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To each rational number p/q, with q odd, there is associated the 2-bridge knot 
Kp/q shown in Fig. 1. 

QI bl 

Fig. 1. The 2-bridge knot Kp/q 

In (a), the central grid consists of lines of slope +p/q, which one can 
imagine as being drawn on a square "pillowcase". In (b) this "pillowcase" is 
punctured and flattened out onto a plane, making the two "bridges" more 
evident. The knot drawn is K3/5, which happens to be the figure eight knot. 
(We assume q odd in order to get a knot rather than a two-component link.) 
The double cover of S 3 branched along Kp/q is the lens space Lq,p. With this 
observation, attributed in [16] to Seifert, the isotopy classification of 2-bridge 
knots follows easily from the classification [14] of oriented lens spaces: K~/q 
=gp,/q, if and only if q'=q and p,_p+_l (modq). Basic references for 2-bridge 
knots are [2, 16, 17]. 

We shall derive in this paper the isotopy classification of the incompressible 
surfaces, orientable or not, i n  S3-Kp/q. As an application, we obtain some 
information about the manifold resulting from Dehn surgery o n  Kp/q: Exclud- 
ing the cases when Kp/q is a torus knot (Dehn surgery on torus knots was 
completely analyzed in [10]), every Dehn surgery on K m yields an irreducible 
manifold, and all but finitely many Dehn surgeries yield non-Haken (i.e., not 
sufficiently large) non-Seifert-fibered manifolds. The case of the figure eight 
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knot, K3/5, was previously worked out in [18] and gave the first known 
examples of non-Haken, non-Seifert-fibered irreducible 3-manifolds. Another 
generalization of the case of K3/5, to punctured-torus bundles, can be found in 
[3] and [5]. 

A version of this paper was circulated in preprint form in 1979. Since that 
time a number of improvements in techniques have been found [5, 7, 12], and 
we have taken advantage of these subsequent developments in revising this 
paper for publication�9 Extensions of some of our results to wider classes of 
knots and links can be found in [6, 9, 11]. 

w 1. Results 

There are two common definitions of incompressibility for a surface S zki:S 2, D 2, 
IRP z embedded in a 3-manifold M, with Sc~OM=OS. We shall use the weaker 
one: S is incompressible in M if for each disc D c M  with Dc~S=OD there is a 
disc D ' c S  with OD'=OD. The (obviously) stronger condition is that rclS--*rclM 
be injective. If the normal bundle of S in M is trivial, then ~l-injectivity is 
equivalent to incompressibility, by the loop theorem. If the normal bundle of S 
in M is non-trivial, then n l S ~ n l M  injective is equivalent to the incom- 
pressibility of S, the boundary of a tubular neighborhood of S in M. Clearly, 
incompressible implies S incompressible. For  an example of an incompressible 
surface S c M  with ~S- -*n~M not injective, let M be a lens space Lq,p with q 
even. The non-trivial element of Ha(Lq,p;Z2) is represented by an embedded 
non-orientable surface. Such a surface S of minimal genus must be incom- 
pressible. If S were IRP 2, Lq,p would be l I P  3. Hence rtlS is infinite if q>2 ,  and 
n~S~n~Lq,p is not injective. (It follows from the results of this paper that for 
2-bridge knot complements, incompressibility is equivalent to ~-injectivity.) 

S is O-incompressible if for each disc D c M  with Dc~S=O+D and Dc~OM 
=0 D(where  O +DwO D=OD and O +D~O D=S~ there is a disc D ' c S  with 
0+ D '= 0+D and O D'cOS. We recall an elementary fact (see [W], Lemma 1.10 
for a proof)" In an irreducible orientable 3-manifold whose boundary consists 
of tori (such as a knot complement), an orientable incompressible surface is 
either &incompressible or a 0-parallel annulus. (S ~ M is O-parallel if S can be 
isotoped into 0M rel 0S.) 

Our classification of the incompressible, 0-incompressible surfaces in S 3 
-Kp/q will be in terms of the continued fraction expansions of p/q, 

p/q = r + [b 1 . . . . .  bk] = r + 
b a -  1 

bE-- .. 

r, bi~Z 

I 

bk 

As is well-known (see [2, 17]), if p / q = r + [ b  1, . . . , b k ]  , then Kv/q is the boundary 
of the surface obtained by plumbing together k bands in a row, the i th band 
having b i half-twists (right-handed if bl > 0 and left-handed if b i < 0). 
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There are two essentially different ways of performing each p lumbing of 
two adjacent  bands.  One way of describing this choice is to say that  instead of 
using one of the hor izontal  p lumbing squares shown in Fig. 2, we could use the 
complemen t  of  this square in the horizontal  plane containing it, compact if ied 
by a point  at ~ .  (Thus we are now regarding S 3 as the 2-point compactif i-  
cat ion of S 2 • IR, with the spheres S 2 • {.} being horizontal.)  

