

Reduction of Hamiltonian Systems, Affine Lie Algebras and Lax Equations II

A.G. Reyman and M.A. Semenov-Tian-Shansky

Leningrad Branch of the V.A. Steklov Mathematical Institute, Leningrad, 191011, USSR

The present article is the sequel to a previous paper by the same authors [1]. Its aim is to give an explicit solution of a factorization problem for groups of loops, and to establish a connection of Hamiltonian reduction methods with algebraic methods of Novikov and Krichever [2,3] and of Mumford and van Moerbeke [4]. We also correct some erroneous statements in [1] concerning the factorization problem (see no. 2 below). To make our presentation more selfconsistent, we give an elementary proof of the reduction theorem in a slightly more general form as compared to [1]. This generality corresponds to that of [3, 4] where the same equations are treated in terms of finite-difference operators. An approach based on affine Lie algebras is also described by Adler and van Moerbeke [5]. However, the Hamiltonian reduction questions are not treated there.

The authors are grateful to I.M. Krichever for valuable and stimulating discussions.

1. Let G be a Lie group, g its Lie algebra, g^* the dual of g. Clearly, $g \subset C^{\infty}(g^*)$, and the Lie bracket on g gives rise to a Poisson bracket on $C^{\infty}(g^*)$ sometimes called the Kirillov bracket for g. The center of $C^{\infty}(g^*)$ coincides with the algebra $I(\mathfrak{q}^*)$ of Ad*G-invariant functions. Restriction of the Kirillov bracket to Ad*Gorbits in q* induces on them the canonical symplectic structure.

Suppose that g splits as a vector space into a linear sum of two its subalgebras, g = a + b. Let A, B be the corresponding connected subgroups. Put $g_0 = \mathfrak{a} \oplus \mathfrak{b}, G_0 = A \times B$. We identify linear spaces g_0 and g by means of the mapping $\sigma_0: \mathfrak{g}_0 \to \mathfrak{g}, \sigma_0(x, y) = x - y$.

Hence there are two Kirillov brackets on $g^* \simeq q_0^*$.

Reduction Theorem. (i) $I(q^*)$ is abelian with respect to both brackets on q^* .

(ii) Let $\varphi \in I(\mathfrak{g}^*)$, $\xi \in \mathfrak{g}^*$. Put $M = d\varphi(\xi)$, $(M_+, M_-) = \sigma_0^{-1}(M) \in \mathfrak{g}_0$. The Hamiltonian equations of motion defined by φ with respect to the second Poisson bracket on q^* have the form

$$\dot{\xi} = -\operatorname{ad}_{\mathfrak{g}}^* M_+ \xi = -\operatorname{ad}_{\mathfrak{g}}^* M_- \xi \tag{1}$$

(iii) Let $\exp t M = a(t)b(t)$, $a(\cdot)$, $b(\cdot)$ being smooth curves in A and B, respectively, a(0) = b(0) = e. The solution to equations (1) starting at ξ has the form

$$\xi(t) = \operatorname{Ad}_{G}^{*} a(t)^{-1} \cdot \xi = \operatorname{Ad}_{G}^{*} b(t) \cdot \xi$$

Proof. Define a mapping $\sigma: G_0 \to G$ by $\sigma(a \times b) = ab^{-1}$. We trivialize the tangent bundles of groups by means of left translations. Then the differential of σ at $a \times b \in G_0$ is equal to $\operatorname{Ad}_G b \circ \sigma_0$. Indeed, it is clear from the definition that $d\sigma(a \times b) = \operatorname{Ad}_G b \circ d\sigma(e)$. Evidently, $d\sigma(e) = \sigma_0$. It follows that σ is an immersion. Hence we may define a mapping $\sigma^*: T^*G_0 \to T^*G$ putting $\sigma^* = d\sigma(a \times b)^{*-1}$ on the fiber $T^*_{a \times b}$. Given a function φ on T^*G put $\varphi^{\sigma} = \varphi \circ \sigma$. The mapping σ^* is a simplectic immersion and $\{\varphi^{\sigma}, \psi^{\sigma}\} = \{\varphi, \psi\}^{\sigma}$.

Now the Kirillov bracket on \mathfrak{g}^* coincides with the canonical Poisson bracket for left-invariant functions on T^*G . Observing that for $\varphi \in I(\mathfrak{g}^*) \varphi^{\sigma}$ is left G_0 invariant we get (i).

