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A.G. Reyman and M.A. Semenov-Tian-Shansky
Leningrad Branch of the V.A. Steklov Mathematical Institute, Leningrad, 191011, USSR

The present article is the sequel to a previous paper by the same authors [1]. Its
aim is to give an explicit solution of a factorization problem for groups of
loops, and to establish a connection of Hamiltonian reduction methods with
algebraic methods of Novikov and Krichever [2,3] and of Mumford and van
Moerbeke [4]. We also correct some erroneous statements in [ 1] concerning the
factorization problem (see no. 2 below). To make our presentation more self-
consistent, we give an elementary proof of the reduction theorem in a slightly
more general form as compared to [1]. This generality corresponds to that of [3,
4] where the same equations are treated in terms of finite-difference operators.
An approach based on affine Lie algebras is also described by Adler and van
Moerbeke [5]. However, the Hamiltonian reduction questions are not treated
there.

The authors are grateful to .M. Krichever for valuable and stimulating discussions.

1. Let G be a Lie group, g its Lie algebra, g* the dual of g. Clearly, g= C™(g%),
and the Lie bracket on g gives rise to a Poisson bracket on C”(g*) sometimes
called the Kirillov bracket for g. The center of C*(g*) coincides with the algebra
I(g*) of Ad*G-invariant functions. Restriction of the Kirillov bracket to Ad*G-
orbits in g* induces on them the canonical symplectic structure.

Suppose that g splits as a vector space into a linear sum of two its
subalgebras, g=a-+Db. Let A, B be the corresponding connected subgroups. Put
go=0a®b, G,=Ax B. We identify linear spaces g, and g by means of the
mapping 64: gy =8, 0o(X, y)=x—y.

Hence there are two Kirillov brackets on g*~gg.

Reduction Theorem. (i) I(g*) is abelian with respect to both brackets on g*.

(i) Let @el(g*), teg*. Put M=de(&), (M, ,M_)=05"'(M)eg,. The Hamil-
tonian equations of motion defined by @ with respect to the second Poisson bracket
on g* have the form

=—ad!M é=—adiM_¢ 1)
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(i1i) Let expt M=a(t)b(t), a(-), b(+) being smooth curves in A and B, re-
spectively, a{0)=b(0)=e. The solution to equations (1) starting at £ has the form

)= Adta(t)~!- &= Adkb(r)- &

Proof. Define a mapping o: G, — G by a(a x b)=ab~'. We trivialize the tangent
bundles of groups by means of left translations. Then the differential of ¢ at
axbeG,is equal to Ad; boo . Indeed, it is clear from the definition that do(a x b)
=Adgbeodale). Evidently, do(e)=0,. It follows that ¢ is an immersion. Hence
we may define a mapping o*: T*G, - T*G putting ¢*=da(axb)*~! on the
fiber T* ,. Given a function ¢ on T*G put ¢°=¢@o0c. The mapping ¢* is a
simplectic immersion and {@? ¥’} ={,¥}°.

Now the Kirillov bracket on g* coincides with the canonical Poisson bracket
for left-invariant functions on T*G. Observing that for pel(g*) ¢ is left G-
invariant we get (i).

Equations of motion on T*G corresponding to a Hamiltonian ¢el(g*) are
¢=0, g =do(¢). Hence the trajectories are given by

(g(0), <(1)=(2(0) expt d (), <(0))

Trajectories of the Hamiltonian ¢ on T*G,~G, x g¥ are obtained from these
by the change of variables o*. We are only interested in their projections to g§.
If exptde(&)=a(t)b(z), then do*(exptdp(E))=0§ o AdEb(t), whence we get (iii).
Differentiating the trajectory with respect to t we get (ii). W

If there is an invariant scalar product on g we may identify g* with g. Then
ad¥ =ad, and the equations of motion have the Lax form.

The “reduced flows” of the Hamiltonians ¢ may be restricted to Ad*G,-
invariant submanifolds in g*. In particular, we get as a corollary Theorem 10
and Proposition 12 of [1].

Corollary. Let f be a character of a.

