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A.G. Reyman and M.A. Semenov-Tian-Shansky 

Leningrad Branch of the V.A. Steklov Mathematical Institute, Leningrad, 191011, USSR 

The present article is the sequel to a previous paper by the same authors [1], Its 
aim is to give an explicit solution of a factorization problem for groups of 
loops, and to establish a connection of Hamiltonian reduction methods with 
algebraic methods of Novikov and Krichever [2, 3] and of Mumford and van 
Moerbeke [4]. We also correct some erroneous statements in [1] concerning the 
factorization problem (see no. 2 below). To make our presentation more self- 
consistent, we give an elementary proof of the reduction theorem in a slightly 
more general form as compared to [1]. This generality corresponds to that of [3, 
4] where the same equations are treated in terms of finite-difference operators. 
An approach based on affine Lie algebras is also described by Adler and van 
Moerbeke [5]. However, the Hamiltonian reduction questions are not treated 
there. 

The authors are grateful to I.M. Krichever for valuable and stimulating discussions. 

1. Let G be a Lie group, g its Lie algebra, g* the dual of g. Clearly, g c  C~(g*), 
and the Lie bracket on g gives rise to a Poisson bracket on C~(g *) sometimes 
called the Kirillov bracket for g. The center of C~(g *) coincides with the algebra 
I(g*) of Ad* G-invariant functions. Restriction of the Kirillov bracket to Ad* G- 
orbits in g* induces on them the canonical symplectic structure. 

Suppose that g splits as a vector space into a linear sum of two its 
subalgebras, g = a +b. Let A, B be the corresponding connected subgroups. Put 
g 0 = a |  G o = A x B .  We identify linear spaces go and g by means of the 
mapping ao: go ~ g ,  ao(X,y)=x-Y.  

Hence there are two Kirillov brackets on g*-g~ .  

Reduction Theorem. (i) I(g*) is abelian with respect to both brackets on g*. 

(ii) Let q06I(g*), ~eg*. Put M=dtp(~), (M+,M )=aoX(M)ego . The Hamil- 
tonian equations of motion defined by qo with respect to the second Poisson bracket 
on g* have the form 

= - ad* M+ ~ = -- ad* M_ ~ (t) 



424 A.G. Reyman and M.A. Semenov-Tian-Shansky 

(iii) Let exptM=a(t)b(t) ,  a('), b( ')  being smooth curves in A and B, re- 
spectively, a(0)= b(0)= e. 7he solution to equations (1) starting at ~ has the Jorm 

~(t) = Ad* a(t)-1.  ~ = Ad~b(t). 

Proof. Define a mapping a: G o ~ G by a(a x b)=a b-1. We trivialize the tangent 
bundles of groups by means of left translations. Then the differential of a at 
a x b~Go is equal to Ado boa o. Indeed, it is clear from the definition that da(a x b) 
= Ad o boda(e). Evidently, da(e)=a o. It follows that a is an immersion. Hence 
we may define a mapping a*: T * G o ~ T * G  putting a*=da(axb)  *-1 on the 
fiber T*• Given a function ~p on T*G put ~p"=~poa. The mapping a* is a 
simplectic immersion and {q~, ~9 ~} = {~o, ~}~. 

Now the Kirillov bracket on g* coincides with the canonical Poisson bracket 
for lefl-invariant functions on T*G. Observing that for ~p6I(g*) ~p~ is left G o- 
invariant we get (i). 

Equations of motion on T*G corresponding to a Hamiltonian q~I(,q*) are 
~=0 ,  g=d~p(~). Hence the trajectories are given by 

(g(t), ~(t))= (g(0) expt d (p(~), 3(0)) 

Trajectories of the Hamil tonian q~ on T*Go~-G o x g* are obtained from these 
by the change of variables a*. We are only interested in their projections to .q~. 
If exp t dtp(~) = a(t) b(t), then da*(exp t dq0(~)) = a* o Ad z b(t), whence we get (iii). 
Differentiating the trajectory with respect to t we get (ii). �9 

If  there is an invariant scalar product on 9 we may identify 9" with 9. Then 
ad* -- adq and the equations of motion have the Lax form. 

The "reduced flows" of the Hamiltonians qo ~ may be restricted to Ad*G o- 
invariant submanifolds in g*. In particular, we get as a corollary Theorem 10 
and Proposition 12 of [1]. 

Corollary. Let f be a character of a. 

