On Tits' conjecture and other questions concerning Artin and generalized Artin groups

Stephen J. Pride

University of Glasgow, Department of Mathematics, Glasgow G12 8QW, UK

§1. Introduction

Let Γ be a graph with vertex set x. By this we mean the elements of x (the *vertices* of Γ), together with certain two element subsets of x (the *edges* of Γ). Let ϕ be a function which assigns to each edge $\{x, y\}$ of Γ the symmetrized closure¹ of a word of the form

 $(x y x ...)(y x y ...)^{-1}$

where the two bracketed words have the same length >1. Let $\mathscr{A}(\Gamma, \phi)$ be the presentation with generating set x and defining relators

 $\bigcup_{\{x, y\}} \phi\{x, y\} \quad (\{x, y\} \text{ an edge in } \Gamma).$

The group $A(\Gamma, \phi)$ defined by $\mathscr{A}(\Gamma, \phi)$ is called an *Artin group*. Such groups have been widely studied [1-8, 10].

Our aim is to investigate certain Artin groups (and generalizations of these groups) using small cancellation theory. For the reader's convenience, we briefly review the main definitions (see [9], Chap. V, for further details). Let \mathscr{P} be a group presentation, say $\mathscr{P} = \langle \mathbf{y}; \mathbf{r} \rangle$, where \mathbf{r} is symmetrized. A word P on \mathbf{y} is a *piece* (relative to \mathscr{P}) if there are distinct elements PU, PV of \mathbf{r} . We say that \mathscr{P} satisfies the small cancellation condition C(p) (p a positive integer) if no element of \mathbf{r} is a product of less than p pieces. In this paper we will be interested in the C(4) condition. This condition is only useful when combined with a second condition, T(4), defined as follows: \mathscr{P} satisfies T(4) if and only if, whenever R_1, R_2, R_3 are elements of \mathbf{r} with $R_1 \neq R_2^{-1}, R_2 \neq R_3^{-1}, R_3 \neq R_1^{-1}$, then one of the products R_1R_2, R_2R_3, R_3R_1 is freely reduced.

It is not difficult to show that $\mathscr{A}(\Gamma, \phi)$ satisfies the small cancellation condition C(4). It is thus of interest to know when the presentation also satisfies

¹ The symmetrized closure s^* of a set s of words consists of all cyclic permutations of non-empty elements of s, together with the inverses of these elements. A set s is symmetrized if $s^* = s$

T(4). We will see below, as a special case of a more general result (Theorem 1), that $\mathscr{A}(\Gamma, \phi)$ satisfies T(4) if and only if Γ contains no triangles. Several results follow from this using small cancellation theory. (In each of the statements below it is assumed that Γ does not contain a triangle.)

1. If Γ is finite then the word and conjugacy problems are solvable for the presentation $\mathscr{A}(\Gamma, \phi)$.

2. If \mathbf{x}_0 is a subset of \mathbf{x} and Γ_0 is the induced subgraph on \mathbf{x}_0 , then the natural mapping of $A(\Gamma_0, \phi)$ into $A(\Gamma, \phi)$ is an embedding.

3. If \mathbf{x}_1 is a subset of \mathbf{x} and no two elements of \mathbf{x}_1 are adjacent in Γ , then the subgroup of $A(\Gamma, \phi)$ generated by \mathbf{x}_1 is free, with free basis \mathbf{x}_1 .

4. (Tits' conjecture [2] for "triangle-free" Artin groups.) Any relation between the elements x^2 ($x \in x$) is a consequence of the relations

$$s^2 t^2 = t^2 s^2$$
,

where $\{s, t\}$ ranges over all edges of Γ for which $\phi\{s, t\}$ is the symmetrized closure of $\{sts^{-1}t^{-1}\}$.

The first of these results follows from general theorems concerning the word and conjugacy problems for C(4), T(4) presentations [9, pp. 259-267]. The other results will be proved later in a wider context (see Theorem 2).

