
International Journal of Parallel Programming, Vol. 16, No. 6, 1987

Partial Ordering Models for
Concurrency Can Be Defined
Operationally
Pierpaolo Degano 1 and Sergio Marchetti 2

Received December 1987; revised June 1988

Labelled rewriting systems are shown to be powerful enough for defining the
semantics of concurrent systems in terms of partial orderings of events, even in
the presence of non standard operators like N that is not expressible by means
of concurrency and sequentialization. This contrasts with Pratt 's claim. (1) The
maio operators proposed by Pratt are used here to construct terms denoting
concurrent systems, the behavior of which consists of partially ordered multisets
defined operationally. (~) Fully abstractness of the denotational semantics as
defined in Ref. 1 with respect to the operational one is finally proved.

KEY WORDS: Concurrency; partial orderings; pomsets; labelled rewriting
systems; operational semantics; denotational semantics; fully abstractness.

1. I N T R O D U C T I O N

Many models have been proposed in the literature for describing dis-
tributed concurrent systems considered as sets of sequential processes
which cooperate in accomplishing a task. These sequential processes may
be possibly located in different places, and each of them performs a specific
sub-task, at its own processing speed, with its own local clock, either in an
independent manner or through synchronizations with other processes for
communicating intermediate results. These models have been historically
developed following two main lines.

I Dipartimento di Informatica--Universitfi di Pisa, Corso Italia 40, 1-56100 PISA, Italy,
e_mail: degano@dipisa.uucp.

2 Selenia S.p.A., Via Tiburtina Km 12.4, 1-00100 ROMA, Italy, presently at LIST S.p.A.,
Piazza Mazzini 6, 1-56100 PISA, Italy.

451

0885-7458/87/I200-0451505.00/0 �9 1987 Plenum Publishing Corporation

452 Degano and Marchetti

In the first approach, often referred to as the interleaving approach,
e.g., see Refs. 3-10, features describing parallel composition and nondeter-
minism are added to sequential languages or to models for them (see, e.g.,
CSP (5) or CCS(9)). In this framework, a concurrent system is represented
by a term E, and its operational semantics is given through labelled trans-
ition systems. More precisely, a transition E - a - ~ E ' models the fact that
E evolves, by performing an event observed as a, to another concurrent
system E'. The state of a concurrent system is then represented as a
monolithic entity, and thus a global time and a centralized control are
implicitly assumed. Consequently, a total ordering among possibly spatially
separated and causally independent events is imposed, and concurrency is
expressed by the fact that concurrent events can occur in any order. In
other words, the operator of parallel composition is not primitive since it is
reduced to nondeterminism and interleaving. A major advantage of using
transition systems is that they can be defined in the so-called Structured
Operational Semantics style (11) (SOS for short), via axioms and inference
rules. Following this style, a transition for a term is deduced by inducing
on its syntactic structure in a merely compositional way.

The second main line followed in describing distributed concurrent
systems is often referred to as the true concurrent, or the partial ordering
approach. (1'12-21'28) Petri Nets (19) are perhaps the best known model within
this framework. Their starting point are nondeterministic automata which
have been enriched by giving states an additional structure of set to
represent distributed states, and by allowing transitions to involve only
some of the processes present in the actual state. Thus, neither a global
state nor a global clock are assumed. The behavior of systems is represen-
ted through the causal relations among the events performed by the com-
ponents of their distributed state. ~22~ The resulting abstract machine is then
much more complex than the one based on labelled transition systems,
thence the conceptual simplicity of the interleaving framework is lost in this
approach. However, we stand firmly on the partial ordering side, even
though its theory is not completely satisfactory, because it offers a
definitely better, always closer, and often simpler description of reality. See
Pratt's ~I) detailed discussion about this issue. As an example of the lack of
expressive power of the interleaving, see Fig. la) where there is an instance
of the well known N-structure which is not expressible in terms of con-
currency and sequentialization.

Pratt ~1) in a recent paper, strongly advocates the use of partially
ordered multisets, called pomsets, in modelling concurrency, further sup-
porting an increasingly growing interest in the true concurrent approach to
the semantics of concurrent systems. In his paper Pratt shows some
operators for defining a denotational model, and gives no operational

Partial Ordering Models for Concurrency Can Be Defined Operationally 453

a) b)

Fig. 1. Two pomsets. Events are represented as labelled
circles, the partial ordering through its Hasse diagram
growing downwards.

semantics to them, since he complains about defining operationally "the
meaning of expressions [-...] by reductions between expression" because
this "forces an interleaving view of concurrent computation. ''~1)

We have been challenged by this complaint to provide (parts of) his
model with a distributed, truly concurrent operational semantics. This is
because we are strongly convinced that any programming language should
be provided with a formal operational semantics coupled with a
denotational one, let alone with an axiomatic semantics, and that these
semantics must be proved equivalent. While the denotational definition is
particularly suited for reasoning about programs, the operational one gives
a precise yet intuitive description of the language, as long as the chosen
abstract machine is. Moreover, the denotational semantics does not
provide us with any hint about implementation issues, while the
operational one gives firm guidelines and points out difficulties and
suggests solutions which can be more easily devised in its relatively abstract
setting. When designing a concurrent language, which is still a hard
research task, it is even more important to compare its denotational and
operational semantics in order to remove any inadequacies, ambiguities,
inconsistencies, and in order to properly monitor its behavior.

Our starting point has been the previous work carried out by Ugo
Montanari and by the first author, ~15,16) which aim at defining a setting in
which concurrent languages could be equipped with partial ordering
semantics, both operational and denotational, and in which com-
positionality of the interleaving models could be combined with the
expressivity of the true concurrent one. Also Refs. 2, 23-25 are relevant to
this issue in that they provide CCS and CSP with a concurrent and dis-
tributed semantics based on partial orderings. In order to show that the
proposed technique is powerful enough, we will consider some relevant
operators defined in Ref. 1 for composing pomsets. More precisely, we will
deal with sequentialization (denoted by ";"), parallel composition ("lr'),

454 Degano and Marchetti

iteration of parallel composition (" t") and N operator. We will not
consider other operators, for the sake of brevity and because they have
either already been studied (e.g., nondeterminism (2'24'25)) or they are similar
to the ones we work with (e.g., iteration of sequentialization, "*"). Note
that we will not deal with communication, since Pratt ~1) defines no seman-
tic operator for it, although an operational treatment of synchronization
and communication is straightforward. (2,24,25~ The most difficult task we
found was defining rules for expressing the behavior of N-terms which have
never been operationally dealt with before, or explicitly discarded. (12)
Furthermore, we stress the importance of the N-structure, since it is the
typical partial ordering not definable using series/paralM operators, only.

Our operational semantics requires a few steps to be defined. We still
borrow from the interleaving approach the representation of (the states of)
concurrent systems as terms, and the SOS style of defining their evolution,
thus guaranteeing that our operational semantics is compositional. Our
goal is to represent the evolution of a system as the causal relations among
the events performed by sub-parts of its state. Hence, we will first decom-
pose the term denoting a state into its sequential processes, namely into
those sub-terms which may perform actions independently of each other.
For instance, from the term b II c we obtain the following two sequential
processes b lid and idl c. Tag "lid" records that sub-term b was in the left
context of a parallel composition, and that it was enabled to perform an
action b on its own; symmetrically for the other sequential process. The set
of sequential processes obtained from a term in this way will then represent
the distributed state of a system.

The dynamics of a system is then described by a set of rewriting rules
defined in the SOS style, via axioms and inference rules. A rewriting rule
specifies how only some of the sequential processes in a distributed state
may evolve, leaving the remaining ones idle. As usual, these rules are
applied to a distributed state to get computations, which will finally be
observed as pomsets.

