

The L-function $L_3(s, \pi_A)$ is entire

C.J. Moreno^{* 1} and F. Shahidi^{** 2}

¹ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

² School of Mathematics, The Institute for Advanced Study, Princeton, NJ 08540, USA, and Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

Let

$$\Delta(z) = q \prod_{n=1}^{\infty} (1-q^n)^{24},$$

 $q = \exp(2\pi i z)$, be the Ramanujan modular form. Then the associated Dirichlet series has the following Euler product (for Re(s)>1)

$$L(s, \pi_{\Delta}) = G_{\mathbf{R}}(s+11/2) G_{\mathbf{R}}(s+13/2) \prod_{p} (1-\alpha_{p} p^{-s})^{-1} (1-\overline{\alpha}_{p} p^{-s})^{-1},$$

 $G_{\mathbf{R}}(s) = \pi^{-s/2} \Gamma(s/2)$, where π_A denotes the corresponding automorphic form.

In connection with the Sato-Tate conjecture, for every positive integer m, Serre [10, 11] introduced an Euler product $L_m(s, \pi_d)$, denoted by $L(s, \operatorname{Sym}^m(\rho_2), \pi_d)$ in the context of Langlands L-functions, whose local factor at a rational prime p is simply given by

$$\prod_{0\leq j\leq m} (1-\alpha_p^j \overline{\alpha}_p^{m-j} p^{-s})^{-1}.$$

The absolute convergence of this Euler product for $\operatorname{Re}(s) > 1$ is then an immediate consequence of the validity of Ramanujan's conjecture for π_A .

For $m \leq 2$, it has been shown that $L_m(s, \pi_d)$ extends to an entire function of s satisfying an appropriate functional equation $(m=1 \text{ is due to Hecke while } m = 2 \text{ was proved by Shimura [15], also see [2] for non-holomorphic forms). For <math>m=3$, 4, and 5, while the meromorphic continuation and functional equation have been established in each case [6, 12, 13] (all consequences of the Langlands' theory of Eisenstein series [7]), our knowledge of the regularity of $L_m(s, \pi_d)$ reduces only to the closed half plane $\operatorname{Re}(s) \geq 1$ (with at most a simple pole at s=1, due to Serre, if m=5). The purpose of this paper is to establish the holomorphicity of

$$L_3(s, \pi_d) = G_{\mathbf{C}}(s+33/2) \cdot G_{\mathbf{C}}(s+11/2) \prod_{p < \infty} \prod_{0 \le j \le 3} (1-\alpha_p^j \bar{\alpha}_p^{3-j} p^{-s})^{-1},$$

^{*} Partially supported by NSF grant MCS-8201292

^{**} Partially supported by NSF grants MCS-8101600 and MCS-8108814(A02)

where $G_{\mathbb{C}}(s) = G_{\mathbb{R}}(s) G_{\mathbb{R}}(s+1)$ (for the local factors at infinity see [9, 10]). More precisely, we shall show

Theorem. The L-function $L_3(s, \pi_d)$, originally defined for Re(s) > 1, extends to an entire function of s on C satisfying

(1)
$$L_3(1-s,\pi_A) = L_3(s,\pi_A)$$

We need several lemmas. For the sake of simplicity let $\pi = \pi_{d}$. Then $\pi = \pi_{\infty} \otimes \bigotimes \pi_{p}$, as a restricted tensor product, where we consider π as a cusp form on $PGL_{2}(\mathbf{A})$, **A** being the ring of adeles of **Q**. Let Π be the Gelbart-Jacquet lift of π (cf. [2]). It is a cusp form on $PGL_{3}(\mathbf{A})$. Moreover if we write $\Pi = \Pi_{\infty} \otimes \bigotimes \Pi_{p}$, Π_{∞} is tempered while every Π_{p} , $p < \infty$, is unramified (also tempered). Suppose $p < \infty$ and let $L(s, \pi_{p} \times \Pi_{p})$ be the corresponding local Ranking-Selberg *L*-function (cf. relation (3.2.1) of [4]). Now, let $p = \infty$ and denote by $W_{\mathbf{R}}$, the Weil group of **C**/**R**. Moreover let $\sigma: W_{\mathbf{R}} \rightarrow GL_{2}(\mathbf{C})$ be the corresponding representation of $W_{\mathbf{R}}$ which is attached to π_{∞} by Langlands reciprocity at infinity [8]. Then Π_{∞} corresponds to the three dimensional representation Sym²(σ) of $W_{\mathbf{R}}$. Now, using the results in [5], we define

$$L(s, \pi_{\infty} \times \Pi_{\infty}) = L(s, \sigma \otimes \operatorname{Sym}^{2}(\sigma)),$$

where the L-function on the right is a local Artin L-function and for each positive integer m, $\text{Sym}^{m}(\sigma) = \text{Sym}^{m}(\rho_{2}) \cdot \sigma$. Here ρ_{2} is the standard representation of $SL_{2}(\mathbb{C})$ (the L-group of PGL_{2}).