We can generalize the concept of an Artin group by allowing a larger class of functions ϕ than that specified above. In this paper we consider functions ϕ which assign to each edge $\{x, y\}$ of Γ a non-empty symmetrized set of words of the form

$$x^{\varepsilon_1}y^{\delta_1}\dots x^{\varepsilon_n}y^{\delta_n}$$

where $n \ge 2$, $|\varepsilon_i| = |\delta_i| = 1$ for i = 1, 2, ..., n. (Words of the above form are said to be *cyclically square-free*.) For simplicity, we write \mathbf{r}_{xy} instead of $\phi\{x, y\}$ (note then that $\mathbf{r}_{xy} = \mathbf{r}_{yx}$), and we let

$$\mathbf{r} = \bigcup_{\{x,y\}} \mathbf{r}_{xy}$$
 ({x, y} an edge of Γ).

We denote the presentation $\langle \mathbf{x}; \mathbf{r} \rangle$ by $\mathscr{G}(\Gamma, \phi)$, and we write $G(\Gamma, \phi)$ for the group defined by this presentation. It will be convenient to assume that \mathbf{r} satisfies the condition: $U^k, U^l \in \mathbf{r}$ implies |k| = |l|. This is no great restriction; if it does not hold then $\mathscr{G}(\Gamma, \phi)$ will not even satisfy C(2).

Our first concern is to establish necessary and sufficient conditions for $\mathscr{G}(\Gamma, \phi)$ to satisfy C(4) and T(4). To state our results we introduce some terminology. We say that an edge $\{x, y\}$ of Γ is degenerate if \mathbf{r}_{xy} is the symmetrized closure of a single word of the form $(xy^{e})^{k}$ $(k \ge 2, \varepsilon = \pm 1)$. We say that a triangle $\{x, y\}, \{y, z\}, \{z, x\}$ in Γ is coherently degenerate if there are integers $k, l, m \ge 2$ and integers $\varepsilon, \delta = \pm 1$ such that $\mathbf{r}_{xy}, \mathbf{r}_{yz}, \mathbf{r}_{zx}$ are the symmetrized closures of $(xy^{e})^{k}, (y^{e}z^{\delta})^{l}, (z^{\delta}x)^{m}$, respectively.

Theorem 1. (i) $\mathscr{G}(\Gamma, \phi)$ satisfies T(4) if and only if every triangle in Γ is coherently degenerate.

(ii) $\mathscr{G}(\Gamma, \phi)$ satisfies C(4) if and only if each of the presentations $\langle x, y; \mathbf{r}_{xy} \rangle$ ({x, y} a non-degenerate edge of Γ) satisfies C(4).

Our second theorem concerns properties of $G(\Gamma, \phi)$.

Theorem 2. Suppose $\mathscr{G}(\Gamma, \phi)$ satisfies C(4) and T(4).

(i) If $\mathscr{G}(\Gamma, \phi)$ is finite then the word and conjugacy problems for $\mathscr{G}(\Gamma, \phi)$ are solvable.

(ii) If \mathbf{x}_0 is a subset of \mathbf{x} and Γ_0 is the induced subgraph on \mathbf{x}_0 , then the natural mapping of $G(\Gamma_0, \phi)$ into $G(\Gamma, \phi)$ is an embedding.

(iii) If \mathbf{x}_1 is a subset of \mathbf{x} and no two elements of \mathbf{x}_1 are adjacent in Γ , then the subgroup of $G(\Gamma, \phi)$ generated by \mathbf{x}_1 is free with free basis \mathbf{x}_1 .

(iv) Any relation between the elements x^2 ($x \in \mathbf{x}$) is a consequence of the relations

$$s^2 t^2 = t^2 s^2$$

where $\{s, t\}$ ranges over all edges of Γ for which \mathbf{r}_{st} is the symmetrized closure of one of the following: $\{sts^{-1}t^{-1}\}, \{st^{-1}s^{-1}t^{-1}\}, \{stst^{-1}\}, \{(st)^2, (st^{-1})^2\}$.

§2. Preliminaries

For simplicity, throughout the rest of the paper we write \mathscr{G} and G for $\mathscr{G}(\Gamma, \phi)$ and $G(\Gamma, \phi)$ respectively.

If W is a word on x then we denote the length of W by |W|. We call the elements of $\mathbf{x} \cup \mathbf{x}^{-1}$ letters. We say that a word *involves* a letter a if a or a^{-1} occurs in the word. If a and b are letters with $a \neq b^{\pm 1}$, then we denote the set of elements of **r** which involve both a and b by \mathbf{r}_{ab} .

