollary which is now a trivial consequence of Proposition (3.9) gives the parametrization of the isomorphism classes of irreducible integrable G-modules in $\tilde{\mathcal{O}}$.

(4.3) **Corollary.** The integrable modules $V(\lambda, \Lambda_a)$ and $V(\mu, \Lambda_b)$ are isomorphic if and only if: $\lambda = \mu + k\delta$ for some $k \in \mathbb{Z}$ with $\Lambda_b(\mathfrak{S}_k) \neq 0$ and $\Lambda_a \sim \Lambda_b$.

To simplify the notation we prove the results for the affine Lie-algebra $A_1^{(1)}$ and sketch a proof of the general case at the end of the section. We recall the following well-known results.

Lemma A. If $a_1, \ldots, a_k \in \mathbb{C}^*$ are distinct, then, the matrix $(a_i^j) 1 \leq i, j \leq k$ is non-singular.

Lemma B. Let $(a_n)_{n \in \mathbb{Z}}$ be elements of \mathbb{C} satisfying a recurrence relation of type

$$a_n = \sum_{j=1}^r A_j a_{n-j}$$

where, $A_j \in \mathbb{C}$ $(1 \leq j \leq r)$ is independent of *n*. Assume that $A_r \neq 0$. Let $a_{(1)}, \ldots, a_{(r)}$ be the (non-zero) roots of the polynomial $X^r - \sum_{j=1}^r A_j X^{r-j}$. Then $a_n = \sum_{j=1}^r B_j a_{(j)}^n \forall n \in \mathbb{Z}$, where $B_1, \ldots, B_r \in \mathbb{C}$ depend on a_1, \ldots, a_r .

Lemma C. Let I be the ideal in a polynomial algebra $\mathbb{C}[X_1, ..., X_n]$ generated by elements of the form

$$Y_i = \left(\sum_{j=1}^n b_{ij} X_j\right)^p, \quad i \in (1, \dots, n),$$

where $b_{ij} \in \mathbb{C}$, $1 \leq i, j \leq n$ and p is some positive integer. If the matrix (b_{ij}) is nonsingular then I is of finite co-dimension i.e. there exists an integer q > 0 such that $X_i^q \in I$ for all $j \in (1, ..., n)$.

From now on G denotes the affine Lie-algebra of type $A_1^{(1)}$. Let y, h, x be the standard basis for $sl(2, \mathbb{C})$ and let y_n, h_n, x_n denote the elements $t^n \otimes y, t^n \otimes h, t^n \otimes x$ of G. Set $y_0 = y, h_0 = h, x_0 = x$. Clearly,

$$N^0_- = \bigoplus_{n \in \mathbb{Z}} \mathbb{C} y_n, \qquad T_0 = \mathbb{C} c \bigoplus_{n \in \mathbb{Z} - (0)} \mathbb{C} h_n, \qquad N^0_+ = \bigoplus_{n \in \mathbb{Z}} \mathbb{C} x_n.$$

The algebra \mathfrak{S} is the polynomial algebra $\mathbb{C}[\bar{h}_n: n \in \mathbb{Z} - (0)]$ and the map $p: U(T_0) \to \mathfrak{S}$ satisfies $p(h_n) = \bar{h}_n$.

Proof of Lemma (4.1). Let $\lambda \in P_+$, $(\lambda, h) = n > 0$ and let $a = (a_1, \dots, a_n) \in (\mathbb{C}^*)^n$. Assume that a_1, \dots, a_k are the distinct elements in (a_1, \dots, a_n) and that a_i occurs with multiplicity p_i , $1 \le i \le k$. Then

$$\Lambda_a(\bar{h}_r) = \left(\sum_{i=1}^k p_i a_i^r\right) t^r \quad \forall r \in \mathbb{Z}.$$