If we include for each p lumbing both of these complemen ta ry  horizontal  
p lumbing  squares, we obtain  a certain b ranched  surface 2;[b 1 . . . . .  bk]; see 
Fig. 3. Z'[b 1 . . . . .  bk] carries a large number  of  (not necessarily connected) sur- 
faces, labelled S,(n 1 . . . .  ,nk_ 0, where n>_l and O<:rti<:l~. By definition, 
S.(n~ . . . .  ,n~_l)  consists of  n parallel sheets running close to the vertical por-  
tions of each band  of E[-b 1 . . . . .  bk], which bifurcate into n~ parallel copies of the 
i 'h inner p lumbing  square and n - n  i parallel copies of the i th outer  p lumbing 
square. For  example,  when n = 1, the surfaces S l(n 1 . . . .  ,nk-1)  (h i=0  or 1) are 
just the 2 k- ~ p lumbings  of the original k bands. 

In order  to have all the surfaces S,(n~ . . . .  ,nk_ 0 for different Z'[b 1 . . . .  ,bk]'s 
lying in a single copy of S 3 -  Kp/q, we choose a fixed posi t ion for Kp/q, say the 

Fig. 2 

I 
Fig. 3 
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one shown in Fig. l b, then reposition Z[b t, . . . ,bk] by a level-preserving iso- 
topy of S 3 which deforms OZ[b 1, ...,b~] onto this fixed Kp/q. 

Theorem 1. (a) A closed incompressible surface in S 3 - K p / q  is a torus isotopic to 
the boundary of  a tubular neighborhood of  Kp/q. 

(b) A non-closed incompressible, O-incompressible surface in S 3 -Kp/q  is iso- 
topic to one of  the surfaces S , (n l , . . . , n k_ l )  carried by Z[b  l . . . . .  bk] , for some 
continued fraction expansion p/q = r + [bl , . . .  , bk] with [bll > 2 for each i. 

(c) The surface S,(n 1 . . . . .  rig-a) carried by Z [b 1 . . . .  , bk] is incompressible and 
O-incompressible if and only if  I bil__> 2 for each i. 

(d) Surfaces S,(n 1 . . . . .  nk- 1) carried by distinct X[b 1 . . . . .  bk]'S with I bil >= 2 for 
each i are not isotopic. 

(e) The relation of  isotopy among the surfaces S,(n I . . . . .  n~_ 1) carried by a 
given Z[b  I . . . .  , bk] with Ibil>2 for each i is generated by: 

(*) Sn(n 1 . . . . .  n i_ l ,n i , . . . , nk_ l )  is isotopic to S , (n l , . . . , n i_  1 + l , n i + l  . . . . .  nk_l) if 
bi=+_2. (When i=1  this means Sn(nl ,n2, . . . ,nk_l)  is isotopic to S,(n 1 
4-1, n2, . . . ,n k_ 1), and similarly when i=k.)  

Remarks. 1) For 2-bridge links Kpiq, q even, Theorem 1 applies to those 
surfaces meeting both components of the link in the same number of sheets. To 
treat the other incompressible surfaces, the Diagram in Fig. 4 below must be 
modified; see [6]. 

2) R. Riley [15] has shown that representations of a 2-bridge knot group in 
PSL2(ff?, ) taking meridians to parabolic elements are conjugate to represen- 

4/1 

tf0 

/ 

- 5/2 ~ 
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A/3 1/1 3/A 

/ \ ' ' '  

j j/_...-" 
~ ( 1  0fl 

' t~ '~ -I/A 

~ -1/3 

[ ~  -2/5 

Y -1/2 
- 5 / 3  3/5 

Fig. 4. The diagram 
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tations in PSL2((9), where C c C  is the ring of algebraic integers. Theorem l(a), 
together with a theorem of Bass [1], implies Riley's result. 

The main idea of the proof of Theorem 1 is to associate to an incom- 
pressible, 0-incompressible surface in S 3 -  K p / q  a n  edge-path from 1/0 to p/q in 
the Diagram shown in Fig. 4. By definition, there is an edge in the Diagram 
joining fractions a/b and c/d whenever a d - b c =  + 1. The edge from a/b to c/d is 
the long side of triangle whose third vertex is (a + c)/(b +d). This gives a simple 
inductive rule for labeling the vertices. 

Remark. This Diagram comes from the action of PSL2Z on the hyperbolic 
plane: the group of symmetries of a tiling by triangles of this same com- 
binatorial type is PSL271. We have distorted this tiling to space the vertices of 
the triangles more evenly. 

An edge-path from 1/0 to p/q in the Diagram corresponds uniquely to a 
continued fraction expansion p/q = r +  [-b 1 . . . .  , bk]  , where the partial sums Pl/qi 
= r + [ b  1 .. . .  ,bi] are the successive vertices of the edge-path. At the vertex 
P~-1/q~-1 the path turns left or right across Ibll triangles, left if b~>0 and right 
if b i < 0. 

The criterion I bi[ > 2 for incompressibility and 0-incompressibility is exactly 
that the associated edge-path be minimal in the sense that no edge is im- 
mediately retraced and no two edges of one triangle are traversed in suc- 
cession. Minimal edge-paths from 1/0 to p/q are contained in a finite subcom- 
plex of the Diagram, of the form 

Q1 Q3 Qk-1 

0 2 a4, E1 k 

Fig. 5 

P/q 

Os . . . .  