More in detail, a rewriting rule has the form I - [a, N] ~ p, where I
represents a set of sequential processes which may evolve by performing
action a to the sequential process p. Thus, we may say that the sequential
processes in I cause p through a. The relation N over sequential processes
which also labels a rewriting rule gives additional information about the
causal relation, since it may happen that there are other sequential
processes (forming a state J) which are caused by (some) sequential
processes in I (forming a state I'___ I), but not by a. Since causality will
later on be represented by a partial ordering relation ~<, we will express
this fact as {p '<~p lp '~ I ' andpeJ} , or I~<J, for short. The intended
meaning of applying a rewriting rule to a distributed state is that the set I

Partial Ordering Models for Concurrency Can Be Defined Operationally 455

occurring in it can be replaced, after showing an event (labelled by) a, by
sequential process p and all the sequential processes in I'. In this way we
obtain the new distributed state. As an example, consider the system state
denoted by term a; (bll c) which has only one sequential process. After
performing event a, state 1; (b IJ c) is reached (term 1 represents the process
which cannot perform any event) which again has a single sequential
process. Nevertheless, the parallel composition of b and c is enabled; for
instance sequential process b lid can evolve by performing b to the sequen-
tial process 1lid, independently of the other sequential process idle. A
rewriting rule will be deducible recording both the evolution of b lid and,
through relation ,~, that 1; (b lie), but not event b, causes idle; sym-
metrically when the sequential process idle moves first, in temporal
ordering. In other words, relation N expresses the fact that idJc may
perform event c concurrently with event b. Formally, we have in the first
case the rewriting rule {1; (b 11 e)} - [b, 1; (b Jl c) ~< idJ c] --, 1 lid, pictorially
represented in Fig. 2; in the second case we will have rewriting rule
{1; (b i l e)} - [c, 1; (bllc)<<,blid] ~ i d l 1.

A computation is a sequence of sets of sequential processes,
representing distributed states of systems, and of rewriting rules,
representing the evolution of system sub-parts. From a computation, we
finally obtain the wanted pomset, by keeping the essence of the causal
relations contained in the rewriting rules, in spite of their strictly sequential
application. Of course, in this example we may have two computations, the
first one when event b occurs before c and the other with the inverse tem-
poral ordering. In both cases, we get the same pomset, depicted in Fig. lb.

Finally, the operational semantics of a term will be the set of all pom-
sets obtained in this way. A richer structure can also be given to this set,

J 1;(bile) I

Fig. 2. A graphical representation of
rewriting rule {1; (b rl c)} - [b, 1; (b IJ c) ~<
idle]-- , 1rid. Sequential processes are
represented as labellecl boxes.

456 Degano and Marchetti

e.g., by defining event structures (21) or NMS's, O6) but we have chosen a
simpler setting to easily compare Pratt's approach with ours. Indeed, we
will define, for the common sub-language, the denotational semantics of a
term by using the operators on pomsets introduced by Pratt(~); then, we
will prove that the denotational and the operational semantics coincide in
quite a strong sense, since the former proves to be fully abstract with
respect to the latter. Due to the compositionality of both semantics, the
proofs of these results are carried out by possibly boring, but
straightforward structural induction.

In literature, ('2''3) there are other approaches aiming at associating
partial orderings to terms. However, the proposed techniques are not fully
operational, unlike ours. Actually, these papers use transition systems,
rather than rewriting systems. Thus, there is no notion of distributed state,
and moreover their transitions directly carry partial ordering as labels, thus
losing the notions of elementary step and of computation, as concatenation
of them, in favor of a more denotational style.

The paper is organized as follows. Section 2 introduces the simple con-
current language we deal with, and the set of rewriting rules which specify
the elementary steps of computations. In the same section we also extract
pomsets out of computations, while in Section 3 we define the denotational
semantics, we prove its equivalence with the operational one, and the fully
abstractness of the former with respect to the latter.

2. S Y N T A X A N D O P E R A T I O N A L S E M A N T I C S

In this section we introduce an abstract syntax for the simple
concurrent language we are considering, and the set of rewriting rules that
specify its operational semantics.

A subset of the combinatorial operators proposed by Pratt (1) are dealt
with here. We will not consider all operators, for the sake of brevity and
because some of them have either already been studied (e.g., nondeter-
minism) or they are similar to the ones we work with (e.g., iteration of
sequentialization, "*"). Extending the definitions given in this section to
deal with such operators is only a clerical matter. The definition of the
syntax of the language follows.

Def in i t ion 2.1. Given a finite alphabet L" of actions, ranged over
by a, b an agent is a term defined by the following BNF-like grammar.

E : := 1/a/E; E/EIIE/E*/N(E, E, E, E)

The intuition behind agents is as follows. Agent 1 represents the empty
pomset. Operationally, 1 is an agent which cannot perform any actions.

Partial Ordering Models for Concurrency Can Be Defined Operationally 457

Agent a denotes the pomset with only one event labelled by a, i.e., the
agent which can perform action a and then stop. Agent E'; E" stands for
the concatenation of the pomsets of E' and E', that can be generated by
building on these pomsets in sequence. Agent E' [] E" denotes the disjoint
union of the pomsets of E' and E", obtained operationally by indepen-
dently generating the events of the two operands of "[[". Thus, neither com-
munication nor even synchronization are allowed. Agent E t represents the
set of finite pomsets denoted by agents 1, E, E [[E, E H E][E, Again, one of
the pomsets of E t is operationally determined by independently generating
the events of every copy of E. Finally, the agent N(Ex, E2, E3, E4),
denoting the N-shaped pomset, is operationally dealt with as
(El; E3)[[(E2; E4), with the additional constraint that all the events of E1
precede those of E4.

Our goal is to define the causal relations among the events performed
by sub-parts of a distributed state of a system. Thus, we have to single out
of an agent those subterms which represent its sequential processes, which
are, roughly speaking, all those sub-terms with a sequential operator at
top-level. First, we give the syntax for them.

D e f i n i t i o n 2.2. (Sequential processes) A sequential process, or
process for short, is a term defined by the following BNF-like grammar.

P : : = 1 / a / E t / P ; E / P l i d / i d l P / (P , E > IN/NI(P, E> / I I N,

where E is an agent.
We will use p and I, J (possibly indexed) to range over sequential processes
and sets of sequential processes, respectively.

Intuitively speaking, a sequential process of an agent E represents one
of its sub-agents, together with its access path, used to take into account in
which context within E the sequential process p was plugged. As an exam-
ple, a lid; (c [I d) and id[b; (c [[d) are the sequential processes of the agent
a [I b; (c [[d). The access path of the former is lid; (c [[d) which records, via
"[id", that the sequential process was put in parallel with another one of
the form idlp, and also records, via ";(c [[d) ' , that it was followed by agent
(c [[d). Of course, we consider agents 1 and a as sequential. We consider
also E t as sequential, for the specific technique we will introduce in
Definition 2.5 to generate the needed copies of E. Recursively, tags are
attached to a sequential process in order to reflect the syntactic structure of
the agent from which it is originated. More in detail, tag ";E" may be
attached to a sequential process p obtaining the sequential process p; E
which expresses the fact that p; E was part of an agent of the form E'; E.
We also call E the continuation ofp. As already seen in the previous exam-
ple, both sequential processes have as continuation the agent c [[d. In the

458 Degano and Marchetti

case of parallel composition, we replace II by two unary tags, "lid" and
"idr', which record that there are sequential processes that can evolve
concurrently. Back to our example, the sequential process alid; (c[Id) is
enabled to perform action a concurrently with action b which can be
performed by idl b; (c II d). Analogously, tags "IN" and "NI" represent both
the context N(E1, E2, E3, E4) and the fact that E1 and E2 are enabled to
proceed independently. Information about the remaining two operands E3,
E 4 is kept in the second element of the pairs. Finally, also 1 iN will be
considered for technical reasons as a sequential process: it will be used in
actual computations as a sentinel keeping track that all the sequential
processes of E~ are terminated.

