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1. Introduction 

Conformal mappings can be approximated by circle packing isomorphisms; 
this is proved in [-10]. Roughly speaking (see Sect. 5 for a more detailed 
description), a bounded region f2 is almost filled by e-circles 7 from the regular 
hexagonal e-circle packing of the plane. Denote this approximate circle pack- 
ing of Q by Q=. By results of Andreev and Thurston, there is a combinatorially 
isomorphic circle packing D+ of the unit disk D. Denote this isomorphism, 
suitably normalized, by 7~--,7': f2=--*D=. Let f= be the piecewise linear quasicon- 
formal mapping determined by the associated triangulations. As e ~ 0 ,  f~ con- 
verges uniformly on compacta to the Riemann mapping function f :  f2~D. 

Let HCP N be N-generations of the regular hexagonal circle packing, and let 
HCP} be a circle packing that is combinatorially isomorphic to HCP  N. Assume 
that D is the smallest disk containing HCPN, and that ItCP} is contained in D. 
In this context we prove the following analog of the classical lemma of 
Schwarz. The radii R o, R;  of the generation zero circles of HCP N and HCP} 
satisfy R' o <__aRo, where a is an absolute constant. 

This Schwarz lemma analog is used to prove Theorem 6.2: Given K ~ 2 ,  
there is an absolute constant M K such that as e-+0, r a d 7 ' / r a d 7 < M  K for all e- 
circles 7 which meet K. This uniform boundness result is a key ingredient for 
proving Theorem 6.3 and its corollary. These results show that Ofjc?z is 
bounded on compacta (L+ norm) uniformly as e--,0. Furthermore, 3f=/~?~O 
uniformly on compacta  (L+ norm). The following open question was raised 
in [10]: does radT' / rad7 converge to If ' l?  Theorem 6.3 shows that IOf~/~?z[ 
-(radT' /rad7)-->0 as e,~0; hence the open question is equivalent to: does 
I~?fJOz[ - [ f ' l -~0?  

The proof of Theorem 5.1, the Schwarz lemma analog, makes use of the 
fact that in any HCP~, the average of the radii of the circles of generation N is 
never smaller that the radius of the generation zero circle multiplied by a 
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positive absolute constant (i.e., independent of N and the particular packing). 
This result, Theorem 2.2, is proved as a consequence of discrete potential 
theory for hexagonal lattices. In the course of developing the necessary fun- 
damentals we prove the following result (Theorem 3.2) on the existence of a 
"fundamental  potential": There is a discrete real valued function 2 defined on 
the hexagonal lattice such that 2 is harmonic (i,e., the value at a lattice point is 

average of the values at the six neighbors) except at 0 and 2(c0=~2-1oglc~1 the 

+ const. + O for all lattice points cc 

Acknowledgements. I would like to thank Stefan Warschawski for many interesting discussions on 
this material. While trying to prove Theorem 2.2 I had interesting discussions with my colleagues, 
Mike Fredman and Janos Komlos. They found a combinatorial proof [6]. I subsequently found 
the potential theoretic proof given here. 

2. Subharmonic i ty  of  the radii 

A circle packing is a collection of circles in the plane whose interiors are 
disjoint. The nerve of the packing is the imbedded graph whose vertices are the 
centers of the circles; the line segment joining two vertices is an edge if and 
only if the corresponding circles are tangent. Two circle packings are com- 
binatorially equivalent if their nerves are isomorphic. The regular hexagonal 
packing of the plane by circles of equal radii is denoted by HCP; its nerve 
determines a paving of the plane by equilateral triangles. We let HCPu (N 
=0, 1,2,. . .)  denote N generations of HCP starting from some base circle. 
There are 6N circles of generation N if N >  1. We let HCP~ denote a packing 
that is combinatorially equivalent to HCP N. (Clearly the circles in an HCP~ 
need not be of equal radii. However, if a packing is combinatorially equivalent 
to all of HCP then it is, in fact, HCP [10].) 

An HCP~ packing consists of an inner circle surrounded by six tangent 
circles (Fig. 2.1). The following result for such packings is stated in [2; p. 576] 
(the reference for a proof given there appears to be incorrect). For the con- 
venience of the reader we give a self-contained proof  here. 

r2 h 

Fig. 2.1. 
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Lemma 2.1. In any HCP~ packing one has 

(2.1) Ro -<_-~(q + r 2 +r3 + r4 + r5 + r6) 

where R o is the radius of the inner circle and rx, r E . . . .  , r 6 are the radii of the 
outer circles. 

Proof Use the notation of Fig. 2.1 and consider three mutually tangent circles 
of radii R o , q , r  2. The triangle of centers has area [qr2Ro(q+r2+Ro)] �89 by 
Heron's formula. This area can also be expressed as h(q + r  2 +Ro) where h is 
the radius of the inscribed circle. Thus h=[r~rzRo/(q+r2+Ro)] ~ and so we 
obtain 

1 1 /  rlrzRo 
(2.2) tan 01Z=~o ~ [ /  rl+r2+Ro 

for the vertex half angle 012 (see Fig. 2.1). By the convexity of tanx  on 
0 < x < g / 2  we have (Jensen's Inequality; [7, p. 70ff.]). 

tan (012 + 023 + "'" + 061) _<-~(tan 012 + tan 023 + +tan06a ) _ . , .  

which, with the help of (2.2) and similar formulas, yields 

1 l ( ] / / r l r z R  o + ] ~ r 6 r a R o )  
(2.3) - - < - -  t- ... 