Uk-1 

where the numbers ai, indicating the number of smaller triangles in each larger 
triangle, are determined by the unique continued fraction expansion 

1 a i > 0  
P/q=[al' --a2'a3' --a4 ..... +---ak]= 1 ' ak> l. 

alq- 
a2+ 

" .  [ 

+ - -  
ak 

(We have reduced p/q mod 1, so that 0 <p/q < 1.) Clearly, a minimal edge-path 
in Fig. 5 can involve only the heavy lines which form the large triangles. Then 
it is not hard to see that the number of minimal edge-paths from 1/0 to p/q is 
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the number ~o k defined recursively by: 

(~ __~q~i--2"~-q2i--1, ai> l 
"--(~Oi_ 3"~t-~Oi_ 2, ai= l, 

~Oo=q~_l=l, q0 2=0. 

For example, if each a i > 1 then {(pi} is the Fibonacci series. 
In particular, the number of minimal edge-paths from 1/0 to p/q is finite, so 

there are, up to isotopy, only finitely many incompressible, 9-incompressible 
surfaces in S 3 - K p / q  with a given number n of sheets. (Namely, Z[-bl,...,bk] 
carries (n+ 1) z-1 isotopy classes of incompressible, &incompressible n-sheeted 
surfaces, where l is the number of bi's with [b~[ > 2.) 

The question of which n-sheeted surfaces S,(n 1 . . . . .  nk_ 0 are connected is 
slightly subtle. We pursue this only far enough to obtain: 

Proposition l. Consider the surfaces S , (n l , . . . , nk_  0 carried by a given 
,~ [b 1 . . . . .  bk]. Then: 

(1) I f  all bi's are even, S , (n l , . . . ,  n k_ 1) is connected only when n = 1. 

(2) I f  at least one b i is odd, each two-sheeted surface S2(n l , . . . ,nk_  0 is 
connected. 

(3) There exist connected n-sheeted surfaces S , (nl ,  . . . ,n  k_ 1) with n > 2  if and 
only if at least two b~'s are odd, in which case there exist connected 
S,(n 1 . . . .  ,nk_ O'S for all n. 

The single-sheeted surfaces S l (n l , . . . , nk_  0 carried by Z[b  1 .... ,bk] are 
orientable if and only if each b~ is even. There is only one such continued 
fraction expansion p/q = r + [b 1,... ,  bk] with each b i even, so we deduce: 

Corollary. The orientable incompressible Seifert surfaces for Kp/q all have the 
same genus, and are all isotopic i f  and only if at most one of  the bi's in the 
unique expansion p / q = r  +[b  1 . . . . .  bk] with all bi's even is not +2. 

[The case that all b~'s are +2  is the case that S 3 - K p / q  fibers over a circle, 
the fiber being the unique incompressible orientable Seifert surface.] 

Proposition2. Each boundary circle of  a surface S,(n 1 . . . . .  nk_ 0 carried by 
Z[b  x . . . .  ,bk] wraps around Kp/q once longitudinally and m(bl , . . . ,bk)  times me- 
ridionally, m(bt . . . .  , bk) being the function 

m(b 1 . . . .  , b ,)= 2[(n + - n - )  - (ng - n o )  ], 

where n § and n-  are the number o f  positive and negative bi's, and n~ and n o are 
the corresponding numbers for the unique continued fraction expansion p /q=r '  
+ [b' 1 . . . . .  b'.] with each b' i even.  
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P/q Minimal [b 1 .. . .  , bk]'S Corresp. values of 
2 [( ,~ + - , 7 - )  

- (n  + - n o ) ]  

Number 
of connected 
incompr, n-sheeted 
surfaces, n = 1, 2 .. . .  

1/q [ - 2 , - 2 ,  . . . , -  23, [q] 0,2q 2, 1,0,0, ... 

q - 1  

3/5 [ - 2 , 2 ] ,  [2,3], [ - 3 , - 2 ]  0, 4, - 4  3, 2, 0, 0, ... 

3/7 E-Z,  - 4 ] ,  [2, - 3 ] ,  [3,2,2] 0, 4, 10 3, 2, 0, 0, ... 

4/11 [2, - 2 ,  - 2 ,  - 2 ] ,  [3,4], 0, 8, - 4 ,  2 5, 5, 0, 0 . . . .  
[ - 2 ,  - 3 ,  - 2 ,  - 2 ] ,  
[ - 2 ,  - 2 ,  - 3 3  

5/13 [ - 2 , - 2 , 2 , 2 3 ,  [ - 2 , - 3 , - 3 ] ,  0, - 6 ,  - 2 ,  6, 2 7,8,4,4,8,8,12,8 
[2, - 2, - 33, [3, 3, 2], 
[3, 2, - 23 

Note. K3/5 and K5/13 are amphicheiral (the condition is p 2  _ 1 (modq)) which 
accounts for the symmetry in their data. 

The result of the Dehn surgery on Kp/q in which a tubular neighborhood of 
Kv/q is cut out and reglued in so as to make a meridian disc kill a curve in S 3 
-Kv/q wrapping 1 times around Kp/q longitudinally and m times meridionally, 
we shall call Mm/t(Kp/q). 

Theorem 2. (a) Mm/t(Kp/q) is irreducible, with the trivial exceptions 

(i) p =  _+1 (modq) and re~l= +_2q, in which case 

M +_zq( K + l/q)= Lp, q ~ L q, p �9 

(ii) p - 0 ( m o d q )  and m/l=O, in which case Mo(Ko)=S~ • S z. 

(b) I f  Mm/z(Kp/q) is a Haken manifold, t h en /=1  and m=m(b 1 .... ,bk) for one 
of the finitely many continued fraction expansions p/q = r + [b 1 .... , bk] satisfying 
I b~l _-> 2 for each i. 