Equations of motion on T^*G corresponding to a Hamiltonian $\varphi \in I(\mathfrak{g}^*)$ are $\dot{\xi} = 0$, $\dot{g} = d\varphi(\xi)$. Hence the trajectories are given by

$$(g(t), \xi(t)) = (g(0) \exp t \, d\varphi(\xi), \xi(0))$$

Trajectories of the Hamiltonian φ^{σ} on $T^*G_0 \simeq G_0 \times g_0^*$ are obtained from these by the change of variables σ^* . We are only interested in their projections to g_0^* . If $\exp t \, d\varphi(\xi) = a(t) \, b(t)$, then $d\sigma^*(\exp t \, d\varphi(\xi)) = \sigma_0^* \circ \operatorname{Ad}_G^* b(t)$, whence we get (iii). Differentiating the trajectory with respect to t we get (ii).

If there is an invariant scalar product on g we may identify g^* with g. Then $ad_g^* = ad_g$ and the equations of motion have the Lax form.

The "reduced flows" of the Hamiltonians φ^{σ} may be restricted to Ad^*G_0 -invariant submanifolds in g^{*}. In particular, we get as a corollary Theorem 10 and Proposition 12 of [1].

Corollary. Let f be a character of \mathfrak{a} .

(i) Functions on b^* of the form $\varphi_f(\xi) = \varphi(\xi + f)$, $\varphi \in I(g^*)$ commute with respect to the Kirillov bracket on b^* .

(ii) Equations of motion corresponding to the Hamiltonian φ_f have the form

$$\dot{\xi} = -\operatorname{ad}_{\mathfrak{a}}^* M_{\pm} \cdot (\xi + f), \qquad M = d\varphi(\xi + f)$$
(2)

(iii) Let $\exp tM = a(t)b(t)$, $a(\cdot)$, $b(\cdot)$ being smooth curves in A and B, respectively. Solution to equations (2) starting at ξ is

$$\xi(t) = \operatorname{Ad}_{G}^{*} b(t)(\xi + f) - f$$

or, equivalently,

$$\xi(t) = \operatorname{Ad}_{B}^{*} b(t) \cdot \xi.$$

2. In the rest of the paper we shall be concerned with the following example of the above construction. Let g be a complex semisimple Lie algebra. Put $\tilde{g} = g \otimes C[z, z^{-1}]$, $a = g \otimes z C[z]$, $b = g \otimes C[z^{-1}]$. We equip \tilde{g} with a nondegenerate invariant bilinear form $(X, Y) = \operatorname{Res}_{z=0} z^{-1} B(X, Y)$ and identify a^* with

 $g \otimes z^{-1} \mathbb{C}[z^{-1}]$ and b* with $g \otimes \mathbb{C}[z]$. Invariant functionals on \tilde{g}^* are given by

$$\varphi_n(X) = \operatorname{Res}_{z=0} z^{-n} \varphi(X(z)), \quad \varphi \in I(\mathfrak{g}^*), \ n \in \mathbb{Z}.$$

The reduction theorem as applied to $\tilde{g} = a + b$ amounts to the following statement.

Let $L \in \tilde{g}^*$, $\varphi \in I(\tilde{g}^*)$, put $M = d\varphi(L)$, and let $\exp t M = g_+(t)^{-1} g_-(t)$, the factors g_+, g_- being analytic inside (outside) the unit circle. The trajectory of the Hamiltonian φ passing through L is given by

$$L(t) = \operatorname{Ad} g_{\pm}(t) L.$$
(3)

In the present context the relevant groups are $\tilde{G} = C^{\infty}(S^1, G)$ and two of its subgroups G_{\pm} consisting of functions analitic inside (respectively, outside) the unit circle. For a careful formulation of the reduction theorem we must equip \tilde{G} with a topology of a Banach Lie group such that $\sigma: G_+ \times G_- \to \tilde{G}, \sigma(g_+ \times g_-)$ $= g_+ g^{-1}$ maps some neighborhood of the unit element in $G_+ \times G_-$ onto an open set in \tilde{G} . A particular choice of topology is to a large extent arbitrary. One of the simplest possibilities is described below.

Let $G \subset GL(n, \mathbb{C})$ be a connected matrix group, $g \subset gl(n \mathbb{C})$ be its Lie algebra. Denote by \mathcal{W} the algebra of absolutely convergent Fourier series with coefficients in $gl(n, \mathbb{C})$. Put

$$\mathfrak{g}_{\mathscr{W}} = \{ u \in \mathscr{W} : u(z) \in \mathfrak{g} \text{ for } |z| = 1 \}$$

$$G_{\mathscr{W}} = \{ g \in W : g(z) \in G \text{ for } |z| = 1 \}$$

Denote by $\mathscr{W}_+(\mathscr{W}_-)$ subalgebras in \mathscr{W} consisting of functions analytic inside (outside) the unit circle. Put

$$G_{\pm} = \{ g \in G_{\mathscr{W}} \cap W_{\pm} \colon g(z) \in G \text{ for } |z^{\pm 1}| \leq 1 \}$$

Put $A = \{g \in G_+ : g(0) = 1\}$, $B = G_-$, $\tilde{G}_0 = A \times B$. The set ${}^0G_{\mathscr{W}} = AB$ is open in $G_{\mathscr{W}}$ and contains a neighborhood of the unit element. The scheme of no. 1 can be directly applied to the present case.

