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This paper presents the analysis of a parallel formulation of depth-first search. 
At the heart of this parallel formulation is a dynamic work-distribution scheme 
that divides the work between different processors. The effectiveness of the 
parallel formulation is strongly influenced by the work-distribution scheme and 
the target architecture. We introduce the concept of isoefficiency function to 
characterize the effectiveness of different architectures and work-distribution 
schemes. Many researchers considered the ring architecture to be quite suitable 
for parallel depth-first search. Our analytical and experimental results show that 
hypercube and shared-memory architectures are significantly better. The 
analysis of previously known work-distribution schemes motivated the design of 
substantially improved schemes for ring and shared-memory architectures. In 
particular, we present a work-distribution algorithm that guarantees close to 
optimal performance on a shared-memory/~o-network-with-message-combining 
architecture (e.g. RP3). Much of the analysis presented in this paper is 
applicable to other parallel algorithms in which work is dynamically shared 
between different processors (e.g., parallel divide-and-conquer algorithms). The 
concept of isoefficiency is useful in characterizing the scalability of a variety of 
parallel algorithms. 
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1. I N T R O D U C T I O N  

This paper presents the analysis of our parallel formulation of depth-first 
search presented in Ref. 1. At the heart of this parallel formulation is a 
dynamic work-distribution scheme that divides the work between different 
processors. The effectiveness of the parallel formulation is strongly influen- 
ced by the work-distribution algorithm and architectural features such as 
presence/absence of shared memory, the diameter of the network, relative 
speed of the communication network, etc. 

We present the notion of isoefficiency function as a figure of merit to 
evaluate parallel algorithms. We analyze tile isoefficiency functions of the 
work-distribution schemes for ring, hypercube and shared-memory 
architectures, and validate the analysis via experiments. We also present 
improved work-distribution schemes for ring and shared-memory architec- 
tures. The development of these new schemes was motivated by the 
analysis of the earlier schemes. From our analysis, it is clear that on 
suitable architectures, it is feasible to speedup depth-first search by several 
orders of magnitude. Experimental validation of the analysis was done by 
parallelizing the IDA* algorithm ~2'3) to solve the 15-puzzle problem ~4) on 
BBN Butterfly [Butterfly is a trademark of BBN Advanced Computers 
Inc.], Intel Hypercube iPSC/1 [iPSC is a trademark of Intel Scientific 
Computers] and a ring embedded in the Intel Hypercube. Our analysis of 
parallel DFS is also applicable to other parallel algorithms in which work 
is shared dynamically among processors. 

Section 2 gives a brief review of a parallel formulation of OFS. Section 3 
states assumptions and definitions needed for the analysis. Section 4 
introduces the isoefficiency function as a metric for the scalability of a 
parallel algorithm. Sections 5, 6, 7 present the isoefficiency analyses of the 
commonly used work-distribution schemes in parallel DFS on ring, hyper- 
cube and shared-memory architectures. In Section 7, we also present an 
improved work-distribution scheme for the shared-memory architecture. In 
Section 8, we present an improved work-distribution scheme for the ring 
architecture and show that it has a better isoefficiency function as well as 
speedup performance than the other known schemes for the ring. Section 9 
reviews previous work on the analysis of parallel depth-first search. 
Section 10 contains concluding remarks. 

2. A PARALLEL F O R M U L A T I O N  OF D E P T H - F I R S T  S E A R C H  

We parallelize depth-first search by distributing the work to be done 
among a number of processors. Each processor searches a disjoint part of 
the search space in a depth-first fashion. When a processor finishes 
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searching its part of the search space, it tries to get an unsearched part of 
the search space from other processors. When a solution path (i.e., a path 
from the initial node to a goal node) is found, all of them quit. If the search 
space is finite and has no goal nodes, then eventually all the processors 
would run out of work, and the (parallel) search will terminate. We assume 
that, at the start of each iteration, all the search space is assigned to one 
processor, and other processors are given null spaces. From then on, the 
search space is dynamically divided and distributed among various 
processors. 

Since each processor searches the space in a depth-first manner, the 
(part of) state-space tree to be searched is easily represented by a stack. 
The depth of the stack is the depth of the curently explored node, each 
level of the stack keeps track of untried alternatives. Each processor main- 
tains its own local stack on which it executes DFS. When its local stack is 
empty, the processor tries to get some of the untried alternatives from the 
stack of another processor. 