] / ~ = 6 R o  r1+ rz + Ro V ro + rx +-Ro " 

According to the inequality between geometric and arithmetic means we re- 
place r~ r2R o by [(q + r  2 +Ro)/3] ~, and similarly for the remaining five terms in 
(2.3), and obtain the desired relation (2.1). 

The next result extends the local property (2.1) to a global one. 

Theorem 2.2. There is an absolute constant c such that for any N = 1, 2 . . . .  and 
any packing HCP~ which is combinatorially equivalent to N generations of the 
regular hexagonal circle packing one has 

(2.4) 
C 

R o < ~ ( q  + r2+  ... +r6N) 

where R o is the radius of the generation zero circle of HCP~ and r 1 . . . .  , r6N are 
the radii of the generation N circles of H CP~. 

The proof of Theorem 2.2 will be given in Sect. 4. It makes use of Theorem 
3.5 which, in turn, requires an analysis of discrete potential theory on a 
hexagonal lattice. This analysis is accomplished in Sect. 3. It is possible for a 
reader to proceed quickly to Sect. 4; only the basic definitions at the beginning 
of Sect. 3 and the statement of Theorem 3.5 will be needed. 

Remark. The motivation for Theorem 2 is the analogy between circle packings 
and conformal mappings (see Sect. 5). Specifically, the analog of (2.4) is the 
subharmonic, mean value property 
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1 2= t 
(2.5) If'(0)[ < 2 s  ! If (e~~ dO 

which holds for a function f analytic in the closed unit disk D. As described in 
Sect. 5, if f is a Riemann mapping function we imagine f transforming an 
infinitesimal circle packing of D (this corresponds to HCP2v ) onto an infinitesi- 
mal circle packing of f(D) (this corresponds to HCP~). We interpret ]f'(z)l as 
the ratio of the radii of the image circle and the preimage circle. Thus (2.5) 
says that for the infinitesimal packing of f(D), the average radius of the outer 
circles dominates the radius of the center circle. Since the harmonic mean 
value formula 

I 2~ 
(2.6) log [/'(0)l = ~  ! log [f'(e~~ dO 

holds with equality, one might suspect that a more precise form of Theorem 
2.2 could be obtained by changing (among other things) the arithmetic mean to 
the geometric mean. 

3. Discrete potential theory 

Let o g = e  i~13 and let h>0.  The set HL(h)={hm+hnod: m, neZ} is called the 
hexagonal lattice of mesh h. The neighbors of ct~HL(h) are the six points 
+ h co k, 0_< k < 5. The lattice point ~ is of generation < N if there is a sequence 
0 = % ,  % . . . . .  c~N=c~ such that c~j is a neighbor of c~;_ 1 for I<j<N. We let 
HL(h, N) denote the subset of HL(h) consisting of lattice points of generation 
=< N. The set of lattice points of generation exactly N is denoted OHL(h, N). If 
the value of h is understood we often simplify the symbols HL(h), HL(h, N), 
OHL(h, N) to H, H N, c~H u. 

If u is a complex valued function defined at c~eH and its six neighbors, then 
the discrete Laplacian of u at a is defined by 

} (3.1) Dhu(~)=3~-  k u(a+hcok)--6u(cO " 

To motivate (3.1), suppose U(x, y) is class C 4 on the convex hull of the six 
neighbors of c~. Apply Taylor's formula in the form (~k = Re co k, t/k = I m  co k): 

hJ / 0 0 \ ~ h4 [~kAq_tlkL~4U(flk ) (3.2) U(~x+hr L j[. k4k~x+qk~) U(~)+~. \ O x  ay! j = 0  

where flk lies on the segment joining ~ and ~+hco k. Add the six equations (3.2) 
for k=0,  1, ..., 5. After simplifying by Y, 4 k = Z  t/k=0, ~, k-- 
= 2 4 3  42 2 3 4 k~k =0 k = ~  kt/k=~at/k=~qk=0' Y, 42=9/4, ~r/k=3/4, ~ 4 3 t / k = ~  3 
one obtains 

(3.3) L U(o~+he)k)=6U(oO+~--(Uxx(a)+ Uyy(cO)+h4E(oO 
k = 0  
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where IE(c0[ < 9 M 4 / 4 !  if M 4 is an upper bound for the magnitude of the fourth 
order partial derivatives of U on this region. Thus the discrete Laplacian 
defined by (3.1) approximates the classical Laplacian to second order:  

(3.4) ID h U(oO - A U(c0[ <h2 4 M  
= 4 " 

A real-valued function u defined o n  H N is said to be subharmonic on H N if 
DhU(e)>O for c~eHN-c?H N. Such functions obviously obey the 

Max imum principle. Suppose u is subharmonic on H N. I f  u attains its maximum 
on H N -  (?H N then u is constant on H N. 

The maximum principle implies the existence, as well as uniqueness, of 
solutions to Dirichlet's problem for Poisson's equation. 

Proposition 3.1. Suppose f :  OHN-,IR and F: HN--OHN--~]R are given. Then there 
is a unique function u: H N ~ I R  such that u = f  on ~H N and DhU=F on H N - O H  N. 

