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0. Introduction 

In the recent work [2] Hamil ton proved that for any compact 3-manifold with 
positive Ricci curvature one can deform the initial metric along the heat flow 
defined by the equation: 

~gis 2 
c3 t = - 2Rii + ~ rglj (0.1) 

to an Einstein metric of positive scalar curvature. Here Ri~ is the Ricci 
curvature of the metric gls and r is the avarage of the scalar curvature. In this 
paper we shall show that the heat flow method also works for the well-known 
Calabi conjecture in K~ihler geometry. 

Let M be a compact K~ihler manifold of dimension n with the K~ihler 
metric ds 2 =gqdz i |  s. (We shall use the summation convention throughout 
the paper.) Then the Ricci curvature R o of this metric is given by the formula 

~2 
R , j -  ~z i ~2 j log det (gi3) (0.2) 

so the (1,1) form ~--llRiTdz~/xd2J is closed and its cohomology class, as is 

well-known, is equal to the first Chern class Ca(M ) of M. Calabi conjectured 
that the converse is also ture. Namely, given any closed (1,1) form 

~/-1 
2z~ T~jdz~^d2 j which represents the first Chern class CI(M ), one can find 

another K~ihler metric gi3 on M so that T~3 is the Ricci tensor of g'~3" This 
conjecture was open for more than twenty years until 1978 Yau [6] gave an 
affirmative answer. The above Calabi conjecture can be reduced to solving a 
complex Monge-Amper6 equation and Yau proved such an equation can be 
solved by using the continuity method. 

We consider the complex version of Hamilton's  equation of the following 
type: 
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0gi~- /~i~+T~j, ~3=gl] at t=O (0.3) 
& 

w h e r e / ~  denotes the Ricci tensor of the metric ~z3. 
If we can prove that the solution for Eq. (0.3) exists for all time and ~0(t) 

converges to the limit metric ~,G(oo) as t goes to the infinity and that 0~,'0 & 
converges uniformly in t to a constant, then ~u(oo) is a metric we want. 

The Eq. (0.3) can be reduced to a scalar equation as follows: by the 

assumption on T/T, ] / ~  Todfl Ad-~ j and 1/7-1 ~ RodziA d2 j belong to the same 

cohomology class CI(M ), so we know that there exists a smooth function f on 
M so that 

T 0 - R c  = 0 2 f  (0.4) 
J 0z i 0~J" 

Therefore, if we let 
63212 

~ij = g~j + 0z ~ 02 j (0.5) 

where u is a smooth function on Mx[0 ,  T), 0<T<__oo, with u(0)=0, then 
Eq. (0.3) becomes 

H -   06/ 9 2 0U _/~0+R0_ t 3zi02 j 

and consequently, according to (0.2), 

0 2 0 2 
Ozi O2j (~_t ) = ~  (log det (gij t~2 + ~ ) - - l o g  det (g/))) 

02f 
-~ 0z i 0~J 

or equivalently, 

[ 02U \ 
0~ (~--~)=0~logdet k gi3 -F ~ ) -- 0 ~ log det (g o) + O g f 

(0.7) 

(0.8) 

By the maximum principle for compact manifolds, it follows that the function 
u satisfies the equation 

~ = l o g d e t  [ 02/t \ ~gi~ + ~ ]  --log det (gi2)+ f + q~(t) (0.9) 

where ~0(t) is a smooth function in t satisfying the compatibility condition 

[Ou - f ' / d  V = exp (~0 (t)) Vol (M) u~exp \& ] (0.a0) 

where dVis the volume element of the metric gi?. 
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Since Eq. (0.9) is a nonlinear parabolic equation we know from standard 
theory that the solution exists for a short time. To show that the solution 
actually exists for all time it sufficies to prove the a priori estimates for the 
solution upto third order. This is done in Sect. 1, based on Yau's work in [6]. 
In Sect. 2 we apply Hanack's inequality to prove that u(x,t) converges to a 

Ou 
function u~(X) on M under normalization and that ~ -  converges uniformly in 

t to a constant as t tends to the infinity. In Sect. 3 we shall briefly discuss the 
negative case of the Calabi conjecture. 