Sequential processes are obtained from agents via the following
decomposition function.

D e f i n i t i o n 2.3. (Decomposition function) Function dec, defined
inductively, maps agents to sets of sequential processes.

dec(I) = {1} dec(a) = {a}

dec(E*) = {E t } dec(E1; E2) = dec(Ea); E 2

dec(E1 II g2) = dec(E1) lid w idl dec(E2)

dec(N(Ea, E2, E3, E4))= (dec(El) , E3)IN w Nl(dec(E2) , E4)

In this definition, and from now onwards, the application of a syntactic
constructor to a set of sequential processes I, is understood to operate
elementwise, e.g., (I , E) I N = {(p , E) I N I peI} .

Later on, we will use sets of sequential processes to represent the states
which a concurrent system can pass through during a computation. We call
these states distributed, since their components can be allocated in different
places, and can proceed on their own, as we will show in a while, without
requiring any centralized control. As expected, we will use dec(E) as the
initial distributed state of a computation generating the set of pomsets
denoted by E . Function dec is obviously injective, but not all the
distributed states reachable in a computation are in direct correspondence
with agents via dec. The main reason is that a distributed state could
contain sequential process 1 IN which does not occur in the decomposition
of any agent (recall that it represents termination of all the sequential
processes of the first agent of an N-agent). An instance of such a dis-
tributed state is {P6, PT, P3} of computation ~1 in Example 2.3. As a
matter of fact, it is possible to define a many-to-one correspondence
between sets of sequential processes and agents, at the cost of having a
more intricate decomposition, relying on a relation instead of a function.
For something in this line, refer to Ref. 24.

Partial Ordering Models for Concurrency Can Be Defined Operationally 459

Example 2.1.

dec((a IIb); (c II d)) = dec((a II b)), (c II d) = {a lid; (c II d), id[b; (c II d) }

dec(N(a, b, c, d)II N(e, f, g, h))

= dec(N(a, b, c, d))lid w id[dec(N(e, f g, h))

= {<a, c>lN, Nl<b, d>}l idu id l{<e , g>lN, NKf, h>}

= {((a, c>[N)Jid, (Nl(b, d>)[id, idJ((e, g>[N), id[(N](f, h>)}

dec(N(a II b, c, d, e)) = (dec(a IIb), d>/N u {N/(c, e> }

= ({a lid, idl b}, d>lN ~ {Nl<c, e >}

= { <alid, d>JN, <idl b, d>lN, NI<c, e>}

Before introducing the dynamics of our formalism, we need some
notation used to describe the causal relation between sets of sequential
processes.

2.1. N o t a t i o n

Let ~ be a binary relation over sequential processes, by ~ 2 we
understand the set {yl Sx<x, y)~N?}; a pair (x, y> belonging to N, will
be also written as x~< y; given two sets of sequential processes I and
J, 1 4 J will stand for {x ~< y I x ~ I and y ~ J}.

Furthermore, we consider tags to be extended on ~ too, e.g.,

~ l i d = {<xlid, yl id>] <x, y > E ~ }

and

<Yl, E>IN= { < <x,E>IN, <y,E>IN> > I <x, y>r

The set of rewriting rules specifying the behavior of sequential
processes is defined via axioms and inference rules in the SOS style. A
rewriting rule has the form I - [a, N] ~ p, the intuitive meaning of which
is that the set of sequential processes I may become the process p after per-
forming action a. Thus, we may say that each sequential process of I causes
process p through a. The information about other sequential processes
which can be caused by I but not by a is recorded in ~. The pair
(P l , P 2) ~ s 8 will be written also as Pl ~<P2, since the same symbol ~< will
be used later to denote the causal relation of a pomset. Note that if pl ~< P2,
we have that Pl ~/, P2 # P and that Pl, but not action a, causes process P2.
Thus, ~ records that there are agents that may perform actions which are

828/16/6-3

460 Degano and Marchetti

concurrent with a. When the rewriting rule I - [-a, ~] ~ p is applied to a
distributed state, it replaces the sequential processes of I with p and those
of ~ + 2, while showing a. Note in passing that the absence of an explicit
synchronization mechanism makes set I consist of a single sequential
process, except when hidden synchronizations take place, via a join of ter-
minated processes originated by a parallel or N composition. For instance,
look at the case when both a lid and id[b are terminated in (a [Ib); (c l[d), as
shown in the following example. In order to make examples more readable,
we will draw rewriting rules as we have already done in the Introduction:
processes (events) are represented as labelled boxes (circles) and the causal
relation through its Hasse diagram growing downwards. In Fig. 3 we see
derivation

{ (1 lid); (c II d), (id[1); (c II d)}

- [c, {(1 lid); (c II d), (idl 1); (c l[d)} ~< {idl d}] - , 1 lid.

Its starting distributed state {(1 lid); (c 11 d), (id[1); (c IId)} can be reached,
for instance, from agent (a II b); (c II d) (its decomposition is in Example 2.1),
by performing both concurrent actions a and b. (See also Examples 2.3.iii
and 2.4.iii.)

We can now give the dynamics of our formalism: first a predicate end

is introduced to individuate those sets of sequential processes which are
terminated and will eventually be joined since they have been originated by
the same (sub-)term; then rewriting rules are defined through axioms and
inference rules ~t la Plotkin./1~)

] (llid);(clld)] (idll);(clld)]

Fig. 3. A graphical representation of rewriting
rule { (1 lid); (c IId), (id 11); (c II d)} - [c, { (1 lid);
(c II d), (idl 1); (c II d)} ~< {idl d}] ~ i lid.

Partial Ordering Models for Concurrency Can Be Defined Operationally 461

Definition 2.4. (Terminated sets of processes) The predicate end is
defined inductively on sets of sequential processes by the following axioms
and inference rules

end({ /})

end({E*})
end(I1) and end(I2) imply end(I1 lid wid112)

end(I1) and end(I2) and end(dec(E3)) and end(dec(E4))
imply end((I1, E3)INwNI<I2, E4>)

end(I2) and end(I3) and end(dec(E4))

imply end(/3 lid w {1 IN} w NI<I2, E4>)

Of course, the singleton consisting of agent 1 is terminated. Also the
set containing E* must be considered as terminated, because also the empty
pomset is one of the behavior of E t. The termination of a parallel com-
position, or of a N composition is that of all their arguments. The last rule
is somehow ad hoc, conceived for dynamically dealing with termination of
N(E t, E 2, E3, g4) and will be better understood afterwards. We only note
that sequential process 1 IN and set 13 jid represent what remains after the
complete evolution of E 1 and E3, respectively.

From now onwards, given two sets of sequential processes I and J, we
denote their difference by I-J which is defined only if J _ / .