Lemma. Suppose a and b are letters with $a \neq b^{\pm 1}$.

(i) If no element of \mathbf{r}_{ab} has first symbol a and last symbol b^{-1} , then $\mathbf{r}_{ab} = \{(ab)^m\}^*$ for some integer m.

(ii) If there is an element of \mathbf{r}_{ab} with first symbol a and last symbol b^{-1} , and if $b^{-1}a$ is not a piece, then $\mathbf{r}_{ab} = \{(\alpha\beta^{-1})^l, (ab)^m\}^*$, where l, m are integers, $l \neq 0$, α is a non-empty word of the form $aba \dots, \beta$ is a non-empty word of the form $bab \dots$ (α and β need not have the same length).

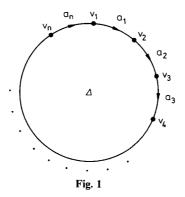
The proof of (i) is left to the reader.

To prove (ii), suppose $R \in \mathbf{r}$ has first symbol a and last symbol b^{-1} . Write $R = U^l$, where $l \ge 1$ and U is not a proper power. Let α be the longest initial segment of U of the form aba..., and let β be the longest initial segment of U^{-1} of the form bab.... Then $U = \alpha \gamma \beta^{-1}$ for some word γ . Now if γ is not empty then the first symbol of γ must be one of a^{-1} , b^{-1} . However, not all the symbols of γ belong to the set $\{a^{-1}, b^{-1}\}$, for the last symbol must be one of a, b. Thus somewhere in γ there must be a subword $b^{-1}a$ or $a^{-1}b$. But this implies that $b^{-1}a$ is a piece, a contradiction. Thus γ is empty. Now $\mathbf{r}_{ab} - \{(\alpha\beta^{-1})^l\}^*$ can have no element which starts with a and ends with b^{-1} (otherwise $b^{-1}a$ would be a piece), so $\mathbf{r}_{ab} - \{(\alpha\beta^{-1})^l\}^* = \{(ab)^m\}^*$ for some m.

In our proof of Theorem 1 we will make use of the star complex [11] \mathscr{G}^{st} of \mathscr{G} . This is the 1-complex with vertices the letters, edges the elements of **r**, and where for any edge R, $\iota(R)$ is the first symbol of R, $\tau(R)$ is the inverse of the last symbol of R, $\overline{R} = R^{-1}$. The presentation \mathscr{G} satisfies T(4) if and only if there is no closed path in \mathscr{G}^{st} of length 3. For further information, see [11].

The reader is assumed to be familiar with the use of **r**-diagrams. See [9, Chap. V] for details. Usually when working with **r**-diagrams one removes interior vertices of degree 2 (see [9, p. 242]), but it is convenient to assume here that we do not do this. However, quite often when drawing **r**-diagrams we will omit some (or all) of the vertices of degree 2. Thus lines will represent segments. (A segment is a path $e_1, e_2, ..., e_k$ ($k \ge 1$) such that the intermediate vertices, that is, the initial and terminal vertices of the edges $e_2, ..., e_{k-1}$, are all of degree 2.)

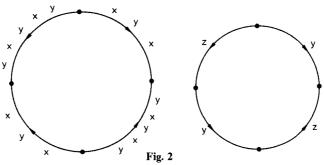
Suppose R is an element of **r**, say $R = a_1 a_2 \dots a_n$ where the a's are letters. The separation number of R is the total number of words $a_1 a_2$, $a_2 a_3$, ..., $a_{n-1} a_n$, $a_n a_1$ which are not pieces. If some region Δ of an **r**-diagram is labelled by R (where $\partial \Delta$ is a simple closed curve):



then the vertices v_i for which $a_i a_{i+1}$ is not a piece are called *separating vertices* of Δ .

Example

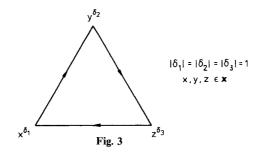
Let $R = ((xyx)(yxyxy)^{-1})^l$, $S = (y(zyz)^{-1})^m$, and let $\mathscr{G} = \langle x, y, z; \mathbf{r} \rangle$ where $\mathbf{r} = \{R, S\}^*$. Then the separation number of R is 2l, and the separation number of S is 4m. (The case l=2, m=1 is illustrated below: only separating vertices are drawn.)