1. The long time existanee 

Throughout this section we assume that u is the solution of the initial value 
problem 

~u [ ~Zu 
~ -  = log det ~gij + ~ )  - l o g  det (gi~) + f 

u(x,t)=O at t = 0  (1.1) 

02u 
on the maximal time interval [0, T) such that ~ i ~ = g ~ j + ~  is positive 

definite and hence defines a K/~hler metric on M for any time t~[0, T). 
Differentiating Eq. (1.1), we get 

(1.2) 

where ~0 is the inverse of ~3 and z] is the normalized Laplace operator of ~i3. 
It follows from the maximum principle for the parabolic equation that 

.. 0 2 
Let A gUoz, Oz ~ 

operator /] - & .  

max <max  Ifl. (1.3) 
M 

be the normalized Laplacian of go and let [] denote the 

Lemma 1. There exist positive constants C O and C 1 such that 

O < n + A u < C l e x p ( C o ( u -  inf u ) ) ,  forall  te[0,  T). (1.4) 
Mx[O,T)  

Proof The first inequality in (1.4) follows from the fact that gij is positive 
definite and n + A u is the trace of g'0 with respect to go. 

For  the second inequality we have, based on the calculation in (6), the 
following inequality 
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~ ( e x p  ( - Cu) (n + A u)) > - exp ( - C O u) (A f +  n 2 inf (Ri~ 11)) 
i * l  

- Co exp ( -  Co + A 
\ Ot l  

+ ( C o +  inf (Ri~I~) e x p ( -  Cou) 
i ' l l  

�9 exp (n+ Au)"-  1 (1.5) 

where Ral  i is the bisectional curvature  of  the metric  gij and C o is a positive 
constant  such that  C o + inf Ra~ ~ > 0. 

i = l  

For  any given te(0, T), we assume function e x p ( - C  o u)(n+ Au) achieves its 
m a x i m u m  at point  (p, to), with t o > 0 ,  on M x [0,t] .  Then at this point  the left 
hand  side of (1.5) is nonposi t ive and hence 

O > - ( A f  + n  2 i n f (R i~ l I ) ) -Co  n - ~  (n+ Au) 

+ ( C o +  inf (Ra11)) exp x / [ - ~ + ~ - l - 1 ) ( n + A u ) " : '  (1.6) 
i 4 :1  

therefore, by (1.3) we have 

(n+ Au) "-1 < C'(1 + ( n +  Au)) (1.7) 

where C' is a positive constant  independent  of t. F r o m  (1.7) we conclude that  

n +  Au(p, to)< C 1. 

Hence on M x [0, t) 

exp ( - C o u) (n + Au) < C 1 exp ( - C O u(p, to)) 

and it follows that  

n + A u < C  1 e x p ( C o ( u -  inf u)). (1.8) 
M x [O,T) 

Since the constants  C~ and C o in (1.8) are independent  of  t we finish the p roof  
of L e m m a  1. 

N o w  we proceed to derive the zero order  est imate of  u under  the normal -  
ization. We put 

1 
u d E  (1.9) 

v = u  Vol (M)  u 

Then,  as shown in [6], we have the following 

L e m m a 2 .  sup v < C  2, sup j [ v l d V < C 3 .  
M • [0, T) M x [0, T) M 

Based on Eq. (1.1) and  L e m m a  2 we can use the N a s h - M o r s e  i teration 
a rguement  to get the lower bound  for function v. 
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Lemma 3. There exists a constant C 4 >0 so that 

sup Iv[< C4 
M x[O,T) 

Proof Let 

o~=~--~-l-gijdzi^d2 j, ~=~-~odz~^d -~  j 

be the K~ihler forms of go, and ~i3, respectively. Then the volume forms dV 
and dip are given by 

dV=det(g O) i~1 dzl ^ d2j =~. 

" /]/-~ i -j\ ~" dff=det(~i~)iA1 ~ - d z  Adz )=~ . .  

According to Eq. (1.1) we know then 

~U d --exp  ,,11 

So it follows from (1.10) and (1.11) that, for p >  1, 

1 ( _ V ) p - 1  

n! ~ p-1  
- -  (~"-~")= -~ (-v)"- ~ (aV-d~) 

M p--1 

(1.12) 

where we have renormalized v so that v < - 1  which is certainly possible by 
Lemma 2. 