Def in i t ion 2.5. (Rewriting rules) The rewriting derivation relation
I - [a, N] ~ p is defined as the least relation satisfying the following set of
axiom and inference rules

Act) {a} -- [a, ~ 3 --* 1

Seq) I - [a, ~] ~ p implies

(dec(E)- / ') - [a , ~] "-* p and end(l)

imply

Conc) I - [a, ~] ~ p implies

and

Dagger) (dec(E)- / ') [a , ~] ~ p implies

{E*} -- [a , ~] ~ p implies

and

N) I [a , .~] ~ p implies

and

(dec(E3)-l ') - [a, ~] ~ p and end(l)

imply

wllel'e

I; E - [a , ~ ; E] - , p; E

1;E [a , I ; E < ~ J , 2 w l '] - - * p

/lid - [a , ~ l i d] ~ p lid

i d l I - [a, id l~] - , idl p

{ E * } - [a, {E*} <~l' w N , ~ 2] ~ p

{E*} - [a , {E*} ~< idl dec(e) u (~ ; 2) l id] ~ p lid

{E '} - [a , {E*} ~< dec(E) lid w idl(:~ ,L 2)] ~ idl p

(I , E > L N - [a, (:~, E>IN] ---, (p , E) I N

NKI , E) - [a , N I (~ , E)] --* NI<p, E)

(1, E3) I N - [a, ..~'] - - , p lid

~ ' = <L E 3) t N < ~ ({ l l N } w l ' l i d w (~ { 2) l i d)

462 Degano and Marchetti

(dec(E4)-I') - [a, N] --+ p and end(I)

imply

where

(dec(E4)-l') - [a, ~] --* p and end(l~)

imply

where

{lrN} wNKL E 4) - [a, ~ '] ~idl p

~,'=({llN}wNl(I, E4))<~(idlI'widl(:~;2))

and end(12)

(I, , E 3)IN w NI(12, E4) - - [a, ~1 w ~2] --'* idl p

~1 = ((I~, E3)IN w NI(I2, E4)) ~< (idl l 'w idl(~ J, 2))

N%= (lj , E3) IN ~< dec(E3)lid

We can now comment on our axiom and rules. There is no rule for 1,
so this term will have only an empty behavior. Axiom Act) states that
sequential process a can perform action a and then stop. First rule Seq)
simply says that a set of sequential processes I with continuation E can do
the same actions as I, provided that relation N and the caused process p
are accordingly modified. The second rule is more complicated, since it has
to forbid the component E of an agent E1 ; E to proceed until E1 is over,
and to properly set the causal relations. In detail, a state I consisting of ter-
minated processes, all with the same continuation E, can evolve to p only if
some processes of E, namely dec(E)-/ ' , can do the same, leaving a set I '
idle. As a consequence, all the processes in I; E cause the process p through
the action a. Moreover, all the processes in I; E directly cause also those in
I' which where.enabled to perform actions independently of the processes
in dec(E)-I': Additionally, the rule expresses the fact that the processes in

~ 2 are still concurrent with those of dec(E)-I', and thus with a. Note
also that predicate end is used, making sure that all the sequential
processes of E1 are terminated (thus they must be joined) and that all of
them will cause the processes of E. Example 2.2.i) below reports an
application of the second rule Seq). Rules Conc) allow concurrent sequen-
tial processes to proceed asynchronously, thus ensuring causal indepen-
dency. Information about the context where concurrent processes operate
is consistently reported also in relation N via tags "lid" or "idl". First rule
Dagger) allows E* to behave as E. Given a possible behaviour of E*, the
remaining two rules recursively state that its behavior can be the same as
that E* liE or EllE*, too. This fact is assured by introducing the sequential
processes of E as idles by means of relation N. Note that n copies of E are
put in parallel by a rewriting rule deduced with a proof in which the first
rule Dagger) with dec(E)-I' - [a, Y2] --* p as premise has been used once,
and then the second or third rule Dagger) have been used n-1 times (see
Example 2.2.ii). As mentioned before, E* can also behave like the empty
process 1, since end({E*}) is true. As regards rules N), let us recall that
N (E ~ , E 2 , E 3 , E 4) operationally behaves like (E~; E3)I[(E 2 ; E 4) with the
constraint that all the events of E~ precede those of E4. The first two rules
are similar to Conc) rules and express the concurrency between E~ and E2.

Partial Ordering Models for Concurrency C a n B e Defined Operationally 463

Instead, the third and fourth rules are similar to the second Seq) rule in
that they enable the processes of E 3 and E 4. When a process of E3 starts,
sequential process 1 [N is introduced to record termination of El. On the
other hand, this very process is needed to enable E 4. The last rule permits
the processes of E 4 to proceed independently of E 3 (they are concurrent),
provided that E 1 and E2 are completely evaluated; this requires the sequen-
tial processes in dec(E3)lid to be greater than those in (11, E3)IN, but
not than those in NKI2, E4). As a matter of fact, the N-context fades in a
I[-context, as soon as the processes of E 3 or E 4 are enabled. Example 2.2
may help to clarify how rewriting rules are deduced, and Example 2.3
shows how they will be used in actual computations.

Note that relation ~ is actually needed in rules Seq) and N). As
already mentioned, note also that only these rules deal with an implicit
synchronization of many processes, which will form the set I of the
rewriting rule I - [a, ~] ~ p.

Example 2.2. We completely work out the derivations of two
rewriting rules, the first of which is depicted in Fig. 3.

i) 1. {e} - It, 2~] --, 1 by Act)
2. {clid} - [c, ~] ~ / l i d by 1 and Cone)
3. end(/) by Definition 2.4
4. end({ 1 lid, idl 1 }) by 3 and Definition 2.4
5. {(1 lid; (cHd), (id[1); (el]d)} - [e, ((/ l id); (c rl d), (idl 1); (ell d)} ~< {idld}]--*/l id

by 2 and 4 and second rule Seq)
(note that dec(c J[d) - {id[d} = {c[id})

ii) 1. { a } - [a, ~] - -* 1 by Act)
2. {a'*} - [a, ,~] ~ 1 by 1 and first rule Dagger)
3. {at}-[a,{at}~{alid}]--*idll by2andsecondruleDagger)
4. {a t } -- [a, {a t } ~ {idla, (alid)Jid}] ~ (idJ1)Iid

by 3 and third rule Dagger).

We now introduce our notion of computation as a finite sequence of
states and rewriting rules. This notion is not the standard one, e.g., that of
computation for transition systems, since we are dealing with rewriting
systems which better reflect the asynchrony of our model.

Definition 2.6. (Computation) A sequence

(= {J0 1 1 - ra l , ~1] --*Pa J1 1 2 - [a2, ~2] --*P2

J2..'J,_l L - [a , , ~ ,] ~ p , J,}

464 Degano and Marchetti

is a computation of E if

i) �9 J o = d e c (E)
�9 J i is a set of sequential processes, and
�9 Ii - [ai, N~] -* p~ is a rewriting rule, 0 < i ~< n;

ii) �9 I~cJ~_ l , and
�9 J i = (J i _ l - I i) vA~i~Zu {p~},O<i<~n.

Computation { is terminal if end(J,) holds.

Note that {dec(E)} represents an empty computation of E. When
E = 1, {1} is its only (terminal) computation; when E=E~, { e l } is also a
terminal computation of E~, since end(E~*) holds. The following example

PO Pl P2 ~P0 0> ~p,, 0>

PO Pl P3 0+ e2 [

<P4 '2:' <PI ';ie3

P4 Pl P3 ,p4 i~_. ~ 3

<P6' 4~

P4 P5 P3
'P6' 5,

b)

P6 P7 P3

P8 P6

~P2' 0,

~P3' 1,

I
~P3] 2~

'P3' 3,

~P7' 4~ <P3' 47

~Ps' 3~

a) c)

Fig. 4. A graphical representation of the computation ~1 of agent N(a [I b, c, d, e),
given in Example 2.3.i (part a)); relation F* (part b)) and the generated pomset
(part e)), given in Example 2.4.i.

Partial Ordering Models for Concurrency Can Be Defined Operationally 465

shows three instances of computation involving the "N" the "*", and the ";"
operators; their pomsets will be built in Example 2.4, and shown on
Figs. 4-6.

