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w 1. Introduction 

Let F be a graph with vertex set x. By this we mean  the elements of x (the 
vertices of F), together  with certain two element subsets of x (the edges of F). 
Let  q5 be a function which assigns to each edge {x,y} of F the symmetr ized  
closure 1 of a word  of the form 

(xyx. . . )(yxy. . . )  -1 

where the two bracketed  words have the same length > 1. Let d ( F ,  q~) be the 
presenta t ion  with generat ing set x and defining relators 

U ~{x,y} {x, y} 
({x, y} an edge in F). 

The group  A(F, ~) defined by ~ ( F ,  qS) is called an Artin group. Such groups  have 
been widely studied [1-8,  10]. 

Our  a im is to investigate certain Art in groups  (and general izat ions of these 
groups)  using small  cancel lat ion theory. For  the reader 's  convenience,  we 
briefly review the main  definitions (see [9], Chap.  V, for further details). Let 
be a group presentat ion,  say ~ = ( y ;  r ) ,  where r is symmetr ized.  A word  P on 
y is a piece (relative to ~ )  if there are distinct elements  P U, P V  of r. We say 
that  N satisfies the small cancellat ion condi t ion C(p) (p a posit ive integer) if no 
element  of  r is a p roduc t  of less than p pieces. In this paper  we will be 
interested in the C(4) condition. This condit ion is only useful when combined  
with a second condition,  T(4), defined as follows: ~ satisfies T(4) if and  only if, 
whenever  R I , R 2 , R  3 a r e  elements  of r with R I + R 2  x, R 2 ~ R ~  1, R3:#R{ 1, 
then one of the products  R1R 2, R2R3, R3R 1 is freely reduced. 

It  is not  difficult to show that  sO(F, qS) satisfies the small cancel lat ion con- 
dit ion C(4). It  is thus of interest to know when the presenta t ion  also satisfies 

1 Tlie symmetrized closure s* of a set s of words consists of all cyclic permutations of non-empty 
elements of s, together with the inverses of these elements. A set s is symmetrized if s* =s 
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T(4). We will see below, as a special case of a more general result (Theorem 1), 
that ag(F, 05) satisfies T(4) if and only if F contains no triangles. Several results 
follow from this using small cancellation theory. (In each of the statements 
below it is assumed that F does not contain a triangle.) 

1. If F is finite then the word and conjugacy problems are solvable for the 
presentation ~r 05). 

2. If x 0 is a subset of x and F o is the induced subgraph on Xo, then the 
natural mapping of A(F o, 05) into A(F, 05) is an embedding. 

3. If x 1 is a subset of x and no two elements of xl are adjacent in F, then 
the subgroup of A(F, 05) generated by x 1 is free, with free basis x 1 . 

4. (Tits' conjecture [2] for "triangle-free" Artin groups.) Any relation be- 
tween the elements x 2 (x e x) is a consequence of the relations 

S2 t 2 ~ t 2  s 2, 

where {s, t} ranges over all edges of F for which 05{s, t} is the symmetrized 
closure of {sts -1 t - l } .  

The first of these results follows from general theorems concerning the 
word and conjugacy problems for C(4), T(4) presentations [9, pp. 259-267]. 
The other results will be proved later in a wider context (see Theorem 2). 

We can generalize the concept of an Artin group by allowing a larger class 
of functions 05 than that specified above. In this paper we consider functions 05 
which assign to each edge {x, y} of F a non-empty symmetrized set of words of 
the form 

X~l y& ... Xe. y6. 

where n>2 ,  le,I =ta,I =1 for i=1 ,  2 . . . .  , n. (Words of the above form are said to 
be cyclically square-free.) For  simplicity, we write r~r instead of 05{x, y} (note 
then that rxy = ry,), and we let 

r = U rxy ({x, y} an edge of F). 
{x, y} 

We denote the presentation (x ;  r )  by f#(F, 05), and we write G(F, 05) for the 
group defined by this presentation. It will be convenient to assume that r 
satisfies the condition: U k, U~er implies Ikl =Ill. This is no great restriction; if 
it does not hold then f#(F, 05) will not even satisfy C(2). 

Our first concern is to establish necessary and sufficient conditions for 
f#(F, 05) to satisfy C(4) and T(4). To state our results we introduce some 
terminology. We say that an edge {x,y} of F is degenerate if rxy is the 
symmetrized closure of a single word of the form (xyO k (k>2,  e=  _+ 1). We say 
that a triangle {x, y}, {y, z}, {z, x} in F is coherently degenerate if there are 
integers k,l,m>=2 and integers e, 6=___l such that rxy, ryz, r=~ are the sym- 
metrized closures of (x y~)k, (y~ za)t, (z ~ x) ' ,  respectively. 