(1) Functions on b* of the form ¢ (&)= @(E+f), pel(g*) commute with respect
to the Kirillov bracket on b*.
(i1) Equations of motion corresponding to the Hamiltonian ¢, have the form

E=—ad}M.-(E+f), M=do(i+f) ()
(iii) Let exptM =al(t) b(t), a(+), b(+) being smooth curves in A and B, re-
spectively. Solution to equations (2) starting at & is
E(M)=AdEbO(E+f)—f

or, equivalently,
£()= Adg b(1)- <.

2. In the rest of the paper we shall be concerned with the following example of
the above construction. Let g be a complex semisimple Lie algebra. Put
§=9QC[z,z7 '], a=g®zC[z], b=g®C[z~']. We equip g with a nondegenerate
invariant bilinear form (X,Y)=Res,_,z 'B(X,Y) and identify a* with
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g®:z 'C[z7'] and b* with g® C[z]. Invariant functionals on §* are given by
e (X)=Res,_oz7"9(X(2)), o¢el(g*), nel.

The reduction theorem as applied to g=a+b amounts to the following
statement.

Let Leg*, pel(g*), put M=d¢(L), and let expt M =g (t)~' g_(1), the factors
g,.g_ being analytic inside (outside) the unit circle. The trajectory of the
Hamiltonian ¢ passing through L is given by

L(t)=Adg,(t)L. 3)

In the present context the relevant groups are G=C*(S', G) and two of its
subgroups G consisting of functions analitic inside (respectively, outside) the
unit circle. For a careful formulation of the reduction theorem we must equip G
with a topology of a Banach Lie group such that ¢: G, xG_ -G, a(g, xg_)
=g, g-1 maps some neighborhood of the unit element in G_ x G _ onto an
open set in G. A particular choice of topology is to a large extent arbitrary. One
of the simplest possibilities is described below.

Let G GL{n,C) be a connected matrix group, g=gl(n C) be its Lie algebra.
Denote by #° the algebra of absolutely convergent Fourier series with coef-
ficients in gl(n, C). Put

g, ={ue# : u(z)eq for |zj]=1}
Gy =1{geW: g(2)eG for |z} =1}

Denote by # ', (#" ) subalgebras in %" consisting of functions analytic inside
{outside) the unit circle. Put

G, ={geG,nW,: g(z)eG for |zt 1< 1}

Put A={geG,: g(0)=1}, B=G_, G,=A x B. The set °G,, =AB is open in G,
and contains a neighborhood of the unit element. The scheme of no. 1 can be
directly applied to the present case.

Remark. We point out an error in [1]: in general, °Gy, is not a group (Lemma 19
of [1] is false). As a consequence the reduced Hamiltonian flows may be
incomplete. The general theorems [6, Lemma 1.5.1] imply that exptMe®G,,
only for ¢ sufficiently small. We shall see below that in fact expt Me°G,, for all
teC except possibly for a discrete set (which depends on M).

3. We now proceed to the study of the factorization problem. From [1,
proposition 23] it follows that with no loss of generality we can restrict
ourselves to the case G=GL(n,C).

We begin with a brief exposition of the algebro-geometric pattern of solution
of “Lax equations with a spectral parameter” based on papers [2], [3], [4]. For
the sake of completeness we include the proofs of some basic results. The main
novelty consists in a simple proof of correspondence between Lax equations and
linear flows on the Jacobian of the spectral curve.
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For Legm) let X¢ be an affine curve defined by equation det(L(z)—1)=0.
Assume that L(z) has a simple spectrum for general z and also that X is
nonsingular and irreducible. Let X be the smooth compactification of X
Coordinates z, 4 are meromorphic functions on X. Let (z)=P, —P_ be the
divisor of z, P, being effective divisors of degree n. Put U, =X~ P,
Xo=U,nU_. Let R, be the algebra of regular functions in X,. Clearly,
R,=C[z,z7',1]. Put R=C[z,z7'].