By Lemma A it follows that there exists $i, j \in \{1, ..., k\}$ such that $\Lambda_a(h_i) \neq 0$, $\Lambda_a(\bar{h}_{-i}) \neq 0$. Let $r, s \in \{1, ..., k\}$ be the smallest integers such that there exists $Q \in \mathfrak{S}_r$, $Q_* \in \mathfrak{S}_{-s}$ with $\Lambda_a(Q) \neq 0$ and $\Lambda_a(Q_*) \neq 0$. If $r \geq s$ write r = sp + q, $0 \leq q < s$. Since $QQ_*^p \in \mathfrak{S}_q$ and $\Lambda_a(QQ_*^p) \neq 0$, the minimality of r forces q = 0. If p > 1 then $\Lambda_a(QQ_{*}^{p-1}) \neq 0$ and $QQ_{*}^{p-1} \in \mathfrak{S}_s$ (s < r). Hence p = 1 and r = s. A similar argument proves that $\Lambda_a(\mathfrak{S}_q) = 0$ if $q \neq o(r)$ and so Λ_a maps onto the ring $L_r = \mathfrak{C}[t^r, t^{-r}]$. If $r \leq s$ the proof is similar.

We now prove Theorem (4.2). We need the following consequence of Lemma (2.2) and Theorem (3.5). Let v_{λ} denote the element $1 \otimes 1$ of $M(\lambda, \Lambda)$ and \bar{v}_{λ} the image of v_{λ} in $V(\lambda, \Lambda)$. Let $\bar{\beta}: U(G) \rightarrow U(T)$ be the canonical map defined in § 1.

Given any *n*-tuple of integers $r = (r_1, \ldots, r_n)$ set $x_{(r)} = x_{r_1} \ldots x_{r_n}, y_{(r)} = y_{r_1} \ldots y_{r_n}$.

(4.4) **Lemma.** Let $\lambda \in P_+$, $(\lambda, h) = n$. The following are equivalent:

- (i) $V(\lambda, \Lambda)$ is integrable,
- (ii) $y_{(r)} \cdot \bar{v}_{\lambda} = 0 \quad \forall r \in \mathbb{Z}^{n+1}$,
- (iii) $\Lambda(\bar{\beta}(x_{(r)}, y_{(s)})) = 0 \quad \forall r, s \in \mathbb{Z}^{n+1}.$

Proof. (i) \Rightarrow (ii). This is clear from Lemma (2.2)(b) and the fact that $y_{(r)} \cdot \bar{v}_{\lambda}$ has weight $\lambda - (n+1)\alpha$ if $r \in \mathbb{Z}^{n+1}$.

(ii) \Rightarrow (i). This is by Definition (2.1).

(ii) \Leftrightarrow (iii). By Theorem (3.5)(ii) it follows that $y_{(r)} \cdot \overline{v}_{\lambda} = 0 \forall r \in \mathbb{Z}^{n+1}$ if and only if the set $\{y_{(r)} \cdot v_{\lambda} : r \in \mathbb{Z}^{n+1}\}$ generates a proper submodule of $M(\lambda, \Lambda)$. Equivalently, (by Remark (3.10))

$$x_{(s)} \cdot y_{(r)} \cdot v_{\lambda} = 0 \ \forall r, s \in \mathbb{Z}^{n+1}$$

i.e. $\Lambda(\bar{\beta}(x_{(s)}y_{(r)})=0 \ \forall r, s \in \mathbb{Z}^{n+1}.$

Recall the elements $P_j \in U(T_0)$ defined in §1. Thus if $D_+: U(T_0) \rightarrow U(T_0)$ is the derivation obtained by extending $D_+(h_n) = nh_{n+1}$, and $L_1: U(T_0) \rightarrow U(T_0)$ is left multiplication by h_1 , then

$$P_j = \frac{(D_+ - L_1)^j}{j!} \cdot 1, \quad j \ge 0.$$

By Proposition (1.1)(ii) we have

$$P_j = (-1)^j \overline{\beta} \left(\frac{x_1^j}{j!} \frac{y^j}{j!} \right).$$

Set $\overline{P_j} = p(P_j)$. Proposition (1.1)(i) gives us the following recursive formula for $\overline{P_j}$,

