
International Journal of Parallel Programming, Vol. 16, No. 6, 1987

Parallel Depth First Search. Part II.
Analysis I

Vipin Kumar 2 and V. Nageshwara Rao 3

Received November 1987," revised June 1988

This paper presents the analysis of a parallel formulation of depth-first search.
At the heart of this parallel formulation is a dynamic work-distribution scheme
that divides the work between different processors. The effectiveness of the
parallel formulation is strongly influenced by the work-distribution scheme and
the target architecture. We introduce the concept of isoefficiency function to
characterize the effectiveness of different architectures and work-distribution
schemes. Many researchers considered the ring architecture to be quite suitable
for parallel depth-first search. Our analytical and experimental results show that
hypercube and shared-memory architectures are significantly better. The
analysis of previously known work-distribution schemes motivated the design of
substantially improved schemes for ring and shared-memory architectures. In
particular, we present a work-distribution algorithm that guarantees close to
optimal performance on a shared-memory/~o-network-with-message-combining
architecture (e.g. RP3). Much of the analysis presented in this paper is
applicable to other parallel algorithms in which work is dynamically shared
between different processors (e.g., parallel divide-and-conquer algorithms). The
concept of isoefficiency is useful in characterizing the scalability of a variety of
parallel algorithms.

KEY WORDS: Parallel algorithm; depth-first search; isoefficiency function;
work distribution schemes.

1 This work was supported by Army Research Office Grant No. DAAG29-84-K-0060 to the
Artificial Intelligence Laboratory, and Office of Naval Research Grant N00014-86-K-0763 to
the Computer Science Department at the University of Texas at Austin.

2 Arpanet: kumar@sally.utexas.edu.
3 Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712.

501

0885-7458/87/1200-0501505.00/0 �9 1987 Plenum Publishing Corporation

502 Kumar and Rao

1. I N T R O D U C T I O N

This paper presents the analysis of our parallel formulation of depth-first
search presented in Ref. 1. At the heart of this parallel formulation is a
dynamic work-distribution scheme that divides the work between different
processors. The effectiveness of the parallel formulation is strongly influen-
ced by the work-distribution algorithm and architectural features such as
presence/absence of shared memory, the diameter of the network, relative
speed of the communication network, etc.

We present the notion of isoefficiency function as a figure of merit to
evaluate parallel algorithms. We analyze tile isoefficiency functions of the
work-distribution schemes for ring, hypercube and shared-memory
architectures, and validate the analysis via experiments. We also present
improved work-distribution schemes for ring and shared-memory architec-
tures. The development of these new schemes was motivated by the
analysis of the earlier schemes. From our analysis, it is clear that on
suitable architectures, it is feasible to speedup depth-first search by several
orders of magnitude. Experimental validation of the analysis was done by
parallelizing the IDA* algorithm ~2'3) to solve the 15-puzzle problem ~4) on
BBN Butterfly [Butterfly is a trademark of BBN Advanced Computers
Inc.], Intel Hypercube iPSC/1 [iPSC is a trademark of Intel Scientific
Computers] and a ring embedded in the Intel Hypercube. Our analysis of
parallel DFS is also applicable to other parallel algorithms in which work
is shared dynamically among processors.

Section 2 gives a brief review of a parallel formulation of OFS. Section 3
states assumptions and definitions needed for the analysis. Section 4
introduces the isoefficiency function as a metric for the scalability of a
parallel algorithm. Sections 5, 6, 7 present the isoefficiency analyses of the
commonly used work-distribution schemes in parallel DFS on ring, hyper-
cube and shared-memory architectures. In Section 7, we also present an
improved work-distribution scheme for the shared-memory architecture. In
Section 8, we present an improved work-distribution scheme for the ring
architecture and show that it has a better isoefficiency function as well as
speedup performance than the other known schemes for the ring. Section 9
reviews previous work on the analysis of parallel depth-first search.
Section 10 contains concluding remarks.

2. A PARALLEL F O R M U L A T I O N OF D E P T H - F I R S T S E A R C H

We parallelize depth-first search by distributing the work to be done
among a number of processors. Each processor searches a disjoint part of
the search space in a depth-first fashion. When a processor finishes

Para l le l Depth First Search, Par t II 503

searching its part of the search space, it tries to get an unsearched part of
the search space from other processors. When a solution path (i.e., a path
from the initial node to a goal node) is found, all of them quit. If the search
space is finite and has no goal nodes, then eventually all the processors
would run out of work, and the (parallel) search will terminate. We assume
that, at the start of each iteration, all the search space is assigned to one
processor, and other processors are given null spaces. From then on, the
search space is dynamically divided and distributed among various
processors.