On the other hand 

p - 1  (o~"--c79")= ~ p--1 (~o"-- 

( ~  n--i 
- ~  (-v)"-I ~v)^ y, d ^ ~ " - ~ - '  

p - 1  j=l 

= ~ ( - v )  "-2 ~vA~v ^ y~ ~oJ^~9 "-j-~ 
M j=l 

M 
(1.13) 

where the last inequality follows from the fact that the terms 

] / - 1  (Or A ~V) co j ^ &"-J- 1 are all nonnegative. 
2 



3 6 4  H . - D .  C a o  

where IVvl z : g ~ - -  - -  

Since 

Combining (1.12) and (1.13) we obtain 

( - v)P- exp I (-v)P-2iVvl2dV<n!~ p - 1  
M 

Ov Ov 
Oz ~ ~2~" 

( -v)  p-2 IVy[ 2 =4p -2 [V(-v)P/2]2 

it follows from (1.14) that 

p2 
IV(-v)p/2lzdV<= C ~ ( - v )P- ldV  

M p - 1  
and hence 

II(-v)P/211gl= ~ IV(-v)p/2lZ dV + ~ (-v)P dV 
M M 

p2 

<Cp~(-v)PdV, for p>>l. 
M 

We remark that inequality (1.15) also holds for p = l ,  simply 
( -v) .  -~ 
- - b y  l og ( - v )  in the arguement. 

p - 1  
Now the Sobolov inequality implies that, since ~ v dV=O, 

M 

PI( - v) p/z 11 ~.~--v <='C PI( - v )  ~ /2  I I ~ , .  

Putting (1.15), (1.16) together we see that 

(1.14) 

(1.1s) 

replacing 

(1.16) 

v L,_lv"~-<Cp}lv[t~p,= for p = l ,  or p>>l. (1.18) 

n 
Let p=7~ in (1.18), where 7 = n - 1  and j = 0 ,  1, 2 . . . .  , 

Then by induction on j we obtain 
J J 1 k 

~ Z~  Z 
IlVliL~j+, < C . . . .  V=o 7. C3. 

Letting j ~ ~ ,  we have 

IlvllLo~< C4 �9 

Notice that the constant C 4 is independent of time t so we conclude that 

sup Ivl<_-G. 
M x [0,  T) 

This proves Lemma 3. 

(1.19) 

(1.20) 
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Combining Lemma 1 and Lemma 3, we have 

O < n + A v = n + A u  

< C  l e x p ( C o ( u -  inf u)) 
M x [0, T) 

= C  1 e x p ( C o ( v -  inf v)) 
Mx[O,T)  

~ C  5. (1.21) 

The first order estimate then follows from the Schauder estimate, Lemma 3 
and (1.21): (see Gilbart and Trudinger [3]) 

sup IVv[<C6( sup IAvI+ sup Ivl). 
M x [0, T) Mx [0, T) Mx [0, T) 

< C 7 (1.22) 

Now we also can estimate all the second order derivatives. (1.21) implies 
that 1 +ui~ is bounded from above for all i. On the other hand Eq. (1.11) tells 

us that 1~I (1 +u~) are also bounded from above. These together imply that 
i=1  

there exist positive constants A and B so that 

A < I + u , < B ,  for all i. (1.23) 

In particular we know that the metrics ~0(t) are uniformly equivalent to the 
initial metric go" 

Let us go on to prove the third order estimate for the function v. Following 
Calabi and Yau we consider the quantity 

S = gir gjS gkt vO k V~si" (1.24) 

Modifying the calculation carried out in [6] we find 

[] (S + C 8 Av)> C 9 S - C l o  (1.25) 

where C 8 and C9, Cao are positive constants that can be estimated. 
At the maximum point p(t) of S + C 8 A v at time t, (1.25) then shows that 

O ~  C 9 S - C l o  

hence 
C g ( S + C 8 A v ) ~ C I o W C 8 C 9 A v  , a t  p(t). (1.26) 

Since we have already estimated A v in (1.21) it follows that sup S +  C s Av is 
Mx [0 ,  T) 

bounded and therefore sup S is bounded. This gives us the estimate for all 
Mx [0, T) 

the third order derivatives of v. 
We are now in the position to prove the long time existence. 