Proof  Consider O h as a linear t ransformation of the following finite dimension- 
al real vector spaces: the domain space is all real-valued functions on H N 
which vanish on 0HN, and the range space is all real-valued function on H N_~. 
The maximum principle shows that  the null space of D h consists of zero alone. 
Since the domain and range have the same dimension, D h is surjective as well 
as injective. 

Therefore there is a function u o on H N which vanishes on c~H N and satisfies 
DhUo=F.  Let v be the function on H N which is equal to f on 0H N and vanishes 
elsewhere. Then there is a function v 0 which vanishes on c?H N and satisfies 
DhVo=DhV. The function U = U o + V - V  o is the desired solution. It is clearly 
unique. 

Let c~eH N and f lor iN_l ,  N > 2 .  We use Proposi t ion 3.1 to define the discrete 
Green's  function gN(e,/~) for H u as  follows: 

(3.5) gN(~, f l )=0  if ~ H  N 

(3.6) D h g N ( ~ , f l ) = l O / s  if ~ H N _ I - - { f l  } 
/ - ~ v ~  if cr 
[ 3h 2 

where the Laplacian, as in (3.6), is always taken with respect to the first 
variable of gN(', "). The maximum principle shows that gN(Ct, f l )>0  if ~ H N _  1. 
The symmetry  of g~ may be deduced easily from Proposi t ion 3.4. 

We want to prove the existence of a function on HL(1) which is harmonic  
away from the origin and which grows like (1/2~z)log Izl up  to an error term of 
order O(1/Izl). We have been unable to find this result in the literature. In the 
case of  the square lattice the existence of such a fundamental  potential was 
first proved by McCrea-Whipple  [9]. A different proof, but without the O(I/Izl) 
error estimate, appears in Spitzer [11] and Van der Pol [-12]. Other  references 
are: Wasow [14] and Forsy the-Wasow [5] for comments  on McCrea-Whipple  
[9], in particular, that  [9] actually shows that the error estimate is O(1/Iz12); 
Duffin [4] for the higher dimensional case which is considerably simpler. 
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Theorem 3.2. 7here is a real-valued function 2 on the hexagonal lattice HL(1) of 
mesh 1 such that 

(i) D14(o)-21/5 
3 ' 

(ii) D12(c~)=0 if c~eHL(1)-{0}, 

(iii) 2(~)=2~loglc~l+const .+O ( i - ~ ) a s  c~--,oe, c~enz(1). 

The proof of Theorem 3.21 will refer to the following Lemmas 3.3 and 3.4: 

Lemma 3.3. The discrete Laplacian of the function C~W-~eIR~'~: HL(1)~II7 is 

(3.7) D 1  elRe~tz  = --8-eiRerLY'S(z)3 ~, 

where S(z) is defined by 

�9 2x " z x + Y ] / ~  x - y V ~  ( z=x+iy) .  (3.8) S(z )=  sin ~- + sin ~- +sinZ ~ ,  

The function S can be written 

(3.9) S(z)=31zl 2-~-~81zl" + E(z) 

where E(z)/Iz[ 4 and its first order partial derivatives are uniformly bounded on 
compact subsets of I~. 

Proof of Lemma 3.3. Direct application of Definition 3.1 gives 

(3.10) 
2 

/ ) le  = 3 e  Lk=0 e 

S iRecte 1" " 2 x " 2 x + y V  ~ Y ] = - 3 e  [sm ~-+sln -~ +sin2 x - ~  ]/~ ] 

which proves (3.7). Another computation shows that 

x+yv5 x-yv  
(3.11) 2S(z)= l - c o s x  + l - c o s  T t- l - c o s ~  

2 x" (x+yvS)"  (x-yl/3) 4 
= 2  + ~ ( x + y V ~ ) 2 + ~ ( x - y V ~ ) z  4! 4!16 4!16 

:�88 2 -31z l  4 + 2E(z) 

q-... 

where 

(3.12) 2E(z )=x6c~(x )+(x+yV~)6 (a (x+yV~)+(x -yV~)6~9(x -y ] /~ )  

I It should be remarked, although this fact will not be used, that conditions (ii) and (iii) of 
Theorem 3.2 determine 2 uniquely up to an additive constant 
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and ~b is the entire function 

1 t 2 t 4 

4 ) ( 0 = ~ - ~  ~ lO! .... 

One can check that the functions 

( +ygS)6 t _yvS)6 
(X2 + y2) 2 '  (X2 + y2) 2 ' (X2 + y2)Z 

and their first order partial derivatives are uniformly bounded on compact 
subsets of C. By (3.12), the same is therefore true for E(z)/lz] 4. 

Lemma 3.4. Let f2 be a closed parallelogram in the plane. Let f :  f 2 ~ R  be of 
uniformly bounded variation on O; that is, there is an M such that the variation 
of f, as a function of one variable, along any vertical or horizontal line in 12 is 
less than M. Then 

(3.13) ~S eiRe~ f(x,  y ) d x d y = O  ( ~ )  

as o t ~ ,  o~HL(1). 

Proof of Lemma 3.4. Let ~=m+nei~/3=]2+iv where #=m+(n/2) ,  v=n]/~/2. 
Because of bounded variation we can integrate by parts and obtain 

x2(y) eiVY [ xz(y) \ 
t iuxx2(y)_ iux f) eiRe'e f ( x , y ) d x =  . f ( z )e  Ix,(r) ~ e d x 

xl (r) l ]2 x,(y) 

o(1) 
and therefore the integral in (3.13) is O(1/]2). Similarly, it is O(1/v). Therefore it 

is O(1/(I]21 + Ivl)) = O( I /1 /~  + v 2) = O(1/[~1). 