Since each processor searches the space in a depth-first manner, the
(part of) state-space tree to be searched is easily represented by a stack.
The depth of the stack is the depth of the curently explored node, each
level of the stack keeps track of untried alternatives. Each processor main-
tains its own local stack on which it executes DFS. When its local stack is
empty, the processor tries to get some of the untried alternatives from the
stack of another processor.

In the formulation we implemented in Ref. 1, an idle processor tries to
get work (in a round-robin fashion) only from its immediate neighbors; i.e.,
in a 2-ring, it can get work from any of its two neighbors; in a 1-ring, it can
get work from only one neighbor; in a hypercube, it can get work from
log N neighbors; and in a shared-memory architecture, it can get work
from any of the N processors in the system. These are simple and intuitive
work-distribution schemes for the respective architectures and have been
used by many researchers. Other work-distribution schemes are possible,
and will be considered later.

3. DEFINITIONS AND ASSUMPTIONS

3.1. Assumptions

We assume that the search space of the problem being solved is boun-
ded. This is true of most practical problems solved by DFS. If the search
space is not bounded (or is very deep), then simple DFS may never ter-
minate (or take a very long time). Note that our analysis is aplicable for
iterative-deeping depth-first search algorithms (e.g., IDA *(2'3)) even if the
search space is not bounded. The reason is that each iteration of these
algorithms performs depth-first search in a bounded part of the search
space. To simplify the analysis (i.e., to avoid dealing with speedup
anomalies ~5"6)) we assume that both sequential and parallel DFS search the
whole bounded space for all solution paths. In the case of IDA* (sequential
or parallel), it means that all optimal (i.e., least cost) solution paths need to
be found. The possibility of superlinear speedup in our parallel formulation

504 Kumar and Rao

of depth-first search is discussed in Ref. 5. We assume that the effective
branching factor (defined below) of the search space is greater then 1 + e
(where e is an arbitrarily small positive constant). We also assume that
whenever work W is split between a donor and a requester, then the
smallest of the two work pieces is at least a W for some constant a such that
0 < ~ ~< 0.5. This assumption simply says that the splitting function is not
unreasonable.

All these assumptions are satisfied by the cost-bounded DVS (i.e., the
last iteration of IDA*) presented in Section 4.4 of Ref. 1. This algorithm
was used to solve the 15-puzzle problem in all the experiments discussed in
this paper.

3.2. Definitions

1. Problem size W: is the size of the space searched (in number of
nodes)

2. Effective-Branching Factor b: is defined as the average number of
successors of the nodes of the search tree. If the depth of the search
tree is d, then the effective-branching factor b is approximately
W1/a.

3. Number of processors N: is the number of processors being used
to run parallel DFS. Pi denotes the ith processor.

4. Running time TN: is the execution time on N processors. T1 is the
sequential execution time. We assume that Tt is proportional
to W.

5. Computation time Tca~c: is the sum of the time spent by all the
processors in useful computation. Since, both sequential and
parallel versions search exactly the same bounded space to find all
solution paths (see assumptions above),

Tcatc on N processors = Tcalc on 1 processor = T1

6. Communication time Too,,,,: is the sum of the time spent by all
processors in communicating with neighboring processors, waiting
for messages, time in starvation, etc. For single processor
execution, Tcomm = O. Since, at any time, a processor is either com-
municating or computing,

Tco,,m+ T c o ~ = N * TN

7. Speedup S: is the ratio Tf fTN.
It is the effective gain in computation speed achieved by using N
processors in parallel on a given instance of a problem.

Para l le l Depth First Search, Par t II 505

8. Efficiency E: is the speedup divided by N. E denotes the effective
utilization of computing resources.

S
E = - -

N

T1
TN* N

Tco,~+ Tcom,.

1

1 -'1- Tcomm/Tcalc

9. Unit Computation time Ucazc: is the mean tie taken for 1 node
expansion.

10. Unit Communication time U : it is mean time taken for getting
some work (a stack) from a neighboring processor. U depends
upon the size of the message transferred (which depends upon the
actual splitting strategy used in Ref. 1), the distance between the
donor and the requesting processors, and the communication
speed of the underlying hardware. For simplicity, in our analysis,
we assume that the message size is fixed. Even if we assume that
the size of the message grows as O(log W) (which is a better
approximation for the splitting strategy used in our implemen-
tation in Ref. 1), the results change only slightly.