(i) Functions on b* of the form qo~(~)= qo(~ + f ) ,  (p~l(g*) commute with respect 
to the Kirillov bracket on b*. 

(ii) Equations of motion corresponding to the Hamihonian (Pl have the form 

4 =  - a d * M + .  (~ + f ) ,  M=d~o(~+f)  (2) 

(iii) Let exptM=a(t)b(t) ,  a('), b( ')  being smooth curves in A and B, re- 
spectively. Solution to equations (2) starting at ~ is 

~(t) = Ad~ b(t)(~ + f ) - f  

or, equivalently, 

~(t) = Ad~ b(t). ~. 

2. In the rest of the paper we shall be concerned with the following example of 
the above construction. Let g be a complex semisimple Lie algebra. Put 

= g |  z -  1], a = g |  zC[z] ,  b =.q|  C[z  1]. We e q u i p )  with a nondegenerate 
invariant bilinear form ( X , Y ) = R e s ~ = o z - I B ( X , Y )  and identify a* with 
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g| and b* with g |  Invariant functionals on )* are given by 

q),(X) = Resz= o z "q~(X(z)), q)~I(9*), n~Z. 

The reduction theorem as applied to ) = a + b  amounts to the following 
statement. 

Let L~)*,  (pEl(~*), put M=d(p(L), and let exptM=g+(t)-lg_(t), the factors 
g+,g_ being analytic inside (outside) the unit circle. The trajectory of the 
Hamiltonian ~p passing through L is given by 

L(t) = Ad g + (t) L. (3) 

In the present context the relevant groups are (~ = C*(S ~, G) and two of its 
subgroups G+ consisting of functions analitic inside (respectively, outside) the 
unit circle. For a careful formulation of the reduction theorem we must equip 
with a topology of a Banach Lie group such that or: G+ •  ~(~, a(g+ •  
= g + g - 1  maps some neighborhood of the unit element in G+ • G onto an 
open set in (~. A particular choice of topology is to a large extent arbitrary. One 
of the simplest possibilities is described below. 

Let G c GL(n, C) be a connected matrix group, .q c gl(n C) be its Lie algebra. 
Denote by # /  the algebra of absolutely convergent Fourier series with coef- 
ficients in gl(n, C). Put 

g ,  = {u~q/~: u(z)~ for Iz]=l} 

Ga;={gEW: g(z)~G for [zl=l} 

Denote by ~ + ( #  ) subalgebras in ~r consisting of functions analytic inside 
(outside) the unit circle. Put 

G+ ={g~G~.nW+: g(z)6G for Iz-+ll<l} 

Put A={g~G+: g(0)= 1}, B=G_, Go=AxB. The set ~ is open in G~ 
and contains a neighborhood of the unit element. The scheme of no. 1 can be 
directly applied to the present case. 

Remark. We point out an error in [1]: in general, ~ w is not a group (Lemma 19 
of [1] is false). As a consequence the reduced Hamiltonian flows may be 
incomplete. The general theorems [6, Lemma 1.5.1] imply that exptMe~ 
only for t sufficiently small. We shall see below that in fact exptMe~ for all 
t eC  except possibly for a discrete set (which depends on M). 

3. We now proceed to the study of the factorization problem. From [1, 
proposition 23] it follows that with no loss of generality we can restrict 
ourselves to the case G = GL(n, C). 

We begin with a brief exposition of the algebro-geometric pattern of solution 
of "Lax equations with a spectral parameter" based on papers [2], [3], [4]. For 
the sake of completeness we include the proofs of some basic results. The main 
novelty consists in a simple proof of correspondence between Lax equations and 
linear flows on the Jacobian of the spectral curve. 
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For  Legl(n, C) let X a be an affine curve defined by equation det (L(z)- ) . )=0.  
Assume that L(z) has a simple spectrum for general z and also that X a is 
nonsingular and irreducible. Let X be the smooth compactification of X a. 
Coordinates z, 2 are meromorphic functions on X. Let ( z ) = P + - P  be the 
divisor of z, P+ being effective divisors of degree n. Put U+ = X \ P  T, 
Xo=U+c~U . Let R 0 be the algebra of regular functions in X o. Clearly, 
Ro=C[z , z - l , 2 ] .  Put R = C [ z , z  a]. 

