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Labelled rewriting systems are shown to be powerful enough for defining the 
semantics of concurrent systems in terms of partial orderings of events, even in 
the presence of non standard operators like N that is not expressible by means 
of concurrency and sequentialization. This contrasts with Pratt 's claim. (1) The 
maio operators proposed by Pratt are used here to construct terms denoting 
concurrent systems, the behavior of which consists of partially ordered multisets 
defined operationally. (~) Fully abstractness of the denotational semantics as 
defined in Ref. 1 with respect to the operational one is finally proved. 
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1. I N T R O D U C T I O N  

Many models have been proposed in the literature for describing dis- 
tributed concurrent systems considered as sets of sequential processes 
which cooperate in accomplishing a task. These sequential processes may 
be possibly located in different places, and each of them performs a specific 
sub-task, at its own processing speed, with its own local clock, either in an 
independent manner or through synchronizations with other processes for 
communicating intermediate results. These models have been historically 
developed following two main lines. 
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In the first approach, often referred to as the interleaving approach, 
e.g., see Refs. 3-10, features describing parallel composition and nondeter- 
minism are added to sequential languages or to models for them (see, e.g., 
CSP (5) or CCS(9)). In this framework, a concurrent system is represented 
by a term E, and its operational semantics is given through labelled trans- 
ition systems. More precisely, a transition E - a - ~  E '  models the fact that 
E evolves, by performing an event observed as a, to another concurrent 
system E'. The state of a concurrent system is then represented as a 
monolithic entity, and thus a global time and a centralized control are 
implicitly assumed. Consequently, a total ordering among possibly spatially 
separated and causally independent events is imposed, and concurrency is 
expressed by the fact that concurrent events can occur in any order. In 
other words, the operator of parallel composition is not primitive since it is 
reduced to nondeterminism and interleaving. A major advantage of using 
transition systems is that they can be defined in the so-called Structured 
Operational Semantics style (11) (SOS for short), via axioms and inference 
rules. Following this style, a transition for a term is deduced by inducing 
on its syntactic structure in a merely compositional way. 

The second main line followed in describing distributed concurrent 
systems is often referred to as the true concurrent, or the partial ordering 
approach. (1'12-21'28) Petri Nets (19) are perhaps the best known model within 
this framework. Their starting point are nondeterministic automata which 
have been enriched by giving states an additional structure of set to 
represent distributed states, and by allowing transitions to involve only 
some of the processes present in the actual state. Thus, neither a global 
state nor a global clock are assumed. The behavior of systems is represen- 
ted through the causal relations among the events performed by the com- 
ponents of their distributed state. ~22~ The resulting abstract machine is then 
much more complex than the one based on labelled transition systems, 
thence the conceptual simplicity of the interleaving framework is lost in this 
approach. However, we stand firmly on the partial ordering side, even 
though its theory is not completely satisfactory, because it offers a 
definitely better, always closer, and often simpler description of reality. See 
Pratt's ~I) detailed discussion about this issue. As an example of the lack of 
expressive power of the interleaving, see Fig. la)  where there is an instance 
of the well known N-structure which is not expressible in terms of con- 
currency and sequentialization. 

Pratt ~1) in a recent paper, strongly advocates the use of partially 
ordered multisets, called pomsets, in modelling concurrency, further sup- 
porting an increasingly growing interest in the true concurrent approach to 
the semantics of concurrent systems. In his paper Pratt  shows some 
operators for defining a denotational model, and gives no operational 
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a) b) 

Fig. 1. Two pomsets. Events are represented as labelled 
circles, the partial ordering through its Hasse diagram 
growing downwards. 

semantics to them, since he complains about defining operationally "the 
meaning of expressions [-...] by reductions between expression" because 
this "forces an interleaving view of concurrent computation. ''~1) 

We have been challenged by this complaint to provide (parts of) his 
model with a distributed, truly concurrent operational semantics. This is 
because we are strongly convinced that any programming language should 
be provided with a formal operational semantics coupled with a 
denotational one, let alone with an axiomatic semantics, and that these 
semantics must be proved equivalent. While the denotational definition is 
particularly suited for reasoning about programs, the operational one gives 
a precise yet intuitive description of the language, as long as the chosen 
abstract machine is. Moreover, the denotational semantics does not 
provide us with any hint about implementation issues, while the 
operational one gives firm guidelines and points out difficulties and 
suggests solutions which can be more easily devised in its relatively abstract 
setting. When designing a concurrent language, which is still a hard 
research task, it is even more important to compare its denotational and 
operational semantics in order to remove any inadequacies, ambiguities, 
inconsistencies, and in order to properly monitor its behavior. 

Our starting point has been the previous work carried out by Ugo 
Montanari and by the first author, ~15,16) which aim at defining a setting in 
which concurrent languages could be equipped with partial ordering 
semantics, both operational and denotational, and in which com- 
positionality of the interleaving models could be combined with the 
expressivity of the true concurrent one. Also Refs. 2, 23-25 are relevant to 
this issue in that they provide CCS and CSP with a concurrent and dis- 
tributed semantics based on partial orderings. In order to show that the 
proposed technique is powerful enough, we will consider some relevant 
operators defined in Ref. 1 for composing pomsets. More precisely, we will 
deal with sequentialization (denoted by ";"), parallel composition ("lr'), 
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iteration of parallel composition (" t")  and N operator. We will not 
consider other operators, for the sake of brevity and because they have 
either already been studied (e.g., nondeterminism (2'24'25)) or they are similar 
to the ones we work with (e.g., iteration of sequentialization, "*"). Note 
that we will not deal with communication, since Pratt  ~1) defines no seman- 
tic operator for it, although an operational treatment of synchronization 
and communication is straightforward. (2,24,25~ The most difficult task we 
found was defining rules for expressing the behavior of N-terms which have 
never been operationally dealt with before, or explicitly discarded. (12) 
Furthermore, we stress the importance of the N-structure, since it is the 
typical partial ordering not definable using series/paralM operators, only. 

Our operational semantics requires a few steps to be defined. We still 
borrow from the interleaving approach the representation of (the states of) 
concurrent systems as terms, and the SOS style of defining their evolution, 
thus guaranteeing that our operational semantics is compositional. Our 
goal is to represent the evolution of a system as the causal relations among 
the events performed by sub-parts of its state. Hence, we will first decom- 
pose the term denoting a state into its sequential processes, namely into 
those sub-terms which may perform actions independently of each other. 
For instance, from the term b II c we obtain the following two sequential 
processes b lid and idl c. Tag "lid" records that sub-term b was in the left 
context of a parallel composition, and that it was enabled to perform an 
action b on its own; symmetrically for the other sequential process. The set 
of sequential processes obtained from a term in this way will then represent 
the distributed state of a system. 

The dynamics of a system is then described by a set of rewriting rules 
defined in the SOS style, via axioms and inference rules. A rewriting rule 
specifies how only some of the sequential processes in a distributed state 
may evolve, leaving the remaining ones idle. As usual, these rules are 
applied to a distributed state to get computations, which will finally be 
observed as pomsets. 