4. THE ISOEFFICIENCY FUNCTION

The efficiency (and speedup) achieved in parallel DFS is determined by
the architecture, the work-distribution algorithm, the number of processors
and the problem size. For a given problem size W, increasing the number
of processors N causes the efficiency to decrease because Zcomm increases
while Tcatc remains the same. For a fixed N, increasing W improves
efficiency because Tc,tc increases and (for the work-distribution schemes
used in Ref. 1) Tcomm does not increase proportionately. (For example, see
the speedup curve for the Intel Hypercube in Ref. 1). If N is increased, then
we can keep the efficiency fixed (i.e., maintain the speedup to be linear) by
increasing W. The rate of increase of W with respect to (w.r.t.) N is depen-
dent upon the architecture and the work-distribution algorithm.

In many parallel algorithms (e.g., parallel DFS, parallel 0/1 knapsack, (7)
parallel algorithms for the shortest path problem and parallel quicksort(8)),

506 Kumar and Rao

it is possible to obtain linear speedup on arbitrarily many processors by
simply increasing the problem size (i.e., the sequential execution time W).
The required rate of growth of W w.r.t. N (to keep the efficiency fixed)
essentially determines the scalability of the parallel algorithm (for a specific
architecture). For example, if W is required to grow exponentially w.r.t. N,
then it would be difficult to utilize the architecture for a large number of
processors. On the other hand, if W needs to grow only linearly w.r.t. N,
then the parallel algorithm can easily deliver linear speedup for arbitrarily
large N (provided a large enough architecture can be constructed). Since
most problems have a sequential component (in DFS, it is one node expan-
sion), asymptotically, W must grow at least linearly to maintain a par-
ticular efficiency. If W needs to grow as f(N) to maintain an efficiency E,
then f(N) is the isoefficiency function and the plot of f(N) w.r.t. N is the
isoefficiency curve.

Next we derive isoefficiency functions of parallel bounded DFS for
shared-memory architectures and distributed-memory architectures (hyper-
cube, ring). We present theoretical models that give us bounds on total
communication time Tcomm in terms of problem size W and number of
processors N for different architectures and work-distribution schemes.
These bounds on Tcomm are used to compute bounds on the isoefficiency
functions. Predictions from our models seem to closely agree with
experimental data, hence we feel that the models are reliable. Experimental
isoefficiency curves were obtained by performing a large number of
experiments for a range of W and N, and collecting the points with equal
efficiency.

In parallel OFS, the overhead is primarily due to dynamic work dis-
tribution. In our analysis we try to estimate the number of stack transfers
that occur for each work-distribution scheme and the architecture. Since
stack transfers form the most significant part of communication,

Tcomm ~' U �9 n u m b e r of stack transfers

5. A M O D E L FOR T H E 1 - R I N G A R C H I T E C T U R E

Here we analyze the work-distribution scheme for 1-rings, in which a
processor can request work from only one of its two immediate neighbors.
Consider a linear chain of N processors of Fig. 1. A 1-ring is a linear chain

@----@ . ,@
Fig. 1. A Linear Chain of processors.

Parallel Depth First Search, Part U 507

with a fold back from processor N - 1 to 0. We assume that a processor
requests work from its left neighbor (when needed), and sends work to its
right neighbor (when a request comes).

Initially W work is available in processor Po. In order to achieve good
work-distribution every processor needs to get roughly WIN work for itself.
[This is clearly true if the efficiency is high. Even for the low-efficiency case,
each processor needs to get roughly k (W/N) work (for 0 < k < 1). Hence,
by following a similar analysis, we can show that the number of stack
trasfers will grow exponentially with N.]

Recall that when a processor requests a donor which has w work, the
work is split into two parts, the smallest of which is at least aw. Hence

Maximum piece of work coming into processor Po is W
Maximum piece of work coming into processor P1 is (1 - a) W
Maximum piece of work coming into processor Pi is (1 - a) iW

From this, we can see that in order to get W/N work, Processor Pi has
to get at least W I N ~ I (1 - c d W] transfers.

N--1 1
Hence the total number of stack transfers ~> ~ N(1 - ~)~

i=O

')
N i=o (1--a)

f i N 1 1

f i -1 N

fiN_ 1 1
Tcomm = U * fi--71-_ l * ~ (lower bound)

Tcal~ = Ucat,. * W

Efficiency =
1 + Tcomm/Tcalc

For constant efficiency,

o r

1 + (U /Uc~cNW) * (f i g - 1 / f i - 1)

U c a l c N W = U - -
fi N _ 1

f i-1

(since U and Ucatc are constants).