Proof of Theorem 3.2. The potential 2 for the unit hexagonal lattice HL(1) is 
defined by 

(3.14) 2(~)= t /~ i ] (1-e"mU+"V))dudv , ( e=m+nei'~/3)" 

~ -~4  sin2 ~+sm2 ~+sin  2 

Note that the linear change of variables 

u=x, v=�89 (3.15) 

transforms (3.14) into 

8 •  
(1 --  e IRene) dx dy 

(3.16) 2(~) = 4S(z) 

where O = { z = x + i y :  - n < _ x < n ,  - 2 n - x < y l / ~ < 2 n - x }  and S is defined by 
(3.8). 
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In order to discuss the convergence of the integral in (3.14) we note that 

I1 -e"m"+"")l<lmu+mv]<]/m2 +nZl/~ +v z 

and that sin(t/2) > t/rc for 0 < t < re. These estimates give 

< 

sin  +sin2 +sin  
2 

and the singularity (u 2 -qt'- L~2)--~ is integrable over the square. 
Next we compute D~ 2(c 0 for 2 in the form (3.16). First Lemma 3.1 and then 

a change of variables according to (3.15) gives 

~ _  iRe~ i ieW.,,+.,V)dudv D 12(c0 = g e dx dy - V~ 
.Q - ~ z  - r r  

-V~6rc2 ( ~  ei""du) (~e~""dv). 

expression vanishes unless r e = n = 0 ,  in which case it gives D~2(0) The final 

_21/5 
3 

To prove part (iii) of the theorem we begin with (3.16) and decompose the 
integral as follows: 

i Re ~,q" dxdy .... (3.17) T32n2 2(a) = ~ g (1 - e e  ) ~ U - +  ~ ( 1 - e  IRene) [zlZ-(8/3)S(z)~)~(~ axdy: 

In the second integral on the right of (3.17) replace S(z) in the numerator by its 
expression in (3.9). We write 

32~ 2 
3 2 ( c 0 = I 1 + I 2 - I 3  

where 

(3.18) I s _eiRe~,~) dxdy 
Izl  2 , 

Iz14-(S/3) E(z) 
I 2 = ~  (1/16) S(z) lzl2 dxdy, 

(3.20) 13 = ~ eiRe e (1/16) Iz[ 4 -- (8/3) E(z) dx dy. 
S(z) Izl 2 

Since sin2(t/2)>t2/g 2 for - ~ < t _ < g  one has 

(3.19) 

(3.21) x . 2x+yV ~ t _ s inzX-y] /~  S(z)=sin22 -+sin 4 4 

1( ))_ =re z > -  x2+ 2 X -  l /~ 2 31zlZ2n 2 
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This estimate, together  with the fact that  E(z)/lz] 4 is bounded (Lemma  3.3), 
shows that  I z converges. 

Next we show that  I3=O(1/Io~l) by appeal ing to L e m m a  3.4. In order to 
verify that  the hypotheses  of this l emma  are satisfied it suffices to show that  
the function 

(3.22) (1/16) Izl'*-(8/3)E(z) Izl 2 i-6 3 
S(z) Izl 2 S(z) Izl 4 l 

is bounded  and has bounded partial derivatives on f2. Since E(z)/Izl 4 has these 
properties,  it suffices to show that  [z[Z/S(z) has them. Inequali ty (3.21) shows 
that  Izl2/S(z) is bounded.  If we take part ial  derivatives of  

Izl 2 1 

S(z) 3 3lzl 2 ' E(z) 
8 128 + ~ 5  

we find tha t  they will be bounded  provided E(z)/]zl 2 has bounded  partial  
derivatives, which is true because it holds for each factor  of Izl2(E(z)/Izl% 

We now show that  

16~ O ( 1 )  (3.23) I1 - - ~ - -  log Ic~l + const. + ~ . 

Let A ~f2  be the disk {Izl<~}. Write 

dxdy  dxdy  dy 
(3.24) 11= 8 g iz[2 ~ g e iRe~'e +8~(1--eiRe~'e)dx 

~-~  n -~  Izl 2 [z[ 2 ' 

The first integral on the right side of (3.24) is a constant.  The second 
integral is O(1/Ic~l) by L e m m a  3.4, which applies to this si tuation because the 
function which vanishes on A and is equal to [z1-2 on 12-A is of uniformly 
bounded  variation. 