Theorem 1. (i) fg(F, 05) satisfies T(4) if and only if every triangle in 1" is co- 
herently degenerate. 

(ii) fr 05) satisfies C(4) if and only if each of the presentations (x, y; r~y) 
({x, y} a non-degenerate edge of 1") satisfies C(4). 

Our second theorem concerns properties of G(F, 05). 
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Theorem 2. Suppose N(F, ~?) satisfies C(4) and T(4). 

(i) I f  N(F, (~) is finite then the word and conjugacy problems for N(F, c~) are 
solvable. 

(ii) I f  x o is a subset of x and F o is the induced subgraph on Xo, then the 
natural mapping of G(Fo, ~) into G(F, c~) is an embedding. 

(iii) I f  x 1 is a subset of x and no two elements of x 1 are adjacent in F, then 
the subgroup of G(F, c~) generated by x 1 is free with free basis x 1. 

(iv) Any relation between the elements x 2 (x~x)  is a consequence of the 
relations 

s2 t 2 ~ t2  s2 

where {s, t} ranges over all edges of F for which r~t is the symmetrized closure of 
one of  the following: {s t s -a t  1 } , { s t - i s - i t - i } ,  {s ts t -a},  {(st)Z,(st-1)2}. 

w 2. Preliminaries 

For simplicity, throughout the rest of the paper we write ~q and G for (q(F, qS) 
and G(F, O) respectively. 

If W is a word on x then we denote the length of W by IWI. We call the 
elements of x w x -  ~ letters. We say that a word involves a letter a if a or a -  1 
occurs in the word. If a and b are letters with a4:b +1, then we denote the set 
of elements of r which involve both a and b by rab. 

Lemma.  Suppose a and b are letters with a 4= b +- 1. 

(i) I f  no element of r.b has first symbol a and last symbol b - l ,  then r.b 
={(ab)m} * for some integer m. 

(ii) I f  there is an element of rab with .first symbol a and last symbol b-1, and 
if b l a is not a piece, then rab={(~fi- t )  l, (ab)m} *, where l, m are integers, l:~O, 

is a non-empty word of the form aba . . . ,  fi is a non-empty word of the form 
bab ... (~ and fl need not have the same length). 

The proof  of (i) is left to the reader. 
To prove (ii), suppose R s r  has first symbol a and last symbol b-1.  Write 

R =  U t, where l>  1 and U is not a proper power. Let e be the longest initial 
segment of U of the form a ba. . . ,  and let fl be the longest initial segment of 
U -1 of the form bab  .... Then U = e y f 1 - 1  for some word 7. Now if ~ is not 
empty then the first symbol of ~ must be one of a -  1, b -  1. However, not all the 
symbols of y belong to the set {a- 1, b -  1}, for the last symbol must be one of 
a, b. Thus somewhere in y there must be a subword b - l a  or a -1  b. But this 
implies that b - l a  is a piece, a contradiction. Thus ? is empty. Now r.b 
_{(efl-1)~}, can have no element which starts with a and ends with b 1 
(otherwise b - t a  would be a piece), so r,b--{(~fl-1)t}*={(ab)m} * for some m. 
Hence rab = {(aft- 1)1, (ab)m}*. 

In our proof  of Theorem 1 we will make use of the star complex [11] fist of 
(~. This is the 1-complex with vertices the letters, edges the elements of r, and 
where for any edge R, z(R) is the first symbol of R, z(R) is the inverse of the 
last symbol of R, /~  -- R -  i. The presentation ff satisfies T(4) if and only if there 
is no closed path in ffs' of length 3. For  further information, see [11]. 
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The reader is assumed to be familiar with the use of r-diagrams. See [9, 
Chap. V] for details. Usually when working with r-diagrams one removes 
interior vertices of degree 2 (see [9, p. 242]), but it is convenient to assume here 
that we do not do this. However, quite often when drawing r-diagrams we will 
omit some (or all) of the vertices of degree 2. Thus lines will represent 
segments. (A segment is a path el,  e2, . . . ,  e k (k>__l) such that the intermediate 
vertices, that is, the initial and terminal vertices of the edges e 2 . . . . .  ek-1, are 
all of degree 2.) 