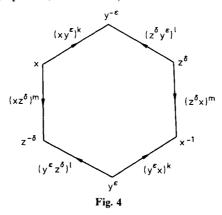
An important point to note is the following: no separating vertex of a region of an \mathbf{r} -diagram can be an intermediate vertex of a segment labelled by a piece. We will make considerable use of this remark in §4, without further comment.

§3. Proof of Theorem 1

To prove (i), suppose first that every triangle in Γ is coherently degenerate. Now using the fact that each relator of \mathscr{G} is cyclically square-free one easily sees that: for any $s \in \mathbf{x}$, the set of vertices adjacent to s^{ε} ($\varepsilon = \pm 1$) in \mathscr{G}^{st} is contained in the set $\{t, t^{-1}: \{s, t\}$ an edge of Γ }. It follows from this that if we had a closed path θ in \mathscr{G}^{st} of length 3:



then $\{x, y\}$, $\{y, z\}$, $\{z, x\}$ would be edges of Γ . Thus $\mathbf{r}_{xy}, \mathbf{r}_{yz}, \mathbf{r}_{zx}$ would be the symmetrized closures of words $(x y^{\varepsilon})^k$, $(y^{\varepsilon} z^{\delta})^l$, $(z^{\delta} x)^m$ $(k, l, m \ge 2, |\varepsilon| = |\delta| = 1)$, and so the subcomplex of \mathscr{G}^{st} consisting of the vertices $x, x^{-1}, y, y^{-1}, z, z^{-1}$ together with all the edges of \mathscr{G}^{st} joining these vertices would look as follows (only one of each edge pair R, \overline{R} is drawn):



But θ must lie in this subcomplex, a contradiction. Thus \mathscr{G} satisfies T(4).

Conversely, suppose that \mathscr{G} satisfies T(4), and let $\{x, y\}$, $\{y, z\}$, $\{z, x\}$ be a triangle in Γ . Now for certain ε , $\delta = \pm 1$ there are edges in \mathscr{G}^{st} as follows:



By the T(4) condition there can be no edge with initial vertex z^{δ} and terminal vertex x. By the Lemma of §2, $\{z, x\}$ is degenerate, and, by symmetry, so are $\{x, y\}$, $\{y, z\}$. Thus we must have $\mathbf{r}_{xy} = \{(x^{y^{\varepsilon}})^k\}^*$, $\mathbf{r}_{yz} = \{(y^{-\varepsilon}z^{-\delta})^l\}^*$, $\mathbf{r}_{zx} = \{(z^{\delta}x)^m\}^*$ for certain non-zero integers k, l, m, and so our triangle is coherently degenerate.

To prove (ii), first note that if \mathscr{G} satisfies C(4) then certainly each of the subpresentations $\langle x, y; \mathbf{r}_{xy} \rangle$ ($\{x, y\}$ a non-degenerate edge of Γ) must satisfy C(4). Conversely, suppose each of these subpresentations satisfies C(4). Let $R \in \mathbf{r}$, and assume that $R = P_1 P_2 \dots P_n$ where each P_i is a non-empty piece. Now $R \in \mathbf{r}_{xy}$ for some edge $\{x, y\}$, and it is easy to see that for $i = 1, 2, \dots, n, P_i$ is a piece relative to $\langle x, y; \mathbf{r}_{xy} \rangle$ if $|P_i| > 1$ or if $|P_i| = 1$ and $\{x, y\}$ is not degenerate. It follows immediately that if $\{x, y\}$ is not degenerate then each P_i is a piece relative to $\langle x, y; \mathbf{r}_{xy} \rangle$, and so $n \ge 4$. On the other hand, if $\{x, y\}$ is degenerate then, since there are *no* pieces relative to $\langle x, y; \mathbf{r}_{xy} \rangle$, $|P_i| = 1$ for each *i*, and so $n = |R| \ge 4$.

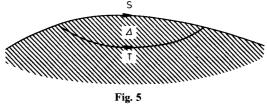
§4. Proof of Theorem 2

(i) follows from general results concerning the word and conjugacy problems for C(4), T(4) presentations [9, pp. 259-267].