E xa mpl e 2.3.

i) Given agent E l = N (a l l b , c,d,e), consider the sequential
processes

po=(alid, d)l N pl=(idlb, d)l N p2=Nl(c,e)

p3=N[(1, e) p4=(l[id, d)lN ps=(id[1, d)[N

P6 ----- 1 lid P7 = 1 IN P8 = id[1.

From dec(E1)= {Po, Pl, P2} the following terminal computation starts.

~1 = {{Po,Pl,P2} {P2} -- [-C, ~] --*P3 {Po,Pl,P3} {Po} -- [a, ~Z~] --*P4

{P4,P,,P3} { P l } - [b, ~'] --)'P5 {P4,Ps,P3}

{P4 ,Ps} - [d, {P4,Ps} ~<P7] --~ P6 {P6,P7,P3}

{P7,P3} -- [e, ~] --*P8 {P6,P8} }.

p0

p~ p; ~;

P'4 P; p;

p'~ ~; p;

<p' 0~

~p' 1~ 1'

e'2 1 ~p 2~

~p~, 3,

<P'3 1~ <p~, 1,

<P3 2~ 2~ <P2

(e' 3
,p , 3, ~p , 3,

b)

e' 2 e' 1 e' 3
(9 | |

a) c)

Fig. 5. A graphical representation of the computation ~2 of agent a t, given in
Example2.3.ii (part a)); relation F* (part b)) and the generated pomset
(part c)), given in Example 2.4.ii.

466

ii)

Degano and Marchetti

Given agent E2 = a t, consider the sequential processes.

p'o=a * p'~ = (alid)lid p [= i d l a

p; = (idll)lid p; = (1 lid)lid p~=id[1

We have that from dec(E;)= {p;} the following terminal computation
starts.

r = {{p;} { p ; } - [a, {p~}} ~< {P'I,P~}] --*P'3 {P'I,P'3,P'2}

{p]} - [a, ~] ~P'4 {P'4,P'3,P'2}

{p~} - [a, ~] ~ P'5 {P'4,P'3,P'5} }.

~ P i

?

P2 P';

Fig. 6.

<P(

(
<p'

<p

e" 3

<p

0> <P'I

1 > <p'~

,3> <p~

,4> <P"6

b)

0>

I7

le2

2>

3>

e'~,

4>

e'i ~ x ~ e''2

e'~ e'~

a) c)
A graphical representation of the computation 43 of agent (a lib);

(c IId), given in Example 2.3.iii (part a)); relation F* (part b)) and the generated
pomset (part c)), given in Example 2.4.iii.

Partial Ordering Models for Concurrency Can Be Defined Operationally 467

iii) Given agent E3 = (a IIb); (c [I d), consider the sequential processes.

p~=alid;(c[ld) Pl"-idlb;(clld)- P2"=llid;(cl]d)

p'3'=id[1;(c[[d) p~'= 1 lid p~' = id [d

P6' = id[1

We have that from dec(E3)= {Pd, P;} the following terminal com-
putation starts.

32 = {{Pd, P'~} {P;'} - [a, ~] ~P2 ' {P~',PI'} {Pi} - [b, ~] --* p;' {P2', P;'}

{P;',P'3'} -- [c, {p•',p;'} <~ {p;'}] --* P'4' {P'4',P'5'}

{p;'} - [d, ~] --.pg {P2, Pg}}.

From a computation, which is inherently sequential, we extract its
pomset that records all the causal dependencies among its events. Essen-
tially, this is done as follows: first an event e labelled by a is associated with
every rewriting rule I - I - a , N] ~ p with the obvious causal dependencies
between the processes in /, the new event and the process p, and those
causal dependencies expressed by N; then this relation is reflexively and
transitively closed; finally all processes are removed to get the wanted
pomset. We first recall the notion of pomset. (1)

D e f i n i t i o n 2.7. (Pomset) A labelled partial ordering is a 4-tuple
(V, S, ~<, p) , where

�9 V is the vertex set of events

�9 X is the alphabet of actions

�9 ~< is a partial ordering relation on V, called the causal relation

�9 #: V ~ S is the labelling function

Two events el and e2 are concurrent if neither e 1 ~< e2 nor ez ~< el.
Two labelled orderings of events are isomorphic if there exists a label- and
order-preserving bijection between their events.
A pomset (partially ordered multiset) h = [V, S, ~<,/~] is the isomorphism
class of a labelled partial ordering.

D e f i n i t i o n 2.8. (Generating pomsets) Given a terminal
putation of agent E

4 = {J0 1 1 - [a l , ~1] ~ P ~ J1 I 2 - [a2, Nz]--*P2

J2 . . . Jn_ , In-- Jan, ~t~n] --~p, J ,}

c o r n -

468 Degano and Marehetti

the pomset I-V, Z', ~<, #] generated via 4, denoted by [E]r is defined as
follows.

i) Let V= {el en} and B = { (p , i) lp~J~};

ii) Let F* be the reflexive and transitive closure of relation F defined
on V~ B by the following inference rules

" P ~ J i - 1 --// implies

�9 p ~/~ implies

�9 p c (J e - (J e - l - I ,)) - ~ e ~ 2 implies

�9 (P l , P 2) ~Jti implies

(p , i - - 1) F (p , i)

(p, i - l) Fe i

ei F (p, i)

(P l , i - 1) F (P2, i) ;

iii) Let S = {ai}; ~< be the restriction of F* to S; and #(ei) = ai.

We now briefly comment on this construction. In order to obtain the
pomset generated by a computation ~ two sets are constructed, the first
consisting of events, the second of instances of processes, and then we
determine the orderings over them. Index i in (p, i) is used to create a
fresh instance of the process p which occurs in the distributed state Ji. The
link between event e~ and the ith step of the computation I~- [al , ~i] ~ Pi
is crucial for determining the causal ordering ~<. First, an auxiliary causal
relation F* between process instances and events is set by closing
reflexively and transitively the causal ordering of the rewriting rules. More
in detail, the first inference rule relates the two instances (p, i - 1) and
(p, i) of the same process p, which is idle in the ith step of the com-
putation since it belongs to J i - 1 - L = J i - (~ i ~ , 2 u {p;}). The second rule
makes a process p smaller in F than the actual event e~ it performs; the
third one makes this event smaller than the process p produced by this ith
computation step. The last rule takes into account relation ~ for
establishing the causal dependencies between a process p ~ L and those
processes generated by p, but not by the event ei. Note that making
instances of the processes which occur in different states is crucial since it
guarantees that relation F* is acyclic, and makes it correctly mirror the
flow of time. Eventually, the pomset generated by ~ is obtained by keeping
only the events, by labelling them in the obvious way, and by restricting
the causal ordering accordingly. Example 2.4 illustrates this construction.

E xa mpl e 2.4. Given the agents and the computations of Example
2.3, we have that

i) [- E 1] ~ 1 = [-Vl, ~Y'I, ~1, #1], where

�9 V l = { e l , e 2 , e3, e4, es}; �9 S l = { a , b , c , d , e } ;

�9 {e l <~1 es, e2 <~1 es, e3 4 1 es, e2 <~1 e4, e3 <~1 e4, ei 4<.1 el};

�9 g l (e l) = c, # 1 (e 2) = a, pl(e3) = b,]Al(e4) = d,/21(e5) = e.

Partial Ordering Models for Concurrency Can Be Defined Operationally 469

ii) I-E2] 32 = [- V2, X 2 , ~ 2,].22], w h e r e

�9 V 2 = {e'l, e~, e ; } ; �9 L" 2 = { a } ;

�9 {e'i~<z el); �9 #2(el)=#z(e;)=#2(e~)=a.

iii) [E3]~3 = IV3, 2;3, ~<3,/~3], where
tt tt it tt . �9 { e , , e2 , e4 }, �9 = (a , b, c, d } ;

tt it tt tt t/ .