For any x e X  except for a finite set of branch points there exists a unique 
one-dimensional eigenspace of L i.e. a subspace EL(X)~C" such that L(z(x))ql 
= 2(x)~ for OeEL(X ). The mapping x~-,EL(X ) is clearly a meromorphic mapping 
of X into CP,_I.  Since any such mapping is actually holomorphic we get a 
holomorphic line bundle E L ~ X. 

An  .ent wi .  be cal, d g - - r i c  
t - - p  j 

lowest and highest coefficients have simple spectrum. 

Proposition 1. Suppose L = ~ 1 i ziegp, q is generic. Then 

(i) The genus of the spectral curve is equal to 

g = � 8 9  1)(p + q ) - n +  1 

(ii) The degree of the dual bundle is equal to d e g E * = g + n - 1  and H~ 
E~(-n+))=o. 

Proof (i) The only singular points of the closure of X" in CP, • CP x = C 2 = { z ,  ,~.} 

are P=(oe ,  Go), Q=(0,  oc). The genus of the nonsingular curve X is given by the 
Hurwitz formula 

g = d~ d z - d~ - d 2 + 1 - v (P) -  v(Q) 

dl ,d  2 being the degrees of the defining equation, v(P), v(Q) the indices of the 
singular points. In our case da = n(p +q), d 2 = n; the indices are easily computed 
using the principal part of the defining equation at P,Q: v(P)=�89 v(Q) 
=�89 1)q. 

(ii) We divide the proof into several steps. 

(a) Let V denote the subspace of H~ generated by linear coordinates 
in C". 

Let ~ ~ V. If ~ z E H ~ (X, E~) or ~ z-  1 ~ H 0 (X, E*) then ~9 = 0. 
Indeed, ~9z6H~ means that ~ vanishes on the eigenspaces E tpi~l I.~ f , 

which are just the eigenspaces of l p. By our assumption EL(P' ) span C", so that 
vanishes on C". The treatment of the second case is similar. 

(b) Now, following [4] we prove that the natural mapping r: 
V | 1 7 6  *) is surjective. To this end observe that r(V|  is an R o- 
module: if ~=(~91, . . . ,~ ") is the standard basis in V then ).~b=L~9 so that 
2tpi~r(V| Suppose that r (V|  is a proper Ro-submodule in H~ 
Then by a theorem from Commutative Algebra there exists a point x6Xo,  such 

1 Since L is generic, the divisor P• contains n distinct points P~. 
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that ~o(x)=0 for every q~er(V| On the other hand, there exists a Oe V which 
does not vanish on the eigenspace EL(X), a contradiction. 

(c) Next we prove that V=H~ Let qoeH~ Since q~er(V| 
m 

- -  Z i we have ~ o - ~  i , OieV. We may assume that gig+0, qJm+0; we shall prove 
k 

that k = m = 0 .  Suppose that m>0.  Then we may write O,,z=Oz 1-" 
- ~  Oi+,,_lz i whence O,,zeH~ Now, (a) implies that ~ , ,=0,  a con- 

i<o  

tradiction. The assumption k <0  leads to a similar contradiction. 

(d) The statement of (a) combined with V=H~ *) implies H~ 
E * ( - P + ) ) = 0 .  Since degP+ =n, it follows from the Riemann-Roch theorem that 
d e g E * < g + n - 1 .  To prove the opposite inequality, consider the bundle 
Ek=E*(kP+). For k sufficiently large, 

dim H~ Ea) = degE* + k n - g + 1 

Now, r\V| ci zi cH~ Ek). We shall see below that r is injective (cf. 

Proposition 2), so dimH~ Ek)>(k+l)n, or d e g E * > g + n - 1 .  �9 

Definition. The line bundle E ~ X of degree g + n - 1  is called regular (or, more 
precisely, z-regular) if H~ E( - P+ )) = O. 

Clearly, regular bundles form a Zarisky open set in the space ~g+, -1  of all 
line bundles of given degree. We shall readily see that the regularity condition 
completely characterizes line bundles of eigenspaces of matrices Le~ with 
spectrum X. 

Proposition 2. Let E be a line bundle over X of degree g +  n - 1 .  The following 
properties of E are equivalent: 

(i) E is regular. 
(ii) The natural mapping r: H~ --* H~ is an isomorphism of R- 

modules. 