For any xeX except for a finite set of branch points there exists a unique
one-dimensional eigenspace of L ie. a subspace E;(x)c C" such that L(z(x))y
= A(x)y for YyeE,(x). The mapping x+— E, (x) is clearly a meromorphic mapping
of X into CP,_,. Since any such mapping is actually holomorphic we get a
holomorphic line bundle E; — X.

Put g, = {Zx z X, eg} An element Leg, , will be called generic if its
lowest and highest coefficients have simple spectrum.

Proposition 1. Suppose L= 1,7’ €q, , is generic. Then
(i) The genus of the spectral curve is equal to

=inn—1)(p+q)—n+1

(ii) The degree of the dual bundle is equal to degE¥=g+n—1 and H*(X
Et(_P+)):0-

Proof. (i) The only singular points of the closure of X* in CP, x CP,>C*={z, A}
are P=(o0, o), @ =(0, o0). The genus of the nonsingular curve X is given by the
Hurwitz formula

g=d;d,—d;—d,+1-v(P)—-v(Q)

d,,d, being the degrees of the defining equation, v{P), v(Q) the indices of the
singular points. In our case d, =n(p+q), d,=n; the indices are easily computed
using the principal part of the defining equation at P,Q: v(P)=%n(n—1)p, v(Q)
=in(h—1)q.

(if) We divide the proof into several steps.

(a) Let V denote the subspace of H(X, E}) generated by linear coordinates
in C".

Let yeV. If y ze H*(X,E¥) or Yz~ '€ H°(X, E¥) then y=0.

Indeed, y ze H°(X, E¥) means that i vanishes on the eigenspaces E,(P')',
which are just the eigenspaces of I_,. By our assumption E,(P’) span C", so that
Y vanishes on C". The treatment of the second case is similar.

(b) Now, following [4] we prove that the natural mapping r:
V@R — H(X,, E}) is surjective. To this end observe that H(V®R) is an R,-
module: if y=@)!,...,¥") is the standard basis in V then Ay =Ly so that
Ay'er(V®R). Suppose that r(V®R) is a proper Ry-submodule in H°(X,, Ef).
Then by a theorem from Commutative Algebra there exists a point xe X, such

1 Since L is generic, the divisor P, contains n distinct points Pi.
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that ¢(x)=0 for every per(V®R). On the other hand, there exists a eV which
does not vanish on the eigenspace E,(x), a contradiction.

(¢) Next we prove that V=H°X,E¥). Let pe H(X,E¥). Since gper(V®R),

we have o=> y,7, ¢,eV. We may assume that ¥, 0, , +0; we shall prove
k

that k=m=0. Suppose that m>0. Then we may write ¥, z=yz' "
— Y Viim. 12 whence ¥, ze H(X,E¥). Now, (a) implies that ¢, =0, a con-
i£0

tradiction. The assumption k <0 leads to a similar contradiction.
(d) The statement of (a) combined with V=H°X.E¥) implies H°(X,
E¥(—P,))=0. Since degP, =n, it follows from the Riemann-Roch theorem that

degEf<g+n—1. To prove the opposite inequality, consider the bundle
E, =E¥(kP,). For k sufficiently large,

dimH°(X,E)=degE} +kn—g+1

k

Now, r(V@{Z ¢, z‘})cHO(X,Ek). We shall see below that r is injective (cf.
0

Proposition 2), so dimH%(X,E)=(k+ 1)n, or degE¥2¢g+n—1. A

Definition. The line bundle E — X of degree g+n—1 is called regular (or, more
precisely, z-regular) if H*(X,E(— P,))=0.

Clearly, regular bundles form a Zarisky open set in the space %,,, , of all
line bundles of given degree. We shall readily see that the regularity condition
completely characterizes line bundles of eigenspaces of matrices Leg with
spectrum X.

Proposition 2. Let E be a line bundle over X of degree g+n—1. The following
properties of E are equivalent :

(i) E is regular.
(i1) The natural mapping r: H*(X, EY® R - H%(X ,, E) is an isomorphism of R-
modules.