Proposition 1.1. Let u be the solution of (1.1) on the maximum time interval 
0 < t < T and let v be the normalization of u defined as in (1.9). Then the C ~- 
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norm of  v are uniformly bounded for all t~(0, T) and consequentely T =  oo. 
Moreover there exists a time sequence t,--*ov such that v(x, t , )  converges in C ~ 
topology to a smooth function vo~(x) on M as n--* oo. 

Proof. So far we have already estimated the derivatives of v up to the third 
order. 

Differentiating the Eq. in (1.1) with respect to z k we get 

= g J ~ (go) - ~ J  ~ (gq). (1.27) 

Then we know that the coefficients of operator []  are bounded in C ~ norm 
and also the right hand side of (1.27) also has estimate in C ~ norm for all 
0 <  :t < 1. From the Schauder regularity theory (see Ladyzenskaja et al. [4]) we 

(~U C2,C t (~U know then ~ has uniform estimate and similarly for ~zk. SO the coef- 

ficients of [] and the right hand side of (1.27) has uniform C 1'~ estimate. Apply 

~U ~U C2,~ t the Schauder theory again we see that ~ and ~ have uniform es- 

timates. By iteration we conclude that the C~-norm of v(x, t)  are uniformly 
bounded for all t~(0, T) and consequencely we can select a time sequence 
t,--*oo so that v(x , t , )  converge to a smooth function vo~(x) as t-~oo. On the 

a u .  
other hand, since ~-~ is uniformly bounded in t, the function u can not below 

up in finite time so the solution u exists for all time. This finishes the proof of 
Proposition 1.1. 

2. The uniform convergence 

We again assume that function u is the solution for the initial value problem 

~u c ~2 u 
= log det (go + ~z i ~ j  ! - log det (g~3) + f 

u(x, t )=0,  at t = 0  (2.1) 

1 
on M x [0, oo) and let v = u  Vol(M) ! u d V .  In this section we shall prove the 

Ou 
uniform convergence of v(x, t) and that ~ converge to a constant as t tends to 
the infinity. 

In [5] Li-Yau derived the Hanack inequality for the positive solution of the 
heat equation on compact manifolds. For  our application we shall present here 
the generalized version in the following form 

Theorem 2.1. Let  M be a compact manifold o f  dimension n and let gu(t), 
O< t < oo, be a family  of  Riemannian metrics on M with the following properties: 
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(a) C ~ g~3(O) <= g~3(t) < C 2 go(O) 

(b) ~ (t)< C a g~j(O) (2.2) 

(c) Rij(t ) > - K gi~(0) 

where C~, C 2, C 3, and K are positive constants independent of  t. Let A t denote 
the Laplace operator of  the metric gij(t). I f  qo(x, t) is a positive solution for the 
equation 

on M x [0, ~),  then for any ct> 1, we have 

Sup tp(x, t O <_ inf ~o(x, t2) (t2 ] 2 exp ( 1 C2d2 
x 6 M  - - x ~ M  \ t  I / 4(t2 - - t l )  

/ n ~ K  

where d is the diameter of  M measured by the metric gi~(O), A=sup  IIV21og~o[[ 
and 0 < t  1 < t 2 <  oo. 

The proof of Theorem2.1 is a straightforward modificton of Li-Yau's 
argument. We refer the reader to [5] for the detail. 

c?u 
Now recall that F = ~  satisfies the equation 

2 ~ ( 
f ( x ,  t )= f (x ) ,  at t =0. (2.4) 

It follows from the maximum principle for the parabolic equation that for 
t 2 > t 1 > 0 ,  

sup F(x, t2) < sup F(x, tl) < sup f ( x )  
x ~ M  x ~ M  x ~ M  

inf F(x, t2)> inf F(x, t 1)> inf f (x ) .  (2.5) 
x E M  xEM x ~ M  

From Proposition 1.1 it is also clear that the condition (2.2) in Theorem 2.1 is 
satisfied for ~ .  