Proof ( i)~(i i)  Injectivity. Let ~ p i z i = 0 ,  (pi6H~ Then ~pk z - l =  
i>k 

- ~  q~i+k_lz i and the right hand side is regular at P+ so that ~Pk~H~ 
i>o  

E(-P+)) .  Hence ~Pk =0  and by induction ~Pi = 0  for every i. Surjectivity. We denote 
Ek=E(k(P + + P  _)) and prove that for all kH~ Ek)~r(H~174 which is 
clearly sufficient. Since E is regular, for any (p6H~ Ek) there exist 
~px,(P2~H~ such that ~p--(plzk--~p2z-R~HO(X, Ek_O. Our claim now fol- 
lows by induction. 

( i i )~(i)  Let ~p~H~ i.e. let ~p be a section of E which vanishes 
at P+. Then ~b=~pz - l  belongs to H~ and r(~b-~pz-1)=0. It follows that 
(p=0. 

Proposition 3. A regular line bundle E corresponds to a GL(n)-orbit in gp, q 
consisting of matrices L with spectrum X such that E* ~-E. 
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Proof Multiplication by 2 gives an R-linear operator in H~ Identifying 
H~ and H~174 we get an R-linear operator in H~174 i.e. a 
Laurent polynomial with coefficients in End H~ Choosing a basis in 
H~ we get an Le,~. It is easy to check that Legp, q. �9 

Fix a Hamiltonian ~pEI()). Put M=dq)(L) and let L(t) be the solution to the 
d 

Hamiltonian Lax equation ~ L =  [L, M+],  L(0)=L.  The spectral curve X does 

not vary with t. The time evolution of the corresponding line bundle EL(,) is easy 
to describe. Let t~(x)EEL(x ) be an eigenvector of L(z(x)) corresponding to x~X. 
Since [L ,M]  =0,  we get M(z(x))O(x)=p(x)O(x), peR o. Let F t be the line bundle 
over X defined by transition function e x p t p  with respect to the covering 
X =  U+ wU . 

Proposition 4. EL(,)= EL@ Ft. 
Proof Let exptM=g+(t ) - lg  (t) be the solution to the factorization problem 
defined a priori for sufficiently small t. The time evolution of L is given by 

L(t )  = g + (t) L g + ( t ) -  ~ = g _  (t) L g _  ( t ) -  1. (3) 

Now, EL, ) is a subbundle of X xC ' .  Functions g+(t) give isomorphisms of 
E L and EL, ) over U_+ : El~(t)(x) = g• (z(x), t) EL(x ). The transition function in U+ n U 
which distinguishes between these two isomorphisms is 

g+(t) lg_( t ) l eL=exptMjeL=exptp"  �9 

The group of linear bundles over X of degree zero is isomorphic to the 
Jacobian of X and F t is its one-parameter subgroup. So the reduction theorem 
readily leads to the main result of the "direct spectral problem": Lax equations 
generate linear flows on the Jacobian of the spectral curve. The converse is also 
true. 

Proposition 5. Every linear bundle over X of degree zero may be defined by a 
transition function exp p with respect to the covering { U+, U }. 

Proof The domains U+ being affine curves, our bundle is trivial over U+ and so 
is defined by a transition function q~. The degree of the bundle being zero, q~ may 
be so chosen that a univalent/~ = log  ~o exists. �9 

For  any peR o there exists a Hamiltonian ~o~I(~) such that d(p(L) 
=/~(z, z - 1, L). We obtain 

Corollary 1. Every linear flow on 5('g+,_ 1 is generated by a Lax equation. 

This corollary enables us to prove that Lax equations are completely 
q 

integrabte. Let  L =  ~ liz i be generic and let H be the centralizer of l_p in 
- - p  

GL(n,C) if p > 0 ,  or H=GL(n,C) if p=0 .  Let Go=A x B  be as in n~ Let (9  be 
the Ad* Go-orbit of L. 
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Proposition 6. The orbit ~L and Lax equations are invariant under the action of H 
in 9p, q. This action is Hamiltonian. 

Proof For p = 0 the statement is obviously true. For p > 0 we use the arguments 
of [5]. Consider the Hamiltonians 

(p(L)=Resz=o z -p-1  (p(LzP), ~o~I(g). 

If M=d(o(L), then M =dqo(l p), so that the Hamiltonian flow of ~5 coincides 
with the adjoint action of the subgroup exp t M_ c H. Since the spectrum of l --p 
is simple, H is generated by these subgroups. �9 

Let 4~: ~r  -* b* be the momentum map, let (9 L be the reduced space over the 
point ~=4)(L), i.e. (~r=4~-l(~)/H~. Let T r be the level surface of the reduced 
Hamiltonians qS, q~I(g), which contains the image L of L. 