J. Przytycki [13] has proved the converse of (b), for p/q not one of the 
exceptions in (a). 

Since a 2-bridge knot  Kp/q is simple, i.e., every incompressible torus in S 3 
-Kp/q is isotopic to the peripheral torus, then except for the torus knots (when 
S 3-Kp/q is Seifert-fibered), the main result of [19] asserts that S 3-Kp/q has a 
hyperbolic structure which is complete and of finite volume. Hence all but 
finitely many Dehn surgeries on Kp/q yield hyperbolic manifolds [18]. Being 
hyperbolic, these are not Seifert-fibered. 
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Theorem3. Any diffeomorphism of 2-bridge knot complements S3-Kp/q--~S 3 
-Kr/~ can be isotoped so that it extends to a diffeomorphism of S 3. In particular, 
Kp/~ is isotopic to Kr/~, or its mirror image, if Kp/q and Kr/~ have diffeomorphic 
complements. 

The proof of this is easy from Theorem 1 and Proposition 2, so we give the 
argument here. For a knot K c S  3, let 5e(K)cQu{1/O} be the set of slopes of 
boundary curves of incompressible, d-incompressible surfaces i.n Sd-K .  Ac- 
cording to [8], 5:(K) is finite, and by I-4], ~ ( K )  has at least two elements 
(including 0, of course). 

L e m m a l .  Suppose (a) 5 : (K)cZw{1/0}  and (b) there exist ml, m2eS:(K ) 
-{1/0} with [ml-m21>2.  Then a meridian circle of K is determined (up to 
isotopy) solely by S 3 - K. 

Proof. Condition (a) implies that, in the Diagram (Fig. 4), the vertex 1/0 is 
joined by an edge to each slope in 5:(K)-{1/0},  and condition (b) implies that 
1/0 is the only vertex with this property. Thus the slope 1/0 is uniquely 
determined by ~(K) ,  hence also by S 3 - K .  [] 

Theorem 3 follows from Lemma 1 since (a) and (b) are satisfied for 2-bridge 
knots. (For (b), consider the two edge-paths which form the top and bottom 
borders of the strip in Fig. 5. For one of these edge-paths n + =0, while n- =0  
for the other. So by Proposition 2 their slopes m~ and m 2 satisfy l m l - m 2 [ > 2 .  ) 

Question. Do (a) and (b) of Lemma 1 hold for all nontrivial knots? 

w 2. Proof of Theorem 1 

We shall use the picture of K = Kv/ in Fig. 1 (b), but with the height function 
regarded as the natural projection )~3~R, making the levels 2-spheres S~ =S 2 
• {r} c S2x R c S 3. Each level S 2 we identify with the orbit space R2/F where 

F is the group generated by 180 ~ rotations of IR 2 about the integer lattice 
points. Let ;~z be S~-12/F,  a 4-punctured sphere. We take as known the 
elementary facts: 

(i) The isotopy classes of smooth circles in S~ separating the four punctures 
into pairs are in one-to-one correspondence with • w {1/0}. 

(ii) The isotopy classes of smooth arcs in ~o joining one given puncture to 
any of the other three punctures are in one-to-one correspondence with 

u {1/0}.  

In either case, a representative of the isotopy class corresponding to 
a/beQ~{1/O} is the projection to S2=IR2/F of a line in IR 2 of slope a/b (the 
line being disjoint from Z 2 in (i), and intersecting Z 2 in (ii)). The number 
a/b e ~ u {1/0} associated to a circle or arc in (i) or (ii) is called its slope. We 
may assume K c S  2 x [0, 1], with Kc~S~ consisting of two arcs of slope 1/0 for 
r = 1, two arcs of slope p/q for r = 0, and the four points of 712/F for 0 < r < 1. 
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Proof of Theorem 1 (a). Let S be a closed incompressible surface in S 3 -  K. We 
may suppose the height function on S is a morse function. For each non- 
critical level between the top and bot tom of K, we define the slope of this level 
to be the slope of any circles of S in this level which separate the four points of 
K into pairs, if there are any such circles (if there are several such circles, they 
must all have the same slope). Near the top of K the slope, if defined, is 1/0, 
and near the bot tom of K it is p/q, if defined. Passing between these two 
extreme levels, the slope can change only at the level of a saddle of S. At a 
saddle, either one level circle of S splits into two level circles, or two level 
circles are joined into one level circle. In either case, the three level circles, 
after projecting to a common level S 2, can be isotoped in S 2 -  K to be disjoint. 
Disjoint circles cannot have different slopes, so the slope cannot change at a 
saddle, except to become undefined. 

Assuming p/q#:l/O, there must therefore be some non-critical level S 2 
between the top and bot tom of K where the slope is undefined. In either ball 
B 3 bounded by this level S 2, K consists of two standard arcs (up to diffeomor- 
phism). 