The third integral in (3.24) can be t ransformed as follows: 

s irene dxdy  = ~ (1 - c o s  Re c~z-) d x d y  
(3.25) 3~(1  - e  ) l z [  2 i z l ~  

3 Til-coslI lrco 0t 
3 o o r drdO. 

The inner integral above can be writ ten 

I~l~eos0 1 - -cos  u (3.26) i 1 -cos ( l c~ l rcos0)  d r =  f du 
0 g 0 U 

= ~ _ _ +  ~ l ~ l  ~coso du cos u du + 7 

1 U [ M n c o s O  U 

1 ac 

where 7 = ~ (1 - cos u) (du/u)-  ~ cos u(du/u) is Euler 's  constant.  We now have 
0 i 
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(3.27) 
32~z 2 ( 1 )  
T 2(a) =I1 + const.+ O 

(~) ~,~,~, .... 0~ ~ ~ c o s ~  
=cons t .+O 1 + ~ ~ --dO+J dO 

0 1 b/ 0 tot[ ~ cosO U 

( 1 )  16re ~2 ~/z 
=cons t .+O ~-~ + ~ - - l o g t ~ l + Z f  ~ ~ c~ 

3 o [~lncos0 U 

The proof will be complete if we show that 

~; ~ ~osu~u~0:o(1) 
0 p cosO U 

as p --+ o(3 

or equivalently, by the substitution t = p cos 0, that 

(3.28) 5 J" cos u = 0 
o t u r  _ t 2 " 

Split the above integral into 
obvious estimate 

l o 0  p o o  

a sum I f + I  I '  In the first integral use the 
0 t i t 

I ~c~ u =<l~ 

~3 

where k = ~ cos u(du/u), and obtain 
i 

(3.29) j'cosu, u < log t / p 2 _ t 2  

O < t < l  

~( ;1 (11 - - ~ - k ~ d  sin - i t  = 0  . 
0 \ 

In the second integral we use the estimate 

~cosudU - s i n t  O(1) 
(3.30) I- t~ T- 

t tt t 

which follows from integration-by-parts: 

oo 

cos u du 
t U 

Thus 

(3.31) S cosu du 
1 t u 

s~nu) ~ ~ -sin~ Oil/ 
- + sin - - =  ~- t ~ .  U t t t U 2  t 

dt P. -sintdt +! O(1)dt 
~r -- ! ~ ~r ~ ~ _~  
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The second integral is clearly finite and the first can be estimated by 

P s in td t  (3.32) !t/p  1 ~ sin(ps) ds 
J 

P lip S r  2 

I ~sin(ps) sin s) d s + l  f sln(pS) ds 

P 1/o \ s ] , / l - - s  2 P 1/o s 

1 i sin(ps)sds 1 sintdt (1) 
=Pl /or162 -k--ipl t =0  . 

This completes the proof of (3.28) and, consequently, Theorem 3.2. 

The Green's function gN(et, fl) for HL(h, N) was defined by (3.5) and (3.6). 
We shall need the following upper estimate for gN(a,0) as a varies over the 
lattice points of generation N -  1. 

Proposition 3.3. There is an absolute constant b such that for all N>=2, if 
~eaHL(h, N - 1) then 

1 

(3.33) gN(ct, 0) < N '  

Proof We may assume unit mesh size h=l.  In proving (3.33) we may also 
assume that ~ lies in the upper horizontal edge of HL(1, N -  1), that is, among 
the points (recall co = e i~/3) 

(3.34) E N = { ( N - - 1 ) o , ( N - 1 ) o - I , ( N - 1 ) o - 2 , . . . , ( N - D o - ( N - 1 ) } .  

The method we are going to use requires special care at corner points. For 
that reason we replace HL(1, N) by a larger configuration /tN obtained from 
HL(1,2N) by removing the upper N rows of lattice points and the lower N 
rows of lattice points (see Fig. 3.1). We define and construct the discrete 
Green's function ~N(~,0) for /~N, just as was done in the case of H N. The 
maximum Principle implies that gN(a, 0)<~N(~,0 ) for ~ H  N. Therefore it suf- 
fices to prove 

. 

Fig. 3.1. 
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0 < const. (3.35) ~N(~, )=  ~- 

for ~eE N. 
Let us show that inequality (3.35) holds if the discrete objects tqu, gN are 

replaced by analogous nondiscrete objects 12, G. That is, let f2 be the convex 
hull of/1N, a region with polygonal border. Let G(z, 0) be the classical Green's 
function for O with pole at 0. We wish to show that 

const. 
(3.36) G(a, O) < - -  

N 

if a lies on the convex hull of E N. 
Let z~---~(9(z/N) be the Riemann mapping function of f2 onto the unit disk, 

normalized to send the origin to the origin. That is, q5 is the Riemann map of 
the region 12 x obtained from f2 by homothetically shrinking it to diameter 4. 
Let M be the maximum of IqS'(ff)[ as N~ varies over the convex hull of 
HL(1, N). The reflection principle shows that M is finite. 

Let a be a point on the convex hull of E N. Let z 0 be a point on the upper 
edge of the convex hull of HL(1, N) such that Iz o -a [  < 1. Then 

al N ~) (~)d~ 5 ~ "  

With the help of (3.37) we obtain, for N sufficiently large, 

~ ( ~ )  ~ - ~ o g  ~-- 2M G(a, 0) = - l o g  1 - < 
= N  

This proves (3.36). 
To complete the proof we show that (3.36) implies (3.35) by proving 

const. 
(3.38) [~u(~, 0)-- G(0~, 0)1 < - -  czeE N . 