Theorem 1. (i) Reduced Hamiltonian systems on Cr defined by the Hamiltonians 
qo~I()) are completely integrable. 

(ii) There is a natural isomorphism of ~F L onto a Zarisky open subset of 

~fg+n- -  1" 

P r o ~  Let T L denote the set of elements of %,q which are isospectral with L; in 
other words, T L is the level surface of the algebra I(~I). Put T~ L. 
Proposition 1 gives rise to a mapping I: TL--*5~ whose fibres are the 
GL(n)-orbits in 9,,q. Clearly, the fibres of Ilro: T ~ ~LPg+,_l  are the H-orbits. 
The Hamiltonian reduction with respect to ~ c o n t r a c t s  the H-orbits (or rather 
their intersections with 4~-1(~)) into points. Hence the reduced mapping 
1: TL~L~,+,_ 1 is one-to-one. On the other hand, corollary 1 says that the 
trajectories of reduced Lax equations with the inital point L cover an open part 
of 5~ This implies complete integrability. �9 

Corollary 2. / f  p >0, I(~) is a maximal involutive algebra on Cc;r and T L is a 
maximal torus. I f  p=O, a maximal involutive system on ~'L is obtained by 
combining I()) with a maximal 9l(n)-involutive system of Junctions of l o. 

4. Now we consider the factorization problem. Let 0(t)=(01(t)  . . . . .  0"(0) be the 
n-tuple of sections of E~ 0 generated by the linear coordinates in C". By 
Proposition 4 ~b(t) is described by two n-tuples 0+(t) of sections of E~lu~ related 
by 

O_(t)=etUO+(t) 

If g+(t) solve the factorization problem, then it is clear from (3) that 

0 +_ it) --- g_+ (t) 0 (0)  

Suppose z e C  is such that X is unramified over z and let Xl, . . . ,x ,  be the points 
of X over z. Define the matrices ~+(z,t) by 

~ij (z, t) = 0i+ (x j, t) (4) 
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Then ~ + (t) = g + (t) @(0), so that 

g + (z, t )=  l,ff ++ (z, t) lfi(z, O) -1  (s) 

This formula reconstructs g_+ in terms of @+. Hence if we can write down ~+ 
explicitely, we solve the factorization problem. To this end we interprete 
H~ E~) as a linear space !i3(D) of meromorphic functions on X subordinate to 
a divisor D which corresponds to E*. By Proposition 1 d e g D = g + n - 1 .  The 
regularity condition allows for a simple choice of basis in @(D). Since L is 
generic, the divisor P§ contains n distinct points P~. Let ~ be a (unique up to a 
constant factor) function on X such that ( ~ ) > - D + P + - P ~ .  Clearly, the 
functions ~ are linearly independent and generate the whole space @(D). To 
motivate this choice note that if the lowest coefficient of L is diagonal and has 
simple spectrum, then ~ are just the canonical sections (i.e. those defined by 
standard coordinates in C"). It is convenient to assume that D - P = D  o-Po,  
D0>0,  degD0 =g, PosX, which is always possible. 

Theorem 2 [3]. Let #eR  o. Then (i)There exist meromorphic functions ~ki+_(z,t) 
defined in U+_ such that 

0'-=e'"q/+, (02)_- > - o 0 + P o - P I  

These functions are unique up to a multiple ci(t ). 
(ii) Equations 

L@+ = 2 0 +  

~,~k+_ = T-M+_ O+_ 

define matrix-valued polynomials L(t) e g [z, z -  1 ], M + (t) ~ g [z + 1 ] whose coefficients 
are meromorphic functions of  t. 

Proof Define a linear bundle F, by the transition function expt  # for the covering 
{U+, U } .  Put E t = E L |  r For  almost all t the bundle E* is regular and from 
the Riemann-Roch theorem it follows that for such t @~(t) is unique up to a 
factor. Hence a t-smooth function @~ is unique up to a factor ci(t ). The existence 
of ~ follows from an explicit formula. To write it down we introduce some 
notation. Fix a basis {o) i} of holomorphic differentials on X and let o~: 