Remark. We point out an error in [1]: in general, ${}^{0}G_{W}$ is not a group (Lemma 19 of [1] is false). As a consequence the reduced Hamiltonian flows may be incomplete. The general theorems [6, Lemma 1.5.1] imply that $\exp t M \in {}^{0}G_{W}$ only for t sufficiently small. We shall see below that in fact $\exp t M \in {}^{0}G_{W}$ for all $t \in \mathbb{C}$ except possibly for a discrete set (which depends on M).

3. We now proceed to the study of the factorization problem. From [1, proposition 23] it follows that with no loss of generality we can restrict ourselves to the case $G = GL(n, \mathbb{C})$.

We begin with a brief exposition of the algebro-geometric pattern of solution of "Lax equations with a spectral parameter" based on papers [2], [3], [4]. For the sake of completeness we include the proofs of some basic results. The main novelty consists in a simple proof of correspondence between Lax equations and linear flows on the Jacobian of the spectral curve. For $L \in \widehat{\mathfrak{gl}(n, \mathbb{C})}$ let X^a be an affine curve defined by equation $\det(L(z) - \lambda) = 0$. Assume that L(z) has a simple spectrum for general z and also that X^a is nonsingular and irreducible. Let X be the smooth compactification of X^a . Coordinates z, λ are meromorphic functions on X. Let $(z) = P_+ - P_-$ be the divisor of z, P_{\pm} being effective divisors of degree n. Put $U_{\pm} = X \setminus P_{\pm}$, $X_0 = U_+ \cap U_-$. Let R_0 be the algebra of regular functions in X_0 . Clearly, $R_0 = \mathbb{C}[z, z^{-1}, \lambda]$. Put $R = \mathbb{C}[z, z^{-1}]$.

For any $x \in X$ except for a finite set of branch points there exists a unique one-dimensional eigenspace of L i.e. a subspace $E_L(x) \subset \mathbb{C}^n$ such that $L(z(x))\psi = \lambda(x)\psi$ for $\psi \in E_L(x)$. The mapping $x \mapsto E_L(x)$ is clearly a meromorphic mapping of X into $\mathbb{C}P_{n-1}$. Since any such mapping is actually holomorphic we get a holomorphic line bundle $E_L \to X$.

Put $g_{p,q} = \left\{ \sum_{-p}^{q} x_i z^i, x_i \in g \right\}$. An element $L \in g_{p,q}$ will be called generic if its lowest and highest coefficients have simple spectrum.

Proposition 1. Suppose $L = \sum l_i z^i \in \mathfrak{g}_{p,q}$ is generic. Then

(i) The genus of the spectral curve is equal to

$$g = \frac{1}{2}n(n-1)(p+q) - n + 1$$

(ii) The degree of the dual bundle is equal to $\deg E_L^* = g + n - 1$ and $H^0(X, E_L^*(-P_+)) = 0$.

Proof. (i) The only singular points of the closure of X^a in $\mathbb{C}P_1 \times \mathbb{C}P_1 \supset \mathbb{C}^2 = \{z, \lambda\}$ are $P = (\infty, \infty)$, $Q = (0, \infty)$. The genus of the nonsingular curve X is given by the Hurwitz formula

$$g = d_1 d_2 - d_1 - d_2 + 1 - v(P) - v(Q)$$

 d_1, d_2 being the degrees of the defining equation, v(P), v(Q) the indices of the singular points. In our case $d_1 = n(p+q)$, $d_2 = n$; the indices are easily computed using the principal part of the defining equation at $P, Q: v(P) = \frac{1}{2}n(n-1)p$, $v(Q) = \frac{1}{2}n(n-1)q$.

(ii) We divide the proof into several steps.

(a) Let V denote the subspace of $H^0(X, E_L^*)$ generated by linear coordinates in \mathbb{C}^n .

Let $\psi \in V$. If $\psi z \in H^0(X, E_L^*)$ or $\psi z^{-1} \in H^0(X, E_L^*)$ then $\psi = 0$.