More in detail, a rewriting rule has the form I -  [a, N ]  ~ p, where I 
represents a set of sequential processes which may evolve by performing 
action a to the sequential process p. Thus, we may say that the sequential 
processes in I cause p through a. The relation N over sequential processes 
which also labels a rewriting rule gives additional information about the 
causal relation, since it may happen that there are other sequential 
processes (forming a state J) which are caused by (some) sequential 
processes in I (forming a state I'___ I), but not by a. Since causality will 
later on be represented by a partial ordering relation ~<, we will express 
this fact as {p '<~p lp '~ I ' andpeJ} ,  or I~<J, for short. The intended 
meaning of applying a rewriting rule to a distributed state is that the set I 
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occurring in it can be replaced, after showing an event (labelled by) a, by 
sequential process p and all the sequential processes in I'. In this way we 
obtain the new distributed state. As an example, consider the system state 
denoted by term a; (bll c) which has only one sequential process. After 
performing event a, state 1; (b IJ c) is reached (term 1 represents the process 
which cannot perform any event) which again has a single sequential 
process. Nevertheless, the parallel composition of b and c is enabled; for 
instance sequential process b lid can evolve by performing b to the sequen- 
tial process 1lid, independently of the other sequential process idle. A 
rewriting rule will be deducible recording both the evolution of b lid and, 
through relation ,~, that 1; (b lie), but not event b, causes idle; sym- 
metrically when the sequential process idle moves first, in temporal 
ordering. In other words, relation N expresses the fact that idJc may 
perform event c concurrently with event b. Formally, we have in the first 
case the rewriting rule {1; (b 11 e)} - [b, 1; (b Jl c) ~< idJ c] --, 1 lid, pictorially 
represented in Fig. 2; in the second case we will have rewriting rule 
{1; (b i l e )} -  [c, 1; (bllc)<<,blid] ~ i d l  1. 

A computation is a sequence of sets of sequential processes, 
representing distributed states of systems, and of rewriting rules, 
representing the evolution of system sub-parts. From a computation, we 
finally obtain the wanted pomset, by keeping the essence of the causal 
relations contained in the rewriting rules, in spite of their strictly sequential 
application. Of course, in this example we may have two computations, the 
first one when event b occurs before c and the other with the inverse tem- 
poral ordering. In both cases, we get the same pomset, depicted in Fig. lb. 

Finally, the operational semantics of a term will be the set of all pom- 
sets obtained in this way. A richer structure can also be given to this set, 

J 1;(bile) I 

Fig. 2. A graphical representation of 
rewriting rule {1; (b rl c)} - [b, 1; (b IJ c) ~< 
idle]-- ,  1rid. Sequential processes are 
represented as labellecl boxes. 
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e.g., by defining event structures (21) or NMS's, O6) but we have chosen a 
simpler setting to easily compare Pratt's approach with ours. Indeed, we 
will define, for the common sub-language, the denotational semantics of a 
term by using the operators on pomsets introduced by Pratt(~); then, we 
will prove that the denotational and the operational semantics coincide in 
quite a strong sense, since the former proves to be fully abstract with 
respect to the latter. Due to the compositionality of both semantics, the 
proofs of these results are carried out by possibly boring, but 
straightforward structural induction. 

In literature, ('2''3) there are other approaches aiming at associating 
partial orderings to terms. However, the proposed techniques are not fully 
operational, unlike ours. Actually, these papers use transition systems, 
rather than rewriting systems. Thus, there is no notion of distributed state, 
and moreover their transitions directly carry partial ordering as labels, thus 
losing the notions of elementary step and of computation, as concatenation 
of them, in favor of a more denotational style. 

The paper is organized as follows. Section 2 introduces the simple con- 
current language we deal with, and the set of rewriting rules which specify 
the elementary steps of computations. In the same section we also extract 
pomsets out of computations, while in Section 3 we define the denotational 
semantics, we prove its equivalence with the operational one, and the fully 
abstractness of the former with respect to the latter. 

2. S Y N T A X  A N D  O P E R A T I O N A L  S E M A N T I C S  

In this section we introduce an abstract syntax for the simple 
concurrent language we are considering, and the set of rewriting rules that 
specify its operational semantics. 

A subset of the combinatorial operators proposed by Pratt (1) are dealt 
with here. We will not consider all operators, for the sake of brevity and 
because some of them have either already been studied (e.g., nondeter- 
minism) or they are similar to the ones we work with (e.g., iteration of 
sequentialization, "*"). Extending the definitions given in this section to 
deal with such operators is only a clerical matter. The definition of the 
syntax of the language follows. 

Def in i t ion  2.1. Given a finite alphabet L" of actions, ranged over 
by a, b ..... an agent is a term defined by the following BNF-like grammar. 

E : := 1/a/E;  E/EIIE/E*/N(E, E, E, E) 

The intuition behind agents is as follows. Agent 1 represents the empty 
pomset. Operationally, 1 is an agent which cannot perform any actions. 
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Agent a denotes the pomset with only one event labelled by a, i.e., the 
agent which can perform action a and then stop. Agent E'; E" stands for 
the concatenation of the pomsets of E' and E', that can be generated by 
building on these pomsets in sequence. Agent E' [] E" denotes the disjoint 
union of the pomsets of E' and E", obtained operationally by indepen- 
dently generating the events of the two operands of "[[". Thus, neither com- 
munication nor even synchronization are allowed. Agent E t represents the 
set of finite pomsets denoted by agents 1, E, E [[ E, E H E ][ E, .... Again, one of 
the pomsets of E t is operationally determined by independently generating 
the events of every copy of E. Finally, the agent N(Ex, E2, E3, E4), 
denoting the N-shaped pomset, is operationally dealt with as 
(El; E3)[[ (E2; E4), with the additional constraint that all the events of E1 
precede those of E4. 

Our goal is to define the causal relations among the events performed 
by sub-parts of a distributed state of a system. Thus, we have to single out 
of an agent those subterms which represent its sequential processes, which 
are, roughly speaking, all those sub-terms with a sequential operator at 
top-level. First, we give the syntax for them. 

D e f i n i t i o n  2.2. (Sequential processes) A sequential process, or 
process for short, is a term defined by the following BNF-like grammar. 

P : : =  1 / a / E  t / P ; E / P l i d / i d l P / ( P ,  E > IN/NI( P, E> / I I N, 

where E is an agent. 
We will use p and I, J (possibly indexed) to range over sequential processes 
and sets of sequential processes, respectively. 

Intuitively speaking, a sequential process of an agent E represents one 
of its sub-agents, together with its access path, used to take into account in 
which context within E the sequential process p was plugged. As an exam- 
ple, a lid; (c [I d) and id[ b; (c [[ d) are the sequential processes of the agent 
a [I b; (c [[ d). The access path of the former is lid; (c [[ d) which records, via 
"[id", that the sequential process was put in parallel with another one of 
the form idlp, and also records, via ";(c [[ d) ' ,  that it was followed by agent 
(c [[ d). Of course, we consider agents 1 and a as sequential. We consider 
also E t as sequential, for the specific technique we will introduce in 
Definition 2.5 to generate the needed copies of E. Recursively, tags are 
attached to a sequential process in order to reflect the syntactic structure of 
the agent from which it is originated. More in detail, tag ";E" may be 
attached to a sequential process p obtaining the sequential process p; E 
which expresses the fact that p; E was part of an agent of the form E'; E. 
We also call E the continuation ofp. As already seen in the previous exam- 
ple, both sequential processes have as continuation the agent c [[ d. In the 
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case of parallel composition, we replace II by two unary tags, "lid" and 
"idr', which record that there are sequential processes that can evolve 
concurrently. Back to our example, the sequential process alid; (c[Id) is 
enabled to perform action a concurrently with action b which can be 
performed by idl b; (c II d). Analogously, tags "IN" and "NI" represent both 
the context N(E1, E2, E3, E4) and the fact that E1 and E2 are enabled to 
proceed independently. Information about the remaining two operands E3, 
E 4 is kept in the second element of the pairs. Finally, also 1 iN  will be 
considered for technical reasons as a sequential process: it will be used in 
actual computations as a sentinel keeping track that all the sequential 
processes of E~ are terminated. 