�9 {e~ ~< <<-3 <<-3 ei }, ".~.3 e3 ~ e l ~ 3 e4} e2 ~ 3 e 3 ~ e2 e 4 , e i

[/! \ - - a P!
�9 #3~,el) - - , / t3(e2 ') = b , / ~ 3 (e ; ') = c, 1~3(e4) = d.

Figures 4-6 show computations 41, 42 and ~3, an intermediate step of the
construction of Definition2.8 after having determined F*, and the
generated pomsets.

In the pomset represented in Fig. 4), event e4 (labelled by d) has been
generated in correspondence to a rewriting rule temporally applied before
the one corresponding to event e5 (labelled by e), but it is easy to see that
the two concurrent events could also be generated in the inverse temporal
ordering. It suffices to substitute the last two steps of the computation 41
with the following

{P4,Ps,P3} {P4,Ps,P3} - [e, {P4,Ps} <. {P~}] ~P8

{P~,Ps} {P~}- [-d, ~] ~P6 {P6,Ps)

where p~=d]id, and the first rewriting rule is obtained via the last N)
inference rule.

This fact holds in general, since the rewriting system of Definition 2.5
is completely concurrent, in the terminology used in Ref. 16. Roughly
speaking, complete concurrency says that, given two concurrent events in
the pomset [E]~ (generated by computation r there always exists another
computation 4' where the two events are generated in inverse ordering, and
such that [E]r = [E]r In other words, we can say that all and only the
linearizations of a partial ordering are induced by computations. An
immediate consequence is that the operation of linearization introduced by
Pratt fs implicitly present in our operational semantics: it suffices to let
event ei be smaller than ej if i< j. The proof that the rewriting system of
Definition 2.5 is completely concurrent is long and outside the scope of this
paper; we only note that two symmetrical rules Dagger) (the second and
third) have been introduced to this purpose, in place of a single one,
encompassing both.

We finally define the operational semantics of an agent E as the set of
pomsets generated via the terminal computations of E. Even if there is no
explicit nondeterministic operator, the simple language defined is nondeter-
ministic, because of operator "?".

470 Degano and Marchetti

Def in i t ion 2.9. (Operational semantics) Given a term E, its
operational semantics is defined as

[E l , = { [E]r is a terminal computation of E}.

The operational semantics for the basic language we consider here has
been defined through a set of inference rules which are driven by the syn-
tactic structure of terms, and thus it is compositional, a crucial property
that any semantic definition must enjoy. We also remark that com-
positionality provides us with the means for easily proving in the next sec-
tion that the denotational semantics of the language is fully abstract with
respect to the operational one.

3. E Q U I V A L E N C E OF O P E R A T I O N A L A N D D E N O T A T I O N A L
S E M A N T I C S

The operational semantics defined in the previous section formally
describes the behavior of concurrent systems, mimicking the intuition
behind their dynamics. Denotational semantics is more abstract and com-
plementary to operational semantics in that it takes no account of any
implementation issues. Moreover, it makes reasoning about systems easier,
since it is compositional and properties of the semantic domain can be
exploited. Of course, the two semantics must agree, and their equivalence
must be formally established, so that either semantics can be properly used.
We will show that there is quite a strong equivalence between the seman-
tics of the simple language considered here. First, we will recall Pratt's
definitions of the needed semantic operators on pomset, through which we
define the denotational semantics of the language.

Def in i t ion 3.1. (Pratt's operators on pomsets.) Let hi = [Vi, Si,
<~ ~, #i], Vi n Vj = ~ , i 4= j 1 ~< i, j ~< 4, be four pomsets; we consider the
following operators on them, which are understood to operate elementwise,
when applied to sets.

;) hl ;h2=[VlwV2, S I ~ S 2 , <~lW ~<2w V1 x Vz,#1w#2];

I[) hll lhz=[WluW2, SawS2, < ~ --.<2,#au#21;

l") h~= U~Nat (h~) ~, w hereh~ [#3, ~ , ~Z~, ~] and (h~) ~+~ =hl[[(hl)i;
N) N(hl,h2, h3, h4)= [Vxw V2~ V3w V4, S l w S 2 ~ S 3 w S 4 ,

~1 t,-) ~2 k..) ~-~3 k..) ~4k.) V I x V3L-) V z) V4 k-.) V 1) V 4,

l w # 2 w # 3 w # 4] .

Partial Ordering Models for Concurrency Can Be Defined Operationally 471

The intuition underlying these semantic operators is explained as
follows. Two pomsets are sequentially concatenated through ";" resulting in
a pomset where all the events of the first pomset precede all the events of
the second one. Concurrently composing two pomsets via "[l" means
letting them lie side by side. Operator "*" generates a set of pomsets
obtained by concurrently composing finitely many copies of the given pom-
set. Finally, four pomsets are composed into a N-shaped pomset via
operator "N". Note that operator ,,t,, is well-defined since the power of
pomsets is continuous, as well as all the other operators, on sets of pomsets
ordered by inclusion. Note also that all the operators are strict.

The denotational semantics of the simple language introduced in Sec-
tion 2 can now be easily defined by inducing on the structure of terms. It
reflects the intuitive description of agents given after Definition 2.1. As was
the case for operational semantics, also the denotational semantics of a
term turns out to be a set of pomsets, due to the operator "*"

Def in i t i on 3.2. (Denotational semantics) Given a term E, its
denotational semantics, denoted by [E]~, is defined by structural induc-
tion as follows.

[z]d= {E~, ~, ~, ~] } ;

[E, ; E2] d = [E ,]d ; [E2]d;

[E*]d E *" = []~,

[a] d = {[{e}, {a}, {e<~e},#(e)=a]};

gEl II E2ld = EElldll [E2]d;

I N (E l , g2, g3, g4)]d

=N([E1]d, [E2]d, [E3]d, [E4]d).

The next theorem will show that the denotational and operational
semantics coincide.

T h e o r e m 3.1. (Operational semantics=denotational semantics)
For every agent E, [E]d = [E]o.

Proof. It suffices to prove by structural induction that, given an
agent E, a pomset h belongs to [E]~ if and only if it belongs to [E] d.
The base cases are when the agent is either I or a, and the proof is
trivial. We now proceed by case analysis, inductively assuming that
[E,]~ = [E;] .

E = El; g 2.
if-part) h ~ [El ; g21d implies h ~ [El; g2] ~.
Before proving the claim, we introduce an operation ";E" which transforms
a given computation

~= {dec(E') rl Jl " " J , - 1 rn Jn}

472 Degano and Marchetti

in the following computation

4; E2 = {dec(E'); E rl; E Jl; E - . . J . 1; E r.; E J.; E},

where ri; E is obtained with first rule Seq) with premise ri and continuation
E. More precisely, given a rewriting rule r i = I - [a , Y l] ~ p , then
ri; E = I; E - [a, ~ ; E] ~ p; E.
By inductive hypothesis we know that there exist two terminal com-
putations

41= {dec(E1) rl J l " " J n - 1 r. J.}

42 = {dec(E2) d e c (E 2) - I - [a , ~] ~ p J] ""J~, -1 r" J ' }

which generate pomsets hi belonging to [E~] d = [E i] o, i = 1, 2.
Since 41 is terminal, end(J.) holds. From it and dec(E2)-I-I-a, ~] ~ p
(i.e. from the first rewriting rule of 42) we can deduce, by using the second
rule Seq), the rewriting rule
r = J . ; E2 - [a, J . ; E2 ~< ~ + 2 w I] ~ p. It is easy to see that computation

4 = {deC(El); E2 rl; E2 J1;Ez. . .J ._I; E2 r.;E2 Jn;E2
, j - } r J ' l""J" 1 rm

originates exactly h=hl;h2, since all the sequential processes of J.;E2
dominate in rule r (either via a or relation J . ; E 2 ~ < ~ J . 2 w I) all the
sequential processes of J] .
only if-part) h ~ [El; E2] ~ implies h E [El; E2] d.
We have a terminal computation ~ for E 1 ; E2 generating h,

4 = {dec(El);E2 rl;E2 J1;E2""Jn-1;E2 rn;E2 J.;E2

r J ' l ' " J " i ~" J ' } .