X x X ~ J a c X  be the Abel transform defined by ~o(x,y)= co ~ . Choose a 0- 

function on C g in such a way that there exist ( g - 1 )  points xl ,  ...,xg_ 1 with the 
property Sl(o)(x, xi))=0 for every x e X  but O(o3(x, y)) is not identically zero. There 
exist unique meromorphic differentials v+ on X such that 

a) v+ are regular in U+ and (v• - d # )  are regular in U~. 
b) The Z-linear functionals on HI (X,Z)  defined by 7~--~v_+ extend to C- 

antilinear functionals on Cg(HI(X,Z)  is embedded into C g via the period 
mapping 7~-,{~oJ}). Let V+eC g represent these functionals with respect to the 

Riemann scalar product in C g. 
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Fix a point xoEX and choose c~C g so that (O(~O(Xo, . ) - c ) ) = D  o. Then 

t~  (x)=e, ~o,,~ O(co(Po, x)),9(o)(Xo,X)+~o(P+,Po)-tV + -c)  
O(o~(P+, x)) O((O(Xo, x) - c) 

The formula is derived as in [2], [4] and shows that r is holomorphic in t. 
If E* is regular the natural mapping 

U~ E*)| C[z • ~ H~177 E,*) 

is a C[z•  isomorphism. The relation 8tr162 + p C + )  allows 
to interprete 8 , r177 as meromorphic sections of E* which are regular in U• 
Hence there exist matrix polynomials M• +1] such that 

r), ~9+ = T-M+ r 

To obtain L(t)e9[z,z -1] we use Proposition 3. Coefficients of L,M• may be 
computed recurrently by decomposing 2 r177  8t~ • into a power series in the 
local parameter in the vicinity of P'.. �9 

Remark. If r are normalized so that 8 t ~+(0, t )=0,  then M+(t)~9| 

Proposition 6. M +  (t) + M _ (t) = p(z ,  z -  1, L(t))  

Proof From ~_ =e '~ r  we get 

M_4,_ =a, qJ_ =~q,_ -M+ q,_ 

h e n c e ( M + + M  ) r  = p C .  �9 

Since the functions of Theorem 2 are analytic in t, the factors g• related to 
them by (5) are regular for all t except for a discrete subset of C. In what follows 
we give an alternative proof for the existence of a factorization which makes no 
appeal to general theorems of [6]. 

As in (4) we define the matrices ~+(z,t) by 

~ (z, t) = ~'_+ (x  i, t) 
and put 

g • (z, t) = ~ • (z, t) q~(z, 0)-1 (5) 

The definition of g• is easily seen to be correct (cf. [2]). 

Theorem 3 (i) g• are entire functions of z• If t lies outside of a discrete subset of 
C, then det g• t)4:0. 

(ii) g • provide a factorization for exp t M: 

exptM=g+(t) -1 g_(t) 

Proof (i) Let M• be as in Theorem 2, let F be the set of poles of their 
coefficients. If teC'.. F then 

Otg • = "T-M• g+ 
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Thus g+ are fundamental  solutions of  analytic differential equat ions and hence 
g• are regular in z +~ and det g + (z, t ) +  0. The definition (5) of  g • shows that they 
are regular for all t~C. 

Since if_ (t) = ~ + (t) ex'~ t/~, we have 

g+(t)--lg_(t)~---~(0)~+(t)-i ~_(t)~(0)-I 
----- ~ ( 0 ) e x @ ~  ~(0) - t  = expt M. 

Clearly, for tEC'- ,  F 

L(t) = g • (t) Lg  • (t)-  1 

Remark.  Theorem 2 shows that  the solutions of  Lax equat ions may have poles in 
time variable. Formulae  (3, 5) give a regularization of  trajectories. 

In the algebraic approach  to Lax equat ions L(t) and M• are determined 
by the power series expansion of  2 ~ •  8 t~•  in P~. On  the other hand, the 
group-theoret ic  approach  gives L(t) = g• (t) L g •  (t)- 1. The relationship of  two 
methods  is based on a remarkable  proper ty  of  g•  

Ad~ g • (t) L = Ad*Go g + (t) L + + Ad~o g_ (t) L_ .  

Fol lowing Zakharov  and Shabat  we may  say that  g• are dressing transfor- 
mations. To sum up, our approach  gives a group-theoret ic  interpretat ion of  the 
Zakharov-Shaba t  dressing-up and of  algebraic methods  of  Novikov,  Matveev, 
Dubrovin,  Krichever,  Mumford,  Moerbeke  and others. This approach  also 
applies to partial differential equat ions [7]. 
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