We define 
~Pn(x, t) = sup F(x, n - 1) - F(x, (n - 1) + t) 

x E M  

~,,(x, t) = F(x, n - 1 + t) - inf F(x, n - 1) (2.6) 
x ~ M  

~o(t) = sup F(x, t) - inf F(x, t). 
x ~ M  x e M  

Then obviously ~p,, ~, satisfy the Eq. (2.4) and according to (2.5) they are all 
positive functions. Apply Theorem 2.1 to these functions with t I = � 8 9  and t 2 = 1, 
we get 
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sup F(x,  n - 1) - inf F(x,  n - �89 < y(sup F(x,  n - 1) - s u p  F(x,  n)) 
x E M  x ~ M  x ~ M  x E M  

sup F(x,  n - �89  - inf F(x,  n - 1) <),( inf F(x,  n) - inf F(x,  n - 1)) 
x ~ M  x , ~ M  xc~M x ~ M  

where ? > 1 is a constant independent  of n. 
Add (2.8) to (2.7), we have 

co(n - 1)+ co(n -21-) < 7 (co (n - 1) -co(n)) 

and hence 
co(n) <_ 6o9(n - 1), 6 = ? -  1 < 1. 

Y 
By induction we obtain 

co(n)<6"co o, (co0 = s u p f  - inf f ) .  
x e M  x e M  

We know from (2.5) that the oscilation function co(t) is 
therefore we conclude from (2.9) that  

co(t) ~ C4 e -a' (e-"  = 6) 

Let us now define 

Not ice  that 

SO 

8u 1 8u 
cp(x,t)= Ot Vol(M) u ~ 

[ 0 2 U \ A d2 j) 

_ 8 (det / 82u \ \  d2~) 

=o~logde t ( ,~2u ~ 8u 

and then we have 

(2.7) 

(2.8) 

(2.9) 

decreasing in t, 

(2.10) 

(2.11) 

(2.12) 

~0 02U 
(x, t)=Ti~(x, t) 

8t  

Consider 

1 . ~2 u d~" 1 Ou (Ou] dV 
V o l - ~  ~ ~ -  " Vol(M) MS ~ zl \Ot I 

1 ~ Ou ~ 8u 
(2.13) 

Then  it follows from (2.12) and (2.13) that 
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1 

+g ~ ~~ 71 \et l 
O u -  8u 8u 

f7 8u 2dp  
=MS ( - I + c p )  

=<-1-f2 M f78u d V =  -~1M~ 11~q912 dV (2.14) 

where 1#()[2= ~u()i()j and the last inequality follows from the fact that 

sup(o(x, t )<co(t)<�89 for t large enough 
x e M  

By the definition (2.11) we have 

I ~oa~=0. 
M 

Then the Poincare inequality tells us that 

S II~q~12 d~'>21(t) J" ~ ~ (2.15) 
M M 

where 2x(t ) is the first eigenvalue of the operator ~ at time t. Since the metrics 
~,o(t) are uniformly equivalent to go we know that there exists a constant 
Cs>0,  such that 21(0> C s for all t and therefore we have 

d 
~ E <  - C  s E. (2.16) 

This implies that there exists a positive constant C 6 depending only on func- 
tion f such that 

E <= C 6 e - c S t  (2.17) 

since the volume forms dl~ are uniformly equivalent to d V  we also have 

q)2 d V  <= C' 6 e -cSt. (2.18) 
M 

Now we are in the position to prove the following 

Proposition 2.2. As t ~  oo v(x, t) converges to the function Voo(X) in Proposition 1.1 
8u 

in C ~ topology and that - ~  converge to a constant in C ~ topology as t ~ ~ .  
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Proof. For  any 0 < s < s '  we have, according to (2.18) and (2.10) 

[v(x,s) v(x's)IdV=~M- at (x,t) d tdV 
M s 

- i  O d 1 O~ 

<=I IlepldVdt+! ~M - - d f / -  I dV dV 
, M V o l  ( M )  r t M &- 

co co 

--< V~ (M)~ ~(~ M r (M)I !~o(t)dt 

<C7~fe-C, 2 'd t+Cs~e- , ' d t .  
s 8 

This shows that as t--+ oo v(x, t) are Cauchy in U norm so v(x, t) converg in L ~ 
norm to some function v'~(x) as t--+ oo. On the other hand we know from 
Proposition 1.1 that for some time sequence t.--+oov(x,t) converg to the 
smooth function v(x) in C ~~ topology as n--+ oo these together imply that v~(x) 
is identically equal to vco(x) and hence v(x, t) converge in U norm to vco(x) as 
t--+oo. We claim that v(x,t) actually converge to l/co(x) in the C ~ topology. 
Suppose this is not ture, then for some integer r and e>O there is a sequence t, 
with 

IIv(x, t.) --V ~ (x)llcr > e. 