Indeed, $\psi z \in H^0(X, E_L^*)$ means that ψ vanishes on the eigenspaces $E_L(P_-^i)^1$, which are just the eigenspaces of l_{-p} . By our assumption $E_L(P_-^i)$ span \mathbb{C}^n , so that ψ vanishes on \mathbb{C}^n . The treatment of the second case is similar.

(b) Now, following [4] we prove that the natural mapping $r: V \otimes R \to H^0(X_0, E_L^*)$ is surjective. To this end observe that $r(V \otimes R)$ is an R_0 -module: if $\psi = (\psi^1, ..., \psi^n)$ is the standard basis in V then $\lambda \psi = L \psi$ so that $\lambda \psi^i \in r(V \otimes R)$. Suppose that $r(V \otimes R)$ is a proper R_0 -submodule in $H^0(X_0, E_L^*)$. Then by a theorem from Commutative Algebra there exists a point $x \in X_0$, such

¹ Since L is generic, the divisor P_{\pm} contains n distinct points P_{\pm}^{i} .

that $\varphi(x)=0$ for every $\varphi \in r(V \otimes R)$. On the other hand, there exists a $\psi \in V$ which does not vanish on the eigenspace $E_L(x)$, a contradiction.

(c) Next we prove that $V = H^0(X, E_L^*)$. Let $\varphi \in H^0(X, E_L^*)$. Since $\varphi \in r(V \otimes R)$, we have $\varphi = \sum_{k=0}^{m} \psi_i z^i$, $\psi_i \in V$. We may assume that $\psi_k \neq 0$, $\psi_m \neq 0$; we shall prove that k = m = 0. Suppose that m > 0. Then we may write $\psi_m z = \psi z^{1-m} - \sum_{i \leq 0} \psi_{i+m-1} z^i$ whence $\psi_m z \in H^0(X, E_L^*)$. Now, (a) implies that $\psi_m = 0$, a contradiction. The assumption k < 0 leads to a similar contradiction.

(d) The statement of (a) combined with $V = H^0(X, E_L^*)$ implies $H^0(X, E_L^*(-P_+)) = 0$. Since deg $P_+ = n$, it follows from the Riemann-Roch theorem that deg $E_L^* \le g + n - 1$. To prove the opposite inequality, consider the bundle $E_k = E_L^*(kP_+)$. For k sufficiently large,

$$\dim H^0(X, E_k) = \deg E_I^* + k n - g + 1$$

Now, $r\left(V \otimes \left\{\sum_{0}^{k} c_{i} z^{i}\right\}\right) \subset H^{0}(X, E_{k})$. We shall see below that r is injective (cf. Proposition 2), so dim $H^{0}(X, E_{k}) \ge (k+1)n$, or deg $E_{L}^{*} \ge g + n - 1$.

Definition. The line bundle $E \to X$ of degree g+n-1 is called regular (or, more precisely, z-regular) if $H^0(X, E(-P_+)) = 0$.

Clearly, regular bundles form a Zarisky open set in the space \mathscr{L}_{g+n-1} of all line bundles of given degree. We shall readily see that the regularity condition completely characterizes line bundles of eigenspaces of matrices $L \in \tilde{\mathfrak{g}}$ with spectrum X.

Proposition 2. Let E be a line bundle over X of degree g+n-1. The following properties of E are equivalent:

(i) E is regular.

(ii) The natural mapping $r: H^0(X, E) \otimes R \to H^0(X_0, E)$ is an isomorphism of *R*-modules.

Proof. (i) \Rightarrow (ii) Injectivity. Let $\sum_{i \ge k} \varphi_i z^i = 0$, $\varphi_i \in H^0(X, E)$. Then $\varphi_k z^{-1} = -\sum_{i \ge 0} \varphi_{i+k-1} z^i$ and the right hand side is regular at P_+ so that $\varphi_k \in H^0(X, E(-P_+))$. Hence $\varphi_k = 0$ and by induction $\varphi_i = 0$ for every *i*. Surjectivity. We denote $E_k = E(k(P_+ + P_-))$ and prove that for all $k H^0(X, E_k) \subset r(H^0(X, E) \otimes R)$ which is clearly sufficient. Since *E* is regular, for any $\varphi \in H^0(X, E_k)$ there exist $\varphi_1, \varphi_2 \in H^0(X, E)$ such that $\varphi - \varphi_1 z^k - \varphi_2 z^{-k} \in H^0(X, E_{k-1})$. Our claim now follows by induction.

(ii) \Rightarrow (i) Let $\varphi \in H^0(X, E(-P_+))$, i.e. let φ be a section of E which vanishes at P_+ . Then $\psi = \varphi z^{-1}$ belongs to $H^0(X, E)$ and $r(\psi - \varphi z^{-1}) = 0$. It follows that $\varphi = 0$.