508 Kumar and Rao

Thus the isoefficiency function is exponential [If the stack transfer
time is taken to be O(logN) (instead of O(1)), then the isoefficiency
function is g2(flUlog N/N), which is still exponential.] in N. The iso-
efficiency function for 2-ring can be obtained similarly, and is also
exponential. Since the value of Tco,,m used in the analysis is only a lower
bound, the actual isoefficiency function can be worse, than exponential.
This explains the poor performance of parallel DFS on large (>16
processors) 1-ring and 2-ring in Ref. 1. Figure 2 shows experimentally
obtained isoefficiency curves of parallel DFS for 15-puzzle on a 1-ring
embedded in the Intel Hypercube. Clearly these curves show exponential
growth. Since N and W are plotted on logarithmic scales, a polynomial
growth of W w.r.t. N would have resulted in a linear curve.

Note that the cPu and communication speeds of the ring architecture
(reflected in the values of Uca~c and U) show up only as constants in

6.8M 6

Problem

5

Size

4

1/3log W

3 -

2 -

2160 1

J,~J
.11
iql
tbp sj~

r .81

E ,74

E .92

l 1 l l

I 2 3 4 5

Number of processors Scale
x: lunit = lunit

log N y: 1 unit = 1/3 log 2168

. Probable Continuation

Fig. 2. Experimental isoefficiency curves of parallel DFS (with the simple work-
distribution scheme} on a l-ring embedded in the Intel Hypercube.

Parallel Depth First Search, Par t II 509

the isoefficiency function. Hence, irrespective of the hardware quality
(which is determined by the state-of-the-art in computer architecture), our
simple work-distribution scheme of the ring architecture has (at least) an
exponential isoefficiency function. Hence parallel DFS with this work-
distribution scheme is not going to be effective on large rings.

6. A M O D E L FOR THE HYPERCUBE ARCHITECTURE

Here we analyze the work-distribution scheme in which a processor
polls its log N immediate neighbors (in the hypercube) for work. Assume
that whenever a processor receives a request for work, it splits its work w
into two parts (1 - 7)w and 7w, and gives away 7w. Clearly, e ~< 7 ~< 1 - e.
Following the arguments of Section 5, a processor at distance i from
processor Po receives pieces of maximum size 7iW. To get W/N work,
number of requests made by a processor at distance i from processor Po.

W/N

7iW

1
N7 ~

Bi 1
= - - where / ~ = -

N 7

Since there are ~og2 NC~ processors at distance i from processor 0 in a hyper-
cube, the total number of requests in the whole system

i = log2 N /~i
>~ ~ log2 NCi

i=1 N

1 =~(1 +/~)~o~

= N l o g 2 (1 + 3/2)

Hence

We know

Zcomm = U NlOg2(1 + 8 / 2) (l o w e r bound)

rcatc = Ucatc W

510 Kumar and Rao

Hence

1
Efficiency =

1 + TcalJTcomm

1

= 1 + (U Nl~ + fl/2)/Ucalc W)

For an isoefficiency curve on the hypercube,

W - - s 1~ + / V 2)) (1)

Equation 1 says that for a hypercube if 7 ~< �89 (i.e., fl >~ 3), then the problem
size needs to grow polynomially with the number of processors to maintain
the efficiency. For y > 1, Equation 1 suggests a sublinear isoefficiency curve.
But note that Equation 1 provides only a lower bound on the growth of
the isoefficiency function. Also, we expect peak performance whe 7 is
roughly equal to 1/2 for the following reason. If the donor gives too much
work, then the donor will be out of work too soon, if the donor gives too
little work, then the requester will be out of work too soon. Except for a
brief work-distribution period in the beginning, every processor is equally
likely to receive requests for work, as the hypercube architecture is

6.88 M nodes

P r o b l e m Size

log 3 W

F i g . 3.

7 E = .98

6 E = .90

5 E = .80

4 E = .60

3

2

1

0 i 1 I I 1 I I

0 1 2 3 4 3 6 7

128 processors

N u m b e r of Processors log 2 N

Scale
x : 1 u n i t = 1 u n i t

y : 1 uni t = log 27,890

Experimental isoefficiency curves of parallel DFS on the Intel Hypercube.