Sequential processes are obtained from agents via the following 
decomposition function. 

D e f i n i t i o n  2.3. (Decomposition function) Function dec, defined 
inductively, maps agents to sets of sequential processes. 

dec(I)  = {1} dec(a) = {a} 

dec(E*) = {E t } dec(E1; E2) = dec(Ea); E 2 

dec(E1 II g2) = dec(E1) lid w idl dec(E2) 

dec(N(Ea, E2, E3, E4))= (dec(El) ,  E3 )IN w Nl(dec(E2) , E4)  

In this definition, and from now onwards, the application of a syntactic 
constructor to a set of sequential processes I, is understood to operate 
elementwise, e.g., (I ,  E ) I N =  {(p ,  E ) I N  I peI} .  

Later on, we will use sets of sequential processes to represent the states 
which a concurrent system can pass through during a computation. We call 
these states distributed, since their components can be allocated in different 
places, and can proceed on their own, as we will show in a while, without 
requiring any centralized control. As expected, we will use dec(E) as the 
initial distributed state of a computation generating the set of pomsets 
denoted by E .  Function dec is obviously injective, but not all the 
distributed states reachable in a computation are in direct correspondence 
with agents via dec. The main reason is that a distributed state could 
contain sequential process 1 IN which does not occur in the decomposition 
of any agent (recall that it represents termination of all the sequential 
processes of the first agent of an N-agent). An instance of such a dis- 
tributed state is {P6, PT, P3} of computation ~1 in Example 2.3. As a 
matter of fact, it is possible to define a many-to-one correspondence 
between sets of sequential processes and agents, at the cost of having a 
more  intricate decomposition, relying on a relation instead of a function. 
For something in this line, refer to Ref. 24. 
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Example  2.1. 

dec((a IIb); (c II d)) = dec((a II b)), (c II d) = {a lid; (c II d), id[ b; (c II d) } 

dec(N(a, b, c, d)II N(e, f, g, h)) 

= dec(N(a, b, c, d))lid w id[ dec(N(e, f g, h)) 

= {<a, c>lN, Nl<b, d>}l idu id l{<e ,  g>lN, NKf,  h>} 

= {((a,  c>[N)Jid, (Nl(b, d>)[id, idJ((e, g>[N), id[(N](f, h>)} 

dec(N(a II b, c, d, e)) = (dec(a IIb), d>/N u {N/(c, e> } 

= ( {a  lid, idl b}, d>lN ~ {Nl<c, e >} 

= { <alid, d>JN, <idl b, d>lN, NI<c, e>} 

Before introducing the dynamics of our formalism, we need some 
notation used to describe the causal relation between sets of sequential 
processes. 

2.1. N o t a t i o n  

Let ~ be a binary relation over sequential processes, by ~ 2  we 
understand the set {yl  Sx<x, y)~N?}; a pair (x,  y> belonging to N, will 
be also written as x~< y; given two sets of sequential processes I and 
J, 1 4  J will stand for {x ~< y I x ~ I and y ~ J}. 

Furthermore, we consider tags to be extended on ~ too, e.g., 

~ l i d =  {<xlid, yl id> ] <x, y > E ~ }  

and 

<Yl, E>IN= { < <x,E>IN, <y,E>IN> > I <x, y>r  

The set of rewriting rules specifying the behavior of sequential 
processes is defined via axioms and inference rules in the SOS style. A 
rewriting rule has the form I -  [a, N ]  ~ p, the intuitive meaning of which 
is that the set of sequential processes I may become the process p after per- 
forming action a. Thus, we may say that each sequential process of I causes 
process p through a. The information about other sequential processes 
which can be caused by I but not by a is recorded in ~.  The pair 
(P l ,  P 2 ) ~ s 8  will be written also as Pl ~<P2, since the same symbol ~< will 
be used later to denote the causal relation of a pomset. Note that if pl ~< P2, 
we have that Pl ~/,  P2 # P and that Pl,  but not action a, causes process P2. 
Thus, ~ records that there are agents that may perform actions which are 

828/16/6-3 
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concurrent with a. When the rewriting rule I -  [-a, ~ ]  ~ p is applied to a 
distributed state, it replaces the sequential processes of I with p and those 
of ~ + 2, while showing a. Note in passing that the absence of an explicit 
synchronization mechanism makes set I consist of a single sequential 
process, except when hidden synchronizations take place, via a join of ter- 
minated processes originated by a parallel or N composition. For instance, 
look at the case when both a lid and id[ b are terminated in (a [Ib); (c l[ d), as 
shown in the following example. In order to make examples more readable, 
we will draw rewriting rules as we have already done in the Introduction: 
processes (events) are represented as labelled boxes (circles) and the causal 
relation through its Hasse diagram growing downwards. In Fig. 3 we see 
derivation 

{ (1 lid); (c II d), (id[ 1 ); (c II d)} 

- [c, {(1 lid); (c II d), (idl 1 ); (c l[ d)} ~< {idl d} ] - ,  1 lid. 

Its starting distributed state {(1 lid); (c 11 d), (id[ 1); (c IId)} can be reached, 
for instance, from agent (a II b); (c II d) (its decomposition is in Example 2.1 ), 
by performing both concurrent actions a and b. (See also Examples 2.3.iii 
and 2.4.iii.) 

We can now give the dynamics of our formalism: first a predicate end 

is introduced to individuate those sets of sequential processes which are 
terminated and will eventually be joined since they have been originated by 
the same (sub-)term; then rewriting rules are defined through axioms and 
inference rules ~t la Plotkin./1~) 

] (llid);(clld)] (idll);(clld) ] 

Fig. 3. A graphical representation of rewriting 
rule { (1 lid); (c IId), (id 11); (c II d)} - [c, { (1 lid); 
(c II d), (idl 1); (c II d)} ~< {idl d}] ~ i lid. 
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Definition 2.4. (Terminated sets of processes) The predicate end is 
defined inductively on sets of sequential processes by the following axioms 
and inference rules 

end({ /} )  

end({E*}) 
end(I1) and end(I2) imply end(I1 lid wid112) 

end(I1) and end(I2) and end(dec(E3) ) and end(dec(E4)) 
imply end((I1, E3)INwNI<I2, E4> ) 

end(I2) and end(I3) and end(dec(E4)) 

imply end(/3 lid w {1 IN} w NI<I2, E4>) 

Of course, the singleton consisting of agent 1 is terminated. Also the 
set containing E* must be considered as terminated, because also the empty 
pomset is one of the behavior of E t. The termination of a parallel com- 
position, or of a N composition is that of all their arguments. The last rule 
is somehow ad hoc, conceived for dynamically dealing with termination of 
N(E t, E 2, E3, g4) and will be better understood afterwards. We only note 
that sequential process 1 IN and set 13 jid represent what remains after the 
complete evolution of E 1 and E3, respectively. 