In the formulation we implemented in Ref. 1, an idle processor tries to 
get work (in a round-robin fashion) only from its immediate neighbors; i.e., 
in a 2-ring, it can get work from any of its two neighbors; in a 1-ring, it can 
get work from only one neighbor; in a hypercube, it can get work from 
log N neighbors; and in a shared-memory architecture, it can get work 
from any of the N processors in the system. These are simple and intuitive 
work-distribution schemes for the respective architectures and have been 
used by many researchers. Other work-distribution schemes are possible, 
and will be considered later. 

3. DEFINITIONS AND ASSUMPTIONS 

3.1. Assumptions 

We assume that the search space of the problem being solved is boun- 
ded. This is true of most practical problems solved by DFS. If the search 
space is not bounded (or is very deep), then simple DFS may never ter- 
minate (or take a very long time). Note that our analysis is aplicable for 
iterative-deeping depth-first search algorithms (e.g., IDA *(2'3)) even if the 
search space is not bounded. The reason is that each iteration of these 
algorithms performs depth-first search in a bounded part of the search 
space. To simplify the analysis (i.e., to avoid dealing with speedup 
anomalies ~5"6)) we assume that both sequential and parallel DFS search the 
whole bounded space for all solution paths. In the case of IDA* (sequential 
or parallel), it means that all optimal (i.e., least cost) solution paths need to 
be found. The possibility of superlinear speedup in our parallel formulation 
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of depth-first search is discussed in Ref. 5. We assume that the effective 
branching factor (defined below) of the search space is greater then 1 + e 
(where e is an arbitrarily small positive constant). We also assume that 
whenever work W is split between a donor and a requester, then the 
smallest of the two work pieces is at least a W for some constant a such that 
0 < ~ ~< 0.5. This assumption simply says that the splitting function is not 
unreasonable. 

All these assumptions are satisfied by the cost-bounded DVS (i.e., the 
last iteration of IDA*) presented in Section 4.4 of Ref. 1. This algorithm 
was used to solve the 15-puzzle problem in all the experiments discussed in 
this paper. 

3.2. Definitions 

1. Problem size W: is the size of the space searched (in number of 
nodes) 

2. Effective-Branching Factor b: is defined as the average number of 
successors of the nodes of the search tree. If the depth of the search 
tree is d, then the effective-branching factor b is approximately 
W1/a. 

3. Number of processors N: is the number of processors being used 
to run parallel DFS. Pi denotes the ith processor. 

4. Running time TN: is the execution time on N processors. T1 is the 
sequential execution time. We assume that Tt is proportional 
to W. 

5. Computation time Tca~c: is the sum of the time spent by all the 
processors in useful computation. Since, both sequential and 
parallel versions search exactly the same bounded space to find all 
solution paths (see assumptions above), 

Tcatc on N processors = Tcalc on 1 processor = T1 

6. Communication time Too,,,,: is the sum of the time spent by all 
processors in communicating with neighboring processors, waiting 
for messages, time in starvation, etc. For single processor 
execution, Tcomm = O. Since, at any time, a processor is either com- 
municating or computing, 

Tco,,m+ T c o ~ = N *  TN 

7. Speedup S: is the ratio Tf fTN.  
It is the effective gain in computation speed achieved by using N 
processors in parallel on a given instance of a problem. 
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8. Efficiency E: is the speedup divided by N. E denotes the effective 
utilization of computing resources. 

S 
E = - -  

N 

T1 
TN* N 

Tco,~+ Tcom,. 

1 

1 -'1- Tcomm/Tcalc 

9. Unit Computation time Ucazc: is the mean tie taken for 1 node 
expansion. 

10. Unit Communication time U . . . .  : it is mean time taken for getting 
some work (a stack) from a neighboring processor. U . . . .  depends 
upon the size of the message transferred (which depends upon the 
actual splitting strategy used in Ref. 1), the distance between the 
donor and the requesting processors, and the communication 
speed of the underlying hardware. For simplicity, in our analysis, 
we assume that the message size is fixed. Even if we assume that 
the size of the message grows as O(log W) (which is a better 
approximation for the splitting strategy used in our implemen- 
tation in Ref. 1), the results change only slightly. 