(4.5)
$$\bar{P}_{j} = -\frac{1}{j} \sum_{i=0}^{j-1} \bar{h}_{i+1} \bar{P}_{j-i-1}$$

Let $\lambda \in P_+$, $(\lambda, h) = n$ and $\Lambda_a \in \mathfrak{H}_{\lambda}$. For $0 \leq j \leq n$ we have

(4.6)
$$A_a(\bar{P_j}) = ((-1)^j \sum a_{i_1} \dots a_{i_j}) t^j$$

where the sum is over *j*-tuples $i_1 < ... < i_j$, $i_k \in (1, ..., n)$. If j=1 then $\overline{P_1} = -h_1$ and hence $\Lambda_a(\overline{P_1}) = \left(-\sum_{i=1}^n a_i\right)t$. Assume that (4.6) holds for all $j \leq i$. Substituting the values of $\Lambda_a(\overline{h_{i+1}}) = \left(\sum_{j=1}^n a_j^{i+1}\right)t^{i+1}$ and $\Lambda_a(P_j)(0 \leq j \leq i)$ in (4.5) gives (4.6) for i+1. Conversely if for some $\Lambda \in \mathfrak{H}_{\lambda}$ there exists $a_1, \ldots, a_n \in \mathbb{C}^*$ such that (4.6) holds, then,

(4.7)
$$\Lambda(\bar{h}_j) = \left(\sum_{i=1}^n a_i^j\right) t^j$$

for $0 \leq j \leq n$.

Proof of Theorem (4.2). Assume that $V(\lambda, \Lambda)$ is integrable. By Lemma (2.2) we know that $\lambda \in P_+$ i.e. $(\lambda, h) = n \in \mathbb{Z}_+$. Define scalars $a_r \in \mathbb{C}$, $r \in \mathbb{Z}$ by,

$$\Lambda(h_r) = a_r t^r, \ r \neq 0, \qquad a_0 = (\lambda, h) = n.$$

For $r \in \mathbb{Z}$ let (r) denote the element (r, 1, ..., 1) of \mathbb{Z}^{n+1} . By Lemma (4.4)(iii) and Proposition (1.1)(i) we have

$$0 = \Lambda(\bar{\beta}(x_{(r)}y^{n+1})) = \sum_{j=0}^{n} a_{j+r} \Lambda(\bar{P}_{n-j})t^{j+r}.$$

Claim. $\Lambda(\bar{P}_n) \neq 0$.

If $\Lambda(\overline{P}_n) = 0$ then the preceding equality together with Proposition (1.1)(i) implies that

$$0 = A\left(\sum_{j=0}^{n-1} \bar{h}_{j+r+1} \bar{P}_{n-j-1}\right) = A(\bar{\beta}(x_{r+1} x_1^{n-1} y^n)).$$

Equivalently,

$$x_{r+1} \cdot x_1^{n-1} \cdot y^n \cdot \overline{v}_{\lambda} = 0 \ \forall r \in \mathbb{Z}.$$

Thus the element $x_1^{n-1} \cdot y^n \cdot \overline{v}_{\lambda}$ generates a proper submodule of $V(\lambda, \Lambda)$ and hence $x_1^{n-1} \cdot y^n \cdot \overline{v}_{\lambda} = 0$. Since $y_{-1} \cdot y^n \cdot \overline{v}_{\lambda} = 0$ it follows from the standard representation theory of $sl(2, \mathbb{C})$ that $y^n \cdot \overline{v}_{\lambda} = 0$ contradicting $(\lambda, h) = n$. This proves the claim.