Para l le l Depth First Search, Par t II 511

homogeneous. Hence every processor should try to give out nearly half of
its work. Hence as ? is increased beyond 0.5, the performance should
degrade just as it would when 7 is decreased below 0.5. This is confirmed
by our experiments with parallel DFS on 15-puzzle.

Figure 3 shows experimentally obtained isoefficiency curves for
parallel DFS for the 15-puzzle problem on the Intel Hypercube. N and W
are plotted on logarithmic scales. In these experiments, the third splitting
strategy given in Section 3.2.1 of Ref. 1, was used, which tries to keep ?
close to 0.5. Due to the nonuniform structure of the search tree, there is no
guarantee that 7 - 0.5. Clearly the isoefficiency function even for this case
has a polynomial growth. From these, we empirically see that

W ~ cN 159 (log2 3 = 1.59; fl ~ 5; ~/> �89

7. A M O D E L FOR THE S H A R E D - M E M O R Y ARCHITECTURE

Here we first derive an upper bound on the total number of work
transfers and the isoefficiency function for a rather general situation. These
bounds are valid for any work-distribution scheme in which (i) work is
requested and transferred only when a processor is idle; (ii) the smallest of
two work pieces after splitting work w is c~w, and a ~> 0; (fii) Work is split
(and a part given out) only if it is greater than some minimum amount e.
As discussed in Ref. 1, untried alternatives are transferred from the stack of
the donor processor to the requester processor only if they are above a user
specified level called cutoff depth. This ensures that the size of the work
given out by a donor is at least (roughly) b c"'~ Even otherwise, the
minimum amount of work transferred is one node.

Let us assume that in every V(N) requests made for work, every
processr in the system is requested at least once. Clearly, V(N)>~ N. In
general, V(N) depends on the work-distribution algorithm. Recall that in a
transfer, work (w) available in a processor is split into two parts, and one
part is taken away by the requesting processor. Hence after a transfer
neither of the two processors (donor and requester) has more than
(1 - e) w work (because the smallest part is at least ew). The process of
work transfer continues until work available in every processor is less than
e. Initially Processor Po has W units of work, and all other processors have
no work.

After V(N) requests, maximum work available in any processor
is less than (1 - c 0 W

512 Kumar and Rao

After 2V(N) requests, maximum work available in any processor
is less than (1 - ~)2 W

After (log(1/1_~) W/e) V(N) requests, maximum work available
in any processor is less than e.

Hence the total number of transfers ~< V(N) log(m _~) W

Tcomm ~- U �9 V(N) log(m ~)W (upper bound)

Tcalc = Ucalc W

1
Efficiency =

1 + TcommlTcalc

1

1 + [U * V(N) log~x/x_~,) W/Vcazc * W]

Solving this for isoefficiency gives us the relation--

W= O(U V(N) log V(N))

Note that the formula expressing W in terms of V(N) is
approximation.

(2)

a n

7.1. Isoefficiency Function of the Simple
Work-Distr ibution Scheme

In the work-distribution scheme for the shared-memory architecture
implemented in Ref. 1, each processor maintains a local variable 'target' to
point to a donor processor. The variable target is incremented (modulo N)
every time the processor seeks work. For this work-distribution algorithm,
V(N) = N 2 in the worst case. (This result was proved by Manber in a
somewhat different context(9)). Thus from Equation2, the isoefficiency
function is O(N21ogN). In deriving this expression we assumed that
Ucom,n = O(1). If we assume that U = O(log b W), then the isoefficiency
function is O(N 2 log 2 N).

Note that this isoefficiency function is worse than the one for the
hypercube architecture (although, the function for hypercubes is a lower
bound, whereas the function for shared-memory architectures is an upper
bound). But, even the experimental isoefficiency curves for BBN Butterfly
(which is a shared memory architecture) appear to be worse than those for
the Inte l Hypercube (see Figs. 3 and 4), and for large enough N, the
speedup on the Intel Hypercube would perhaps be better than the speedup

Parallel Depth First Search, Part II 513

A
120k t E = .96 E = .91 E = .86

]
100kl

Problem |

8O

= .82

60k l

40k I

= .75

2Ok]

I I I I I I I I [I �9
10 20 30 40 50 60 70 80 90 100

N u m b e r of p rocessors N

Fig. 4. Experimental Isoefficiency curves of parallel DFS on BBN
Butterfly for the first work-distribution scheme. E denotes efficiency.

on BBN Butterfly. This is rather surprising, as BBN Butterfly has a much
better Ucazc/U ratio, and has a much smaller diameter than the Intel
Hypercube. Clearly, the poor isoefficieney function of the shared-memory
architecture is due to its work-distribution scheme (in which each
processor independently polls the other processors for work in a round-
robin fashion).