4. THE ISOEFFICIENCY FUNCTION 

The efficiency (and speedup) achieved in parallel DFS is determined by 
the architecture, the work-distribution algorithm, the number of processors 
and the problem size. For a given problem size W, increasing the number 
of processors N causes the efficiency to decrease because Zcomm increases 
while Tcatc remains the same. For a fixed N, increasing W improves 
efficiency because Tc,tc increases and (for the work-distribution schemes 
used in Ref. 1) Tcomm does not increase proportionately. (For example, see 
the speedup curve for the Intel Hypercube in Ref. 1). If N is increased, then 
we can keep the efficiency fixed (i.e., maintain the speedup to be linear) by 
increasing W. The rate of increase of W with respect to (w.r.t.) N is depen- 
dent upon the architecture and the work-distribution algorithm. 

In many parallel algorithms (e.g., parallel DFS, parallel 0/1 knapsack, (7) 
parallel algorithms for the shortest path problem and parallel quicksort(8)), 
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it is possible to obtain linear speedup on arbitrarily many processors by 
simply increasing the problem size (i.e., the sequential execution time W). 
The required rate of growth of W w.r.t. N (to keep the efficiency fixed) 
essentially determines the scalability of the parallel algorithm (for a specific 
architecture). For example, if W is required to grow exponentially w.r.t. N, 
then it would be difficult to utilize the architecture for a large number of 
processors. On the other hand, if W needs to grow only linearly w.r.t. N, 
then the parallel algorithm can easily deliver linear speedup for arbitrarily 
large N (provided a large enough architecture can be constructed). Since 
most problems have a sequential component (in DFS, it is one node expan- 
sion), asymptotically, W must grow at least linearly to maintain a par- 
ticular efficiency. If W needs to grow as f(N) to maintain an efficiency E, 
then f(N) is the isoefficiency function and the plot of f(N) w.r.t. N is the 
isoefficiency curve. 

Next we derive isoefficiency functions of parallel bounded DFS for 
shared-memory architectures and distributed-memory architectures (hyper- 
cube, ring). We present theoretical models that give us bounds on total 
communication time Tcomm in terms of problem size W and number of 
processors N for different architectures and work-distribution schemes. 
These bounds on Tcomm are used to compute bounds on the isoefficiency 
functions. Predictions from our models seem to closely agree with 
experimental data, hence we feel that the models are reliable. Experimental 
isoefficiency curves were obtained by performing a large number of 
experiments for a range of W and N, and collecting the points with equal 
efficiency. 

In parallel OFS, the overhead is primarily due to dynamic work dis- 
tribution. In our analysis we try to estimate the number of stack transfers 
that occur for each work-distribution scheme and the architecture. Since 
stack transfers form the most significant part of communication, 

Tcomm ~'  U . . . .  �9 n u m b e r  of stack transfers 

5. A M O D E L  FOR T H E  1 - R I N G  A R C H I T E C T U R E  

Here we analyze the work-distribution scheme for 1-rings, in which a 
processor can request work from only one of its two immediate neighbors. 
Consider a linear chain of N processors of Fig. 1. A 1-ring is a linear chain 

@----@ . ,@ 
Fig. 1. A Linear Chain of processors. 
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with a fold back from processor N - 1  to 0. We assume that a processor 
requests work from its left neighbor (when needed), and sends work to its 
right neighbor (when a request comes). 

Initially W work is available in processor Po. In order to achieve good 
work-distribution every processor needs to get roughly WIN work for itself. 
[This is clearly true if the efficiency is high. Even for the low-efficiency case, 
each processor needs to get roughly k (W/N)  work (for 0 < k < 1). Hence, 
by following a similar analysis, we can show that the number of stack 
trasfers will grow exponentially with N.] 

Recall that when a processor requests a donor which has w work, the 
work is split into two parts, the smallest of which is at least aw. Hence 

Maximum piece of work coming into processor Po is W 
Maximum piece of work coming into processor P1 is (1 - a ) W  
Maximum piece of work coming into processor Pi is ( 1 -  a) iW 

From this, we can see that in order to get W/N work, Processor Pi has 
to get at least W I N ~ I ( 1 - c d W ]  transfers. 