Let $(A_j)_{0 \le j \le n}$ be such that $\Lambda(\overline{P_j}) = A_j t^j$. The scalars $(a_r)_{r \in \mathbb{Z}}$ satisfy

$$a_{r+n} = -\sum_{j=0}^{n-1} a_{j+r} A_{n-j}$$

and hence by Lemma B it follows that

$$a_r = \sum_{i=1}^n B_i a_{(i)}^r \quad \forall r \in \mathbb{Z},$$

where $B_1, ..., B_n$ are determined by $a_1, ..., a_n$ and $a_{(1)}, ..., a_{(n)}$ are the roots of the polynomial $\left(X^n + \sum_{j=0}^{n-1} A_{n-j}X^j\right)$. Further for $0 \leq j \leq n$,

$$A_{j} = (-1)^{j} \sum_{i_{1} < \ldots < i_{j}} a_{(i_{1})} \dots a_{(i_{j})}.$$

By (4.7) we have $B_i = 1$ for all $i \in (1, ..., n)$ and hence $\Lambda = \Lambda_a$ where $a = (a_{(1)}, ..., a_{(n)}) \in (\mathbb{C}^*)^n$.

We now prove the converse. Thus let $\lambda \in P_+$, $(\lambda, h) = n \ge 0$ and $\Lambda = \Lambda_a \in \mathfrak{H}_{\lambda}$. If n = 0 then $\Lambda = \Lambda_0$. For all $p, q \in \mathbb{Z}$ we have,

$$x_p \cdot y_q \cdot v_\lambda = h_{p+q} \cdot v_\lambda = 0$$

and hence the elements $\{y_q, v_\lambda; q \in \mathbb{Z}\}$ generate a proper submodule of $M(\lambda, \Lambda_0)$. Thus by Theorem (3.5)(ii)

$$\overline{y}_{p} \cdot \overline{v}_{\lambda} = 0$$

for all $p \in \mathbb{Z}$ and $V(\lambda, \Lambda_0)$ is the trivial G-module.

Assume now that n > 0 and $\Lambda = \Lambda_a$ for some $a = (a_1, ..., a_n) \in (\mathbb{C}^*)^n$. Let r > 0 be such that Λ_a maps onto $L_r = \mathbb{C}[t^r, t^{-r}]$. Let \mathbb{Z}_r denote the set of residues modulo r. For every $i \in \mathbb{Z}_r$ define a linear map $\phi_i: M(\lambda + i\delta, \Lambda) \to U(N_-^0) \otimes L$ by extending

$$\phi_i(g \otimes t^{qr}) = g \otimes t^{p+qr+}$$

for all $p, q \in \mathbb{Z}$, $g \in U(N_{-}^{0})_{p}$, where $U(N_{-}^{0})_{p}$ is the subspace $\{x \in U(N_{-}^{0}): [d, x] = px\}$. Clearly ϕ_{i} is injective and $\phi_{i}(M(\lambda + i\delta, \Lambda))$ acquires a natural G-module structure so that ϕ_{i} is a G-module map. Denote this module by M_{i} . Set $v_{i} = \phi_{i}(\overline{v}_{\lambda+i\delta})$; notice that $v_{i} = 1 \otimes t^{i}$, $i \in \mathbb{Z}_{r}$. Let M denote the G-module $\bigoplus_{i \in \mathbb{Z}_{r}} M_{i}$; the

16

underlying vector space of M is $U(N_{-}^{0}) \otimes L$. We shall prove that M has an integrable quotient \overline{M} such that if $\eta: M \to \overline{M} \to 0$ denotes the canonical map, then $\eta(M_i) \neq 0$ for all $i \in \mathbb{Z}_r$. Thus $\overline{M}_i = \eta(M_i)$ is an integrable quotient of M_i and the theorem follows since $V(\lambda + i\delta, \Lambda)$ is a further quotient of \overline{M}_i .