Suppose R is an element of r, say R = a l a E . . . a  . where the a's are letters. 
The separation number of R is the total number  of words aia  2, a2a 3 . . . . .  

a,_ ~ a,, a,a~ which are not pieces. If some region A of an r-diagram is labelled 
by R (where ~A is a simple closed curve): 

v 2 

a 2 

v 3 

a 3 

Fig.  1 

then the vertices v i for which aia~+ 1 is not a piece are called separating vertices 
of A. 

Example 

Let R = ( ( x y x ) ( y x y x y ) - l )  z, S = ( y ( z y z ) - l )  m, and let N = ( x , y , z ; r )  where r 
= {R, S}*. Then the separation number of R is 2l, and the separation number 
of S is 4m. (The case l--2, m = l  is illustrated below: only separating vertices 
are drawn.) 

y Y 

x x 

Y Y 

x ~ Y 
F ig .  2 

z y 

w 

An important  point to note is the following: no separating vertex of  a 
region of  an r-diagram can be an intermediate vertex of  a segment labelled by a 
piece. We will make  considerable use of this remark in w without further 
comment.  
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w 3. Proof of Theorem 1 

To prove (i), suppose first that every triangle in s is coherently degenerate. 
Now using the fact that each relator of fr is cyclically square-free one easily 
sees that: for any s e x ,  the set of vertices adjacent to s t (~=+1 )  in fq~t is 
contained in the set {t, t -  1 : {s, t} an edge of s It follows from this that if we 
had a closed path 0 in (qst of length 3: 

• 

y62 

Z63 
Fig. 3 

16~[ = [62[ = 16~1=1 
x.y,z ~x 

then {x, y}, {y, z}, {z, x} would be edges of F. Thus rxy, ry z, rz~ would be the 
symmetrized closures of words (xy~) k, (y~z6) l, (zOx) m (k, l, m>2,  le] = 151 = 1), and 
so the subcomplex of ~ t  consisting of the vertices x , x  - t ,  y , y -1 ,  z , z  -1 
together with all the edges of ~qs, joining these vertices would look as follows 
(only one of each edge pair R,/~ is drawn): 

( ~ E )  t 

(xzaIm] I (z x) 

ye 
Fig. 4 

But 0 must lie in this subcomplex, a contradiction. Thus ff satisfies T(4). 
Conversely, suppose that ff satisfies T(4), and let {x, y}, {y, z}, {z, x} be a 

triangle in F. Now for certain 5, 5 = + 1 there are edges in ~qst as follows: 

X y-~ 7, ~ �9 

By the T(4) condition there can be no edge with initial vertex z ~ and terminal 
vertea x. By the Lemma of w {z, x} is degenerate, and, by symmetry, so are 
{x ,y} ,  {y,z}.  Thus we must have rxy={(xy~)k} *, ry~={(y-~z-6)l} *, rz~ 
={(z6x)m} * for certain non-zero integers k,l,  rn, and so our triangle is co- 
herently degenerate. 
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To prove (ii), first note that if (r satisfies C(4) then certainly each of the 
subpresentations <x,y; rxr  ) ({x,y} a non-degenerate edge of F) must satisfy 
C(4). Conversely, suppose each of these subpresentations satisfies C(4). Let 
R s r ,  and assume that R=P1P2. . .P . where each P~ is a non-empty piece. Now 
Re rx r  for some edge {x,y},  and it is easy to see that for i = 1 , 2  . . . .  ,n, P~ is a 
piece relative to <x, y; rxr) if IPil > 1 or if IP/I = 1 and {x, y} is not degenerate. It 
follows immediately that if {x, y} is not degenerate then each P~ is a piece 
relative to <x, y; r~y), and so n>4 .  On the other hand, if {x, y} is degenerate 
then, since there are no pieces relative to (x,  y; rxv), IP~I =1 for each i, and so n 
= lRl>4 .  

w 4. Proof  of Theorem 2 

(i) follows from general results concerning the word and conjugacy problems 
for C(4), T(4) presentations [9, pp. 259-267]. 