N--1 1 
Hence the total number of stack transfers ~> ~ N(1 - ~)~ 

i=O 

' ) 
N i=o (1--a)  

f i N  1 1 

f i -1  N 

fiN_ 1 1 
Tcomm = U . . . .  * fi--71-_ l * ~ (lower bound) 

Tcal~ = Ucat,. * W 

Efficiency = 
1 + Tcomm/Tcalc 

For constant efficiency, 

o r  

1 + (U . . . .  /Uc~cNW) * ( f i g -  1 / f i -  1) 

U c a l c N W =  U . . . .  - -  
fi N _  1 

f i-1 

(since U . . . .  and Ucatc are constants). 
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Thus the isoefficiency function is exponential [If the stack transfer 
time is taken to be O(logN) (instead of O(1)), then the isoefficiency 
function is g2(flUlog N/N), which is still exponential.] in N. The iso- 
efficiency function for 2-ring can be obtained similarly, and is also 
exponential. Since the value of Tco,,m used in the analysis is only a lower 
bound, the actual isoefficiency function can be worse, than exponential. 
This explains the poor performance of parallel DFS on large (>16  
processors) 1-ring and 2-ring in Ref. 1. Figure 2 shows experimentally 
obtained isoefficiency curves of parallel DFS for 15-puzzle on a 1-ring 
embedded in the Intel Hypercube. Clearly these curves show exponential 
growth. Since N and W are plotted on logarithmic scales, a polynomial 
growth of W w.r.t. N would have resulted in a linear curve. 

Note that the cPu and communication speeds of the ring architecture 
(reflected in the values of Uca~c and U . . . .  ) show up only as constants in 

6.8M 6 

Problem 

5 

Size 

4 

1/3log W 

3 - 

2 -  

2160 1 

J,~J 
.11 
iql 
tbp sj~ 

r .81 

E ,74 

E .92 

l 1 l l 

I 2 3 4 5 

Number of processors Scale 
x: lunit = lunit 

log N y: 1 unit = 1/3 log 2168 

. . . . . . .  Probable Continuation 

Fig. 2. Experimental isoefficiency curves of parallel DFS (with the simple work- 
distribution scheme} on a l-ring embedded in the Intel Hypercube. 
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the isoefficiency function. Hence, irrespective of the hardware quality 
(which is determined by the state-of-the-art in computer architecture), our 
simple work-distribution scheme of the ring architecture has (at least) an 
exponential isoefficiency function. Hence parallel DFS with this work- 
distribution scheme is not going to be effective on large rings. 

6. A M O D E L  FOR THE HYPERCUBE ARCHITECTURE 

Here we analyze the work-distribution scheme in which a processor 
polls its log N immediate neighbors (in the hypercube) for work. Assume 
that whenever a processor receives a request for work, it splits its work w 
into two parts ( 1 -  7)w and 7w, and gives away 7w. Clearly, e ~< 7 ~< 1 -  e. 
Following the arguments of Section 5, a processor at distance i from 
processor Po receives pieces of maximum size 7iW. To get W/N work, 
number of requests made by a processor at distance i from processor Po. 

W/N 

7iW 

1 
N7 ~ 

Bi 1 
= - -  where / ~ = -  

N 7 

Since there are ~og2 NC~ processors at distance i from processor 0 in a hyper- 
cube, the total number of requests in the whole system 

i = log2 N /~i 
>~ ~ log2 NCi 

i=1 N 

1 =~(1 +/~)~o~ 

= N l o g 2 ( 1  + 3/2) 

Hence 

We know 

Zcomm = U . . . .  NlOg2(1 + 8 / 2 ) ( l o w e r  bound) 

rcatc = Ucatc W 
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Hence 

1 
Efficiency = 

1 + TcalJTcomm 

1 

= 1 + ( U . . . .  Nl~ + fl/2)/Ucalc W) 

For an isoefficiency curve on the hypercube, 

W - -  s  1~ + / V 2 ) )  ( 1 )  

Equation 1 says that for a hypercube if 7 ~< �89 (i.e., fl >~ 3), then the problem 
size needs to grow polynomially with the number of processors to maintain 
the efficiency. For y > 1, Equation 1 suggests a sublinear isoefficiency curve. 
But note that Equation 1 provides only a lower bound on the growth of 
the isoefficiency function. Also, we expect peak performance whe 7 is 
roughly equal to 1/2 for the following reason. If the donor gives too much 
work, then the donor will be out of work too soon, if the donor gives too 
little work, then the requester will be out of work too soon. Except for a 
brief work-distribution period in the beginning, every processor is equally 
likely to receive requests for work, as the hypercube architecture is 

6.88 M nodes  

P r o b l e m  Size 

log 3 W 

F i g .  3. 

7 E = .98 

6 E = .90 

5 E = .80 

4 E = .60 

3 

2 

1 

0 i 1 I I 1 I I 

0 1 2 3 4 3 6 7 

128 processors 

N u m b e r  of Processors log 2 N 

Scale 
x :  1 u n i t  = 1 u n i t  

y : 1 uni t  = log 27,890 

Experimental  isoefficiency curves of parallel DFS on the Intel Hypercube. 
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homogeneous. Hence every processor should try to give out nearly half of 
its work. Hence as ? is increased beyond 0.5, the performance should 
degrade just as it would when 7 is decreased below 0.5. This is confirmed 
by our experiments with parallel DFS on 15-puzzle. 