= N ' 

Introduce the following functions: 2 o is a discrete harmonic function on 
HL(1)-{0} which satisfies 

(3.39) 2o(~)=2~1og 1~1 + O ( [~)  

(the existence of 2 o is assured by Theorem 3.2 which shows 20=2+const .) ;  
P~[f] is the solution of the discrete Dirichlet problem for /-)N with boundary 
values f ;  and Pc [ f ]  is the solution of the classical Dirichlet problem for s with 
boundary values f. Since 

1 
G(z,O)=2~l~176 

(3.38) will follow from the three inequalities (c~ varies over EN): 

~N(a ,O)+2o(CO-[2  ~ -  ](cO c~ (3.40) Pe log Izl < - -  
= N 
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- -  l o g  - -  < - -  (3.41) log (ct)-Pa 2~ Izl N ' 

2 o (~) - ~ log < const. (3.42) 1 I~l N 

Estimate (3.40) follows from the Maximum Principle since the function on 
1 

the left is harmonic for ~ / ~ N - O / 4 s  and is equal to 20( /~)-~logl /3 l  for 

/3e~H N. These boundary values are O(1/[fll) by (3.39), and 1/31=O(N) for 
/3ee/~ N. 

Estimate (3.42) follows from (3.39) since Ice I =O(N) for seE  N. 
Estimate (3.41) is, from a certain viewpoint, a fundamental problem of 

numerical analysis: to estimate the error between a classical solution to 
Dirichlet's problem and its finite difference analogue. Such error estimates are 
easy to derive if the boundary value function and the boundary of the region 
are both sufficiently smooth. The case of nonsmooth boundary values and 
boundaries was investigated in Laasonen [8]. The following is a consequence 
of Laasonen's discussion. I f  a region g2' has a piecewise smooth boundary, and if 
the interior angles at all corners of ~' are less than ~z, then the error eh(Z ) 
between the solution to the classical Dirichlet problem with analytic boundary 
values and its finite difference analogue for the square grid lattice of mesh h 
satisfies eh(Z)=O(h ) as h-~O, uniformly on compact subsets of (2'~ c~g2'-{corner 
points of c~Y2'}. 

Only two modifications to Laasonen's argument [8] are needed to make 
the above statement apply to the hexagonal grid of mesh h; both modifications 
are completely trivial. The first one is to replace Eq. (1) of [8] with Eqs. (3.3) 
and (3.4) of the present paper. The second modification is to verify that 
Dh[z--Zo[2=4, whether this discrete Laplacian refers to the hexagonal or the 
square grid. 

To prove (3.41) we replace O and /4N by their images g2' a n d / t ~  under the 
homothetic contraction z~--~z/N. Let Pa', Pc' be the operators which assign to a 
function on 0t2' the solution to the discrete (respectively classical) Dirichlet 
problem for O' (respectively/q~v). Laasonen's result gives 

13431 ] K_-o 
where the supremum norm is over the subset K c (2' consisting of all z/N such 
that z~HL(1, N); (3.43) is equivalent to (3.41). This completes the proof of 
Proposition 3.3. 

The next result is an analog of Green's second identity. We follow the 
treatment in Duffin [4-] which requires only superficial modifications to apply 
to the hexagonal lattice. 

Proposition 3.4. Let u, v be functions defined on HN, the first N generations of 
the hexagonal lattice of mesh h. Then 



284 B. Rodin 

2 ~ v(a)u(fl)-u(cOv(fl) (3.44) ,~n~ -, v(~)Dhu(~)-u(a)Dhv(~)=~(, ,O) 

where the second sum is over all pairs (~, fl) such that ~eOHu_ 1, fleOH u and ~ is 
a neighbor of ft. 

Proof Set u'(a)=u(a) for ~eHu_ 1 and u'(a)=O for all other points ~ in H, the 
infinite hexagonal lattice of mesh h. Define v' similarly. Then 

V'(a)DhU (a)= ~. v (a)-U~ u'(a+h~~ 
�9 eH aeH " '~ k =  0 

= ~ u ( 7 ) ~  v'(7-hco*)-6v'(7) 
7EH k = 0 ! 

= ~,, u'(7) Dh v'(y). 
7 e H  

Thus 

(3.45) if(c 0 D h u (o 0 - u '(c 0 D h v'(a) = O. 
aeH 

Group the nonzero terms of (3.45) into two parts: 

(3.46) ~ v'(a)Dhu'(a)--u'(~)DhV'(7)+ ~ V'(OODhU'(a)--U'(a)DhV'(~)=O. 
cteHN - I ~6HN - 2 

2 
For c~ec3Hu_ 1 we have DhU'(oO=DhU(OO--~Z U(fl) where the sum is over the 

points fleOH u which are neighbors of a. A similar formula holds for v'. The 
second summation in (3.46) can be rewritten with u, v instead of u', v'. These 
observations transform (3.46) into (3.44) as desired. 

We are now able to prove the main result we need for this section. 

Theorem 3.5. There is an absolute constant c with the following property. Let u 
be a positive subharmonic function on HN, the first N generations of the 
hexagonal lattice of mesh h. Let ~H N = {fix, f12 . . . .  , fl6N}. Then 

(3.47) 
C 

U(0) ~ _ ~ -  (U(fll) -'~ U(fl2) "-[- ... + U(fl6N)). 

Proof Apply Proposition 3.4 with v(a)=gu(~,0 ) where gN is the discrete 
Green's function for H N defined in (3.5) and (3.6); one obtains 

(3.48) 
. .  2]/~ 2 

(something posltwe) + ~ -  u(0) = 3 ~  ~ (,~p)gu(a, 0) u(fl). 