We certainly have that end(J.), because all the sequential processes
produced by E1 must terminate in order to enable those of E 2. Thus, we
can extract from 4, the following terminal computation for E1

41 = {dec(Ea) rl S a ' " J . - 1 r. J.}

which generates a pomset h~ which, by inductive hypothesis is
such that hl~[E1] d. Also, we have that rule r in r has the
form J . ; E2 - [a, J . ; E 2 ~< ~ J, 2 w I] ~ p since it must have been
obtained through the second rule Seq) with premises end(J.) and
dec(Ez) - I - [a , ~] ~ p . Now, it is easy to construct the following com-
putation

~2 = {dec(E2) dec(E2)-I- [a, ~] ~ p J'l" " ' J ' . , - I rm' J~n}

which is terminal for E2, since end(J~,) holds (recall that ~ is terminal) and
generates, by inductive hypothesis, the pomset h2~ [E2].e. The claim

Partial Ordering Models for Concurrency Can Be Defined Operationally 473

follows by noting that all the events of h I precede in h those of h2, thus
h=hl;h2.

E= EI II E 2.
if-part) h e lEt [1E2] d implies h e [E 111E2] o.
The proof is analogous to the previous one, provided that computations 41
and 42 are modified by adding tags "lid" and "idr', respectively. Note also
that the sequential processes of the two original computations are made
distinct in the new computation obtained in this way, and thus the actions
they perform will never be related by the generated partial ordering.
only if-part) h ~ [El [I E2] ~ implies h ~ [El II E2]d.
Again the proof is analogous to the one given for ";". One has to notice
that from the given computation of E1 II E2, two computations of E 1 and E2
can be derived. Each distributed state of the former can easily be split in
two subsets consisting of all sequential processes with "lid" or "idr'
as outermost tags. These subsets, provided that the outermost tags are
removed, correspond to each distributed state of the required computations
of E~ and E2. The required rewriting rules of these computations can easily
be obtained in a similar way.

E = E t.
if-part) h e [E*]d implies h ~ [E*],,.
A further induction is needed on the number of copies of E which are put
in parallel in h. Recall that we are dealing with finitely many copies, by
definition, thus Peano's induction suffices. The number n of copies of E is
related to which of the rules Dagger) has been used in deducing the
appropriate rewriting rule, and, in particular, to the number of times that
the second and third rule Dagger) have been used. When n = 0, i.e., when
h= [~ , 2~, ~ , ~] , the claim holds since {E*} is the required terminal
computation originating the empty pomset. The outermost inductive
hypothesis suffice when n = 1, i.e. when h s [E]d . Indeed, the first rewriting
rule of every nonempty computation of E has been generated by using once
the first rule Dagger). Also the inductive step is routine: if we have n copies
of one of the pomsets of E in h, the second (third) rule Dagger) has been
used n - 1 times. In fact, each of these application generates a new copy of
dec(E), enriched with tag "lid" ("idr'), and we are reduced to the case "[[".
only if-part) Follows by noting that rule Dagger) only generates finitely
many (disjoint) copies of a pomset generated by an agent E.

E = N(E,, & , E3, E4).
if-part) h e [N(E,, E=, E3, E4)]d implies h e [N(E1, E2, E3, E4)] ~.
A computation for E is obtained by first modifying the computations {1,
{2, 44, 43 of El, E2, E4, E3 to record the appropriate context, and then by

474 Degano and Marchetti

concatenating them in the given order. Concatenating computations 41 and
42, and ~4 and r is done as in the case of "11". In order to concatenate ~2
and ~4, the fourth inference rule N) has to be used. Actually, its premises
ensure that ~1 and ~2 are terminated and relation NI is such that all the
events of computations ~1 and ~2 are set smaller than those of ~4. Note
also that the same rule lets all the events of computations r be smaller
than those of 43 because of relation N2.
only if-part) Just reverse the argument and take care of tags similarly to the
case of "ll". |

A straightforward consequence of the compostionality of the
operational and of the denotational semantics is that the latter is fully
abstract with respect to the former. ~26~ In other words, the equivalence,
rather the congruence relation induced by the operational semantics coin-
cides with that induced by the denotational semantics. Furthermore this
congruence proves to be the minimal one. We need the notion of context
C [] which is, as usual, a term with one or more holes to be filled by an
agent. A possible context is a term such as E PI ~ where �9 is a hole. When
an agent, say E', is substituted for o, we obtain the agent EIrE'. Another
example is context (Erl ~); ~ which may become agent (Ell E'); E'. Now we
can state our fully abstractness corollary which follows immediately from
the equivalence theorem and from the so-called fully abstractness in se (26~ of
the denotational semantics. This property amounts to saying that, for every
context C[] , [E l i d = [E2]d if and only if [C [E 1] l d = [C[E2]]o~, which
is in our case obvious.

C o r o l l a w 3.1. (Denotational semantics is fully abstract w.r.t.
operational semantics) For every context C[3, [E,]d = [E2]d if and only
if [C[E1]]o= [C[E2]]~ .

CONCLUSION

Our claim is that the semantics of concurrent languages is better
defined within the true concurrency approach, where causal dependencies
and independencies among the events performed by a concurrent system
are explicitly represented through partial orderings. We also think that
both an operational and a denotational semantics should be given and
proved equivalent, the former for making intuition formal, the latter for
making reasoning easier. Some languages have already been provided with
a partial ordering operational semantics, but only classical operators for
concurrency and sequentialization (plus nondeterminism) have been dealt
with in the true concurrency approach. (2,12'13'15'16,23 25,27) Here for the first
time, we have shown that a partial ordering based semantics can be

Partial Ordering Models for Concurrency Can Be Defined Operationally 475

operationally defined also for concurrent languages with operators like N
which are not expressible through the standard series/parallel ones, only.
To the best of our knowledge, this operator has been given a denotational
semantics only in Ref. 1, from which we have also taken other basic
operators.

The goal has been achieved by using labelled rewriting systems that
describe how parts of a distributed state evolve, rather than more classical
transition systems that relate global states. Thus, the abstract machine we
use for defining the operational semantics needs a great deal of detail
to explicitly express the dependencies and independencies of spatially
distributed events which are performed by concurrent systems. Thus,
implementation issues had to be taken into account in defining our
(abstract) distributed interpreter, which adds further complexity to the
more standard interleaving oriented transition systems. We remark that
other models within the partial ordering approach are not completely
satisfactory as a basis for giving a fully satisfactory true concurrent
operational semantics. For instance, as they are, Petri Nets are not com-
positional, and this fundamental property plays a crucial role in the present
work.