Figure 3 shows experimentally obtained isoefficiency curves for 
parallel DFS for the 15-puzzle problem on the Intel Hypercube. N and W 
are plotted on logarithmic scales. In these experiments, the third splitting 
strategy given in Section 3.2.1 of Ref. 1, was used, which tries to keep ? 
close to 0.5. Due to the nonuniform structure of the search tree, there is no 
guarantee that 7 -  0.5. Clearly the isoefficiency function even for this case 
has a polynomial growth. From these, we empirically see that 

W ~  cN 159 (log2 3 = 1.59; fl ~ 5; ~/> �89 

7. A M O D E L  FOR THE S H A R E D - M E M O R Y  ARCHITECTURE 

Here we first derive an upper bound on the total number of work 
transfers and the isoefficiency function for a rather general situation. These 
bounds are valid for any work-distribution scheme in which (i) work is 
requested and transferred only when a processor is idle; (ii) the smallest of 
two work pieces after splitting work w is c~w, and a ~> 0; (fii) Work is split 
(and a part given out) only if it is greater than some minimum amount e. 
As discussed in Ref. 1, untried alternatives are transferred from the stack of 
the donor  processor to the requester processor only if they are above a user 
specified level called cutoff depth. This ensures that the size of the work 
given out by a donor is at least (roughly) b c"'~ Even otherwise, the 
minimum amount of work transferred is one node. 

Let us assume that in every V(N) requests made for work, every 
processr in the system is requested at least once. Clearly, V(N)>~ N. In 
general, V(N) depends on the work-distribution algorithm. Recall that in a 
transfer, work (w) available in a processor is split into two parts, and one 
part is taken away by the requesting processor. Hence after a transfer 
neither of the two processors (donor and requester) has more than 
( 1 - e ) w  work (because the smallest part is at least ew). The process of 
work transfer continues until work available in every processor is less than 
e. Initially Processor Po has W units of work, and all other processors have 
no work. 

After V(N) requests, maximum work available in any processor 
is less than ( 1 - c  0 W 
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After 2V(N) requests, maximum work available in any processor 
is less than (1 - ~)2 W 

After (log(1/1_~) W/e) V(N) requests, maximum work available 
in any processor is less than e. 

Hence the total number of transfers ~< V(N) log(m _~) W 

Tcomm ~- U . . . .  �9 V(N) log(m ~)W (upper bound) 

Tcalc = Ucalc W 

1 
Efficiency = 

1 + TcommlTcalc 

1 

1 + [U . . . .  * V(N) log~x/x_~,) W/Vcazc * W] 

Solving this for isoefficiency gives us the relation-- 

W= O(U .. . . .  V(N) log V(N)) 

Note that the formula expressing W in terms of V(N) is 
approximation. 

(2) 

a n  

7.1. Isoefficiency Function of the Simple 
Work-Distr ibution Scheme 

In the work-distribution scheme for the shared-memory architecture 
implemented in Ref. 1, each processor maintains a local variable 'target' to 
point to a donor processor. The variable target is incremented (modulo N) 
every time the processor seeks work. For this work-distribution algorithm, 
V(N) = N 2 in the worst case. (This result was proved by Manber in a 
somewhat different context(9)). Thus from Equation2, the isoefficiency 
function is O(N21ogN). In deriving this expression we assumed that 
Ucom,n = O(1). If we assume that U . . . .  = O(log b W), then the isoefficiency 
function is O(N 2 log 2 N). 

Note that this isoefficiency function is worse than the one for the 
hypercube architecture (although, the function for hypercubes is a lower 
bound, whereas the function for shared-memory architectures is an upper 
bound). But, even the experimental isoefficiency curves for BBN Butterfly 
(which is a shared memory architecture) appear to be worse than those for 
the Inte l  Hypercube (see Figs. 3 and 4), and for large enough N, the 
speedup on the Intel Hypercube would perhaps be better than the speedup 



Parallel Depth First Search, Part II 513 

A 
120k t E = .96 E = .91 E = .86 

] 
100kl 

Problem | 

8O 

= .82 

60k l 

40k I 

= .75 

2Ok ] 

I I I I I I I I [ I �9 
10 20 30 40 50 60 70 80 90 100 

N u m b e r  of p rocessors  N 

Fig. 4. Experimental Isoefficiency curves of parallel DFS on BBN 
Butterfly for the first work-distribution scheme. E denotes efficiency. 

on BBN Butterfly. This is rather surprising, as BBN Butterfly has a much 
better Ucazc/U . . . .  ratio, and has a much smaller diameter than the Intel 
Hypercube. Clearly, the poor isoefficieney function of the shared-memory 
architecture is due to its work-distribution scheme (in which each 
processor independently polls the other processors for work in a round- 
robin fashion). 