From now onwards, given two sets of sequential processes I and J, we 
denote their difference by I-J which is defined only if J _ / .  

Def in i t ion  2.5. (Rewriting rules) The rewriting derivation relation 
I -  [a, N]  ~ p is defined as the least relation satisfying the following set of 
axiom and inference rules 

Act)  {a} -- [a,  ~ 3  --* 1 

Seq ) I -  [ a, ~ ] ~ p implies 

(dec(E)- / ' )  - [a ,  ~ ]  "-* p and end( l )  

imply 

Conc ) I -  [ a, ~ ] ~ p implies 

and 

Dagger) (dec(E)- / ' )  [a ,  ~ ]  ~ p implies 

{E*} --  [a ,  ~ ]  ~ p  implies 

and 

N) I [a ,  .~ ]  ~ p implies 

and 

(dec( E3)-l ') - [a, ~ ]  ~ p and end( l )  

imply 

wllel'e 

I; E -  [a ,  ~ ;  E ]  - ,  p; E 

1;E [ a , I ; E < ~ J ,  2 w l ' ] - - * p  

/lid - [a ,  ~ l i d ]  ~ p lid 

i d l I -  [a, id l~]  - ,  idl p 

{ E * } -  [a,  {E*} <~l' w N , ~ 2 ]  ~ p 

{E*} - [a ,  {E*} ~< idl dec(e) u ( ~ ;  2) l id] ~ p lid 

{E '}  - [a ,  {E*} ~< dec(E)  lid w idl(:~ ,L 2)]  ~ idl p 

( I ,  E > L N -  [a,  ( :~,  E>IN ] ---, ( p ,  E ) I N  

NKI ,  E )  - [a ,  N I ( ~ ,  E ) ]  --* NI<p, E )  

(1, E3)  I N -  [a,  ..~'] - - , p  lid 

~ ' =  <L E 3 ) t N < ~ ( { l l N } w l ' l i d w ( ~ { 2 ) l i d )  
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(dec(E4)-I') - [a, N] --+ p and end(I) 

imply 

where 

(dec(E4)-l') - [a, ~ ]  --* p and end(l~ ) 

imply 

where 

{lrN} wNKL E 4 ) -  [a, ~ ' ]  ~idl  p 

~,'=({llN}wNl(I, E4))<~(idlI'widl(:~;2)) 

and end(12) 

(I, ,  E 3 )IN w NI(12, E4 ) - -  [a, ~1 w ~2] --'* idl p 

~1 = ((I~, E3)IN w NI(I2, E4) ) ~< (idl l 'w idl(~ J, 2)) 

N%= (lj ,  E3) IN ~< dec(E3)lid 

We can now comment on our axiom and rules. There is no rule for 1, 
so this term will have only an empty behavior. Axiom Act) states that 
sequential process a can perform action a and then stop. First rule Seq) 
simply says that a set of sequential processes I with continuation E can do 
the same actions as I, provided that relation N and the caused process p 
are accordingly modified. The second rule is more complicated, since it has 
to forbid the component E of an agent E1 ; E to proceed until E1 is over, 
and to properly set the causal relations. In detail, a state I consisting of ter- 
minated processes, all with the same continuation E, can evolve to p only if 
some processes of E, namely dec(E)-/ ' ,  can do the same, leaving a set I '  
idle. As a consequence, all the processes in I; E cause the process p through 
the action a. Moreover, all the processes in I; E directly cause also those in 
I' which where.enabled to perform actions independently of the processes 
in dec(E)-I': Additionally, the rule expresses the fact that the processes in 

~ 2 are still concurrent with those of dec(E)-I', and thus with a. Note 
also that predicate end is used, making sure that all the sequential 
processes of E1 are terminated (thus they must be joined) and that all of  
them will cause the processes of E. Example 2.2.i) below reports an 
application of the second rule Seq). Rules Conc) allow concurrent sequen- 
tial processes to proceed asynchronously, thus ensuring causal indepen- 
dency. Information about the context where concurrent processes operate 
is consistently reported also in relation N via tags "lid" or "idl". First rule 
Dagger) allows E* to behave as E. Given a possible behaviour of E*, the 
remaining two rules recursively state that its behavior can be the same as 
that E* liE or EllE*, too. This fact is assured by introducing the sequential 
processes of E as idles by means of relation N. Note that n copies of E are 
put in parallel by a rewriting rule deduced with a proof in which the first 
rule Dagger) with dec(E)-I' - [a, Y2] --* p as premise has been used once, 
and then the second or third rule Dagger) have been used n-1 times (see 
Example 2.2.ii). As mentioned before, E* can also behave like the empty 
process 1, since end({E*}) is true. As regards rules N), let us recall that 
N ( E ~ ,  E 2 ,  E 3 ,  E 4 )  operationally behaves like (E~; E3)I[ ( E 2 ;  E 4 )  with the 
constraint that all the events of E~ precede those of E4. The first two rules 
are similar to Conc) rules and express the concurrency between E~ and E2. 



Partial Ordering Models for Concurrency C a n  B e  Defined Operationally 463 

Instead, the third and fourth rules are similar to the second Seq) rule in 
that they enable the processes of E 3 and E 4. When a process of E3 starts, 
sequential process 1 [N is introduced to record termination of El.  On the 
other hand, this very process is needed to enable E 4. The last rule permits 
the processes of E 4 to proceed independently of E 3 (they are concurrent), 
provided that E 1 and E2 are completely evaluated; this requires the sequen- 
tial processes in dec(E3)lid to be greater than those in (11, E3)IN, but 
not than those in NKI2, E4). As a matter of fact, the N-context fades in a 
I[-context, as soon as the processes of E 3 or E 4 are enabled. Example 2.2 
may help to clarify how rewriting rules are deduced,  and Example 2.3 
shows how they will be used in actual computations. 

Note that relation ~ is actually needed in rules Seq) and N). As 
already mentioned, note also that only these rules deal with an implicit 
synchronization of many processes, which will form the set I of the 
rewriting rule I -  [a, ~ ]  ~ p. 

Example 2.2. We completely work out the derivations of two 
rewriting rules, the first of which is depicted in Fig. 3. 

i) 1. {e} - It, 2~] --, 1 by Act) 
2. {clid} - [c, ~ ]  ~ / l i d  by 1 and Cone) 
3. end(/)  by Definition 2.4 
4. end( { 1 lid, idl 1 } ) by 3 and Definition 2.4 
5. {(1 lid; (cHd), (id[1); (el]d)} - [e, ((/ l id);  (c rl d), (idl 1); (ell d)} ~< {idld}]--*/l id 

by 2 and 4 and second rule Seq) 
(note that dec(c J[ d ) -  {id[d} = {c[id}) 

ii) 1. { a } -  [a, ~ ] - -*  1 by Act) 
2. {a'*} - [a, ,~]  ~ 1 by 1 and first rule Dagger) 
3. {at}-[a,{at}~{alid}]--*idll by2andsecondruleDagger) 
4. {a t } -- [a, {a t } ~ {idla, (alid)Jid}] ~ (idJ1)Iid 

by 3 and third rule Dagger). 