Proof. (i)=>(ii) Injectivity. Let Y ¢,z'=0, ¢@,eH°X,E). Then ¢,z '=
izk
=Y ¢,,,,7 and the right hand side is regular at P, so that ¢,eH°(X,
i=0
E(—P,)). Hence ¢, =0 and by induction ¢, =0 for every i. Surjectivity. We denote
E,=E(k(P, +P _)) and prove that for all k H°(X,E,)cr(H°(X. E)® R) which is
clearly sufficient. Since E is regular, for any ¢eH°(X,E,) there exist
¢, 9,eH%X,E) such that ¢ — ¢, z*— ¢,z *e¢ H(X,E,_,). Our claim now fol-
lows by induction.
(i) =(i) Let peH(X,E(—P,)). iec. let ¢ be a section of E which vanishes
at P,. Then Y=gz~ ' belongs to H*(X.E) and r(yy —¢z~')=0. It follows that
@=0.

Proposition 3. A regular line bundle E corresponds to a GL(n)-orbit in g, ,
consisting of matrices L with spectrum X such that Ef ~E.
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Proof. Multiplication by 4 gives an R-linear operator in H%(X,, E). Identifying
H°X,,E) and H°(X,E)®R we get an R-linear operator in H(X,E)®R ie. a
Laurent polynomial with coefficients in End H°(X,E). Choosing a basis in
H°(X,E) we get an Leg. It is easy to check that Leg,,. W

Fix a Hamiltonian @el(@). Put M =de(L) and let L(t) be the solution to the

. . d

Hamiltonian Lax equation a—th[L’M +), L(O)=L. The spectral curve X does
not vary with ¢. The time evolution of the corresponding line bundle E, ,, is easy
to describe. Let y(x)eE, (x) be an eigenvector of L(z(x)) corresponding to xeX.
Since [L, M]=0, we get M(z(x))¥(x)=pu(x)¥(x), ueR,. Let F, be the line bundle
over X defined by transition function exptp with respect to the covering
X=U_uU_.

Proposition 4. E, ,, = E,QF,.

Proof. Let exptM =g +(t)‘1 g_(t) be the solution to the factorization problem
defined a priori for sufficiently small t. The time evolution of L is given by

L()=g, (0 Lg. () '=g_()Lg_(n". (3)

Now, E,, is a subbundle of X xC”". Functions g_(f) give isomorphisms of
E and E, , over U, : E; ,(x)=g,(z(x).t) E;(x). The transition functionin U, nU_
which distinguishes between these two isomorphisms is

g+(t)71 g (Dig, =exptM|y, =expty. R

The group of linear bundles over X of degree zero is isomorphic to the
Jacobian of X and F, is its one-parameter subgroup. So the reduction theorem
readily leads to the main result of the “direct spectral problem”: Lax equations
generate linear flows on the Jacobian of the spectral curve. The converse is also
true.

Proposition 5. Every linear bundle over X of degree zero may be defined by a
transition function exp u with respect to the covering {U,,U_}.

Proof. The domains U, being affine curves, our bundle is trivial over U, and so
is defined by a transition function ¢. The degree of the bundle being zero, ¢ may
be so chosen that a univalent u=log ¢y exists. W

For any upeR, there exists a Hamiltonian ¢el(g) such that de(L)
=u(z,z~1, L). We obtain

Corollary 1. Every linear flow on ¥

e+n_1 iS generated by a Lax equation.

This corollary enables us to prove that Lax equations are completely
q .
integrable. Let L= I,z' be generic and let H be the centralizer of [_, in

o }
GL(n,C)if p>0, or H=GL(n,C)if p=0. Let G,=A xB be as in n°2. Let O, be
the Ad* G,-orbit of L.



Reduction of Hamiltonian Systems 429

Proposition 6. The orbit ¥, and Lax equations are invariant under the action of H
in g, .. This action is Hamiltonian.

Proof. For p=0 the statement is obviously true. For p>0 we use the arguments
of [5]. Consider the Hamiltonians

@(L)=Res,_oz7""1o(Lz"), ¢el(g).