7.2. An Improved Work-Distribution Strategy for the 
Shared-Memory Architecture 

Let us modify the work-distribution algorithm as follows. Let TARGET 
be a global counter maintained to point at the next donor processor. 
Whenever a process is hungry and needs work, it reads the value of TARGET 
(to get the donor's identity) and increments TARGET (modulo N). Since 
many processors may be reading TARGET simultaneously, the read-and- 
increment operation should be atomic. If work is not available from the 
assigned donor, then it again reads the global variable TARGET and 
increments it. This new work-distribution algorithm is obtained by 
replacing the second line of GETWORK() Ref. 1 by the line "target = 
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for the improved work-distribution scheme. 

atomic-add(TARGEX, 1) mod N," in the procedure. This scheme guarantees 
that V(N)= N. Now, for constant efficiency, W =  O(N log N). 

Figure 5 shows the isoefficiency curve of the improved work-dis- 
tribution scheme on BBN Butterfly. This scheme results in an isoefficiency 
function that is very close to N log N. The isoefficiency function of the fist 
scheme appears to be better than N 2 log N(V(N)=  N 2 only in the worst 
case), but significantly worse than N logN.  We have also found the 
speedup performance of the second scheme to be substantially better than 
the previous scheme. 

Although BBN Butterfly allows an efficient atomic-add instruction, 
access to variable TARGET by all processors can create another bottleneck. 
In WUcatjN time, up to Nlog(1/l_=) W atomic-add requests are made to 
TARGET. This means that asymptotically, W should grow as O(N 2 log N) to 
avoid contention for TARGET. But for 15-puzzle, this limitation does not 
take effect for the range of processors we experimented with ( ~< 120). 
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On shared-memory/co-network architectures that use message combin- 
ing (e.g. RP3, (1~ the Ultracomputer(ll)), this problem does not arise at all. 
In such systems, simultaneous atomic-add requests to TARGET are com- 
bined at intermediate nodes of co-network (where they collide). Hence it is 
possible for all N processors to simultaneously execute atomic-add instruc- 
tion on the same variable in unit time. [To be precise it takes log N time.] 

Although we do not know whether this new strategy is the best 
strategy, it clearly has an excellent isoefficiency function. Furthermore, any 
other scheme can not be much better than this scheme, as the isoefficiency 
function has to be at least O(N). So the new scheme is within a log factor 
of the best possible scheme. 

8. AN I M P R O V E D  W O R K - D I S T R I B U T I O N  STRATEGY 
FOR THE RING ARCHITECTURE 

In the work-distribution scheme of Section 5, we restricted com- 
munication to occur only between immediate neighbors of the ring 
architecture. The analysis of this scheme clearly indicates a weakness due to 
this: the total count of stack transfers grows exponentially in a ring of 
processors because the size of the work pieces coming into successive 
processors decrease geometrically (in the ratio t, ~, ~2,...). Clearly this does 
not happen when work transfer is permitted between any pair of processors 
(as in the shared-memory architecture). We now adapt the improved work- 
distribution scheme of Section 7 to the ring architecture by permitting com- 
munication between any pair of processors, and analyze its performance. 

Recall that communication between processors in the ring architecture 
involves O(N) hops. Since there is no shared memory, the variable TARGET 
is maintained in a special processor (one of the processors in the ring 
architecture). Whenever a processor needs work, it sends a message to this 
processor, which returns the current value of TARGET and also increments 
it. Every communication to an arbitrary processor in the ring architecture 
takes O(N) time (as opposed to constant time in a shared-memory multi- 
processor). Hence, from Equation 2, the isoefficiency of this scheme is, 

W= O(N 2 log N) 

This isoefficiency function is much better than /~N, but still worse than 
Nlog  N. One may wonder whether the special processor which maintains 
TARGET would become saturated, as it has to process so many messages. 
Fortunately this is not the case. The processor maintaining TARGET needs 
to serve O(Nlog(1/a_~) W) messages in roughly WU,,tc/N time. The iso- 
efficiency term due to this communication bottleneck is also W-- 

828/16/6-7 
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Fig. 6. Speedup curves for parallel cost-bounded depth-first search on a ring 
embedded in the Intel Hypercube. Average problem size -=9 million nodes; 
sequential Exec. time -~ 10500 secs. 