In the summation above there are at most two a's for each fleOHu, and 
Proposition 3.3 gives an estimate b/N for gN(~,0) since aeaHN_ 1. In this way 
we are led to (3.47). 
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4. Proof of Theorem 2.2 

We are considering a circle packing HCP/v which is combinatorially equivalent 
to N generations of the regular hexagonal packing of circles of equal radii. 
After associating the lattice point 0 s i l L ( l ,  N) with the generation 0 circle of 
HCP} and arbitrarily assigning the lattice point I~HL(1,  N) to a first genera- 
tion circle of HCP} we obtain a natural bijection of HL(1, N) with HCP}. Let 
r(~) be the radius of the circle in HCP} associated to the lattice point 
c~HL(1, N). By Lemma 2.1, r: H L ( 1 , N ) ~ I (  is a discrete subharmonic func- 
tion. Now apply Theorem 3.5 and obtain the desired inequality (2.4). 

5. Schwarz's lemma for circle packings 

A conformal mapping of a disk into itself has a derivative at the center which 
is no greater than one in modulus. Theorem 2.2 allows us to prove the 
following analogous result for circle packing isomorphisms. 

Theorem 5.1. There is an absolute constant a with the following property. Let 
HCPu be N generations of the regular hexagonal circle packing. Let D be the 
smallest disk which contains HCP N. Let HCP} be any circle packing com- 
binatorially equivalent to H CP N and also contained in D. Then 

(5.1) R'o <=aR o 

where R o and R' o are the generation zero circles in HCP N and HCP/v. 

Proof Let rki, 1 <=j<=6k, be the radii of the generation k circles of HCP}. Then 

6k ~2 6k 
E rkjI <=6k ~ rZj. 

j=l / j = l  

Use Theorem 2.2 to estimate the left-hand side and obtain 

6k 

6kc-2R'o 2<= Z r~. 
j=l 

Sum from k = l  to N to get 

3c-ZR'o2N(N+l)<= ~ ~r~<=(radO)2=(2N+l)2gg. 
k=l j=l 

Thus (5.1) holds with 

C2 ( 1 ) 3c2 
a 2 = ~ - m a x  4+ - 2 

I__<N N ( N +  1) ' 

6. Applications to conformal mapping 

We now consider the situation discussed in Rodin-Sullivan [10], namely, the 
approximation of the Riemann mapping function by circle packing isomor- 
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phisms. We are given a bounded region sQ in the plane and points z0, z 1 in ~Q. 
For each s > 0 ,  form the circle packing ~Q~ defined as follows. Consider the 
regular hexagonal circle packing of the plane by circles of radius e and let H~ 
consist of those circles contained in f2. Let Is, the set of inner circles, consist of 
all circles 7 such that 7 is the last term in a finite sequence of circles with the 
properties: (i) each circle in the sequence belongs to He, (ii) the six H e- 
neighbors of each circle in the sequence also belongs to H e, (iii) each circle in 
the sequence is tangent to the preceding circle, and (iv) the flower of the initial 
circle in the sequence contains z o (the flower of a circle in H~ or a com- 
binatorially equivalent circle packing is the closed connected set consisting of 
that circle and its interior, the six neighboring circles and their interiors, and 
the six triangular interstices so formed). 

Let B~, the set of border circles, consist of all circles from H e which are not 
inner circles but which are tangent to inner circles. The border circles are 
contained in ~ and can be arranged in a sequence such that each one is 
tangent to its predessesor, and the first is tangent to the last. The polygonal 
line joining successive centers of the circles in this border cycle is a Jordan 
curve which surrounds all the inner circles I~. Define f2+ to be the union of I~ 
and B~. We shall refer to g?e as the e-circle packing approximation to g2 e (with 
distinguished point Zo). 

By Andreev's theorem [1] (see also [13]) there is a circle packing O~ 
contained in the unit disk D which is combinatorially equivalent to f~ and 
such that all the circles of D e which correspond to border circles of ~Q~ are 
tangent to the circumference of D. W. Thurston conjectured that this circle 
correspondence ~2e~D~, suitably normalized, converges to the Riemann map of 

onto D as s ~ 0 .  By suitably normalized we shall always mean the following. 
Perform a Mobius transformation fixing D so that a circle of f2 e whose flower 
contains z 0 corresponds to a circle of D e whose flower contains the origin. 
Then perform a rotation of D so that a circle of ~2~ whose flower contains a 
prescribed point z 1 of ~2 will correspond to a circle of D~ which lies on the 
positive real radius of D. 

This conjecture is proved in Rodin-Sullivan [10]. It is shown there that as 
s~0 ,  the piecewise linear mappings f~ converge to the Riemann map f :  f ~ D ,  
where f~ is the simplicial map of the triangulated regions determined by the 
canonical imbeddings of the nerves of (2~ and D~. The normalization of D e 
described above implies that f is normalized by f(zo) = 0 and Re f(zl)  > 0. 

Consider again the circle packing isomorphism ?~+?' of ~2+---,De; here as 
elsewhere we intend that D~ is to be suitably normalized. It will be very useful 
to know that the map 7~-+rad?'/rad? is uniformly bounded above (inde- 
pendently of ~) on compact  subsets of Q. 

