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Let )
A(z)=q U1(1 —q"?,

g=exp(2riz), be the Ramanujan modular form. Then the associated Dirichlet
series has the following Euler product (for Re(s)>1)

L(s, 7 ) =Gg(s +11/2) Gg(s + 13/ [ ] (1 —a,p”%)” 1 —&,p~°)" L

Gg(s)=n"*2I(s/2), where n, denotes the corresponding automorphic form.

In connection with the Sato-Tate conjecture, for every positive integer m,
Serre [10, 11] introduced an Euler product L,(s,n,), denoted by
L(s, Sym™(p,), ) in the context of Langlands L-functions, whose local factor
at a rational prime p is simply given by

[T A—oday—ip=)-1.
0<jsm

The absolute convergence of this Euler product for Re(s)>1 is then an im-
mediate consequence of the validity of Ramanujan’s conjecture for n ,.

For m<2, it has been shown that L,(s,,) extends to an entire function of
s satisfying an appropriate functional equation (m=1 is due to Hecke while m
=2 was proved by Shimura [15], also see [2] for non-holomorphic forms). For
m=3, 4, and 5, while the meromorphic continuation and functional equation
have been established in each case [6,12,13] (all consequences of the Langlands’
theory of Eisenstein series [7]), our knowledge of the regularity of L (s, =) reduces
only to the closed half plane Re(s)= 1 (with at most a simple pole at s=1, due
to Serre, if m=35). The purpose of this paper is to establish the holomorphicity of

Ly(s, 1) =Gels+33/2)-Gels+ 112 [T [ (t—oda@~ip=2)-1,
p<o 05js3
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where Gg(s)=Gg(s) Gg(s+1) (for the local factors at infinity see [9, 10]). More
precisely, we shall show

Theorem. The L-function L,(s, 7,), originally defined for Re(s)>1, extends to an
entire function of s on C satisfying

4y Ly(1=s5,m0)=Ls(s,7,)

We need several lemmas. For the sake of simplicity let m=n,. Then
T=7,® X 7, as a restricted tensor product, where we consider n as a cusp

p< @
form on PGL,(A), A being the ring of adeles of Q. Let II be the Gelbart-
Jacquet lift of = (cf. [2]). It is a cusp form on PGL3(A). Moreover if we write
n=n,® I,, I, is tempered while every II,, p<oo, is unramified (also

p<
tempered). Suppose p<oo and let L(s,m,xII,) be the corresponding local
Ranking-Selberg L-function (cf. relation (3.2.1) of [4]). Now, let p=cc and
denote by W, the Weil group of C/R. Moreover let o: We—>GL,(C) be the
corresponding representation of W, which is attached to =, by Langlands
reciprocity at infinity [8]. Then II_ corresponds to the three dimensional
representation Sym?(c) of Wy. Now, using the results in [5], we define

L(s,n x I1))=L(s, ¢ ® Sym?(a)),

where the L-function on the right is a local Artin L-function and for each
positive integer m, Sym™(g)=Sym™(p,)- 6. Here p, is the standard representa-
tion of SL,(C) (the L-group of PGL,).
We now set
L(s,mx )= T] L(s,m,xII).
psw

Then by Theorem 5.3 of [3], L(s, = x II) is absolutely convergent for Re(s)>1.
Moreover the discussion in Paragraph 3.5 of [4] (page 801) implies that the
zeta function given by the left hand side of (3.5.1) in [4] is in fact entire.
Combining relation (3.5.1) of [4] with the results in [5] will then imply that
L(s, n x II) is entire. We now have

Lemma 1. For all seC, one has
(1.1) L, (s, )= L(s, = x IT)/L(s, m).

In particular for Re(s)>1 the Euler product defining L,(s,m) is absolutely
convergent and extends to a holomorphic function on Re(s)=1.

Proof. Let, as before, p, be the standard representation of SL,(C). Then (1.1)
follows immediately from

p2 ®Sym?(p;)=p, @ Sym>(p,).

The rest of the assertion now follows from the discussion before the lemma
and the nonvanishing of L(1+7 —1¢,n), teR.
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Remark. The idea of using (1.1) to obtain the meromorphic continuation and
functional equation for L,(s, n) is due to Deligne.

Functional Eq. (1) has been proved in general in [12] (Theorem 5.9). One
has to only observe (cf. [14]) that the local coefficient (s, Sym3(p,), %, x.,) at
infinity (r, is in the discrete series and is the only ramification) is simply equal

t
° L(s, Sym?*(a))/L(1 —s, Sym®(q)).