O(N21ogN).  Hence, the overall isoefficiency function is still W= 
O(N z log N). Note that distributed-memory systems (inCluding hypercubes) 
cannot obtain better isoefficiency curve than O(N 2 log N) using this work- 
distribution scheme because of this communication bottleneck. 

Finkel and Manber discuss a number of different work-distribution 
scheme in their implementation of parallel depth-first search on the ring 
architectureJ 12) In one of their schemes, each processor maintains a local 
variable, target, to point to a donor processor, target is incremented 
(modulo N) every time the processor seeks work. This can be viewed as an 
adaptation of our simple work-distribution scheme for the shared-memory 
architecture to the ring architecture. We can compute the isoefficiency 
function of this scheme by following the method in Section 7. For this 
scheme, V ( N ) =  N 2 in the worst case. But U . . . .  is still O(N). Hence the 
isoefficiency function is O(N 3 log N). 
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The superiority of our improved work-distribution scheme over this 
and the first scheme is clearly seen in the speedup curves of Fig. 6. Initially 
our second scheme is slightly worse than the other two schemes due to the 
extra overhead of requesting the value of target before requesting for work. 
But, for a larger number of processors, our second scheme makes substan- 
tially fewer requests than the other schemes, and hence gives higher 
speedups. Isoefficiency functions of other two schemes of Finkel and 
Manber can be computed similarly, and are also O ( N  3 log N). 

9. RELATED RESEARCH 

Manber ~9) has designed a data structure, called "concurrent pool" that 
can facilitate work sharing among concurrent processes, and can be incor- 
porated in a parallel depth-first search formulation. Manber presents many 
different schemes for manipulating concurrent pools and computes lower 
bounds on the amount of interference (defined as number of 'nonlocal' 
accesses required). Part of the analysis presented in Section 7 uses the same 
technique that Manber used for the analysis of interference. Manber's 
analysis served as a basis for the design of para!lel depth-first search 
scheme presented in Ref. 12. This scheme has a milch better isoefficiency 
function (O(N 3 log N)) for the ring architecture than the one analyzed in 
Section 5. But this function is significantly worse than the isoefficiency 
function ( O ( N  2 log N)) of the improved scheme presented in Section 8. 

For shared-memory architectures, Manber presents an algorithm for 
manipulating concurrent pools which makes it is possible to obtain iso- 
efficiency function of O ( N  1 +e log N) for arbitrarily small e. But, as e is 
made smaller, the constant factor in O ( N  l+e log N) goes up. In contrast, 
our second work-distribution method presented in Section 7 guarantees 
isoefficiency function of O(Nlog N) for shared-memory architectures with 
message combining. Furthermore, the constant factor in O ( N  log N) is very 
small. 

Many researchers have considered the ring architecture to be highly 
suitable for parallel depth-first search. Our analysis shows that the ring 
architecture (even with the best known work-distribution scheme) has 
much worse performance than the hypercube or shared-memory architec- 
tures. 

10. CONCLUSION 

This paper has presented an analysis of different work-distribution 
schemes used in parallel depth-first search for a variety of architectures. We 
have introduced the concept of isoefficiency function to characterize the 
effectiveness of different architectures and work-distribution schemes. 
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Table 1. 

Kumar and Rao 

Isoefficiency Functions for Di f ferent  Work-distr ibut ion 
Schemes and Architectures 

Interconnection Diameter Isoefficiency Order of dependence Work-distribution scheme 

1-ring N f l~v  Exponential Section 5, Wah, (i4) Monien (i4) 
1-ring N N 3 log N Cubic Polynomial Finkel and Manber (iz) 
1-ring N N 2 log N Quad. Polynomial Section 8 

Hypercube logN N 157 Small Polynomial Section 6 

Shared-memory 1 N 2 * log N Quad. Polynomial Section 7 inferior version 
m-switch 
Shared-memory 1 N * log N Almost Linear Section 7 improved version 
Combining switch 

The work-distribution schemes used by earlier researchers for the ring 
architecture were found to be substantially inferior to the one presented 
in this paper. Furthermore, other researchers (13'14) considered ring to be 
quite suitable for parallel depth-first search. Our analytical and experi- 
mental results show that hypercube and shared-memory architectures 
are significantly better. We presented a work-distribution algorithm for 
the shared-memory/o~-network-with-message-combining architecture (e.g., 
RP3) which has better performance than previously known algorithms. 
Table I shows isoefficiency functions for different architectures and work- 
distribution schemes. Much of the analysis presented in this paper 
is applicable to other parallel formulations in which work is shared 
dynamically among several processors (e.g., parallel divide and conquer 
algorithm). 