To prove (ii), let W be a word on x o which defines the identity of G; we 
want to show that W = 1 in G(Fo, 4). Now W is freely equal to a product 

~I Ti- l Ri Ti 
i=1 

(n_>_0, Rier ,  T i a word on x for i=1  . . . . .  n). We denote by deg(W) the least 
value of n over all expressions of the above form which are freely equal to W. 
If deg(W)=0  then W is freely equal to 1. Suppose deg(W)>0.  Let IYV be the 
freely reduced form of W. Then by small cancellation theory there is an r- 
diagram with deg(W) regions and with boundary label if', which has a simple 
boundary region A: 

S 

Fig. 5 

such that S is a subword of I4" and T is a product of two pieces (one or both 
of which may be empty). Suppose S T-1Er~r (x, y sx ) .  Then x and y both 
occur in S (otherwise the C(4) condition would be violated), and so the edge 
{x, y} of F belongs to F 0. Let W 1 be the word obtained from 17d by replacing the 
subword S by T. Then W 1 = W  in G(F o, c~), and deg(W0 = d e g ( W ) - l .  Now use 
induction. 

(iii) follows from (ii), since the induced subgraph on x,  has no edges. 
To prove (iv) requires considerably more work. 
Let W be a freely reduced word in the elements x 2 (x e x), and suppose that 

W defines the identity of G. We show, by induction on the length of W, that W 
is a consequence of the relations 

(1) r = d 2 c  2, 
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where c and d are letters, and red is the symmetrized closure of one of 
{ c d c - l d - 1 } ,  { c d - l c - l d - ~ } ,  { c d c d - 1 } ,  { (cd)Z , (cd-1)z} .  

If W is empty the result is trivial. Suppose W is non-empty. Then there is a 
connected, simply connected reduced r-diagram Jr boundary label W. By 
[2, w ~ has a subdiagram (a "strip") J/go as follows: 

v 0 v 1 v 2 

. . . . . . .  

Vk_ 2 V k .  1 V k 

Fig. 6 

) 
Here the edges of the segments vgvi+ 1 (0<i<k) ,  are interior edges of Jg, the 
edges of the segments yoU ~, u~u 2 . . . .  ,Uk----lV k are boundary edges of ~/g, the 
label on 0Jt'oC~OJ/t' is a subword of W. The strip must have at least two 
regions. (In the terminology of [2], the strip is a "compound  strip". We remark 
that although the discussion in w of [2] allows for the possibility of a 
"singleton strip", the fact that the boundary label of . / / i s  a product of squares 
whereas the label on each region of Jr cyclically square-free, means that this 
cannot occur here.) 

Now let x be a generator occurring in the label on ~x. Since W is a 
product of squares, whereas the label on qh is cyclically square-free, at most  
one occurrence of x can arise as a label of an edge in ~ c~0Jt'. Thus one of 
the edges of 0~  1 - 0 ~  c ~ '  must be labelled by x, so x is a piece. It therefore 
follows from the C(4) condition that the segment VoU~l cannot consist of a 

) 
single edge. Hence it must consist of two edges. Similarly u k_~ v k consists of 
two edges. 

We see from the previous paragraph that ~t' o is an example of a reduced r- 
diagram of the form: 

PO Pl P2 Pn-2 Pn-1 Pn 

ql q2 qn-2 qn-1 qn 
Fig. 7 

where the labels on Poqo,  P,q), are of length 1, and where: 

(2) the label on P0 P l . . .  P~, is a reduced word in the elements x 2 (x ~ x); 

(1 < i < n) pieces. (3) the labels on the segments q i - lq l  = = are 
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We will determine the structure of an r-diagram Ze of the above form. We will 
show that: 

(4) n must be even, say n =2n ' ;  moreover, if the label on ~ is a, then, for j 
= 1 , 2  . . . .  ,n', the subdiagram made up of  the two regions Azj_~,  A2j has 

one o f  the labellings depicted below. 

bj bj bj bj b I bj bj bj 

z]2j_l z~2i z3:-1 d2 r z~2j-1 ':12j &z -~ A2j 

i 
bj bj b bj bj bj bj bj 

Fig. 8 

(In each case bj is a single letter.) 
We note for future reference (bearing in mind that we wish to apply (4) 

... ' a2h z - h 2 a  2 is a relation in (1). w h e n L  a = ~ g o ) , t h a t f o r j = l , 2 ,  , n ,  _ j - _ j  
To prove the above result, first observe that, by (2) and the fact that each 

element of r is cyclically square-free, we have that n > 1, and that the label on 
Po--~ is a single letter b. Moreover, the labels on plp~z . . . .  ,p-,_ap~, are each of 
length at most two (this fact will be used often, w~thout further comment). 