To prove (ii), let W be a word on \mathbf{x}_0 which defines the identity of G; we want to show that W = 1 in $G(\Gamma_0, \phi)$. Now W is freely equal to a product

$$\prod_{i=1}^n T_i^{-1} R_i T_i$$

 $(n \ge 0, R_i \in \mathbf{r}, T_i \text{ a word on } \mathbf{x} \text{ for } i=1, ..., n)$. We denote by deg(W) the least value of n over all expressions of the above form which are freely equal to W. If deg(W)=0 then W is freely equal to 1. Suppose deg(W)>0. Let \hat{W} be the freely reduced form of W. Then by small cancellation theory there is an \mathbf{r} -diagram with deg(W) regions and with boundary label \hat{W} , which has a simple boundary region Δ :



such that S is a subword of \hat{W} and T is a product of two pieces (one or both of which may be empty). Suppose $ST^{-1} \in \mathbf{r}_{xy}$ $(x, y \in \mathbf{x})$. Then x and y both occur in S (otherwise the C(4) condition would be violated), and so the edge $\{x, y\}$ of Γ belongs to Γ_0 . Let W_1 be the word obtained from \hat{W} by replacing the subword S by T. Then $W_1 = W$ in $G(\Gamma_0, \phi)$, and $\deg(W_1) = \deg(W) - 1$. Now use induction.

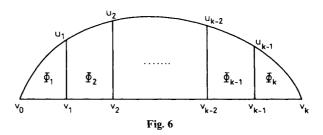
(iii) follows from (ii), since the induced subgraph on \mathbf{x}_1 has no edges.

To prove (iv) requires considerably more work.

Let W be a freely reduced word in the elements x^2 ($x \in x$), and suppose that W defines the identity of G. We show, by induction on the length of W, that W is a consequence of the relations

where c and d are letters, and \mathbf{r}_{cd} is the symmetrized closure of one of $\{cdc^{-1}d^{-1}\}, \{cd^{-1}c^{-1}d^{-1}\}, \{cdcd^{-1}\}, \{(cd)^2, (cd^{-1})^2\}.$

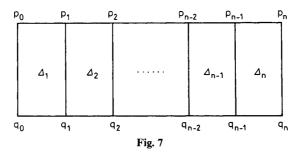
If W is empty the result is trivial. Suppose W is non-empty. Then there is a connected, simply connected reduced **r**-diagram \mathcal{M} with boundary label W. By [2, §3], \mathcal{M} has a subdiagram (a "strip") \mathcal{M}_0 as follows:



Here the edges of the segments $\overrightarrow{v_i,v_{i+1}}(0 \le i < k)$ are interior edges of \mathcal{M} , the edges of the segments $\overrightarrow{v_0,u_1}, \overrightarrow{u_1,u_2}, \ldots, \overrightarrow{u_{k-1},v_k}$ are boundary edges of \mathcal{M} , the label on $\partial \mathcal{M}_0 \cap \partial \mathcal{M}$ is a subword of \mathcal{W} . The strip must have at least two regions. (In the terminology of [2], the strip is a "compound strip". We remark that although the discussion in §3 of [2] allows for the possibility of a "singleton strip", the fact that the boundary label of \mathcal{M} is a product of squares whereas the label on each region of \mathcal{M} is cyclically square-free, means that this cannot occur here.)

Now let x be a generator occurring in the label on Φ_1 . Since W is a product of squares, whereas the label on Φ_1 is cyclically square-free, at most one occurrence of x can arise as a label of an edge in $\partial \Phi_1 \cap \partial \mathcal{M}$. Thus one of the edges of $\partial \Phi_1 - \partial \Phi_1 \cap \mathcal{M}$ must be labelled by x, so x is a piece. It therefore follows from the C(4) condition that the segment $\overline{v_0 u_1}$ cannot consist of a single edge. Hence it must consist of two edges. Similarly $\overline{u_{k-1}v_k}$ consists of two edges.