7.2. An Improved Work-Distribution Strategy for the
Shared-Memory Architecture

Let us modify the work-distribution algorithm as follows. Let TARGET
be a global counter maintained to point at the next donor processor.
Whenever a process is hungry and needs work, it reads the value of TARGET
(to get the donor's identity) and increments TARGET (modulo N). Since
many processors may be reading TARGET simultaneously, the read-and-
increment operation should be atomic. If work is not available from the
assigned donor, then it again reads the global variable TARGET and
increments it. This new work-distribution algorithm is obtained by
replacing the second line of GETWORK() Ref. 1 by the line "target =

514

150k

140~

120k

lOOk-

P r o b l e m

S i z e
80k"

W

60k-

40k -

20k -

Fig. 5.

E = .96

Kumar and Rao

E = .91

= ,82

. reference l i n e
for W = NlogN

I I l I I I I F I I 2"
10 20 30 40 50 60 70 80 90 100 110

N u m b e r of processors N

Experimental isoefficiency curves of parallel DFS on al3N Butterfly
for the improved work-distribution scheme.

atomic-add(TARGEX, 1) mod N," in the procedure. This scheme guarantees
that V(N)= N. Now, for constant efficiency, W = O(N log N).

Figure 5 shows the isoefficiency curve of the improved work-dis-
tribution scheme on BBN Butterfly. This scheme results in an isoefficiency
function that is very close to N log N. The isoefficiency function of the fist
scheme appears to be better than N 2 log N(V(N)= N 2 only in the worst
case), but significantly worse than N logN. We have also found the
speedup performance of the second scheme to be substantially better than
the previous scheme.

Although BBN Butterfly allows an efficient atomic-add instruction,
access to variable TARGET by all processors can create another bottleneck.
In WUcatjN time, up to Nlog(1/l_=) W atomic-add requests are made to
TARGET. This means that asymptotically, W should grow as O(N 2 log N) to
avoid contention for TARGET. But for 15-puzzle, this limitation does not
take effect for the range of processors we experimented with (~< 120).

Paral le l Depth First Search, Part II 515

On shared-memory/co-network architectures that use message combin-
ing (e.g. RP3, (1~ the Ultracomputer(ll)), this problem does not arise at all.
In such systems, simultaneous atomic-add requests to TARGET are com-
bined at intermediate nodes of co-network (where they collide). Hence it is
possible for all N processors to simultaneously execute atomic-add instruc-
tion on the same variable in unit time. [To be precise it takes log N time.]

Although we do not know whether this new strategy is the best
strategy, it clearly has an excellent isoefficiency function. Furthermore, any
other scheme can not be much better than this scheme, as the isoefficiency
function has to be at least O(N). So the new scheme is within a log factor
of the best possible scheme.

8. AN I M P R O V E D W O R K - D I S T R I B U T I O N STRATEGY
FOR THE RING ARCHITECTURE

In the work-distribution scheme of Section 5, we restricted com-
munication to occur only between immediate neighbors of the ring
architecture. The analysis of this scheme clearly indicates a weakness due to
this: the total count of stack transfers grows exponentially in a ring of
processors because the size of the work pieces coming into successive
processors decrease geometrically (in the ratio t, ~, ~2,...). Clearly this does
not happen when work transfer is permitted between any pair of processors
(as in the shared-memory architecture). We now adapt the improved work-
distribution scheme of Section 7 to the ring architecture by permitting com-
munication between any pair of processors, and analyze its performance.

Recall that communication between processors in the ring architecture
involves O(N) hops. Since there is no shared memory, the variable TARGET
is maintained in a special processor (one of the processors in the ring
architecture). Whenever a processor needs work, it sends a message to this
processor, which returns the current value of TARGET and also increments
it. Every communication to an arbitrary processor in the ring architecture
takes O(N) time (as opposed to constant time in a shared-memory multi-
processor). Hence, from Equation 2, the isoefficiency of this scheme is,

W= O(N 2 log N)

This isoefficiency function is much better than /~N, but still worse than
Nlog N. One may wonder whether the special processor which maintains
TARGET would become saturated, as it has to process so many messages.
Fortunately this is not the case. The processor maintaining TARGET needs
to serve O(Nlog(1/a_~) W) messages in roughly WU,,tc/N time. The iso-
efficiency term due to this communication bottleneck is also W--