The following lemma is crucial.

Lemma 2. The L-function L,(s,n) extends to a meromorphic function of s on C
with only a finite number of simple poles, all lying in the open interval (0, 1).
Moreover it has no pole at s=1/2.

Proof. We shall freely use the notation from [6] and [12]. Choose ¢ in the
space of 7 as in Sect. 2 of [12] and extend ¢ to ¢ on G(A), G being a group of
type G, (example (xv) of [6]). Let E(—s, §, g, P) be the corresponding Eisen-
stein series defined by relation (2.4) of [12], where P is the maximal parabolic
subgroup of G, fixed as in Sect. 2 of [12]. Finally, let M(—s)¢$ be the
corresponding constant term defined by relation (2.6) of [12] for Re(s) large.
Suppose = X ¢,, where for all p, p<oo, ¢, is the unique K,-fixed vector

pE©

satisfying ¢ ,(e)=1. Then using the computations in [6]

M(—5/5) $=L(25) Ly(s, m)/L(1 +25) Ly(1 +s5, 7)
@.1) DM, (—5/5)8.,.

where {(s) is just the Riemann zeta function,

70 (8)=Gg(l +25) Gg(25) 1 Go(1 +5+33/2) Ge(s+33/2)~
Gl +s+11/2) Ge(s+11/2)7 1,

and M (s) is the standard intertwining operator acting on Ind =, ®d% -

P(R)1 G(R)
The factor y,(s) is clearly holomorphic and nonzero for Re(s)>0. Since =,
is in the discrete series, Lemma 3.10 of [8] implies that for Re(s)>0,
M, (—5/5) ., is holomorphic. Moreover for any given s one may choose ¢, in
such a way that M_(~s/5)$ 0. Consequently (2.1) implies that for Re(s)>0,
the poles of {(2s)L,(s,m) are exactly those of M(—s/5). From the general
theory of Eisenstein series [7], it follows that for Re(s)=0, M(-s/5) is holo-
morphic except for a finite number of simple poles, all lying on the real axis.
But, then for Re(s)=1/2, {(2s)~! is holomorphic and non-zero except for a
simple zero at s=1/2. This implies that for Re{(s)=1/2, L,(s, n) is holomorphic
with only a finite number of simple poles all lying in (1/2, 1). The lemma is
now a consequence of the functional Eq. (1).

Lemma 3. The L-function L(s, &) has no zeros on [0, 1].

Proof. The Mellin transform of 4(x +iy) along the imaginary axis gives

L(s,m)= Oj? yeAGy)y*dy/y.
0
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The functional relation A(—1/z)=2z'24(z) now implies that the integral from 0
to 1 can be combined with the integral from 1 to o to yield

L(s,m)= {yéd(iy) O +y %) dy/y.

Since A(iy)>0 for y=1, it is then clear that L(s,n)>0 for s real. This proves
the lemma.

Proof of the theorem. The L-function L(s, = x IT) is an entire function of 5. By
Lemmas 1 and 3, L,(s,n) has no poles on [0, 1]. Now the theorem is a
consequence of Lemma 2.

Corollary 1. Let s, be a zero of L(s,n) of order N=0. Then s, is also a zero of
L(s, n x I) of order at least N.

Corollary 2. Let E(—s, ¢, g, P) be the Eisenstein series attached to n (cf. Lemma
2). Then for Re(s)=0, E(—s, ¢, g, P) is holomorphic except possibly for a simple
pole at s=1/10. The point s=1/10 is a pole if and only if L;(1/2,7)+0 or
equivalently L(1/2,n x II)+0.

Remark 1. 1t is clear that the method also applies to other cases where Lemma
3 can be verified directly (e.g. the unique cusp form of weight 2 on I,(11)). In
particular, using the results of [1], our results immediately extend to all the
holomorphic cusp forms (with respect to SL,(Z)) of weight <50.

Remark 2. It is remarkable that the theory of Eisenstein series does also hand
us the holomorphy of L,(s,n) at s=1/2, since in general there are L-functions
with zeros at s=1/2 and therefore at this point Lemma 3 fails (no other zeros
are expected on (0, 1)). In fact this is crucial in extending our results to the
examples in [1] for which k/2 is odd (k being the weight of =) since then
L(1/2, 7y=0. In particular if k/2 is odd, L(1/2, = x IT)=0.
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