We have the following explicit formulae for the action of G on M. Let $g \in U(N_{-}^{0})_{k}, m, p, q \in \mathbb{Z}$, then,

$$d(g \otimes t^m) = (\lambda + m\delta)(d)g \otimes t^m$$

(4.8)

$$y_q(g \otimes t^m) = y_q g \otimes t^{m+q}$$

$$h_q(g \otimes t^m) = g \otimes \Lambda(\tilde{h}_q) t^m + [h_q, g] \otimes t^{m+q}$$

$$x_q(y_p g \otimes t^m) = (y_p x_q + h_{p+q})(g \otimes t^{m-p}).$$

(4.9) **Lemma.** Let $g \in U(N^0_-)$ be an element of degree one i.e. $g = \sum_{i \in F} c_i y_i$ where F

is some finite subset of the integers. For any positive integer p and any $q \in \mathbb{Z}$, the action of x_q and h_q on the element $g^{p+1} \otimes 1$ of M is given by:

$$x_{q}(g^{p+1} \otimes 1) = (p+1) [g^{p-1} \sum_{i,j \in F} c_{i}c_{j}(y_{i}\lambda_{j+q} - py_{i+j+q})] \otimes t^{q},$$

$$h_{q}(g^{p+1} \otimes 1) = (g^{p} \sum_{i \in F} c_{i}(y_{i}\lambda_{q} - 2(p+1)y_{i+q})) \otimes t^{q},$$

where $\lambda_q \in \mathbb{C}$ is defined by $\Lambda(\bar{h}_q) = \lambda_q t^q$.

The proof of the Lemma is an easy induction on p > 0.

- (4.10) **Proposition.** There exists a proper ideal $I \subseteq U(N_{-}^{0})$ such that
 - (a) the quotient $R = U(N_{-}^{0})/I$ is finitely generated,
 - (b) $I \otimes L$ is a G-stable subspace of M.

Let M' denote the G-module $R \otimes L$ and $\eta' \colon M \to M'$ be the natural map, Then $\eta'(v_i) \neq 0$ and hence $\eta'(M_i)(=M'_i)$ is non-zero for all $i \in \mathbb{Z}_r$.

- (4.11) **Corollary.** M'_i has finite dimensional weight spaces for all $i \in \mathbb{Z}_r$.
- (4.12) **Proposition.** There exists a proper ideal $J \subseteq R$ such that
 - (a) the quotient F = R/J is finite-dimensional,
 - (b) $J \otimes L$ is a G-stable subspace of $R \otimes L$.

Let \overline{M} denote the G-module $F \otimes L$ and let $\overline{\eta} \colon M' \to \overline{M}$ be the natural map. As before $\overline{\eta}(M'_i) = \overline{M}_i$ is non-zero for all $i \in \mathbb{Z}_r$. Set $v'_i = \eta'(v_i)$, $\overline{v}_i = \overline{\eta}(v'_i)$. For all $p, q \in \mathbb{Z}$, p > 0, we have from (4.8) that

$$y_q^p \cdot v_i' = (y_q')^p \otimes t^{pq+i},$$

$$y_q^p \cdot \overline{v}_i = (\overline{y}_q)^p \otimes t^{pq+i}$$

where $y'_q = \eta'(y_q)$, $\bar{y}_q = \bar{\eta}(y'_q)$. By Proposition (4.12) there exists an integer >0 such that $\bar{y}_p^{+1} = 0$ for all $p \in \mathbb{Z}$ and hence

$$y_p^{+1} \cdot \overline{v}_i = 0 \quad \forall p \in \mathbb{Z}, \ i \in \mathbb{Z}_r.$$

Since the adjoint representation of G on U(G) is integrable and $\overline{M} = \bigoplus_{i \in \mathbb{Z}_r} U(G)\overline{v}_i$ it follows that the elements $(y_p)_{p \in \mathbb{Z}}$ act locally nilpotently on \overline{M} and hence \overline{M} is integrable. This proves the theorem modulo Proposition (4.10)–(4.12).