828/16/6-7

516 Kumar and Rao

1

128

6 4

s p e e d u p

32

16

8

,s
/

/
/

/
/

/
/

/
/

-- //" Our scheme second

." " / Finkel's
, / _ _ _ _ - - [] - /128 se omo

, ~ O �9 O
16.3/128 The simp]e

scheme
1 - r ing

"1 I I l I~
8 16 32 64 128

Number of processors

Fig. 6. Speedup curves for parallel cost-bounded depth-first search on a ring
embedded in the Intel Hypercube. Average problem size -=9 million nodes;
sequential Exec. time -~ 10500 secs.

O(N21ogN). Hence, the overall isoefficiency function is still W=
O(N z log N). Note that distributed-memory systems (inCluding hypercubes)
cannot obtain better isoefficiency curve than O(N 2 log N) using this work-
distribution scheme because of this communication bottleneck.

Finkel and Manber discuss a number of different work-distribution
scheme in their implementation of parallel depth-first search on the ring
architectureJ 12) In one of their schemes, each processor maintains a local
variable, target, to point to a donor processor, target is incremented
(modulo N) every time the processor seeks work. This can be viewed as an
adaptation of our simple work-distribution scheme for the shared-memory
architecture to the ring architecture. We can compute the isoefficiency
function of this scheme by following the method in Section 7. For this
scheme, V (N) = N 2 in the worst case. But U is still O(N). Hence the
isoefficiency function is O(N 3 log N).

Para l le l Depth First Search, Par t II 517

The superiority of our improved work-distribution scheme over this
and the first scheme is clearly seen in the speedup curves of Fig. 6. Initially
our second scheme is slightly worse than the other two schemes due to the
extra overhead of requesting the value of target before requesting for work.
But, for a larger number of processors, our second scheme makes substan-
tially fewer requests than the other schemes, and hence gives higher
speedups. Isoefficiency functions of other two schemes of Finkel and
Manber can be computed similarly, and are also O (N 3 log N).

9. RELATED RESEARCH

Manber ~9) has designed a data structure, called "concurrent pool" that
can facilitate work sharing among concurrent processes, and can be incor-
porated in a parallel depth-first search formulation. Manber presents many
different schemes for manipulating concurrent pools and computes lower
bounds on the amount of interference (defined as number of 'nonlocal'
accesses required). Part of the analysis presented in Section 7 uses the same
technique that Manber used for the analysis of interference. Manber's
analysis served as a basis for the design of para!lel depth-first search
scheme presented in Ref. 12. This scheme has a milch better isoefficiency
function (O(N 3 log N)) for the ring architecture than the one analyzed in
Section 5. But this function is significantly worse than the isoefficiency
function (O (N 2 log N)) of the improved scheme presented in Section 8.

For shared-memory architectures, Manber presents an algorithm for
manipulating concurrent pools which makes it is possible to obtain iso-
efficiency function of O (N 1 +e log N) for arbitrarily small e. But, as e is
made smaller, the constant factor in O (N l+e log N) goes up. In contrast,
our second work-distribution method presented in Section 7 guarantees
isoefficiency function of O(Nlog N) for shared-memory architectures with
message combining. Furthermore, the constant factor in O (N log N) is very
small.

Many researchers have considered the ring architecture to be highly
suitable for parallel depth-first search. Our analysis shows that the ring
architecture (even with the best known work-distribution scheme) has
much worse performance than the hypercube or shared-memory architec-
tures.

10. CONCLUSION

This paper has presented an analysis of different work-distribution
schemes used in parallel depth-first search for a variety of architectures. We
have introduced the concept of isoefficiency function to characterize the
effectiveness of different architectures and work-distribution schemes.

518

Table 1.