We now introduce our notion of computation as a finite sequence of 
states and rewriting rules. This notion is not the standard one, e.g., that of 
computation for transition systems, since we are dealing with rewriting 
systems which better reflect the asynchrony of our model. 

Definition 2.6. (Computation) A sequence 

( =  {J0 1 1 -  ra l ,  ~1] --*Pa J1 1 2 -  [a2, ~2] --*P2 

J2..'J,_l L - [ a , , ~ , ] ~ p ,  J,} 
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is a computation of E if 

i) �9 J o = d e c ( E )  
�9 J i  is a set of sequential processes, and 
�9 Ii - [ai, N~] -* p~ is a rewriting rule, 0 < i ~< n; 

ii) �9 I~cJ~_ l , and  
�9 J i = ( J i _ l - I i )  vA~i~Zu {p~},O<i<~n. 

Computation { is terminal if end(J,) holds. 

Note that {dec(E)} represents an empty computation of E. When 
E =  1, {1} is its only (terminal) computation; when E=E~, { e l }  is also a 
terminal computation of E~, since end(E~*) holds. The following example 

PO Pl P2 ~P0 0> ~p,, 0> 

PO Pl P3 0+ e2 [ 

<P4 '2:' <PI ';ie3 

P4 Pl P3 ,p4 i~_. ~ 3 

<P6' 4~ 

P4 P5 P3 
'P6' 5, 

b) 

P6 P7 P3 

P8 P6 

~P2' 0, 

~P3' 1, 

I 
~P3 ] 2~ 

'P3' 3, 

~P7' 4~ <P3' 47 

~Ps' 3~ 

a) c) 

Fig. 4. A graphical representation of the computation ~1 of agent N(a [I b, c, d, e), 
given in Example 2.3.i (part a)); relation F* (part b)) and the generated pomset 
(part e)), given in Example 2.4.i. 
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shows three instances of computation involving the "N" the "*", and the ";" 
operators; their pomsets will be built in Example 2.4, and shown on 
Figs. 4-6. 

E xa mpl e  2.3. 

i) Given agent E l = N ( a l l b ,  c,d,e),  consider the sequential 
processes 

po=(alid, d)l N pl=(idlb, d)l N p2=Nl(c,e) 

p3=N[(1, e) p4=(l[id, d)lN ps=(id[1, d)[N 

P6 ----- 1 lid P7 = 1 IN P8 = id[ 1. 

From dec(E1)= {Po, Pl, P2} the following terminal computation starts. 

~1 = {{Po,Pl,P2} {P2} -- [-C, ~ ]  --*P3 {Po,Pl,P3} {Po} -- [a, ~Z~] --*P4 

{P4,P,,P3} { P l } -  [b, ~'] --)'P5 {P4,Ps,P3} 

{P4 ,Ps} -  [d, {P4,Ps} ~<P7] --~ P6 {P6,P7,P3} 

{P7,P3} -- [e, ~ ]  --*P8 {P6,P8} }. 

p0 

p~ p; ~; 

P'4 P; p; 

p'~ ~; p; 

<p' 0~ 

~p' 1~ 1' 

e'2 1 ~p 2~ 

~p~, 3, 

<P'3 1~ <p~, 1, 

<P3 2~ 2~ <P2 

( e' 3 
,p , 3, ~p , 3, 

b) 

e' 2 e' 1 e' 3 
(9 | | 

a) c) 

Fig. 5. A graphical representation of the computation ~2 of agent a t, given in 
Example2.3.ii (part a)); relation F* (part b)) and the generated pomset 
(part c)), given in Example 2.4.ii. 
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ii) 

Degano and Marchetti 

Given agent E2 = a t, consider the sequential processes. 

p'o=a * p'~ = (alid)lid p [ = i d l a  

p; = (idll)lid p;  = (1 lid)lid p~=id[1  

We have that from dec(E; )=  {p;} the following terminal computation 
starts. 

r = {{p;} { p ; } -  [a, {p~}} ~< {P'I,P~}] --*P'3 {P'I,P'3,P'2} 

{p]} - [a, ~ ]  ~P'4 {P'4,P'3,P'2} 

{p~} - [a, ~ ]  ~ P'5 {P'4,P'3,P'5} }. 

~ P i 

? 

P2 P'; 

Fig. 6. 

<P( 

( 
<p' 

<p 

e" 3 

<p 

0> <P'I 

1 > <p'~ 

,3> <p~ 

,4> <P"6 

b) 

0> 

I7 

le2 

2> 

3> 

e'~, 

4> 

e'i ~ x ~  e''2 

e'~ e'~ 

a) c) 
A graphical representation of the computation 43 of agent (a lib); 

(c IId), given in Example 2.3.iii (part a)); relation F* (part b)) and the generated 
pomset (part c)), given in Example 2.4.iii. 
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iii) Given agent E3 = (a IIb); (c [I d), consider the sequential processes. 

p~=alid;(c[ld) Pl"-idlb;(clld)- P2"=llid;(cl]d) 

p'3'=id[1;(c[[d) p~'= 1 lid p~' = id [d  

P6' = id[ 1 

We have that from dec(E3)= {Pd, P;} the following terminal com- 
putation starts. 

32 = {{Pd, P'~} {P;'} - [a, ~ ]  ~P2 '  {P~',PI'} {Pi} - [b, ~ ]  --* p;' {P2', P;'} 

{P;',P'3'} -- [c, {p•',p;'} <~ {p;'}] --* P'4' {P'4',P'5'} 

{p;'} - [d, ~ ]  --.pg {P2, Pg}}. 

From a computation, which is inherently sequential, we extract its 
pomset that records all the causal dependencies among its events. Essen- 
tially, this is done as follows: first an event e labelled by a is associated with 
every rewriting rule I - I - a ,  N]  ~ p with the obvious causal dependencies 
between the processes in /, the new event and the process p, and those 
causal dependencies expressed by N; then this relation is reflexively and 
transitively closed; finally all processes are removed to get the wanted 
pomset. We first recall the notion of pomset. (1) 

D e f i n i t i o n  2.7. (Pomset) A labelled partial ordering is a 4-tuple 
( V, S, ~<, p ) ,  where 

�9 V is the vertex set of events 

�9 X is the alphabet of actions 

�9 ~< is a partial ordering relation on V, called the causal relation 

�9 #: V ~ S is the labelling function 

Two events el and e2 are concurrent if neither e 1 ~< e2 nor ez ~< el. 
Two labelled orderings of events are isomorphic if there exists a label- and 
order-preserving bijection between their events. 
A pomset (partially ordered multiset) h = [ V, S, ~<,/~] is the isomorphism 
class of a labelled partial ordering. 