Recall that $\Lambda = \Lambda_a$ for some $a = (a_1, ..., a_n) \in (\mathbb{C}^*)^n$. Let $(a_1, ..., a_k)$ be the distinct elements in $(a_1, ..., a_n)$ and assume that a_i occurs with multiplicity p_i , $1 \leq i \leq k$. Then for all $q \in \mathbb{Z}$ we have,

$$\Lambda(\bar{h}_q) = \left(\sum_{i=1}^k p_i a_i^q\right) t^q.$$

Set $\lambda_q = \sum_{i=1}^{k} p_i a_i^q$. Let Q denote the polynomial $(X - a_1)...(X - a_k)$ and (Q_i) be polynomials such that $Q = (X - a_i)Q_i$. For $j \in (1, ..., k)$ let A_j (resp. B_{ij}) denote the coefficient of X^{k-j} in Q (resp. Q_i). Set $A_0 = 1$, $B_{i,k+1} = 0$ for all $i \in (1, ..., k)$. Then

$$A_j = B_{i,j+1} - a_i B_{i,j}$$

for all $i, j \in (1, ..., k)$.

By definition

$$\sum_{j=0}^{k} A_{k-j} a_{p}^{j} = 0 \quad \forall p \in (1, ..., k),$$

$$\sum_{j=0}^{k-1} B_{i,k-j} a_{p}^{j} = 0 \quad \forall p \in (1, ..., k), \ p \neq i$$

and hence, we have

$$\sum_{j=0}^{k} A_{k-j} \lambda_{j+p} = 0$$

(**)
$$\sum_{j=0}^{k-1} B_{i,k-j} \lambda_{j+p} = p_i \sum_{j=0}^{k-1} B_{i,k-j} a_i^{j+p}$$

for all $p \in \mathbb{Z}$, $i \in (1, \ldots, k)$.

(4.13) Remark. It is not hard to see that the matrix $B = (B_{ij}), 1 \le i, j \le k$ is nonsingular. In fact if $A' = (a_{ij})$ is defined by $a_{ij} = a_j^{k-i} 1 \le i, j \le k$, then BA' is a diagonal non-singular matrix.

Proof of Proposition (4.10). For $p \in \mathbb{Z}$ let g_p denote the element

$$g_p = \sum_{j=0}^k A_{k-j} y_{j+p}$$

of $U(N_{-}^{0})$. For $q \in \mathbb{Z}$ observe from (4.8) and (*) that

$$\begin{aligned} x_q(g_p \otimes 1) &= 1 \otimes \left(\sum_{j=0}^k A_{k-j} \lambda_{j+p+q} \right) t^q = 0, \\ h_q(g_p \otimes 1) &= (\lambda_q g_p - 2g_{p+q}) \otimes t^q. \end{aligned}$$

Let I be the ideal in $U(N_{-}^{0})$ generated by the elements $(g_{p})_{p \in \mathbb{Z}}$. Clearly I is proper $(I \subseteq U(N_{-}^{0})N_{-}^{0})$ and the preceding equalities prove that $I \otimes C[t, t^{-1}]$ is G-stable. If R denotes the quotient $U(N_{-}^{0})I$ and y'_{p} the image of y_{p} in R, then

$$y'_{p+k} = -\sum_{j=0}^{k-1} A_{k-j} y'_{j+p}$$

Since $A_k = (-1)^k (a_1 \dots a_k)$ is non-zero it follows that the set $\{y'_p : p \in \mathbb{Z}\}$ is spanned by any k-consecutive elements $\{y'_{q+1}, \dots, y'_{q+k}\}$. Hence R is finitely generated; in fact R is isomorphic to the polynomial algebra in k-variables.

The proof of Corollary (4.11) is immediate since R is finitely generated and

$$(M)_{-pa+a\delta} = U(N_{-}^{0})^{p} \otimes \mathbb{C} t^{q}$$

where $U(N_{-}^{0})^{p} = \{x \in U(N_{-}^{0}): [h, x] = -p\alpha(h)\}.$

Proof of Proposition (4.12). For $q \in \mathbb{Z}$, $i \in (1, ..., k)$, define elements $v_{q,i} \in R$ by:

$$v_{q,i} = \sum_{j=0}^{k-1} B_{i,k-j} y'_{j+q}.$$

Observe that: $v_{q,i} - a_i v_{q-1,i} = \sum_{j=0}^k A_{k-j} y'_{j+q} = 0$ (recall that $g_q = \sum_{j=0}^k A_{k-j} y'_{j+q} \in I$). Hence for all q > 0 we have

 $v_{q,i} = a_i^q v_i, \quad v_{-q,i} = a_i^{-q} v_i$

where $v_i = v_{0,i}$ for $i \in (1, \dots, k)$.