We see from the previous paragraph that \mathcal{M}_0 is an example of a reduced r-diagram of the form:



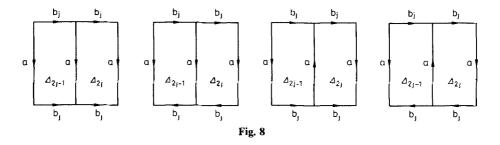
where the labels on $\overrightarrow{p_0q_0}$, $\overrightarrow{p_nq_n}$ are of length 1, and where:

(2) the label on $\overrightarrow{p_0 p_1 \dots p_n}$ is a reduced word in the elements x^2 ($x \in \mathbf{x}$);

(3) the labels on the segments $\overrightarrow{q_{i-1}q_i}$ $(1 \le i \le n)$ are pieces.

We will determine the structure of an r-diagram \mathcal{L} of the above form. We will show that:

(4) n must be even, say n = 2n'; moreover, if the label on $\overline{p_0 q_0}$ is a, then, for j = 1, 2, ..., n', the subdiagram made up of the two regions $\Delta_{2j-1}, \Delta_{2j}$ has one of the labellings depicted below.



(In each case b_i is a single letter.)

We note for future reference (bearing in mind that we wish to apply (4) when $\mathscr{L} = \mathscr{M}_0$), that for $j = 1, 2, ..., n', a^2 b_j^2 = b_j^2 a^2$ is a relation in (1).

To prove the above result, first observe that, by (2) and the fact that each element of **r** is cyclically square-free, we have that n > 1, and that the label on $\overrightarrow{p_0 p_1}$ is a single letter b. Moreover, the labels on $\overrightarrow{p_1 p_2}, \dots, \overrightarrow{p_{n-1} p_n}$ are each of length at most two (this fact will be used often, without further comment).

Now since the label on $\overline{q_0 q_1}$ is a piece, the C(4) condition implies that $b^{-1}a$ cannot be a piece. Thus the label on Δ_1 is a word $R = (\alpha \beta^{-1})^l$ as in the Lemma of §2, and $\mathbf{r}_{ab} = \{(\alpha \beta^{-1})^l, (ab)^m\}^*$. We note that since Δ_1 can have at most 4 separating vertices, l = 1 or 2.

Now $|\alpha| + |\beta|$ is even. We will examine separately the three cases $|\alpha| + |\beta| \ge 6$, $|\alpha| + |\beta| = 4$, $|\alpha| + |\beta| = 2$. We will show that the first case is impossible. For the other two cases we will determine the structure of the subdiagram made up of the two regions Δ_1, Δ_2 . Using the results obtained and an obvious induction, it will then follow easily that \mathscr{L} satisfies (4).

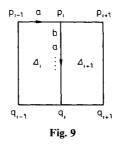
Case 1. $|\alpha| + |\beta| \ge 6$

Then R has separation number 2*l*. Now since the labels on $\overrightarrow{p_0p_1}$, $\overrightarrow{p_0q_0}$ are each of length 1, whereas one of $|\alpha|, |\beta|$ is greater than 1, not both of p_1, q_0 can be separating vertices of Δ_1 . Hence l=1. Then by the C(4) condition, $|\alpha| = |\beta|$ (for if $|\alpha| < |\beta|$ then α would be a subword of β , and hence a piece, and, since $|\alpha| + |\beta| \ge 6$, β would be the product of two pieces).

We claim that each Δ_i has label R, and that p_{i-1} is a separating vertex of Δ_i .

This is certainly true for Δ_1 .

Suppose that it is true for Δ_i $(1 \le i < n)$ and consider Δ_{i+1} . Assume first that the label on $\overrightarrow{p_{i-1}p_i}$ has length 1. For definiteness, let the label be a.



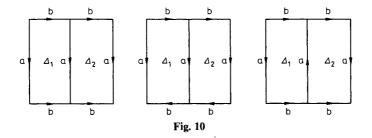
Now q_i must be the other separating vertex of Δ_i , and so the label on $\overrightarrow{p_iq_i}$ must start with ba. Thus Δ_{i+1} is labelled by a word involving a and b. Now the label on $\overrightarrow{p_ip_{i+1}}$ cannot start with a^{-1} , since the label on $\overrightarrow{p_{i-1}p_ip_{i+1}}$ is freely reduced. Hence the label on $\overrightarrow{p_ip_{i+1}}$ starts with a, so Δ_{i+1} has label R, and p_i is a separating vertex, as required. Now assume that the label on $\overrightarrow{p_{i-1}p_ip_{i+1}}$ has length 2. For definiteness, let the label be ab. Now by (2), the label on $\overrightarrow{p_ip_{i+1}}$ must start with b. Since the label on $\overrightarrow{p_iq_i}$ starts with a, again we find that the label on Δ_{i+1} is R, and p_i is a separating vertex.