Proposition 3. A regular line bundle E corresponds to a GL(n)-orbit in $\mathfrak{g}_{p,q}$ consisting of matrices L with spectrum X such that $E_L^* \simeq E$.

Proof. Multiplication by λ gives an *R*-linear operator in $H^0(X_0, E)$. Identifying $H^0(X_0, E)$ and $H^0(X, E) \otimes R$ we get an *R*-linear operator in $H^0(X, E) \otimes R$ i.e. a Laurent polynomial with coefficients in End $H^0(X, E)$. Choosing a basis in $H^0(X, E)$ we get an $L \in \mathfrak{g}$. It is easy to check that $L \in \mathfrak{g}_{p,q}$.

Fix a Hamiltonian $\varphi \in I(\mathfrak{g})$. Put $M = d\varphi(L)$ and let L(t) be the solution to the Hamiltonian Lax equation $\frac{d}{dt}L = [L, M_+]$, L(0) = L. The spectral curve X does not vary with t. The time evolution of the corresponding line bundle $E_{L(t)}$ is easy to describe. Let $\psi(x) \in E_L(x)$ be an eigenvector of L(z(x)) corresponding to $x \in X$. Since [L, M] = 0, we get $M(z(x))\psi(x) = \mu(x)\psi(x)$, $\mu \in R_0$. Let F_t be the line bundle over X defined by transition function $\exp t \mu$ with respect to the covering $X = U_+ \cup U_-$.

Proposition 4. $E_{L(t)} = E_L \otimes F_t$.

Proof. Let $\exp t M = g_+(t)^{-1} g_-(t)$ be the solution to the factorization problem defined a priori for sufficiently small t. The time evolution of L is given by

$$L(t) = g_{+}(t) L g_{+}(t)^{-1} = g_{-}(t) L g_{-}(t)^{-1}.$$
(3)

Now, $E_{L(t)}$ is a subbundle of $X \times \mathbb{C}^n$. Functions $g_+(t)$ give isomorphisms of E_L and $E_{L(t)}$ over $U_{\pm}: E_{L(t)}(x) = g_{\pm}(z(x), t) E_L(x)$. The transition function in $U_+ \cap U_-$ which distinguishes between these two isomorphisms is

$$g_{+}(t)^{-1}g_{-}(t)|_{E_{L}} = \exp t M|_{E_{L}} = \exp t \mu.$$

The group of linear bundles over X of degree zero is isomorphic to the Jacobian of X and F_t is its one-parameter subgroup. So the reduction theorem readily leads to the main result of the "direct spectral problem": Lax equations generate linear flows on the Jacobian of the spectral curve. The converse is also true.

Proposition 5. Every linear bundle over X of degree zero may be defined by a transition function $\exp \mu$ with respect to the covering $\{U_+, U_-\}$.

Proof. The domains U_{\pm} being affine curves, our bundle is trivial over U_{\pm} and so is defined by a transition function φ . The degree of the bundle being zero, φ may be so chosen that a univalent $\mu = \log \varphi$ exists.

For any $\mu \in R_0$ there exists a Hamiltonian $\varphi \in I(\tilde{g})$ such that $d\varphi(L) = \mu(z, z^{-1}, L)$. We obtain

Corollary 1. Every linear flow on \mathscr{L}_{g+n-1} is generated by a Lax equation.

This corollary enables us to prove that Lax equations are completely integrable. Let $L = \sum_{i=p}^{q} l_i z^i$ be generic and let H be the centralizer of l_{-p} in $GL(n, \mathbb{C})$ if p > 0, or $H = GL(n, \mathbb{C})$ if p = 0. Let $\tilde{G}_0 = A \times B$ be as in n°2. Let \mathcal{O}_L be the Ad* \tilde{G}_0 -orbit of L.

Proposition 6. The orbit \mathscr{L}_L and Lax equations are invariant under the action of H in $\mathfrak{g}_{p,q}$. This action is Hamiltonian.

Proof. For p=0 the statement is obviously true. For p>0 we use the arguments of [5]. Consider the Hamiltonians

$$\tilde{\varphi}(L) = \operatorname{Res}_{z=0} z^{-p-1} \varphi(Lz^p), \quad \varphi \in I(\mathfrak{g}).$$

If $M = d\tilde{\varphi}(L)$, then $M_{-} = d\varphi(l_{-p})$, so that the Hamiltonian flow of $\tilde{\varphi}$ coincides with the adjoint action of the subgroup $\exp t M_{-} \subset H$. Since the spectrum of l_{-p} is simple, H is generated by these subgroups.