Now since the label on ~ is a piece, the C(4) condition implies that 
b - a a  cannot be a piece. Thus the label on AI is a word R=(a /~ - t )  ~ as in the 
Lemma of w and rab={(=~-t)t,(ab)m} *. We note that since A 1 can have at 
most 4 separating vertices, l = 1 or 2. 

Now [~[ + I~[ is even. We will examine separately the three cases [~[ + I/~[ > 6, 
Io4+1fl1=4, f~t+l~l=2. We will show that the first case is impossible. For  the 
other two cases we will determine the structure of the subdiagram made up of 
the two regions A 1, A 2. Using the results obtained and an obvious induction, it 
will then follow easily that ~s satisfies (4). 

Case I. lat + tfli > 6 

Then R has separation number 21. Now since the labels on p0P~l, poq~o are 
each of length 1, whereas one of I~[, 1/~[ is greater than 1, not both of Pl, q0 can 
be separating vertices of A 1, Hence l = l .  Then by the C(4) condition, I~l=]/~l 
(for if 10t[ < I/~[ then ct would be a subword of/~, and hence a piece, and, since I~] 
+ t/~[ > 6, p would be the product of two pieces). 

We claim that each A i has label R, and that pi_ 1 is a separating vertex of 
A i �9 

This is certainly true for A 1. 
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Suppose that it is true for A i (1 < i<n) and consider Ai+ 1. Assume first that  
the label on p~_ ~ p'~ has length 1. For  definiteness, let the label be a. 

P,-1 O p~ P,.I 

q,-1 q, q,+1 

Fig. 9 

) 
N o w  q~ must  be the other  separating vertex of  A~, and so the label on p~q~ must  
start with ba. Thus Ai+ 1 is labelled by a word involving a and b. N o w  the 

) 
label on  p~p~+~ cannot  start with a -1, since the label on p~_lp~p~+~x is freely 
reduced. Hence the label on p~pi+~l starts with a, so A~+ 1 has label R, and Pi is 
a separating vertex, as required. N o w  assume that  the label on p~_ l p'~ has 
length 2. For  definiteness, let the label be ab. N o w  by (2), the label on PlPi+'l 
must  start with b. Since the label on p~qi starts with a, again we find that  the 
label on  A~+I is R, and p, is a separating vertex. 

N o w  the above gives a contradict ion,  for it is easy to see that  p,_ t is not  a 
separating vertex of A,. 

Case 2. [~x[ + [ill = 4  

Then ~ / ~ - - 1  is one of ab(ba) -1, a(bab) -1, (aba)b -1. 
N o w  consider the relator (a b) m. If  m :# 0 then a b and b a are pieces, and so 

R is the produc t  of  <31  pieces. Moreover  R has separation number  2l. N o w  
since one of  [a[, [fl[ is greater than 1, not  both  of  Pl,  qo are separating vertices 
of A1, so 21<3. Thus l = l .  However,  by the C(4) condition, 4=<3l, a con- 
tradiction. Hence m--0 .  It follows that R has separat ion number  41. Thus l = 1. 
Then, bearing in mind that  the label on plp~2 must  start with b (by (2)), we see 
that we must  have one of the following (depending on aft-1).  

b 

b 

b b 

b 13 
Fig. 10 

Case 3. [~[+[fll-=2 

) 
Then l = 2 .  N o w  the label on PIP2 starts with b, so m#:0 ,  and A 2 is labelled by 
(ab)". Since (ab) m has separat ion number  2m, and A 2 has at mos t  5 separating 
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vertices (the vertices on the segment  PtP'2 and the vertices qx, q2 - here we are 
using (3)), m =2 ,  and we have:  

b 

b b 
Fig. 11 

Using the results just  ob ta ined  and an obvious  induction,  it is now easily 
established that  ~q~ satisfies (4). 

Let  us return to our  word  W. Using the fact that  -/s satisfies (4), and 
taking note  of  the c o m m e n t  following (4), we see that  W can be writ ten in the 
fo rm 

W l g - 2 h 2 h  2 h 2 - 2  '+1 '~2 . . . . .  r g W2, 

where k = 2 r ,  g, h l , h  z . . . .  ,h ,  are letters, and for i = 1 , 2  . . . . .  r, g2h{=hZg2  is a 
relat ion in (1). Thus  as a consequence of relat ions in (1), we have W = W'  in G, 
where W'  is the freely reduced form of 

Wxh2hZ. . .h2W2 . 

Since the length of W'  is less than  the length of W, it follows by induct ion that  
W'  is a consequence of relat ions in (1). 
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