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Let 
A(z)=q lI  (1 __qn)24, 

n=l  

q=exp(2rtiz), be the Ramanujan modular form. Then the associated Dirichlet 
series has the following Euler product (for Re(s)> 1) 

L(s, n a) = G R (s + 11/2) G R (s + 13/2) l-I(1 - %  p - s ) -  1(1 - N e  p - ' ) -  1, 
p 

GR(s ) = It -~/2 F(s/2), where n~ denotes the corresponding automorphic form. 
In connection with the Sato-Tate conjecture, for every positive integer m, 

Serre [10, 11] introduced an Euler product L,.(s, na), denoted by 
L(s, Symm(P2), xd) in the context of Langlands L-functions, whose local factor 
at a rational prime p is simply given by 

H (1 j - - m - - j - - s - - 1  - % %  p ) �9 
O<=j<=m 

The absolute convergence of this Euler product for Re (s)> 1 is then an im- 
mediate consequence of the validity of Ramanujan's conjecture for %. 

For m<2,  it has been shown that Lm(S, r%) extends to an entire function of 
s satisfying an appropriate functional equation (m= 1 is due to Hecke while m 
=2 was proved by Shimura [15], also see [2] for non-holomorphic forms). For 
rn = 3, 4, and 5, while the meromorphic continuation and functional equation 
have been established in each case [6, 12, 13] (all consequences of the Langlands' 
theory of Eisenstein series [7]), our knowledge of the regularity of Lm(S, nz) reduces 
only to the closed half plane Re(s)> 1 (with at most a simple pole at s = l ,  due 
to Serre, if m = 5). The purpose of this paper is to establish the holomorphicity of 

L3(s, nz)=Gc(s+33/2)'Gc(s+ll/2) Iq I-I (1-~p~-3-J~p p-S~-l, , 
p < ~  0_-<j_<-3 
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where Ge(s)=G~(s)G~(s+l) (for the local factors at infinity see [9, 10]). More 
precisely, we shall show 

Theorem. 7he L-function L3(s, nn), originally defined for Re(s)> 1, extends to an 
entire function of s on C satisfying 

(1) L3(1 - s ,  n~) = L3(s, hA) 

We need several lemmas. For the sake of simplicity let n = n j .  Then 
n = n ~  | @ n v, as a restricted tensor product, where we consider n as a cusp 

p < c O  

form on PGL2(A), A being the ring of adeles of Q. Let H be the Gelbart- 
Jacquet lift of n (cf. [2]). It is a cusp form on PGL3(A). Moreover if we write 
I I = H ~  | @ lip, 1-1oo is tempered while every lip, p<  ~ ,  is unramified (also 

p < o o  

tempered). Suppose p<  oo and let L(s, np • lip) be the corresponding local 
Ranking-Selberg L-function (cf. relation (3.2.1) of [4]). Now, let p=  oo and 
denote by W R, the Weil group of C/R. Moreover let a: W~t-~GLz(C) be the 
corresponding representation of W• which is attached to noo by Langlands 
reciprocity at infinity [8]. Then H~o corresponds to the three dimensional 
representation Sym2(a) of W R. Now, using the results in [5], we define 

L(s, n~o • Iloo ) = L(s, a | SymZ(a)), 

where the L-function on the right is a local Artin L-function and for each 
positive integer m, Sym"(a )=Sym' (p2) .a .  Here P2 is the standard representa- 
tion of SL2(C ) (the L-group of PGL2). 

We now set 

L(s, n x 1I) = I-I L(s, np x Hp). 
p <  oo 

Then by Theorem 5.3 of [3], L(s,n •  is absolutely convergent for Re(s)>l .  
Moreover the discussion in Paragraph 3.5 of [4] (page 801) implies that the 
zeta function given by the left hand side of (3.5.1) in [4] is in fact entire. 
Combining relation (3.5.1) of [4] with the results in [5] will then imply that 
L(s, n • 1I) is entire. We now have 

Lemma 1. For all seC, one has 

(1.1) L3(s, n)= L(s, n • n)/L(s,  n). 

In particular for Re(s )> l  the Euler product defining L3(s, rt ) is absolutely 
convergent and extends to a holomorphic function on Re(s)_>_ 1. 

Proof. Let, as before, P2 be the standard representation of SL2(C ). Then (1.1) 
follows immediately from 

P2 | Sym2 (Pz) = P2 G Sym3 (p2). 

The rest of the assertion now follows from the discussion before the lemma 

and the nonvanishing of L(1 +l/-Z- lt, tO, teR. 
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Remark. The idea of using (1.1) to obtain the meromorphic continuation and 
functional equation for L3(s, ~) is due to Deligne. 

Functional Eq. (1) has been proved in general in [12] (Theorem 5.9). One 
has to only observe (cf. [14]) that the local coefficient y(s, Sym3(p2), ~oo, Zoo) at 
infinity (noo is in the discrete series and is the only ramification) is simply equal 
to 

L(s, Sym3(a))/L(1 - s ,  Sym3 (a)). 