Let $\Phi: \mathcal{O}_L \to \mathfrak{h}^*$ be the momentum map, let $\overline{\mathcal{O}}_L$ be the reduced space over the point $\xi = \Phi(L)$, i.e. $\overline{\mathcal{O}}_L = \Phi^{-1}(\xi)/H_{\xi}$. Let \overline{T}_L be the level surface of the reduced Hamiltonians $\overline{\varphi}, \varphi \in I(\mathfrak{g})$, which contains the image \overline{L} of L.

Theorem 1. (i) Reduced Hamiltonian systems on $\overline{\mathbb{O}}_L$ defined by the Hamiltonians $\varphi \in I(\widehat{\mathfrak{g}})$ are completely integrable.

(ii) There is a natural isomorphism of \overline{T}_L onto a Zarisky open subset of \mathscr{L}_{g+n-1} .

Proof. Let T_L denote the set of elements of $g_{p,q}$ which are isospectral with L; in other words, T_L is the level surface of the algebra $I(\tilde{g})$. Put $T_L^0 = T_L \cap \mathcal{O}_L$. Proposition 1 gives rise to a mapping $I: T_L \to \mathcal{L}_{g+n-1}$, whose fibres are the GL(n)-orbits in $g_{p,q}$. Clearly, the fibres of $I|_{T_1^0}: T_L^0 \to \mathcal{L}_{g+n-1}$ are the *H*-orbits. The Hamiltonian reduction with respect to *H* contracts the *H*-orbits (or rather their intersections with $\Phi^{-1}(\xi)$) into points. Hence the reduced mapping $\overline{I}: \overline{T}_L \to \mathcal{L}_{g+n-1}$ is one-to-one. On the other hand, corollary 1 says that the trajectories of reduced Lax equations with the initial point \overline{L} cover an open part of \mathcal{L}_{g+n-1} . This implies complete integrability.

Corollary 2. If p > 0, $I(\tilde{g})$ is a maximal involutive algebra on \mathcal{O}_L and T_L is a maximal torus. If p = 0, a maximal involutive system on \mathcal{O}_L is obtained by combining $I(\tilde{g})$ with a maximal gl(n)-involutive system of functions of l_0 .

4. Now we consider the factorization problem. Let $\psi(t) = (\psi^1(t), \dots, \psi^n(t))$ be the *n*-tuple of sections of $E_{L(t)}^*$ generated by the linear coordinates in \mathbb{C}^n . By Proposition 4 $\psi(t)$ is described by two *n*-tuples $\psi_{\pm}(t)$ of sections of $E_L^*|_{U_{\pm}}$ related by

$$\psi_{-}(t) = e^{t\mu} \psi_{+}(t)$$

If $g_{\pm}(t)$ solve the factorization problem, then it is clear from (3) that

$$\psi_{\pm}(t) = g_{\pm}(t) \psi(0)$$

Suppose $z \in \mathbb{C}$ is such that X is unramified over z and let $x_1, ..., x_n$ be the points of X over z. Define the matrices $\hat{\psi}_{\pm}(z,t)$ by

$$\hat{\psi}_{\pm}^{ij}(z,t) = \psi_{\pm}^{i}(x_{i},t)$$
(4)

Then $\hat{\psi}_{\pm}(t) = g_{\pm}(t)\hat{\psi}(0)$, so that

$$g_{\pm}(z,t) = \hat{\psi}_{\pm}(z,t) \hat{\psi}(z,0)^{-1}$$
(5)

This formula reconstructs g_{\pm} in terms of ψ_{\pm} . Hence if we can write down ψ_{\pm} explicitely, we solve the factorization problem. To this end we interprete $H^{0}(X, E_{L}^{*})$ as a linear space $\mathfrak{L}(D)$ of meromorphic functions on X subordinate to a divisor D which corresponds to E_{L}^{*} . By Proposition 1 degD = g + n - 1. The regularity condition allows for a simple choice of basis in $\mathfrak{L}(D)$. Since L is generic, the divisor P_{+} contains n distinct points P_{+}^{i} . Let ψ^{i} be a (unique up to a constant factor) function on X such that $(\psi^{i}) \ge -D + P_{+} - P_{+}^{i}$. Clearly, the functions ψ^{i} are linearly independent and generate the whole space $\mathfrak{L}(D)$. To motivate this choice note that if the lowest coefficient of L is diagonal and has simple spectrum, then ψ^{i} are just the canonical sections (i.e. those defined by standard coordinates in \mathbb{C}^{n}). It is convenient to assume that $D - P = D_0 - P_0$, $D_0 \ge 0$, deg $D_0 = g$, $P_0 \in X$, which is always possible.