Let D 2 ~ B  3 be a disc separating the two arcs of K, chosen so that 630 2 c S  ff 

- S. This is possible since none of the circles of S n S z separate the four points 
of S f f n K  into pairs. By the incompressibility of S, we may isotope S to be 
disjoint from D 2. (Consider an innermost circle of S n D  2. The disc it bounds 
on S may be replaced by the disc it bounds in O 2, by an isotopy of S since the 
union of these two discs is a sphere in S 3 - K ,  which bounds a ball since 
S 3 - K  is irreducible.) So there are tubes about  the two arcs of K in B 3 with 
S n B 3 contained in these two tubes. And similarly for the other 3-ball bounded 
by S 2. These four tubes can be chosen to fit together to form a tubular 
neighborhood N of K, with S c N. S is incompressible in N, so by a standard 
argument, S must be a torus isotopic to 63N. []  

Let S be an incompressible, 63-incompressible surface in S 3 - N ,  N a tubular 
neighborhood of K, 63S4:0. The components of 63S are non-trivial circles on the 
torus 63N, each wrapping around m times longitudinally and l times me- 
ridionally, say. The possibility / = 0  can be ruled out by the same argument 
which proved Theorem l(a). Hence we may assume that 63S intersects each 
meridian circle of t3N transversely. If we regard N as being very small, in- 
finitesimally small in fact, then the surface S near K consists of a fixed number 
n of sheets meeting along K. 

The height function on S we may assume to be a morse function, with 
critical points all in distinct levels. In a given non-critical level S ff between the 
top of K and the bottom, S ~ S  ff consists of a finite number  of circles and arcs 
joining the four points of S ff n K in some pattern, n arcs meeting at each point 
of S 2 n K .  If any arc of S n S  2 joins one point of S~ n K to itself, then there 
must be such an arc bounding a disc in S 2 - K .  Then by the 0-incom- 
pressibility of S, 63S could not be transverse to all the meridian circles of 63N. 
Hence we may assume each non-critical level arc of S has distinct endpoints on 
K. 
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Any circles of S nS 2, must either be trivial, bounding discs in S ] - K ,  or 
they must separate the four points of S ~ n K  into pairs and have the same 
slope as the arcs of S n S~. If there are non-trivial circles in S n S~, then after an 
isotopy of S ~ - K  and a linear change of coordinates (by the action of GL(2, 7/) 
on S 2 = ~;~.2//-), and ignoring trivial circles, S n S 2 can be put in the form 

Fig. 6 

where the labels m and n indicate the numbers of parallel copies of the curves 
they are affixed to. 

Consider now the case that S nS~ contains no non-trivial circles. By a 
simple counting argument, one sees that if there are n I arcs joining one pair of 
points of S~ n K ,  then there must be n~ arcs joining the opposite pair also. By 
isotopy and linear change of coordinates, and ignoring trivial circles, these 2 n~ 
arcs can be put in a standard position: 

n I In 
If nl#:n there will be some arcs joining the two halves of this picture. By 
further isotopy and linear change of coordinates the picture can be enlarged 
t o :  

n2 

nl~'~ nl 

n 2 

Fig. 7 

There can be no arcs of a third slope. For  if there were the picture would 
become: 
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n2 n 2 

Fig. 8 

As the given level S~ is varied, this configuration must eventually change to 
one with different n~'s. This can only occur in passing a saddle of S which joins 
two level arcs of S having a common endpoint, e.g., 

Fig. 9 

This creates a level arc joining a point of S] ~ K  to itself, violating our 
hypotheses on S. Thus we have shown that in a transverse level S 2, S c~S 2 can 
contain arcs of at most  two slopes. These slopes a/b and c/d satisfy a d - b c =  
___ 1, since a linear change of coordinates brought them to slopes 0 and oe. 

For the given level S 2 we define 2(S 2) to be the point in the Diagram (of 
m ( a ) + n - m ( c )  

Fig. 4) having barycentric coordinates n b n ~ , where there are 2m 

arcs of S n S  ff of slope a/b and 2 n - 2 m  arcs of slope c/d. Near the top of K, 
~.(Sff)= 1/0, and near the bottom, 2(Sff)=p/q. In between, 2(S 2) can change only 
at a saddle of S. A saddle at which 2(Sff) does in fact change we call an 
essential saddle. Thus an essential saddle joins two level arcs whose four 
endpoints are the four strands of K. Two successive 2(Sff)'s lie in a common 
edge of the Diagram and have barycentric coordinates of the form 

+ and -~ . 
n n n 

Let 20= 1/0, 2 t . . . . .  2~=p/q be the sequence of 2($2)'s from the top of K to 
the bottom, 2 i 4= 2i_ 1. 

Lemma 2. S, if incompressible and O-incompressible, can be isotoped (relK) so as 
to eliminate all its critical points which are not essential saddles. The 2-sequence 
of this new S satisfies: 

(i) no three successive 2i's lie on two different edges of a triangle of the 
Diagram; 

(ii) 2i#21+ 2 for each i. 

Proof. If there are any trivial circles of S ~ S  2 for r e [ 0 , 1 ] ,  then S can be 
isotoped to produce an index 0 or 2 critical point in a level S 2, 0 < r < 1, and 
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the procedure of Proposition 2.1 of [5] can be applied to eliminate such 
critical points. So we may assume S n S  ff has no trivial circles in levels S ff 
meeting K. 