Theorem 6.2. Let K be a compact subset of Q. There is a constant M K with the 
following property. Let s > 0  be sufficiently small and let ~-~7' be the circle 
packing isomorphism of an e-circle packing approximation ~2 e of f2 onto a 
suitably normalized circle packing D~ of the unit disk D. Then rad 7'/rad 7_-< MK 
for all circles ? of f2~ which intersect K. 
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Proof For sufficiently small e >0,  consider a circle 7 in f2~ such that 7 c~ K 4r  
Let N be maximal with respect to the property that f2~ contains an HCP N 
configuration centered at 7. Let A be the smallest disk containing this HCP N. 
The isomorphism Y2~-~D~ makes this HCP N correspond to an HCP/~ in the unit 
disk D. If we rescale the unit disk to a disk the size of A we may apply 
Theorem 6.1, the Schwarz lemma analog, to obtain 

(6.2) 2 rad 7' < a rad 7 

where 2 is the scaling factor, 2 = tad A. We have 

�89 (K, • - f2) _< 2 _< dist (K, ~; - f2) 

and therefore (6.2) gives an upper bound independent of ~ of the desired type: 

tad 7' 2a < 
tad 7 = dist(K, II; - Q)' 

This completes the proof of Theorem 6.2. 

To a bounded region ~ and sufficiently small ~>0 we have associated a 
normalized circle packing isomorphism 7~--.7' of s and a corresponding 
piecewise linear quasi-conformal mapping f~ of the triangulated regions formed 
by the canonical imbedding of the nerves of O~ and D~. As e ~ 0  the mappings 
f~ converge uniformly on compact subsets of f2 to the similarly normalized 
Riemann mapping function f of s onto D. It is not yet known if the map z 
~-+rad 7'/tad T, where 7 is some circle in f2~ whose flower contains z, converges 
to [f'(z)t as e--*0. Theorem 6.2 allows us to prove that this problem is equiva- 
lent to a problem on the convergence of the partial derivatives off~. 

Theorem 6.3. As ~--*0 the maps zF--+radT'/rad7 described above converge to the 
map z~-+ If'(z)l uniformly on compacta of f2 if and only if for each compact K in 
g2 

Oz - I f ' l  K,o --+0 

where the norm is the essential supremum on K. 

Proof. Consider a circle 7 in Q~ and two tangent circles neighboring it. Let A 
denote the triangle formed by their centers. Suppose the isomorphism f2~D~ 
maps these circles to three mutually tangent circles of radii q, r2, and r 3 with q 
the radius of 7', the image of 7- A calculation, the details of which are given in 
Lemma 6.4 below, shows that the linear transformation f~ restricted to A 
satisfies 

~ 2  
(6.3) 2e 2 =112[(rl+r2)Z+(q+r3)2+(r2+r3)2]+ 1 ~  1/#3 [(q r2 r3(q + r 2 + r3)]�89 

(6.4) 2e 2 =iAf[(q+r2)2+(q+r3)2+(r2+r3)2]--~[rlr2r3(rl+rz+r3)] ~. 
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Choose N to be maximal with respect to the property that there is an 
HCP N configuration contained in f2~ and centered at ~. If we restrict 7 to 
intersect a fixed compact subset K of f2 then N--, oo as e--*0. By the Hexagonal 
Packing Lemma of [9] we have ~)/rl=l+O(sN), ( j=2,3) ,  where sN~0 as 
N ~oo .  If we use this O(sN) notation and the fact that rl/e<-_M K by Theorem 
6.2, then (6.3) and (6.4) can be written 

Of 2 {r, ~ t?f~ 2=O(s.). 
(6.5) 8z =~e]  :+O(sN)' a~ 

Theorem 6.3 follows from the first Eq. (6.5). The proof has also shown: 

Corollary. The quasi-conformal mappings f~ have the following properties: 8fjSz 
is uniformly bounded on compact subsets in the Lo~ norm, and Of Jag converges to 
zero on compact subsets in the L~ norm. 

We now give the lemma used in the proof of Theorem 6.3. 

Lemma 6.4. Let A be the triangle formed by the centers of three mutually 
tangent unit circles. Let A' be the triangle formed by the centers of three 
mutually tangent circles of radii q, r 2, ra. Let T be a linear transformation which 
maps d ontoA'. Then 

t?T 2 1 
(6.6) 2 ~ =w[(r1+r2)E +(r~ +ra)E +(r2+r3)2]+ v ~ [qrEr3(r~ +r2 +r3)] ~, 

~T2  2 1 
(6.7) 2 c3~- =~[(rx+r2)Z+(rl+r3)2+(rE+r3) ] - ~  [qrzr3(rl+rE+r3)-j~" 

Proof. Place the vertices of d at q, q03, q032 where q=2/]/~ and 03-=e 2~I/3. 

Write T in the form T(z) = a z + b ~. Add the three equations: 

(q + r2) 2 - - IT(q) -  r(q co)l 2 

(r  1 + ra) 2 = IT(q) - T ( q  m2)J 2 

(r 2 + r3) 2 = I T(q 03) - T(q 032)[ 2 

and write the result in the form 

(6.8) tat z q-Ibl  2 = 1A2- [(r l  q- ?'2) 2 + ( r  I q- r3) 2 +(r:  + r3)2].  

The area of A' is [rlqr3(r ~ +ra+ra)]~ and hence the determinant of T must 
be 

(6.9) [a[2 -Ib[2 =~33 [rl r2 r3(rl +r2 + r3)] Jr 

Equations (6.6) and (6.7) follow immediately from (6.8) and (6.9). 
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