Theorem 2 [3]. Let $\mu \in R_0$. Then (i) There exist meromorphic functions $\psi_{\pm}^i(z,t)$ defined in U_{\pm} such that

$$\psi^{i}_{-} = e^{t\mu} \psi^{i}_{+}, \quad (\psi^{i}_{\pm}) \ge -D_{0} + P_{0} - P^{i}_{+}$$

These functions are unique up to a multiple $c_i(t)$.

(ii) Equations

$$L\psi_{\pm} = \lambda\psi_{\pm}$$
$$\partial_t\psi_{\pm} = \mp M_{\pm}\psi_{\pm}$$

define matrix-valued polynomials $L(t) \in \mathfrak{g}[z, z^{-1}]$, $M_{\pm}(t) \in \mathfrak{g}[z^{\pm 1}]$ whose coefficients are meromorphic functions of t.

Proof. Define a linear bundle F_t by the transition function $\exp t \mu$ for the covering $\{U_+, U_-\}$. Put $E_t = E_L \otimes F_t$. For almost all t the bundle E_t^* is regular and from the Riemann-Roch theorem it follows that for such $t \psi_{\pm}^i(t)$ is unique up to a factor. Hence a t-smooth function ψ_{\pm}^i is unique up to a factor $c_i(t)$. The existence of ψ_{\pm}^i follows from an explicit formula. To write it down we introduce some notation. Fix a basis $\{\omega^i\}$ of holomorphic differentials on X and let ω : $X \times X \to \text{Jac } X$ be the Abel transform defined by $\omega(x, y) = \left\{ \int_x^y \omega^i \right\}$. Choose a ϑ -function on \mathbb{C}^g in such a way that there exist (g-1) points x_1, \dots, x_{g-1} with the property $\vartheta(\omega(x, x_i)) = 0$ for every $x \in X$ but $\vartheta(\omega(x, y))$ is not identically zero. There exist unique meromorphic differentials v_+ on X such that

a) v_{\pm} are regular in U_{\pm} and $(v_{\pm} - d\mu)$ are regular in U_{\mp} .

b) The Z-linear functionals on $H_1(X, \mathbb{Z})$ defined by $\gamma \mapsto \int v_{\pm} extend$ to Cantilinear functionals on $\mathbb{C}^g(H_1(X, \mathbb{Z}))$ is embedded into C^g via the period mapping $\gamma \mapsto \{\int \omega^i\}$. Let $V_{\pm} \in \mathbb{C}^g$ represent these functionals with respect to the Riemann scalar product in \mathbb{C}^g . Fix a point $x_0 \in X$ and choose $c \in \mathbb{C}^g$ so that $(\vartheta(\omega(x_0, .) - c)) = D_0$. Then

$$\psi_{\pm}^{i}(x) = e^{t \sum_{x_{0}}^{y} v_{\pm}} \frac{\vartheta(\omega(P_{0}, x)) \vartheta(\omega(x_{0}, x) + \omega(P_{\pm}^{i}, P_{0}) - t V_{\pm} - c)}{\vartheta(\omega(P_{\pm}^{i}, x)) \vartheta(\omega(x_{0}, x) - c)}$$

The formula is derived as in [2], [4] and shows that ψ_{\pm}^{i} is holomorphic in t. If E_{t}^{*} is regular the natural mapping

$$H^0(X, E_t^*) \otimes \mathbb{C}[z^{\pm 1}] \to H^0(U_{\pm}, E_t^*)$$

is a $\mathbb{C}[z^{\pm 1}]$ -module isomorphism. The relation $\partial_t \psi_- = e^{t\mu}(\partial_t \psi_+ + \mu \psi_+)$ allows to interprete $\partial_t \psi_{\pm}$ as meromorphic sections of E_t^* which are regular in U_{\pm} . Hence there exist matrix polynomials $M_+(t) \in \mathfrak{g}[z^{\pm 1}]$ such that

$$\partial_t \psi_{\pm} = \mp M_{\pm} \psi_{\pm}$$

To obtain $L(t) \in \mathfrak{g}[z, z^{-1}]$ we use Proposition 3. Coefficients of L, M_{\pm} may be computed recurrently by decomposing $\lambda \psi_{\pm}, \partial_t \psi_{\pm}$ into a power series in the local parameter in the vicinity of P_{\pm}^i .

Remark. If ψ_{+}^{i} are normalized so that $\partial_{t}\psi_{+}(0,t) = 0$, then $M_{+}(t) \in \mathfrak{g} \otimes z \mathbb{C}[z]$.

Proposition 6. $M_{+}(t) + M_{-}(t) = \mu(z, z^{-1}, L(t))$

Proof. From $\psi_{-} = e^{i\mu}\psi_{+}$ we get

$$M_-\psi_-=\partial_t\psi_-=\mu\psi_--M_+\psi_-$$

hence $(M_{+} + M_{-})\psi_{-} = \mu\psi_{-}$.