Next we show how to eliminate also nontrivial circles of S c~ S~ z for 0 < r < 1, 
and in particular make S disjoint from levels S z not meeting K. Nontrivial 
circles of SnSZ~ arise either from circles of Sc~S 2 and SnS~,  or from saddles 
of S in levels Sff, 0 < r <  1, joining an arc of SnSZ~ to itself: 

~.+~ l I 

Fig. 10 

Consider such a saddle which is followed by another saddle which decreases 
the number  of nontrivial level circles of S. Examining the various possible 
positions for such a second saddle, one finds that the second saddle can be 
deformed to lie in the same level as the first saddle: 

z ; , ,  II /,'t~ ~l 6 " J  ',l !! t 
Ill ." I1 I I  ~ i ( ~ ]  I 

a b c 

Fig. 11 

:-------i1 If, If' 
d 

Then one considers what happens if the heights of the two saddles are in- 
terchanged. In (a), a trivial level circle is produced, a situation we have already 
seen how to simplify. In (b), S is obviously 0-compressible. In (c) and (d), 
interchanging the heights of the two saddles decreases the number of level 
circles. Thus we may always eliminate saddles joining a level arc of S to itself. 
Any circles of S n S  2 or S nS~ must be joined to level arcs of S by saddles. 
Such circle-saddle pairs can easily be cancelled by "pushing across the point at 
o0" :  

Fig. 12 

Thus we have eliminated all level circles of S, and so the only critical points 
remaining on S are essential saddles. 
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It remains to show the 2-sequence of S satisfies (i) and (ii). 

(i) If two successive saddles give 2g's on adjacent sides of a triangle, then 
(after a change of coordinates) they have the form 

_o -;) 

n-1 n n-1 

Fig. 13 

These two saddles can be put on the same level: 

1 I >' 

Fig. 14 

The shaded disc then exhibits S as 0-compressible. 

(ii) There are just two possibilities for successive saddles yielding 21=2/+ 2 
(up to change of coordinates): 

s§ 

s r-1 ~ r - I  s 

r r r r 
s+l ,,."~\ 

s+1 ~ I  

Fig. 15 

In the first of these two sequences, S is clearly compressible. The second 
sequence is also clearly compressible if i = 0  (hence s=0). So we assume i>0.  
In the second sequence above, the two saddles can be put on the same level. If 
s > 0 ,  then reversing the order of the two saddles yields a new k-sequence with 
2~+1=2/_1: 

- f ~ \  s- 1 s 

r I r I II = r§ r§ ~ r r 

/ s-1 s 

Fig. 16 
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So in this case we are done by induction on i. If s=0 ,  then after reversing the 
order of the two saddles, one saddle can be slid over the other, changing the 
configuration from 

t 

to 

Fig. 17 

i I I  ( 1 ~  ~ 
Ill . /  \ ' . . , i l l  I 
/ ,7 1II  ii 
I - ' /  .-...111 II 
r -  ( / ; - t  i l 
I i / l l ' l l  I i 

t t~JJ  11 
\ \ ~ - J  / 1  
"~7_%" 

As a result, the sequence 2~,21+1,2~+ 2 can be changed to 2~, 2'i+t, ;l~+ 2 where 
the edge of the Diagram containing 2~ and 2'~+ ~ is two triangles away from the 
edge containing 2~ and 2~ + ~ : 

~ 
A,i+l 

Fig.  ] 8  

This trick can be repeated until the edge containing 2 i and 2i+~ is either the 
same as, or one edge removed from, the edge containing 2~_ 1 and 2~. The latter 
possibility is ruled out by (i), while in the former case there results a 2- 
sequence with 21+ ~ =21_ L. So by induction on i we have established (ii). []  

Proof of  Theorem 1 (b). Let us fix the number of sheets, n. Clearly, 2-sequences 
satisfying (i) and (ii) then correspond bijectively with minimal edge-paths from 
1/0 to p/q, hence also with continued fraction expansions p/q = r+ [b l , . . . ,  bk] 
with Ib~l >2. Fixing one such expression for p/q, let p i /q i=r+[b l ,  ..., bi]. The 
branched surface S,[bi . . . .  , bk], when repositioned so that O27[ba . . . . .  bk] is the 
Kp/q of Fig. 1 b, has the properties: 

(1) In levels between the ith and i+  1 st pairs of complementary horizontal 
plumbing squares (actually, parallelograms), Z[b~ . . . . .  bk] consists of two arcs 
of slope PJqi, for 1 _< i <-- k - 2. 

(2) At the top two arcs of K, S [ b l ,  . . . ,  bk] has slope 1/13, and just below the 
saddle of 27[bl, ..., bk] near the top of K, 27[bl, . . . ,  bk] has slope r. 

(3) At the bottom two arcs of K, Z[b  1 . . . .  ,bk] has slope p/q, and just 
above the saddle of 27 [b t, ..., bk] near the bot tom of K, Z [b t . . . . .  bk] has slope 

Pk- 1/qk- 1" 
A surface S.(n~ . . . . .  rig_l) carried by Z[-b 1 . . . . .  bk] has exactly n ( k + l )  

saddles, all essential, and the associated 2-sequence is the one corresponding to 
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the expansion p / q = r + [ b ~  . . . .  , bk] .  Conversely, any n-sheeted surface S with 
this 2-sequence and only essential saddles is isotopic to such an 
S . ( n l  . . . .  , n k - a ) ,  for some choice of n 1 . . . .  , n k - 1 .  For, the top n saddles of S 
have a unique position, up to isotopy, since the two choices for the first saddle 

and 

Fig. 19 

yield isotopic surfaces. Similarly for the bottom n saddles. For  the ith in- 
termediate bunch of n saddles there are n + 1 possible arrangements, with n~ 
"inner" saddles and n - n  i "outer"  saddles: 

o-o, [] 

Fig. 20 

P r o o f  o f  T h e o r e m  1 (c). The "only if" statement follows from Lemma 2 and the 
preceding remarks. For the "if" half we shall verify that Z = Z [ b  I . . . . .  bk] 

satisfies the conditions of [7] and [12] which imply that any surface carried by 
2; is incompressible and 0-incompressible. Namely: 

(1) 2; carries some surface with strictly positive weights, for example the 
surface $2(1, ..., 1). 