The concept of is0efficiency is extremely useful in characterizing the 
scalability of parallel algorithms for which linear speedup for arbitrarily 
many processors can be obtained by simply increasing the problem size. 
For example, the isoefficiency function of the parallel algorithm for solving 
the 0/1 knapsack problem given in (7)is O(NlogN); hence it is highly 
scalable. On the other hand, a frequently used parallel formulation of 
quicksort (s) has an exponential isoefficiency function, which means that the 
formulation is not capable of using many processors effectively. Since the 
isoefficiency function has to be at least linear, we can also determine 
whether a parallel algorithm is as good as it can be. Clearly, parallel DFS on 
the shared-memory architecture with the improved work-distribution 
scheme has an almost optimal performance, as the isoefficiency function 
can be improved by at most a log factor. It would be interesting to find 
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work-dis t r ibut ion  schemes for the ring and  hypercube architectures that  

have better isoefficiency functions than the ones presented here, or to prove 
that  no better schemes are possible. 

A C K N O W L E D G M E N T  

The quali ty of presenta t ion in this paper has substant ial ly improved 
due to comments  by a n o n y m o u s  referees on  an earlier draft of this paper. 

Mohamed  Gouda ,  D a n  Miranker ,  Chuck Seitz, Jay Misra provided useful 
comments  at various stages of this work. 

R E F E R E N C E S  

1. V. Nageshwara Rao and Vipin Kumar, Parallel Depth-first Search, Part I: Implemen- 
tation, International Journal of Parallel Programming, 16(6), 479~,99 (1988). 

2. R. E. Korf, Depth-first Iterative-deepening: An Optimal Admissible Tree Search, Artificial 
Intelligence, 27:97-109 (1985). 

3. Richard Korf, Optimal Path Finding Algorithms, In L. Kanal and V. Kumar, (eds.), 
Search in Artificial Intelligence, Springer-Verlag, New York (1988). 

4. Nils J. Nilsson, Principles of Artificial Intelligence, Tioga Press (1980). 
5. V. Nageshwara Rao and Vipin Kumar, Superlinear Speedup in State-Space Search, 

Technical Report, AI Lab TR88-80, University of Texas at Austin (June 1988). 
6. T. H. Lai and Sartaj Sahni, Anomalies in Parallel Branch and Bound Algorithms, 

Communications of the ACM, pp. 594~602 (1984). 
7. J. Lee, E. Shragowitz, and S. Sahni, A Hypercube Algorithm for the 0/1 Knapsack 

Problem, in Proceedings of International Conference on Parallel Processing, pp. 699-706 
(1987). 

8. Michael J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw Hill, 
New York (1987). 

9. Udi Manber, On Maintaining Dynamic Information in a Concurrent Environment, 
SIAM J. of Computing, 15(4):1130-1142 (1986). 

10. G. F. Pfister, et al., The IBM Research Parallel Processor Prototype (RP3), in 
Proceedings of International Conference on Parallel Processing, pp. 764-797 (1985). 

11. A. Gottlieb, et aL, The NYU Ultracomputer--Designing A MIMD, Shared Memory 
Parallel Computer, IEEE Transactions on Computers, pp. 175-189 (February 1983). 

12. Raphael A. Finkel and Udi Manber, DiI>-A Distributed Implementation of 
Backtracking, ACM Trans. of Progr. Lang. and Systems, 9(2):235-256 (April 1987). 

13. Benjamin W. Wah and Y. W. Eva Ma, Manip~A Multicomputer Architecture for 
Solving Combinatorial Extremum-search Problems, IEEE Transactions on Computers, 
Vol. C-33 (May 1984). 

14. B. Monien and O. Vornberger, The Ring Machine, Technical Report, Univ. of Paderborn, 
FRG (1985); also in Computers and Artificial Intelligence, Vol. 3 (1987). 