Kumar and Rao

Isoefficiency Functions for Di f ferent Work-distr ibut ion
Schemes and Architectures

Interconnection Diameter Isoefficiency Order of dependence Work-distribution scheme

1-ring N f l~v Exponential Section 5, Wah, (i4) Monien (i4)
1-ring N N 3 log N Cubic Polynomial Finkel and Manber (iz)
1-ring N N 2 log N Quad. Polynomial Section 8

Hypercube logN N 157 Small Polynomial Section 6

Shared-memory 1 N 2 * log N Quad. Polynomial Section 7 inferior version
m-switch
Shared-memory 1 N * log N Almost Linear Section 7 improved version
Combining switch

The work-distribution schemes used by earlier researchers for the ring
architecture were found to be substantially inferior to the one presented
in this paper. Furthermore, other researchers (13'14) considered ring to be
quite suitable for parallel depth-first search. Our analytical and experi-
mental results show that hypercube and shared-memory architectures
are significantly better. We presented a work-distribution algorithm for
the shared-memory/o~-network-with-message-combining architecture (e.g.,
RP3) which has better performance than previously known algorithms.
Table I shows isoefficiency functions for different architectures and work-
distribution schemes. Much of the analysis presented in this paper
is applicable to other parallel formulations in which work is shared
dynamically among several processors (e.g., parallel divide and conquer
algorithm).

The concept of is0efficiency is extremely useful in characterizing the
scalability of parallel algorithms for which linear speedup for arbitrarily
many processors can be obtained by simply increasing the problem size.
For example, the isoefficiency function of the parallel algorithm for solving
the 0/1 knapsack problem given in (7)is O(NlogN); hence it is highly
scalable. On the other hand, a frequently used parallel formulation of
quicksort (s) has an exponential isoefficiency function, which means that the
formulation is not capable of using many processors effectively. Since the
isoefficiency function has to be at least linear, we can also determine
whether a parallel algorithm is as good as it can be. Clearly, parallel DFS on
the shared-memory architecture with the improved work-distribution
scheme has an almost optimal performance, as the isoefficiency function
can be improved by at most a log factor. It would be interesting to find

Parallel Depth First Search, Part II 519

work-dis t r ibut ion schemes for the ring and hypercube architectures that

have better isoefficiency functions than the ones presented here, or to prove
that no better schemes are possible.

A C K N O W L E D G M E N T

The quali ty of presenta t ion in this paper has substant ial ly improved
due to comments by a n o n y m o u s referees on an earlier draft of this paper.

Mohamed Gouda , D a n Miranker , Chuck Seitz, Jay Misra provided useful
comments at various stages of this work.

R E F E R E N C E S

1. V. Nageshwara Rao and Vipin Kumar, Parallel Depth-first Search, Part I: Implemen-
tation, International Journal of Parallel Programming, 16(6), 479~,99 (1988).

2. R. E. Korf, Depth-first Iterative-deepening: An Optimal Admissible Tree Search, Artificial
Intelligence, 27:97-109 (1985).

3. Richard Korf, Optimal Path Finding Algorithms, In L. Kanal and V. Kumar, (eds.),
Search in Artificial Intelligence, Springer-Verlag, New York (1988).

4. Nils J. Nilsson, Principles of Artificial Intelligence, Tioga Press (1980).
5. V. Nageshwara Rao and Vipin Kumar, Superlinear Speedup in State-Space Search,

Technical Report, AI Lab TR88-80, University of Texas at Austin (June 1988).
6. T. H. Lai and Sartaj Sahni, Anomalies in Parallel Branch and Bound Algorithms,

Communications of the ACM, pp. 594~602 (1984).
7. J. Lee, E. Shragowitz, and S. Sahni, A Hypercube Algorithm for the 0/1 Knapsack

Problem, in Proceedings of International Conference on Parallel Processing, pp. 699-706
(1987).

8. Michael J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw Hill,
New York (1987).

9. Udi Manber, On Maintaining Dynamic Information in a Concurrent Environment,
SIAM J. of Computing, 15(4):1130-1142 (1986).

10. G. F. Pfister, et al., The IBM Research Parallel Processor Prototype (RP3), in
Proceedings of International Conference on Parallel Processing, pp. 764-797 (1985).

11. A. Gottlieb, et aL, The NYU Ultracomputer--Designing A MIMD, Shared Memory
Parallel Computer, IEEE Transactions on Computers, pp. 175-189 (February 1983).

12. Raphael A. Finkel and Udi Manber, DiI>-A Distributed Implementation of
Backtracking, ACM Trans. of Progr. Lang. and Systems, 9(2):235-256 (April 1987).

13. Benjamin W. Wah and Y. W. Eva Ma, Manip~A Multicomputer Architecture for
Solving Combinatorial Extremum-search Problems, IEEE Transactions on Computers,
Vol. C-33 (May 1984).

14. B. Monien and O. Vornberger, The Ring Machine, Technical Report, Univ. of Paderborn,
FRG (1985); also in Computers and Artificial Intelligence, Vol. 3 (1987).