(2) 2; has no Reeb branched subsurfaces, since it carries no tori (obviously) 
nor 8-compressible annuli (since all surfaces carried by 2; have negative Euler 
characteristic except in the trivial case k = 1). 

(3) 2; has no disks of contact since there are no circles in the branching 
locus of 2;. Also, 2; has no half-disks of contact since the branching arcs of 2; 
are nontrivial in H I ( 2 ; ,  82;; 292). 

(4) There are no monogons in ( S 3 - K ) - Z  with boundary on 2;. To see 
this, consider the complementary component F~ of 2; in S 3 - K  which meets the 
ith twisted band in X (see Figs. 2 and 3). Topologically, Vii is a solid torus, 
containing in its boundary one or two circles (depending on whether b i is odd 
or even) formed by arcs of K and arcs C of "cusp points" coming from the 
branching locus of 2;. Observe that K ~ C meets a meridian disk of F~ in at 
least Ibgl points. 

I I 

l<~<k ~=l,k 
Fig. 21 
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Since Ibil>___2, this rules out a meridian disk of Vii being a monogon. (The 
monogon is disjoint from K by hypothesis.) Also, a trivial circle of 0 V~ meets 
K w C transversely in an even number of points, so cannot bound a monogon 
either. 

(5) The final condition from [7], [12] is that the horizontal boundary OhN 
of a fibered neighborhood N of Z be incompressible and 0-incompressible in 
( S 3 - K ) - N .  In the present case, the part of cOhN in Vii is OV~-(Kw C), which 
consists of one or two annuli in 0 Vii. These are incompressible and 0-incom- 
pressible in V/if [bi[ > 2. [] 

Proof of Theorem l(d). Consider an isotopy S t from one surface S,(n x . . . . .  nk) 
to another such surface. Generically, the height function on S t will have only 
nondegenerate critical points, all on distinct levels, except for the following 
isolated phenomena: 

(A) A pair of nondegenerate critical points of adjacent indices is introduced 
or cancelled in a level not near other critical levels. 

(B) Two nondegenerate critical points interchange levels. 

The 2-sequence of S t is defined for S t not containing type (A) or (B) 
phenomena, by ignoring level circles. To prove Theorem l(d) we must see that 
phenomena (A) and (B) do not change the 2-sequence. Since (A) and (B) 
involve only two critical points, at most one 2~ in the 2-sequence can be 
affected. For a 2-sequence satisfying (i) and (ii) of Lemma 2, each 2 i is de- 
termined by ,~_ 1 and 2~+1, at least if n, the number of sheets of S t, is greater 
than 1. But for proving Theorem l(d) we are free to replace the given surface 
Sn(n  I . . . . .  rig) b y  S E n ( 2 n l  . . . . .  2t/k) , the boundary of a tubular neighborhood of 
S,(nl . . . . .  nk). [] 

Proof of Theorem 1 e. We have seen that the 2-sequence of an incompressible, 
0-incompressible S c S 3 - K  determines S up to isotopy, and up to a 2-fold 
ambiguity for each essential saddle. We have to examine how an isotopy of S 
could reverse the type of an essential saddle. For  a generic isotopy, the only 
thing which could reverse the type of an essential saddle is interchanging the 
relative heights of this saddle and another saddle. If the type of the saddle is 
reversed, then the two saddles, when put on the same level, have to attach to 
four different sides of level arcs, e.g., 

Fig. 22 

Then both saddles are essential, and it is easy to see that when the two saddles 
are put on the same level, the only possible configurations, up to level- 
preserving isotopy and linear change of coordinates, is: 
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/ ~  I - -  I ~ ~ 

1/ \ \ \  
.a  ,) 

n - r  

Fig. 23 

Here the inner saddle is the first one, changing 2 i to 21+ 1, and the outer saddle 
changes 2~+ 1 to 2~+2. If r >  1, then the two saddles represent, in terms of Fig. 3, 
a complementary pair of horizontal plumbing squares. Hence the same surface 
S , , (n l ,  . . . ,  n k_ ~) results from interchanging the heights of the two saddles. Also, 
21, 2i+~, and ) ' i+2 a r e  unchanged. If r = l  (so 2~+ 1 is a vertex of the Diagram), 
then interchanging the heights of the two saddles changes 