The paradigm we have followed in defining the operational semantics
of our simple language is as follows. Given a term, representing a global
state of a concurrent system, we have defined its distributed state as the set
of its sequential processes, i.e., its simplest sub-terms that may perform
actions independently. Then we have defined, in the SOS style, a set of
rewriting rules which express the dynamics of a system by relating only
those sequential processes that actually evolve. Non-conflicting rewriting
rules can, in principle, be applied in parallel to sequential processes.
Instead, we have represented a distributed computation as a sequence of
(states and of) rules; nevertheless, the use of a sequential interpreter in
place of a parallel one is only a simplification and does not affect the
essence of the model. Actually, our rewriting system has the property of
complete concurrency', (16) stating that two concurrent events can be
generated in either temporal order. The operational meaning of a term is
eventually generated by abstracting from the interleavings forced by the
sequential interpreter and consists of a set of pomsets containing the per-
formed events and the complete causal relations set up in the computation.
Finally, a denotational semantics has been defined in terms of Pratt's com-
binatorial operators on pomsets.

We have proved that the denotational semantics is strongly equivalent
to our operational semantics, in that they coincide and, additionally, in
that the latter is fully abstract with respect to the former. To the best of our
knowledge, such a result has been proved here for the first time in the true

828/16/6-4

476 Degano and Marchetti

concurrency framework, even if it holds for an admittedly simple language,
and we are confident that adding other operators will not affect it. We
remark that all the proofs are carried out by structural induction and,
though long and tedious, are straightforward because also our operational
semantics is compositional.

All the languages proposed so far have been developed within the
interleaving approach, and thus their operators are strongly based on the
series/paralM ones. These languages pay no attention to non-classical
operators, like the N operator considered here. Note however that N-
shaped pomsets could be obtained in this framework, with an obscure con-
struction which resorts to auxiliary actions, synchronization and hiding,
e.g., the TCSP (5> term ((a ; (c l l~e)) l l {e} ((e l l ;~b) ;d)) \ e , where e is an
auxiliary action on which first synchronize and then restrict upon,
originates the pomset of Figure la. Certainly, the interleaving approach
does not call for such operators, or for any generalizations of them, or even
for operators which make sense only when more complex semantic
domains, with a richer structure than sets of pomsets, are considered, e.g.,
event structures (18'21) in which concurrencyr nondeterminism, causality and
mutual exclusion originate intricate interplays. Thus, the problem arises of
determining a minimal set of expressive operators, if any, through which it
will be possible to define all the partial orderings meaningful in a specific
semantic domain. Nonetheless, whichever operator is introduced, provided
that it has an operational intuition, we are confident that the approach
followed here will suffice to describe its behavior: decomposition functions
and rewriting systems or related formalisms such as Petri Nets (t6'23'24'27)
seem to be powerful enough for defining operationally the semantics of
concurrent systems in terms of partial orderings, just as transition systems
are the basis for giving operational semantics to sequential languages, and
for defining interleaving models for concurrency.

A C K N O W L E D G M E N T S

We wish to thank Roberto Gorrieri and three anonymous referees for
their detailed comments and helpful suggestions. LIST supported the
second author in a friendly and pleasant environment during the revision
of the paper.

R E F E R E N C E S

1. V. Pratt, Modelling Concurrency with Partial Orders, International Journal of Parallel
Programming, 15:33-71 (1986).

2. P. Degano, R. De Nicola, and U. Montanari, A Partial Ordering Semantics for CCS.
Dipartimento di Informatica Research Rep TR-3/88.

Partial Ordering Models for Concurrency Can Be Defined Operationally 477

3. D. Austry and G. Boudol, Alg+bre de Processus et Synchronization, Theoret. Comput.
Sci., 30(1):91-131 (1984).

4. J. A. Bergstra and J.-W. Klop, Process Algebra for Synchronous Communication, Info.
and Co., 61:109-137 (1984).

5. S. D. Brookes, C. A. R. Hoare, and A. D. Roscoe, A Theory of Communicating Sequential
Processes, Journal of ACM, 31 (3):560-599 (1984).

6. M. Hennessy, An Algebraic Theory of Processes, MIT Press, (to appear).
7. L. Lamport, What Good is Temporal Logic? Proc. IFIP '83, North-Holland, Amsterdam,

pp. 657-668 (1983).
8. G. Milne, CIRCAL and the Representation of Communication, Concurrency and Time,

ACM TOPLAS, 7(2):270-298 (1985).
9. R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science,

Vol. 92, Springer-Verlag, Heidelberg (1980).
10. M. Nivat, Behaviours of Processes and Synchronized Systems of Processes, in: Theoretical

Foundations of Programming Methodology M. Broy and G. Schmidt (eds.), Reidel,
Dodrecht, pp. 473-550 (1982).

11. G. Plotkin, A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, Aarhus University, Department of Computer Science, Aarhus, (1981).

12. G. Boudol and I. Castellani, On the Semantics of Concurrency, Partial Orders and
Transition Systems, in Proc. Tapsoft-CAAP '87, Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, 249:123-137 (1986).

13. M. Broy and T. Steieher, Views of Distributed Systems, Proc. Advanced School on
Mathematical Models for the Semantics of Parallelism. Lecture Notes in Computer
Science, Springer-Verlag, Heidelberg, 280:114-143 (1987).

14. Ph. Darondeau and L. Kott, On the Observational Semantics of Fair Parallelism, in Proc.
ICALP, Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, 147-151
(1983).

15. P. Degano and U. Montanari, A Model of Distributed Systems Based on Graph
Rewriting, Journal of ACM, 34:411-449 (1987).

16. P. Degano and U. Montanari, Concurrent Histories: A Basis for Observing Distributed
Systems, Journal of Computer and System Sciences, 34:442-461 (1987).

17. L. Lamport, Time, Clocks and the Ordering of Events in a Distributed System,
Communication of ACM, 12:558-564 (1978).

18. M. Nielsen, G. Plotkin, G. Winskel, Petri Nets, Event Structures and Domains, Part 1,
Theoret. Comput. Sci., 13:85-108 (1981).

19. C. A. Petri, Concurrency, in Net Theory and Applications, Lecture Notes in Computer
Science, Springer-Verlag, Heidelberg, 84:1-19 (1980).

20. J. Winkowski, Behaviours of Concurrent Systems, Theoretical Computer Science 12:39-60
(1980).

21. G. Winskel, Petri Nets, Algebras, Morphisms and Compositionality, Info. and Co.,
72:197-238 (1987).

22. U. Goltz and W. Reisig, The Non-sequential Behaviour of Petri Nets, Info. and Co.
57:125-147 (1983).

23. P. Degano, R. De Nicola, and U. Montanari, CCS is an (Augmented) Contact-Free Con-
dition/Event System, Proc. Advanced School on Mathematical Models for the Semantics
of Parallelism. Lecture Notes in Computer Science, Springer-Verlag, Heidelberg,
280:144-165 (1987).

24. P. Degano, R. Nicola, and U. Montanari, A Distributed Operational Semantics for CCS
based on Condition/Event Systems. Nota Interna B4-21 (IEI, 1987). (to appear in Acta
Inf ormatica).

478 Degano and Marchetti

25. P. Degano, R. Gorrieri, and S. Marchetti, An Exercise in Concurrency: A CSP Process as
a C/E System, in Advances in Petri Nets 1988, Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg (1988) (to appear).

26. R. Milner, Fully Abstract Models for Typed Lambda-Calculi, Theoret. Comput. Sci.,
4:1-23 (1977).

27. E.-R. Olderog, Operational Petri Net Semantics for CCSP. In Advances in Petri Nets
1987, G. Rozenberg, (ed.) Lecture Notes in Computer Science, Springer-Verlag,
Heidelberg, 266:196-223 (1987).

28. A. Mazurkiewicz, Concurrent Program Schemas and Their Interpretation, Proc. Aarhus
Workshop on Verification of Parallel Programs, (1977).