Since the functions of Theorem 2 are analytic in t, the factors $g_{\pm}(t)$ related to them by (5) are regular for all t except for a discrete subset of C. In what follows we give an alternative proof for the existence of a factorization which makes no appeal to general theorems of [6].

As in (4) we define the matrices $\hat{\psi}_{\pm}(z,t)$ by

$$\hat{\psi}_{+}^{ij}(z,t) = \psi_{+}^{i}(x_{i},t)$$

and put

$$g_{\pm}(z,t) = \hat{\psi}_{\pm}(z,t)\,\hat{\psi}(z,0)^{-1} \tag{5}$$

The definition of g_+ is easily seen to be correct (cf. [2]).

Theorem 3 (i) g_{\pm} are entire functions of $z^{\pm 1}$. If t lies outside of a discrete subset of C, then det $g_{\pm}(z, t) \neq 0$.

(ii) g_{\pm} provide a factorization for expt M:

$$\exp t M = g_{+}(t)^{-1} g_{-}(t)$$

Proof. (i) Let M_{\pm} be as in Theorem 2, let Γ be the set of poles of their coefficients. If $t \in \mathbb{C} \setminus \Gamma$ then

$$\partial_t g_{\pm} = \mp M_{\pm} g_{\pm}$$

Thus g_{\pm} are fundamental solutions of analytic differential equations and hence g_{\pm} are regular in $z^{\pm 1}$ and det $g_{\pm}(z,t) \pm 0$. The definition (5) of g_{\pm} shows that they are regular for all $t \in \mathbb{C}$.

Since $\hat{\psi}_{-}(t) = \hat{\psi}_{+}(t) \exp t \mu$, we have

$$g_{+}(t)^{-1}g_{-}(t) = \hat{\psi}(0)\hat{\psi}_{+}(t)^{-1}\hat{\psi}_{-}(t)\hat{\psi}(0)^{-1}$$

= $\hat{\psi}(0)\exp t\hat{\mu}\hat{\psi}(0)^{-1} = \exp t M.$

Clearly, for $t \in \mathbb{C} \setminus \Gamma$

$$L(t) = g_{+}(t) L g_{+}(t)^{-1}$$

Remark. Theorem 2 shows that the solutions of Lax equations may have poles in time variable. Formulae (3, 5) give a regularization of trajectories.

In the algebraic approach to Lax equations L(t) and $M_{\pm}(t)$ are determined by the power series expansion of $\lambda \psi_{\pm}$, $\partial_t \psi_{\pm}$ in P_{\pm}^i . On the other hand, the group-theoretic approach gives $L(t) = g_{\pm}(t) L g_{\pm}(t)^{-1}$. The relationship of two methods is based on a remarkable property of g_{\pm} :

$$\operatorname{Ad}_{G}^{*}g_{\pm}(t) L = \operatorname{Ad}_{G_{0}}^{*}g_{+}(t) L_{+} + \operatorname{Ad}_{G_{0}}^{*}g_{-}(t) L_{-}.$$

Following Zakharov and Shabat we may say that g_{\pm} are dressing transformations. To sum up, our approach gives a group-theoretic interpretation of the Zakharov-Shabat dressing-up and of algebraic methods of Novikov, Matveev, Dubrovin, Krichever, Mumford, Moerbeke and others. This approach also applies to partial differential equations [7].

References

- 1. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Reduction of Hamiltonian systems, affine Lie algebras and Lax equations. Inventiones math. 54, 81-100 (1979)
- Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Nonlinear equations of the Korteweg-de Vries type and Abelian varieties. Uspekhi Math. Nauk 31, 55-136 (1976) (Russian)
- 3. Krichever, I.M.: Algebraic curves and nonlinear difference equations. Uspekhi Mat. Nauk 34, 215-216 (1978) (Russian)
- Moerbeke, P., Mumford, D.: The spectrum of difference operators and algebraic curves. Acta Math. 143, 93-154 (1979)
- 5. Adler, M., Moerbeke, P.: Completely integrable systems, Kac-Moody Lie algebras and curves. Adv. Math. in press (1981)
- 6. Gohberg, I.Z., Feldman, I.A.: Convolution equations and projectional methods of their solution. Moscow: "Nauka" 1971 (Russian)
- 7. Reyman, A.G., Semenov-Tian-Shansky, M.A.: Current algebras and nonlinear partial differential equations. Doklady AN SSSR **251**, 1310-1314 (1980) Sov. Math. Doklady (in press)

Received October 10, 1980