Now the above gives a contradiction, for it is easy to see that p_{n-1} is not a separating vertex of Δ_n .

Case 2. $|\alpha| + |\beta| = 4$

Then $\alpha \beta^{-1}$ is one of $ab(ba)^{-1}$, $a(bab)^{-1}$, $(aba)b^{-1}$.

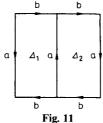
Now consider the relator $(ab)^m$. If $m \neq 0$ then ab and ba are pieces, and so R is the product of $\leq 3l$ pieces. Moreover R has separation number 2l. Now since one of $|\alpha|, |\beta|$ is greater than 1, not both of p_1, q_0 are separating vertices of Δ_1 , so $2l \leq 3$. Thus l=1. However, by the C(4) condition, $4 \leq 3l$, a contradiction. Hence m=0. It follows that R has separation number 4l. Thus l=1. Then, bearing in mind that the label on $\overline{p_1 p_2}$ must start with b (by (2)), we see that we must have one of the following (depending on $\alpha\beta^{-1}$).



Case 3. $|\alpha| + |\beta| = 2$

Then l=2. Now the label on $\overrightarrow{p_1p_2}$ starts with b, so $m \neq 0$, and Δ_2 is labelled by $(ab)^m$. Since $(ab)^m$ has separation number 2m, and Δ_2 has at most 5 separating

vertices (the vertices on the segment $\overrightarrow{p_1p_2}$ and the vertices q_1, q_2 - here we are using (3)), m = 2, and we have:



Using the results just obtained and an obvious induction, it is now easily established that \mathcal{L} satisfies (4).

Let us return to our word W. Using the fact that \mathcal{M}_0 satisfies (4), and taking note of the comment following (4), we see that W can be written in the form

$$W_1 g^{-2} h_1^2 h_2^2 \dots h_r^2 g^2 W_2,$$

where $k = 2r, g, h_1, h_2, ..., h_r$ are letters, and for $i = 1, 2, ..., r, g^2 h_i^2 = h_i^2 g^2$ is a relation in (1). Thus as a consequence of relations in (1), we have W = W' in G, where W' is the freely reduced form of

$$W_1 h_1^2 h_2^2 \dots h_r^2 W_2$$
.

Since the length of W' is less than the length of W, it follows by induction that W' is a consequence of relations in (1).

Acknowledgements. I thank Roger Lyndon for useful discussions relating to this work, and for his comments on the paper. I am also grateful for the referees' comments.

References

- 1. Appel, K.: On Artin groups and Coxeter groups of large type. Contemp. Math. 33, 50-78 (1984)
- 2. Appel, K., Schupp, P.: Artin groups and infinite Coxeter groups. Invent. Math. 72, 201-220 (1983)
- Baudisch, A.: Kommutationsgleichungen in semifreien Gruppen. Acta Math. Acad. Sci. Hung. 29, 235-249 (1977)
- 4. Brieskorn, E.: Sur les groupes de tresses. Sem. Bourbaki 401 (1971)
- 5. Brieskorn, E.: Die Fundamentalgruppe des Raumes der Regulären Orbits einer endlichen komplexen Spielsgruppe. Invent. Math. 12, 57-61 (1971)
- 6. Brieskorn, E., Saito, K.: Artin-gruppen und Coxeter-gruppen. Invent. Math. 17, 245-271 (1972)
- 7. Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273-302 (1972)
- 8. Hendriks, H.: Hyperplane complements of large type. Invent. Math. 79, 375-381 (1985)
- 9. Lyndon, R., Schupp, P.: Combinatorial group theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 89. Berlin-Heidelberg-New York: Springer 1977
- 10. Napthine, A., Pride, S.: On generalized braid groups. Glasgow Math. J. (To appear)
- 11. Hill, P., Pride, S., Vella, A.: On the T(q)-conditions of small cancellation theory. Israel J. Math. 52, 293-304 (1985)