If M=d@(L), then M _=de(l_,), so that the Hamiltonian flow of ¢ coincides
with the adjoint action of the subgroup exptM _ < H. Since the spectrum of [_

p
is simple, H is generated by these subgroups. W

Let @: ¢/, —b* be the momentum map, let ¢, be the reduced space over the
point é=®(L), ie. O, =@ '(¢)/H,. Let T, be the level surface of the reduced
Hamiltonians @, ¢€el(g), which contains the image L of L.

Theorem 1. (i) Reduced Hamiltonian systems on O, defined by the Hamiltonians
pel(§) are completely integrable.

(ii) There is a natural isomorphism of TL onto a Zarisky open subset of
<

g+n—1°

Proof. Let T, denote the set of elements of g, , which are isospectral with L; in
other words, T, is the level surface of the algebra I@). Put T2=T,nC,.
Proposition 1 gives rise to a mapping I: T, —%,,,_,, whose fibres are the
GL{n)-orbits in g, ,. Clearly, the fibres of I|;o: T - %, ,,_, are the H-orbits.
The Hamiltonian reduction with respect to H contracts the H-orbits (or rather
their intersections with ®~*(¢)) into points. Hence the reduced mapping
I: ’TL—M?H,,A is one-to-one. On the other hand, corollary 1 says that the
trajectories of reduced Lax equations with the inital point L cover an open part
of Z,.,_,. This implies complete integrability. M

Corollary 2. If p>0, I(¥) is a maximal involutive algebra on O, and T, is a
maximal torus. If p=0, a maximal involutive system on ¢, is obtained by
combining 1(§) with a maximal gl(n)-involutive system of functions of l,.

4. Now we consider the factorization problem. Let @(t)=(y(¢), ..., y"(t)) be the
n-tuple of sections of Ef, generated by the linear coordinates in C". By
Proposition 4 y(t) is described by two n-tuples ¥, () of sections of Ef|,  related
by

Y_(O)=e"y (1)
If g, (1) solve the factorization problem, then it is clear from (3) that
Y (=g ()¢ ()

Suppose zeC is such that X is unramified over z and let x, ..., x, be the points
of X over z. Define the matrices ¢, (z,1) by

Uiz, 0=y (x,1) 4
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Then ¢, (t)=g . () ¥(0), so that
g:(20=¥.(z0Y (0" )

This formula reconstructs g, in terms of ¥ , . Hence if we can write down
explicitely, we solve the factorization problem. To this end we interprete
H°(X,E}) as a linear space £(D) of meromorphic functions on X subordinate to
a divisor D which corresponds to Ef. By Proposition 1 degD=g+n—1. The
regularity condition allows for a simple choice of basis in (D). Since L is
generic, the divisor P_ contains n distinct points P.. Let ' be a (unique up to a
constant factor) function on X such that (y')= —D+P, —P.. Clearly, the
functions y* are linearly independent and generate the whole space (D). To
motivate this choice note that if the lowest coefficient of L is diagonal and has
simple spectrum, then ¢’ are just the canonical sections (i.e. those defined by
standard coordinates in C"). It is convenient to assume that D—P=D - P,
D,z=0, degD, =g, P,e X, which is always possible.

Theorem 2 [3]. Let ueR,. Then (i) There exist meromorphic functions Y, (z,t)
defined in U, such that

wi_zet” i+) (l/Ili)g_DO—*—PO—Pi

These functions are unique up to a multiple c(t).
(if) Equations

define matrix-valued polynomials L(t)eg[z,z='], M | (t)eg[z* '] whose coefficients
are meromorphic functions of t.