We now set

$$L(s, \pi \times \Pi) = \prod_{p \leq \infty} L(s, \pi_p \times \Pi_p).$$

Then by Theorem 5.3 of [3], $L(s, \pi \times \Pi)$ is absolutely convergent for $\operatorname{Re}(s) > 1$. Moreover the discussion in Paragraph 3.5 of [4] (page 801) implies that the zeta function given by the left hand side of (3.5.1) in [4] is in fact entire. Combining relation (3.5.1) of [4] with the results in [5] will then imply that $L(s, \pi \times \Pi)$ is entire. We now have

Lemma 1. For all $s \in \mathbb{C}$, one has

(1.1)
$$L_3(s,\pi) = L(s,\pi \times \Pi)/L(s,\pi).$$

In particular for $\operatorname{Re}(s) > 1$ the Euler product defining $L_3(s, \pi)$ is absolutely convergent and extends to a holomorphic function on $\operatorname{Re}(s) \ge 1$.

Proof. Let, as before, ρ_2 be the standard representation of $SL_2(\mathbb{C})$. Then (1.1) follows immediately from

$$\rho_2 \otimes \operatorname{Sym}^2(\rho_2) = \rho_2 \oplus \operatorname{Sym}^3(\rho_2).$$

The rest of the assertion now follows from the discussion before the lemma and the nonvanishing of $L(1+\sqrt{-1}t, \pi)$, $t \in \mathbb{R}$.

Remark. The idea of using (1.1) to obtain the meromorphic continuation and functional equation for $L_3(s, \pi)$ is due to Deligne.

Functional Eq. (1) has been proved in general in [12] (Theorem 5.9). One has to only observe (cf. [14]) that the local coefficient $\gamma(s, \text{Sym}^3(\rho_2), \pi_{\infty}, \chi_{\infty})$ at infinity (π_{∞} is in the discrete series and is the only ramification) is simply equal to

$$L(s, \operatorname{Sym}^{3}(\sigma))/L(1-s, \operatorname{Sym}^{3}(\sigma)).$$

The following lemma is crucial.

Lemma 2. The L-function $L_3(s, \pi)$ extends to a meromorphic function of s on C with only a finite number of simple poles, all lying in the open interval (0, 1). Moreover it has no pole at s=1/2.

Proof. We shall freely use the notation from [6] and [12]. Choose ϕ in the space of π as in Sect. 2 of [12] and extend ϕ to $\tilde{\phi}$ on $G(\mathbf{A})$, G being a group of type G_2 (example (xv) of [6]). Let $E(-s, \tilde{\phi}, g, P)$ be the corresponding Eisenstein series defined by relation (2.4) of [12], where P is the maximal parabolic subgroup of G_2 fixed as in Sect. 2 of [12]. Finally, let $M(-s)\tilde{\phi}$ be the corresponding constant term defined by relation (2.6) of [12] for Re(s) large. Suppose $\tilde{\phi} = \bigotimes_{p \leq \infty} \tilde{\phi}_p$, where for all $p, p < \infty$, $\tilde{\phi}_p$ is the unique K_p -fixed vector

satisfying $\tilde{\phi}_p(e) = 1$. Then using the computations in [6]

(2.1)
$$M(-s/5)\,\tilde{\phi} = \zeta(2s)\,L_3(s,\pi)/\zeta(1+2s)\,L_3(1+s,\pi)$$
$$\cdot \gamma_{\infty}(s)\,M_{\infty}(-s/5)\,\tilde{\phi}_{\infty}.$$

where $\zeta(s)$ is just the Riemann zeta function,

$$\gamma_{\infty}(s) = G_{\mathbf{R}}(1+2s) G_{\mathbf{R}}(2s)^{-1} G_{\mathbf{C}}(1+s+33/2) G_{\mathbf{C}}(s+33/2)^{-1}$$

$$\cdot G_{\mathbf{C}}(1+s+11/2) G_{\mathbf{C}}(s+11/2)^{-1},$$

and $M_{\infty}(s)$ is the standard intertwining operator acting on $\prod_{P(\mathbf{R})\uparrow G(\mathbf{R})} \pi_{\infty} \otimes \delta_{P,\infty}^{s}$.

The factor $\gamma_{\infty}(s)$ is clearly holomorphic and nonzero for $\operatorname{Re}(s) > 0$. Since π_{∞} is in the discrete series, Lemma 3.10 of [8] implies that for $\operatorname{Re}(s) > 0$, $M_{\infty}(-s/5) \tilde{\phi}_{\infty}$ is holomorphic. Moreover for any given s one may choose $\tilde{\phi}_{\infty}$ in such a way that $M_{\infty}(-s/5) \tilde{\phi}_{\infty} \equiv 0$. Consequently (2.1) implies that for $\operatorname{Re}(s) > 0$, the poles of $\zeta(2s) L_3(s, \pi)$ are exactly those of M(-s/5). From the general theory of Eisenstein series [7], it follows that for $\operatorname{Re}(s) \ge 0$, M(-s/5) is holomorphic except for a finite number of simple poles, all lying on the real axis. But, then for $\operatorname{Re}(s) \ge 1/2$, $\zeta(2s)^{-1}$ is holomorphic and non-zero except for a simple zero at s = 1/2. This implies that for $\operatorname{Re}(s) \ge 1/2$, $L_3(s, \pi)$ is holomorphic with only a finite number of simple poles all lying in (1/2, 1). The lemma is now a consequence of the functional Eq. (1).