Let J be the ideal of R generated by the elements $\{v_i^{p_i+1}: i \in 1, ..., k\}$. We show that J satisfies the conditions of Proposition (4.12). Let $q \in \mathbb{Z}$. The following equalities prove that $J \otimes C[t, t^{-1}]$ is G-stable.

$$(h_q v_i^{p_i+1} \otimes 1) = v_i^{p_i+1} (\lambda_q - 2(p_i+1)a_i^q) \otimes t^q, (x_q v_i^{p_i+1} \otimes 1) = 0.$$

The first equality follows immediately from Lemma (4.10) and the definition of the elements $v_{q,i}$. For the second observe (from Lemma (4.9)) that:

(†')
$$x_{q} v_{i}^{p_{i}+1} = (p_{i}+1) v_{i}^{p_{i}-1} \left(v_{i} \sum_{j=0}^{k-1} B_{i,k-j} \lambda_{j+q} - p_{i} \sum_{j,l=0}^{k-1} B_{i,k-l} B_{i,k-j} y_{j+q+l}' \right) \otimes t^{q}.$$

By the equality (**) we have

$$\sum_{j=0}^{k-1} B_{i,k-j} \lambda_{j+q} = p_i \sum_{j=0}^{k-1} B_{i,k-j} a_i^{j+q}$$

Also, by the definition of $v_{a,i}$ we have

$$\sum_{j,l=0}^{k-1} B_{i,k-j} B_{i,k-l} y'_{j+q+l} = \sum_{j=0}^{k-1} B_{i,k-j} v_{j+q,i} = \left(\sum_{j=0}^{k-1} B_{i,k-j} a_i^{j+q}\right) v_i.$$

This proves that the expression on the right hand side of (\dagger') is zero.

The matrix $(B_{ij}) 1 \leq i, j \leq k$ is non-singular (see Remark (4.13)) and hence by Lemma C we conclude that the quotient R/J is finite dimensional. This proves the proposition. We have proved Theorem (4.2) in the case when G is of type $A_{1}^{(1)}$.

Let G now denote an arbitrary non-twisted affine Lie-algebra, we use the notation of Sect. 1. It is clear from the proof given for $A_1^{(1)}$ that in general $\mathfrak{H}_{\lambda} \subseteq \mathfrak{H}$ and that if $V(\lambda, \Lambda)$ is integrable then $\lambda \in P_{+}$ and $\Lambda \in \mathfrak{H}_{\lambda}$. We deduce the converse from the $A_1^{(1)}$ case. For $i \in (1, ..., n)$ let G_i denote the subalgebra of G spanned by the elements $\{ \bigotimes e_i t^k, \bigotimes f_i t^k, e_k^{(i)} : k \in \mathbb{Z} \}$ together with c and d. Then G_i is isomorphic to an affine Lie-algebra of type $A_1^{(1)}$. Set

$$H_i = \mathbb{C}c \oplus \mathbb{C}d \oplus \mathbb{C}\check{\alpha}_i,$$
$$T_i = \mathbb{C}c \bigoplus_{k \in \mathbb{Z}} \mathbb{C}e_k^{(i)}.$$

Let $\lambda \in P_+$, $\Lambda \in \mathfrak{H}_{\lambda}$ and let λ_i (resp. Λ_i) denote the restriction of λ (resp. Λ) to $H_i\left(\text{resp. } \frac{U(T_i)}{U(T_i)c}\right)$. Then the G_i -module $M(\lambda_i, \Lambda_i)$ is a G_i -sub-module of $M(\lambda, \Lambda)$. Since $\Lambda_i \in \mathfrak{H}_{\lambda_i}$ we know that $M(\lambda_i, \Lambda_i)$ has an integrable quotient. Set $(\lambda, \check{\alpha}_i) = r_i$. Equivalently,