D e f i n i t i o n  2.8. (Generating pomsets) Given a terminal 
putation of agent E 

4 = {J0 1 1 -  [a l ,  ~1] ~ P ~  J1 I 2 -  [a2, Nz]--*P2 

J2 . . . Jn_ ,  In-- Jan, ~t~n] --~p, J ,} 

c o r n -  
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the pomset I-V, Z', ~<, #] generated via 4, denoted by [E]r is defined as 
follows. 

i) Let V= {el ..... en} and B =  { ( p , i )  lp~J~}; 

ii) Let F* be the reflexive and transitive closure of relation F defined 
on V~ B by the following inference rules 

" P ~ J i -  1 --// implies 

�9 p ~/~ implies 

�9 p c  ( J e -  ( J e - l - I , ) ) - ~ e ~ 2  implies 

�9 ( P l , P 2 )  ~Jti  implies 

( p , i - - 1 )  F ( p , i )  

(p,  i - l )  Fe i  

ei F (p,  i )  

(P l ,  i -  1) F (P2, i ) ;  

iii) Let S =  {ai}; ~< be the restriction of F* to S; and #(ei) = ai. 

We now briefly comment on this construction. In order to obtain the 
pomset generated by a computation ~ two sets are constructed, the first 
consisting of events, the second of instances of processes, and then we 
determine the orderings over them. Index i in (p,  i )  is used to create a 
fresh instance of the process p which occurs in the distributed state Ji. The 
link between event e~ and the ith step of the computation I~-  [al ,  ~i]  ~ Pi 
is crucial for determining the causal ordering ~<. First, an auxiliary causal 
relation F* between process instances and events is set by closing 
reflexively and transitively the causal ordering of the rewriting rules. More 
in detail, the first inference rule relates the two instances (p,  i - 1  ) and 
(p,  i )  of the same process p, which is idle in the ith step of the com- 
putation since it belongs to J i - 1 - L  = J i - ( ~ i ~ ,  2 u {p;}). The second rule 
makes a process p smaller in F than the actual event e~ it performs; the 
third one makes this event smaller than the process p produced by this ith 
computation step. The last rule takes into account relation ~ for 
establishing the causal dependencies between a process p ~ L and those 
processes generated by p, but not by the event ei. Note that making 
instances of the processes which occur in different states is crucial since it 
guarantees that relation F* is acyclic, and makes it correctly mirror the 
flow of time. Eventually, the pomset generated by ~ is obtained by keeping 
only the events, by labelling them in the obvious way, and by restricting 
the causal ordering accordingly. Example 2.4 illustrates this construction. 

E xa mpl e  2.4. Given the agents and the computations of Example 
2.3, we have that 

i )  [ - E 1 ] ~ 1 =  [-Vl, ~Y'I, ~1, #1], where 

�9 V l = { e l , e 2 ,  e3, e4, es}; �9 S l = { a , b , c , d , e } ;  

�9 {e l  <~1 es, e2 <~1 es,  e3 4 1  es,  e2 <~1 e4, e3 <~1 e4, ei 4<.1 el};  

�9 g l ( e l )  = c,  # 1 ( e 2 )  = a, pl(e3) = b, ]Al(e4)  = d,/21(e5) = e. 
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ii) I-E2] 32 = [- V2,  X 2 ,  ~ 2, ].22], w h e r e  

�9 V 2 =  {e'l,  e~, e ; } ;  �9 L" 2 =  { a } ;  

�9 {e'i~<z el); �9 #2(el)=#z(e;)=#2(e~)=a.  

iii) [E3]~3 = IV3, 2;3, ~<3,/~3], where 
tt tt it tt . �9 { e , ,  e2 ,  e4 }, �9 = (a ,  b, c, d } ;  

tt it tt tt t/ . 

�9 {e~ ~< . . . . . . . .  <<-3 <<-3 ei }, ".~.3 e3 ~ e l  ~ 3  e4} e2 ~ 3 e 3 ~  e2 e 4 ,  e i  

[ /! \ - -  a P! 
�9 #3~,el ) - -  , / t3(e2 ' )  = b , / ~ 3 ( e ; ' )  = c, 1~3(e4 ) = d. 

Figures 4-6 show computations 41, 42 and ~3, an intermediate step of the 
construction of Definition2.8 after having determined F*, and the 
generated pomsets. 

In the pomset represented in Fig. 4), event e4 (labelled by d) has been 
generated in correspondence to a rewriting rule temporally applied before 
the one corresponding to event e5 (labelled by e), but it is easy to see that 
the two concurrent events could also be generated in the inverse temporal 
ordering. It suffices to substitute the last two steps of the computation 41 
with the following 

{P4,Ps,P3} {P4,Ps,P3} - [e, {P4,Ps} <. {P~}] ~P8 

{P~,Ps} {P~}-  [-d, ~ ]  ~P6  {P6,Ps) 

where p~=d]id, and the first rewriting rule is obtained via the last N) 
inference rule. 

This fact holds in general, since the rewriting system of Definition 2.5 
is completely concurrent, in the terminology used in Ref. 16. Roughly 
speaking, complete concurrency says that, given two concurrent events in 
the pomset [E]~ (generated by computation r there always exists another 
computation 4' where the two events are generated in inverse ordering, and 
such that [E]r = [E]r In other words, we can say that all and only the 
linearizations of a partial ordering are induced by computations. An 
immediate consequence is that the operation of linearization introduced by 
Pratt fs implicitly present in our operational semantics: it suffices to let 
event ei be smaller than ej if i<  j. The proof that the rewriting system of 
Definition 2.5 is completely concurrent is long and outside the scope of this 
paper; we only note that two symmetrical rules Dagger) (the second and 
third) have been introduced to this purpose, in place of a single one, 
encompassing both. 

We finally define the operational semantics of an agent E as the set of 
pomsets generated via the terminal computations of E. Even if there is no 
explicit nondeterministic operator, the simple language defined is nondeter- 
ministic, because of operator "?". 
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Def in i t ion  2.9. (Operational semantics) Given a term E, its 
operational semantics is defined as 

[ E l ,  = { [E]r is a terminal computation of E}. 

The operational semantics for the basic language we consider here has 
been defined through a set of inference rules which are driven by the syn- 
tactic structure of terms, and thus it is compositional, a crucial property 
that any semantic definition must enjoy. We also remark that com- 
positionality provides us with the means for easily proving in the next sec- 
tion that the denotational semantics of the language is fully abstract with 
respect to the operational one. 

3. E Q U I V A L E N C E  OF O P E R A T I O N A L  A N D  D E N O T A T I O N A L  
S E M A N T I C S  

The operational semantics defined in the previous section formally 
describes the behavior of concurrent systems, mimicking the intuition 
behind their dynamics. Denotational semantics is more abstract and com- 
plementary to operational semantics in that it takes no account of any 
implementation issues. Moreover, it makes reasoning about systems easier, 
since it is compositional and properties of the semantic domain can be 
exploited. Of course, the two semantics must agree, and their equivalence 
must be formally established, so that either semantics can be properly used. 
We will show that there is quite a strong equivalence between the seman- 
tics of the simple language considered here. First, we will recall Pratt's 
definitions of the needed semantic operators on pomset, through which we 
define the denotational semantics of the language. 

Def in i t ion  3.1. (Pratt's operators on pomsets.) Let hi = [Vi, Si, 
<~ ~, #i], Vi n Vj = ~ ,  i 4= j 1 ~< i, j ~< 4, be four pomsets; we consider the 
following operators on them, which are understood to operate elementwise, 
when applied to sets. 