Lemma 3. The L-function $L(s, \pi)$ has no zeros on [0, 1].

Proof. The Mellin transform of $\Delta(x+iy)$ along the imaginary axis gives

$$L(s,\pi) = \int_0^\infty y^6 \Delta(iy) y^s dy/y.$$

The functional relation $\Delta(-1/z) = z^{12} \Delta(z)$ now implies that the integral from 0 to 1 can be combined with the integral from 1 to ∞ to yield

$$L(s,\pi) = \int_{1}^{\infty} y^6 \Delta(iy) \left(y^s + y^{1-s}\right) dy/y.$$

Since $\Delta(iy) > 0$ for $y \ge 1$, it is then clear that $L(s, \pi) > 0$ for s real. This proves the lemma.

Proof of the theorem. The L-function $L(s, \pi \times \Pi)$ is an entire function of s. By Lemmas 1 and 3, $L_3(s, \pi)$ has no poles on [0, 1]. Now the theorem is a consequence of Lemma 2.

Corollary 1. Let s_0 be a zero of $L(s, \pi)$ of order $N \ge 0$. Then s_0 is also a zero of $L(s, \pi \times \Pi)$ of order at least N.

Corollary 2. Let $E(-s, \tilde{\phi}, g, P)$ be the Eisenstein series attached to π (cf. Lemma 2). Then for $\operatorname{Re}(s) \geq 0$, $E(-s, \tilde{\phi}, g, P)$ is holomorphic except possibly for a simple pole at s = 1/10. The point s = 1/10 is a pole if and only if $L_3(1/2, \pi) \neq 0$ or equivalently $L(1/2, \pi \times \Pi) \neq 0$.

Remark 1. It is clear that the method also applies to other cases where Lemma 3 can be verified directly (e.g. the unique cusp form of weight 2 on $\Gamma_0(11)$). In particular, using the results of [1], our results immediately extend to all the holomorphic cusp forms (with respect to $SL_2(\mathbb{Z})$) of weight ≤ 50 .

Remark 2. It is remarkable that the theory of Eisenstein series does also hand us the holomorphy of $L_3(s, \pi)$ at s = 1/2, since in general there are L-functions with zeros at s = 1/2 and therefore at this point Lemma 3 fails (no other zeros are expected on (0, 1)). In fact this is crucial in extending our results to the examples in [1] for which k/2 is odd (k being the weight of π) since then $L(1/2, \pi) = 0$. In particular if k/2 is odd, $L(1/2, \pi \times \Pi) = 0$.

References

- 1. Ferguson, H.R.P., Major, R.D., Powell, K.E., Throolin, H.G.: On zeros of Mellin transforms of $SL_2(Z)$ cusp forms. Mathematics of Computation 42, 241-255 (1984)
- Gelbart, S., Jacquet, H.: A relation between automorphic representations of GL(2) and GL(3). Ann. Scient. Éc. Norm. Sup. 11, 471-542 (1978)
- 3. Jacquet, H., Shalika, J.A.: On Euler products and the classification of automorphic representations I and II. Amer. J. Math. 103, 499-558, 777-815 (1981)
- 5. Jacquet, H., Shalika, J.A., Piatetski-Shapiro, I.I.: Facteurs L et ε du groupe linéaire: théorie archimédienne. Comptes Rendus (série A) 293, 13-18 (1981)
- 6. Langlands, R.P.: Euler products. New Haven: Yale Univ. Press 1971
- 7. Langlands, R.P.: On the functional equations satisfied by Eisenstein series. Lecture notes in Math., Vol. 544. Berlin-Heidelberg-New York: Springer 1976
- 8. Langlands, R.P.: On the classification of irreducible representations of real algebraic groups, Mimeographed notes, Institute for Advanced Study, 1973
- 9. Moreno, C.J., Shahidi, F.: The L-functions $L(s, \text{Sym}^m(r), \pi)$. (To appear in Can. Math. Bull.)

- 10. Serre, J-P.: Une interprétation des congruences relatives à la fonction τ de Ramanujan. Sém. Delange-Pisot-Poitou, 1967/68, no. 14
- 11. Serre, J-P.: Abelian *l*-adic representations and elliptic curves. New York-Amsterdam: Benjamin 1968
- 12. Shahidi, F.: Functional equation satisfied by certain L-functions. Comp. Math. 37, 171-208 (1978)
- 13. Shahidi, F.: On certain L-functions. Amer. J. Math. 103, 297-355 (1981)
- 14. Shahidi, F.: Local coefficients as Artin factors for real groups. (In press)
- 15. Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. London Math. Soc. 31, (3) 79-98 (1975)

Oblatum 2-VII-1984