But v(x, t,) are bounded in C | topology so there is a subsequence which we 
again denote it by v(x, t,) such that v(x, t,) converge in Cco topology to a 
smooth function ~co(x)#:vco(x). This is a contridiction because v(x, t,) do con- 
verge to vco(x) in L 1 norm. Hence as t ~ m v ( x , t )  converge to vco(x) in Cco 
topology. This proves the first statement and consequently it follows from Eq. 

(2.1) that ~ -  converge to ~ - ( x ,  oo) which is equal to log det I g i j + ~ )  

- l o g d e t ( g q ) + f  in Ca~ topology as t--*oo. But we also know from (2.10) that 
3u 
-~- (x, oo) must be a constant function on M. This finishs the proof  of Proposi- 

tion 2.2. 

3. T h e  m a i n  t h e o r e m  

Based on the works in previous sections we now have the following: 

Main Theorem. Let M be a compact Kiihler manifold of complex dimension n 
with the Ki~hler metric gqdzi d2 j. Then for any closed (1,1) form 

]/'71 Tif dzi ^d2j which represents the first Chern class CI(M) of M one can 
2 

deform the initial metric by the heat equation 

a•Y= - / ~ 6 +  Tq (3.1) 
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to another Kgthler metric g, ij which is in the same Kgthler class as go so that T~j is 
the Ricci tensor of  g,i? 

Corollary. I f  the first Chern class of  M is equal to zero then one can deform the 
initial metric in the negative Ricci direction to a Ricci f iat  metric. 

Proof  of  the Main Theorem. Let Rij be the Ricci tensor of the metric glj. Then 
a well-known theorem of Chern [-1] shows that the (1, 1) form 

r 
]/7__2~ 1 R~j dz ~ /x d-~ j represents C~ (M). Since we assume that ~ T~j dz ~ /x d2 j 

also represents Ca(M ) we know that 

632f 
Ti~ - R ~  - 63zi 632j (3.2) 

for some real-valued smooth function f on M. According to Proposition 1.1 we 
can find a smooth function u(x , t )  on M x [0, oe) which solves the initial 
problem 

63u log det [ 632U ~ 
63t = ~gij + ~ ]  - l o g  det (gij) + f  u(x, 0)=0 (3.3) 

and that 
632U 

gij = gij + 63z i 632~ 

define a family of K~ihler metrics on M. Moreover we know from Proposition 
2.2 that as t~oe~ i  3 converge in C ~ topology to the limit metric ~ij(oo) and 

63gi] that ~ - f  converge uniformely to zero. 

By the well-known formula the Ricci tensor Rij of ~,~ is given by 

63z [ 63z u 
Ri~= 63zi632j logdet ~ g i j + ~ ) .  (3.4) 

Differentiating Eq. (3.3) we have 

632 [63U'~ 632 [ 632U \ 
63zi 63_~j ~ =63zi O_~j log det k g i j + ~ )  - - -  

632 632f 
63zi632j log det(gij)+ ~ (3.5) 

i.e., the metrics gi~ satisfy the equation 

@i~ _ 
63t 

- - -  - / ~ i j  + Tq. (3.6) 

Let t--* oe we conclude that T~j =/~ij(oo ). This proves the theorem. 
Finally we remark that the heat deformation method applies equally well, 

and is much easier, to the existence problem of K~ihler-Einstein metrics on 
compact K~ihler manifold M with negative first Chern class, which was also 
proved by Yau in [6]. In this case the evolution equation for the metrics has 
the form 
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a ~ 3 _  / ~ j _ ~ 3  (3.7) 
a t  

where go=~3(0 )  is positive definite and  represents the negative of the first 
Chern  class. The corresponding scalar equat ion  is 

~2 u  --logdet (3.8) 

The zero order estimate for u follows immediately from (3.8) by applying 
the m a x i m u m  principle argument .  

Also, differentiating (3.8) with respect to t, we get 

au 
Again, the m a x i m u m  principle implies the exponent ial  decay of ~ - .  So we 

conclude in the same way that  as t--* oe~i ~ converge to the l imit metric ~ij(oe) 
which is a K~ihler-Einstein metric. 
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