;) hl ;h2=[VlwV2,  S I ~ S 2 ,  <~lW ~<2w V1 x Vz,#1w#2]; 

I[) hll lhz=[WluW2, SawS2,  < ~  --.<2,#au#21; 

l") h~= U~Nat (h~) ~, w hereh~ [#3, ~ ,  ~Z~, ~ ]  and (h~) ~+~ =hl[[(hl)i; 
N) N(hl,h2, h3, h4)= [Vxw V2~ V3w V4, S l w S 2 ~ S 3 w S 4 ,  

~1 t,-) ~2  k..) ~-~3 k..) ~4k.) V I x  V3L-) V z )  V4 k-.) V 1 )  V 4, 

# l w # 2 w # 3 w # 4 ] .  
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The intuition underlying these semantic operators is explained as 
follows. Two pomsets are sequentially concatenated through ";" resulting in 
a pomset where all the events of the first pomset precede all the events of 
the second one. Concurrently composing two pomsets via "[l" means 
letting them lie side by side. Operator "*" generates a set of pomsets 
obtained by concurrently composing finitely many copies of the given pom- 
set. Finally, four pomsets are composed into a N-shaped pomset via 
operator "N". Note that operator ,,t,, is well-defined since the power of 
pomsets is continuous, as well as all the other operators, on sets of pomsets 
ordered by inclusion. Note also that all the operators are strict. 

The denotational semantics of the simple language introduced in Sec- 
tion 2 can now be easily defined by inducing on the structure of terms. It 
reflects the intuitive description of agents given after Definition 2.1. As was 
the case for operational semantics, also the denotational semantics of a 
term turns out to be a set of pomsets, due to the operator "*" 

Def in i t i on  3.2. (Denotational semantics) Given a term E, its 
denotational semantics, denoted by [E]~, is defined by structural induc- 
tion as follows. 

[z ]d= {E~, ~, ~, ~ ] } ;  

[E, ; E2] d = [E , ]d ;  [E2]d; 

[E*]d E *" = [  ]~, 

[ a ] d =  {[{e}, {a}, {e<~e},#(e)=a]}; 

gEl II E2ld = EElldll [E2]d; 

I N ( E l ,  g2, g3, g4)]d 

=N([E1]d,  [E2]d, [E3]d, [E4]d). 

The next theorem will show that the denotational and operational 
semantics coincide. 

T h e o r e m  3.1. (Operational semantics=denotational semantics) 
For every agent E, [E]d = [E]o. 

Proof. It suffices to prove by structural induction that, given an 
agent E, a pomset h belongs to [E]~ if and only if it belongs to [E] d. 
The base cases are when the agent is either I or a, and the proof is 
trivial. We now proceed by case analysis, inductively assuming that 
[E,]~ = [E; ] .  

E =  El; g 2. 
if-part) h ~ [El ; g21d implies h ~ [El; g2] ~. 
Before proving the claim, we introduce an operation ";E" which transforms 
a given computation 

~= {dec(E') rl Jl " " J , - 1  rn Jn} 
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in the following computation 

4; E2 = {dec(E'); E rl; E Jl; E - . . J .  1; E r.; E J.;  E}, 

where ri; E is obtained with first rule Seq) with premise ri and continuation 
E. More precisely, given a rewriting rule r i = I - [ a ,  Y l ] ~ p ,  then 
ri; E =  I; E -  [a, ~ ;  E] ~ p; E. 
By inductive hypothesis we know that there exist two terminal com- 
putations 

41= {dec(E1) rl J l " " J n - 1  r. J.} 

42 = {dec(E2) d e c ( E 2 ) - I - [ a , ~ ]  ~ p  J] ""J~, -1  r"  J ' }  

which generate pomsets hi belonging to [E~] d = [ E i ]  o, i =  1, 2. 
Since 41 is terminal, end(J.) holds. From it and dec(E2)-I-I-a, ~ ]  ~ p  
(i.e. from the first rewriting rule of 42) we can deduce, by using the second 
rule Seq), the rewriting rule 
r = J .  ; E2 - [a, J . ;  E2 ~< ~ + 2 w I] ~ p. It is easy to see that computation 

4 = {deC(El); E2 rl; E2 J1;Ez. . .J ._I;  E2 r.;E2 Jn;E2 
, j - }  r J ' l""J"  1 rm 

originates exactly h=hl;h2, since all the sequential processes of J.;E2 
dominate in rule r (either via a or relation J . ; E 2 ~ < ~ J . 2 w I )  all the 
sequential processes of J] .  
only if-part) h ~ [El;  E2] ~ implies h E [El;  E2] d. 
We have a terminal computation ~ for E 1 ; E2 generating h, 

4 =  {dec(El);E2 rl;E2 J1;E2""Jn-1;E2 rn;E2 J.;E2 

r J ' l ' " J "  i ~" J ' } .  

We certainly have that end(J.), because all the sequential processes 
produced by E1 must terminate in order to enable those of E 2. Thus, we 
can extract from 4, the following terminal computation for E1 

41 = {dec(Ea) rl S a ' " J . - 1  r.  J.} 

which generates a pomset h~ which, by inductive hypothesis is 
such that hl~[E1] d. Also, we have that rule r in r has the 
form J . ;  E2 - [a, J . ;  E 2 ~< ~ J, 2 w I ]  ~ p since it must have been 
obtained through the second rule Seq) with premises end(J.) and 
dec(Ez) - I - [a ,  ~ ]  ~ p .  Now, it is easy to construct the following com- 
putation 

~2 = {dec(E2) dec(E2)-I-  [a, ~ ]  ~ p  J'l" " ' J ' . , - I  rm' J~n} 

which is terminal for E2, since end(J~,) holds (recall that ~ is terminal) and 
generates, by inductive hypothesis, the pomset h2~ [E2].e. The claim 
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follows by noting that all the events of h I precede in h those of h2, thus 
h=hl;h2. 

E= EI II E 2. 
if-part) h e lEt [1E2] d implies h e [E 111E2] o. 
The proof is analogous to the previous one, provided that computations 41 
and 42 are modified by adding tags "lid" and "idr', respectively. Note also 
that the sequential processes of the two original computations are made 
distinct in the new computation obtained in this way, and thus the actions 
they perform will never be related by the generated partial ordering. 
only if-part) h ~ [El [I E2] ~ implies h ~ [El II E2]d. 
Again the proof is analogous to the one given for ";". One has to notice 
that from the given computation of E1 II E2, two computations of E 1 and E2 
can be derived. Each distributed state of the former can easily be split in 
two subsets consisting of all sequential processes with "lid" or "idr' 
as outermost tags. These subsets, provided that the outermost tags are 
removed, correspond to each distributed state of the required computations 
of E~ and E2. The required rewriting rules of these computations can easily 
be obtained in a similar way. 

E =  E t. 
if-part) h e [E*]d implies h ~ [E*],,. 
A further induction is needed on the number of copies of E which are put 
in parallel in h. Recall that we are dealing with finitely many copies, by 
definition, thus Peano's induction suffices. The number n of copies of E is 
related to which of the rules Dagger) has been used in deducing the 
appropriate rewriting rule, and, in particular, to the number of times that 
the second and third rule Dagger) have been used. When n = 0, i.e., when 
h=  [ ~ ,  2~, ~ ,  ~ ] ,  the claim holds since {E*} is the required terminal 
computation originating the empty pomset. The outermost inductive 
hypothesis suffice when n = 1, i.e. when h s [E]d .  Indeed, the first rewriting 
rule of every nonempty computation of E has been generated by using once 
the first rule Dagger). Also the inductive step is routine: if we have n copies 
of one of the pomsets of E in h, the second (third) rule Dagger) has been 
used n - 1 times. In fact, each of these application generates a new copy of 
dec(E), enriched with tag "lid" ("idr'), and we are reduced to the case "[[". 
only if-part) Follows by noting that rule Dagger) only generates finitely 
many (disjoint) copies of a pomset generated by an agent E. 