The following lemma is crucial. 

Lemma 2. The L-function L3(s, ~z) extends to a meromorphic function of s on C 
with only a finite number of simple poles, all lying in the open interval (0, 1). 
Moreover it has no pole at s = 1/2. 

Proof We shall freely use the notation from [6] and [12]. Choose q~ in the 
space of ~ as in Sect. 2 of [12] and extend ~b to q~ on G(A), G being a group of 
type G2 (example (xv) of [6]). Let E ( - s ,  ~,g, P) be the corresponding Eisen- 
stein series defined by relation (2.4) of [12], where P is the maximal parabolic 
subgroup of G2 fixed as in Sect. 2 of [12]. Finally, let M ( - s ) ~  be the 
corresponding constant term defined by relation (2.6) of [12] for Re(s) large�9 
Suppose q~= (~) q~p, where for all p, p <  oo, 4]p is the unique Kp-fixed vector 

p<ov 

satisfying q~p(e)= 1. Then using the computations in [6] 

M ( - s / 5 )  ~9=~(2s) L3(s , 7~)/~(1 + 2s) L3(1 +s,  n) 

(2.1) " ~ o~ (s) M ~ ( - s/5) ~p | 

where ~(s) is just the Riemann zeta function, 

V| (s) = GB(1 + 2s) Gu(2s )- 1 Gc(1 + s + 33/2) Gc(s + 33/2)- 1 

�9 Gc(1 + s + 11/2) Gc(s + 1 1 / 2 ) -  1, 

and Mo~(s) is the standard intertwining operator acting on Ind n~ |  
P(R) ~" G(R) 

The factor ),| is clearly holomorphic and nonzero for Re(s)>0. Since ~ 
is in the discrete series, Lemma 3.10 of [8] implies that for Re(s)>0,  
Moo(-s/5)~o is holomorphic. Moreover for any given s one may choose q~ in 
such a way that Moo(-s/5) JP~o ~-0. Consequently (2.1) implies that for Re (s)> 0, 
the poles of ((2s)La(s,n) are exactly those of M ( - s / 5 ) .  From the general 
theory of Eisenstein series [7], it follows that for Re(s)>0,  M ( - s / 5 )  is holo- 
morphic except for a finite number of simple poles, all lying on the real axis. 
But, then for Re(s)>1/2,  ~(2s) -1 is holomorphic and non-zero except for a 
simple zero at s =  1/2. This implies that for Re(s)> 1/2, L3(s, ~) is holomorphic 
with only a finite number of simple poles all lying in (1/2, 1). The lemma is 
now a consequence of the functional Eq. (1). 

Lemma 3. The L-function L(s, ~z) has no zeros on [0, 1]. 

Proof The Mellin transform of A (x + iy) along the imaginary axis gives 

oo 

L(s, ~z)= ~ y6 d(iy)y~dy/y. 
0 
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The functional relation d( -1 / z )=z12A(z )  now implies that the integral from 0 
to 1 can be combined with the integral from 1 to ~ to yield 

o o  

L(s, re) = ~ y6 A (iy) (yS + y a -s) dy/y. 
1 

Since A(iy)>O for y >  1, it is then clear that L(s, rt)>O for s real. This proves 
the lemma. 

Proof of the theorem. The L-function L(s, rc • 1I) is an entire function of s. By 
Lemmas 1 and 3, L3(s, Tc ) has no poles on [0, 1]. Now the theorem is a 
consequence of Lemma 2. 

Corollary 1. Let s o be a zero of L(s, rO of order N>O. Then s o is also a zero of 
L(s, ~ x 1I) of order at least N. 

Corollary 2. Let E ( - s ,  ~9, g, P) be the Eisenstein series attached to rt (cf. Lemma 
2). Then for Re(s)~0,  E ( - s ,  ~9, g, P) is hoIomorphic except possibly for a simple 
pole at s= l /10 .  The point s = l / 1 0  is a pole if and only if L3(1/2, Tr)#0 or 
equivalently L(1/2, n x 11) 4= 0. 

Remark 1. It is clear that the method also applies to other cases where Lemma 
3 can be verified directly (e.g. the unique cusp form of weight 2 on Fo(ll)). In 
particular, using the results of [1], our results immediately extend to all the 
holomorphic cusp forms (with respect to SL2(Z)) of weight < 50. 

Remark 2. It is remarkable that the theory of Eisenstein series does also hand 
us the holomorphy of L3(s, ~) at s=  1/2, since in general there are L-functions 
with zeros at s=  1/2 and therefore at this point Lemma 3 fails (no other zeros 
are expected on (0, 1)). In fact this is crucial in extending our results to the 
examples in [1] for which k/2 is odd (k being the weight of re) since then 
L(1/2, r0=0.  In particular if k/2 is odd, L(I/2, rt x 11)=0. 
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