Proof. Define a linear bundle F, by the transition function expt u for the covering
{U,,U_}. Put E,=E, ®F,. For almost all ¢ the bundle E¥ is regular and from
the Riemann-Roch theorem it follows that for such ¢ ¥ (¢) is unique up to a
factor. Hence a t-smooth function ¥, is unique up to a factor ¢,(t). The existence
of Y, follows from an explicit formula. To write it down we introduce some
notation. Fix a basis {®'} of holomorphic differentials on X and let w:

y
X x X - JacX be the Abel transform defined by co(x,y)z{j w‘}. Choose a 9-

function on C* in such a way that there exist (g— 1) points x,...,x,_, with the
property $w{x, x;))=0 for every xe X but $(w(x, y)) is not identically zero. There
exist unique meromorphic differentials v, on X such that

a) v, are regular in U, and (v, —dp) are regular in Us.

b) The Z-linear functionals on H,(X,Z) defined by y—[v, extend to C-

¥
antilinear functionals on C8(H,(X,Z) is embedded into C* via the period
mapping y+— {[ »'}). Let V, eC* represent these functionals with respect to the

v
Riemann scalar product in C&
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Fix a point x,€X and choose ceC? so that (Hw(xg, .)—c))=D,. Then

z;fout Hw (Py, x)) Hax( xo,x)+a)( PLP)—tV, —c)
Ho(Py, x)) Hw(xy, x) ~¢)

The formula is derived as in [2], [4] and shows that /', is holomorphic in ¢.
If E¥ is regular the natural mapping

‘//ii (x)=e

HY(X.EN®C[z*'] > H(U,, Ef)

is a C[z*'}-module isomorphism. The relation 8,y _=¢"“(3,y, +u ) allows
to interprete &, , as meromorphic sections of E¥ which are regular in U,.
Hence there exist matrix polynomials M +(t)eg[z—1] such that

Oy =FM ¥,

To obtain L(t)eg[z,z~!] we use Proposition 3. Coefficients of L, M, may be
computed recurrently by decomposing Ay, J,¢ . into a power series in the
local parameter in the vicinity of PL. W

Remark. If . are normalized so that d,y ,(0,t)=0, then M , (t)eg®z C[z].
Proposition 6. M, (1)+ M _(t)=pu(z,z™*, L(1))
Proof. From y_=¢'""y, we get

M_y_=o0y_=pp_—M y_
hence (M, +M )y _=py_. A

Since the functions of Theorem 2 are analytic in ¢, the factors g, (¢) related to
them by (5) are regular for all t except for a discrete subset of C. In what follows
we give an alternative proof for the existence of a factorization which makes no
appeal to general theorems of [6].

As in (4) we define the matrices ¥, (z,t) by

l/;ii (Zs t) = wii— (xja t)
and put

g:(2,0=0.(0¥(z0" 5)
The definition of g, is easily seen to be correct (cf. [2]).

Theorem 3 (i) g, are entire functions of z='. If t lies outside of a discrete subset of
C, then det g, (z,£)=%0.
(i) g, provide a factorization for exptM:

exptM=g_(1)"'g_(t)

Proof. (iy Let M, be as in Theorem 2, let I be the set of poles of their
coefficients. If teC~ I then

6tg+ +Mir &+
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Thus g, are fundamental solutions of analytic differential equations and hence
g, are regular in z*! and det g, (z,1)#0. The definition (5) of g, shows that they
are regular for all teC.

Since ¥ _(t)= (/7+(t)6(T)t u, we have

)=y w O~ _d0)!
—J(0)XpRP(0)~ ! = expt M.

g, 0 g

Clearly, for teC~\T

Lt)=g, (O Lg. ()"

Remark. Theorem 2 shows that the solutions of Lax equations may have poles in
time variable. Formulae (3, 5) give a regularization of trajectories.

In the algebraic approach to Lax equations L(¢) and M (t) are determined
by the power series expansion of Ay, d,¢, in P‘ On the other hand, the
group-theoretic approach gives L(t)= gi(t)Lgi(t) . The relationship of two
methods is based on a remarkable property of g :

Ad%g.()L=Ad¥ g, (1)L, +Adg, g ()L _

Following Zakharov and Shabat we may say that g, are dressing transfor-
mations. To sum up, our approach gives a group-theoretic interpretation of the
Zakharov-Shabat dressing-up and of algebraic methods of Novikov, Matveeyv,
Dubrovin, Krichever, Mumford, Moerbeke and others. This approach also
applies to partial differential equations [7].
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