(†) the submodule generated by the elements $\{f_{i,k}^{r_i+1}v_{\lambda}: k \in \mathbb{Z}\}$ intersects the weight spaces $M(\lambda_i, \Lambda_i)_{\lambda_i+s\delta}$ trivially for all $s \in \mathbb{Z}$, where $f_{i,k} = t^k \otimes f_i$. If we prove that in fact the elements $\{f_{i,k}^{r_i+1}: i \in (1, ..., n), k \in \mathbb{Z}\}$ generate a

proper G-submodule of $M(\lambda, \Lambda)$ then it follows that $V(\lambda, \Lambda)$ is integrable.

For simplicity we take i=1, k=0 and set $f_{i,0}=f$, $r_i+1=r$. The proof for any *i*, *k* is similar. Suppose that there exists $g \in U(G)$ with

$$g = \sum_{i} y_{i} x_{j}$$

where $y_i \in U(N_-^0)$, $x_i \in U(T \oplus N_+^0)_{n_1+n_1\delta}$, $\eta_i \in \dot{\Gamma}_+$, $p_i \in \mathbb{Z}$.

Since the weights of $M(\lambda, \Lambda)$ are in $\tilde{D}(\lambda)$ it follows that

$$x_i f^r v_{\lambda} = 0$$

if $\eta_i \neq m\alpha_1$ for some $0 \leq m \leq r$; in fact, we have,

$$v_{\lambda} = gf^{r}v_{\lambda} = xf^{r}v_{\lambda}$$

for some $x \in U(T \oplus N^0_+)_{ra_1}$. [Note that if $\eta_j = m\alpha_1$, m < r then $y_j x_j f^r v_\lambda$ has weight less than λ]. Write x as a sum

$$x = \sum_{q \in \mathbb{Z}} P_{-q} x_q$$

corresponding to the decomposition

$$U(T \oplus N^0_+)_{r\alpha_1} = \bigoplus_{q \in \mathbb{Z}} (U(T)_{-q\delta} \otimes U(N^0_+)_{r\alpha_1 + q\delta}).$$

$$gf^r v_{\lambda} = v_{\lambda}.$$

Choose $q \in \mathbb{Z}$ such that $x_q f' v_{\lambda} \neq 0$. Since $U(N^0_+)_{r\alpha_1+q\delta} \subseteq U(G_1)$ it follows that the G_1 -module generated by $f' v_{\lambda}$ intersects the weight space $M(\lambda_1, \Lambda_1)_{\lambda_1+q\delta}$ contradicting (†). This proves the theorem.

Acknowledgments. I would like to thank A. Banerjee and R.C. Cowsik for discussions. I would also like to thank S. Ilangovan for reading the manuscript and pointing out some errors in it.

References

- 1. Garland H.: The arithmetic theory of Loop algebras. J. Alg. 53, 480-551 (1978)
- 2. Humphreys J.E.: Introduction to Lie-algebras and representation theory. Berlin-Heidelberg-New York: Springer 1972
- 3. Kac V.: Infinite dimensional Lie-algebras. Prog. Math., Boston 44, 1983
- 4. Chari V., Pressley A.N.: New unitary representations of loop groups. Preprint (to appear in Math. Ann.)
- 5. Chari V., Pressley A.N.: Integrable Representations of twisted affine Lie-algebras. (Preprint)

Oblatum 1-VII-1985

Note added in proof

(i) In [4] we obtain explicit realizations of the modules V(λ, Λ_a), λ∈P₊, a∈(ℂ*)^{rλ}. The modules are unitary for a compact form of G if and only if |a_i| =|a_j| ∀i, j, where a =(a₁,..., a_{rλ}).
(ii) In [5] we prove analogous results for the twisted affine Lie-algebras.