E = N(E,, & ,  E3, E4). 
if-part) h e [N(E,,  E=, E3, E4)]d implies h e [N(E1, E2, E3, E4)] ~. 
A computation for E is obtained by first modifying the computations {1, 
{2, 44, 43 of El, E2, E4, E3 to record the appropriate context, and then by 
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concatenating them in the given order. Concatenating computations 41 and 
42, and ~4 and r is done as in the case of "11". In order to concatenate ~2 
and ~4, the fourth inference rule N) has to be used. Actually, its premises 
ensure that ~1 and ~2 are terminated and relation NI is such that all the 
events of computations ~1 and ~2 are set smaller than those of ~4. Note 
also that the same rule lets all the events of computations r be smaller 
than those of 43 because of relation N2. 
only if-part) Just reverse the argument and take care of tags similarly to the 
case of "ll". | 

A straightforward consequence of the compostionality of the 
operational and of the denotational semantics is that the latter is fully 
abstract with respect to the former. ~26~ In other words, the equivalence, 
rather the congruence relation induced by the operational semantics coin- 
cides with that induced by the denotational semantics. Furthermore this 
congruence proves to be the minimal one. We need the notion of context 
C [ ]  which is, as usual, a term with one or more holes to be filled by an 
agent. A possible context is a term such as E PI ~ where �9 is a hole. When 
an agent, say E', is substituted for o, we obtain the agent EIrE'. Another 
example is context (Erl ~ ); ~ which may become agent (Ell E'); E'. Now we 
can state our fully abstractness corollary which follows immediately from 
the equivalence theorem and from the so-called fully abstractness in se (26~ of 
the denotational semantics. This property amounts to saying that, for every 
context C[ ] ,  [E l i  d = [E2]d if and only if [ C [ E 1 ] l d  = [C[E2]]o~, which 
is in our case obvious. 

C o r o l l a w  3.1. (Denotational semantics is fully abstract w.r.t. 
operational semantics) For every context C[ 3, [E, ]d  = [E2]d if and only 
if [C[E1]]o= [C[E2]]~ .  

CONCLUSION 

Our claim is that the semantics of concurrent languages is better 
defined within the true concurrency approach, where causal dependencies 
and independencies among the events performed by a concurrent system 
are explicitly represented through partial orderings. We also think that 
both an operational and a denotational semantics should be given and 
proved equivalent, the former for making intuition formal, the latter for 
making reasoning easier. Some languages have already been provided with 
a partial ordering operational semantics, but only classical operators for 
concurrency and sequentialization (plus nondeterminism) have been dealt 
with in the true concurrency approach. (2,12'13'15'16,23 25,27) Here for the first 
time, we have shown that a partial ordering based semantics can be 
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operationally defined also for concurrent languages with operators like N 
which are not expressible through the standard series/parallel ones, only. 
To the best of our knowledge, this operator has been given a denotational 
semantics only in Ref. 1, from which we have also taken other basic 
operators. 

The goal has been achieved by using labelled rewriting systems that 
describe how parts of a distributed state evolve, rather than more classical 
transition systems that relate global states. Thus, the abstract machine we 
use for defining the operational semantics needs a great deal of detail 
to explicitly express the dependencies and independencies of spatially 
distributed events which are performed by concurrent systems. Thus, 
implementation issues had to be taken into account in defining our 
(abstract) distributed interpreter, which adds further complexity to the 
more standard interleaving oriented transition systems. We remark that 
other models within the partial ordering approach are not completely 
satisfactory as a basis for giving a fully satisfactory true concurrent 
operational semantics. For instance, as they are, Petri Nets are not com- 
positional, and this fundamental property plays a crucial role in the present 
work. 

The paradigm we have followed in defining the operational semantics 
of our simple language is as follows. Given a term, representing a global 
state of a concurrent system, we have defined its distributed state as the set 
of its sequential processes, i.e., its simplest sub-terms that may perform 
actions independently. Then we have defined, in the SOS style, a set of 
rewriting rules which express the dynamics of a system by relating only 
those sequential processes that actually evolve. Non-conflicting rewriting 
rules can, in principle, be applied in parallel to sequential processes. 
Instead, we have represented a distributed computation as a sequence of 
(states and of) rules; nevertheless, the use of a sequential interpreter in 
place of a parallel one is only a simplification and does not affect the 
essence of the model. Actually, our rewriting system has the property of 
complete concurrency', (16) stating that two concurrent events can be 
generated in either temporal order. The operational meaning of a term is 
eventually generated by abstracting from the interleavings forced by the 
sequential interpreter and consists of a set of pomsets containing the per- 
formed events and the complete causal relations set up in the computation. 
Finally, a denotational semantics has been defined in terms of Pratt's com- 
binatorial operators on pomsets. 

We have proved that the denotational semantics is strongly equivalent 
to our operational semantics, in that they coincide and, additionally, in 
that the latter is fully abstract with respect to the former. To the best of our 
knowledge, such a result has been proved here for the first time in the true 

828/16/6-4 
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concurrency framework, even if it holds for an admittedly simple language, 
and we are confident that adding other operators will not affect it. We 
remark that all the proofs are carried out by structural induction and, 
though long and tedious, are straightforward because also our operational 
semantics is compositional. 

All the languages proposed so far have been developed within the 
interleaving approach, and thus their operators are strongly based on the 
series/paralM ones. These languages pay no attention to non-classical 
operators, like the N operator considered here. Note however that N- 
shaped pomsets could be obtained in this framework, with an obscure con- 
struction which resorts to auxiliary actions, synchronization and hiding, 
e.g., the TCSP (5> term ( (a ; (c l l~e ) ) l l {e} ( (e l l ;~b) ;d ) ) \ e ,  where e is an 
auxiliary action on which first synchronize and then restrict upon, 
originates the pomset of Figure la. Certainly, the interleaving approach 
does not call for such operators, or for any generalizations of them, or even 
for operators which make sense only when more complex semantic 
domains, with a richer structure than sets of pomsets, are considered, e.g., 
event structures (18'21) in which concurrencyr nondeterminism, causality and 
mutual exclusion originate intricate interplays. Thus, the problem arises of 
determining a minimal set of expressive operators, if any, through which it 
will be possible to define all the partial orderings meaningful in a specific 
semantic domain. Nonetheless, whichever operator is introduced, provided 
that it has an operational intuition, we are confident that the approach 
followed here will suffice to describe its behavior: decomposition functions 
and rewriting systems or related formalisms such as Petri Nets (t6'23'24'27) 
seem to be powerful enough for defining operationally the semantics of 
concurrent systems in terms of partial orderings, just as transition systems 
are the basis for giving operational semantics to sequential languages, and 
for defining interleaving models for concurrency. 
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