1 1 ~ j(/,. 
n - 1  n 

Fig. 24 

to 

I f  . . . .  " \  n / / ~ " , \  

/z 

Fig. 25 

n-1 

The 2-sequence is unchanged, but S . ( n l  . . . . .  nk -1 )  is isotoped to S . ( n  1 . . . . .  n~ 
_1,  nj+l___l . . . . .  nk_x)  for some j ,  O < j < k - 1 ,  where b]= +2  since the slopes 
involved in these configurations are 1/0, 0/1, and 1/2. []  

w 3. Proof of Proposition 2 

Let 1 and m denote the longitudinal and meridional wrapping numbers of the 
given surface S,,(n 1 . . . . .  nk-1)" We first show l = l .  To do this, we are free to 
change any b i by an even integer, since this just adds some number of full 
twists to a vertical portion of S ,[b  1, . . . ,  bk]. So we may assume the level arcs of 
our surface S , , (n l ,  . . . ,  n k_ 1) have slopes 0/1, 1/1, or 1/0 (obtained by reducing 
rood two the numerators and denominators of the slopes of level arcs of the 
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original surface). Thus after each bunch of n saddles, the level set can be 
normalized by isotopy to be one of: 

[-:-:] / 
/ 

1/0 

b 
1/1 " ~  

0/1 

Fig. 26 

Going from one of these level sets to another via n saddles, the n sheets 
meeting at each vertex are rotated by some number  of notches, indicated by 
the 2 x 2 matrices. 

Example. 

f /  / 

I I 4/IZ~""'~i 
n n [I "n Ii n" n-1 n-1 \ \  . / /  n -1 n-1 

Fig. 27 

Since Kp/q is a knot rather than a link, the final level set has rood 2 slope 0/1 
or 1/1. We may assume the final m o d 2  slope is 0/1, in fact, since Kp/q 
=K(p+q)/q. Thus the total effect of all saddles, mod2,  is a change in level sets' 

L-a § a-b-cJ 

Fig. 28 

Note that a and b do not affect the way in which sheets are identified in the 
slope 0/1 picture, while the + c  rotations affect these identifications in the top 
and bo t tom halves of the picture in the same way. So, by following a sheet all 
the way around K one returns to the same sheet, hence l =  1. 

Next we show that m depends only on [b~ . . . .  , bg]. Consider first the single- 
sheeted case S~(n 1 . . . . .  rig-1)" Changing some n i changes the surface near K by 
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adding a positive full twist around two of the four strands of K in Fig. 3 and a 
negative full twist in the other two strands. So the number m is unchanged. 
(The sense of a twist does not depend on an orientation of K, just an 
orientation of $3.) Similarly, in the n-sheeted case the sum of the m's for all n 
boundary circles is independent of the n~'s. Since all these n boundary circles 
have equal re's, m for each one is also independent of the ni's. Clearly, m for the 
surfaces S,(0 . . . . .  0) and $1(0 . . . .  ,0) is the same, so m is also independent of n. 

Finally, we compute the function m=m(bl .... ,b~). Without loss of gene- 
rality we may assume p/q >0  and restrict to edge-paths lying in the upper half 
of the Diagram. For such an edge-path, define N +(N-)  to be the number of 
edges of the edge-path where the slope increases (decreases), the slope 1/0 being 
regarded as +oo. Note that N + = n  + and N - = n - + l .  The quantity 2(N + 
- N - ) - m  depends only on the endpoints of the edge-path, we claim. To see 
this, it suffices to check that 2(N + - N - ) - m  vanishes for the closed edge-paths 

( 1 / 0 ) ~ ( 0 / 1 > ~ ( 1 / 0 )  and (1/0> ~ (0/1> ~ (1/1> -~ (1/0>. 

This is obvious in the first case, while in the second case one has the pictures 

1/0 0/1 1/1 1/0 

Fig. 29 

Straightening out the last picture to look like the first one requires two full 
turns at the upper right strand. So 2(N + - N - ) - m = 2 ( 2 - 1 ) - 2 = 0 .  

For  the unique minimal edge-path from 1/0 to p/q corresponding to an 
oriented single-sheeted incompressible surface (i.e., all b~'s even), 2(N + - N - )  
- m  is by definition 2(No + - N o ) - 0 .  Hence for any edge-path from 1/0 to p/q 
(in the upper half of the Diagram), 2 ( N + - N - ) - m = 2 ( N ~ - N o ) ,  or m 
= 2 [ ( N  + - N - ) - ( N ~ - N o ) ] ,  which equals 2[(n + - n - ) - ( n ~ - n o ) ] .  []  

w 4. Dehn Surgery 

For the manifold Mm/~(K ) obtained by m/l Dehn surgery on an arbitrary knot 
K c S  3, there is the following basic result: 

Lemma 3. (a) I f  Mm/z(K ) is not irreducible, then there is an incompressible, O- 
incompressible genus zero surface in S 3-1V(K) whose boundary circles have slope 
m/l in ON(K). 

(b) I f  M,,/t(K ) is irreducible and contains an orientable incompressible sur- 
face, then S 3 -  tV(K) contains an orientabIe incompressible surface which is either 
closed and not a torus isotopic to ON(K), or bounded and O-incompressible with 
boundary circles of slope roll in ON(K). 
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Proof. (a) Let ScM, , / t (K  ) be a 2-sphere not bounding a 3-ball. By transver- 
sality, we may assume S intersects N(K)cM, , / t (K  ) in a number of meridian 
discs. This number cannot be zero since S 3 - K  is irreducible. If S n(S  3 -  N(K)) 
is not incompressible in S3-/V(K),  then surgering S along a compressing disc 
yields two 2-spheres in Mm/l(K), each intersecting N(K) in fewer meridian discs 
than S. If both these 2-spheres bound balls in M,,/t(K ), so would the original S. 
So by minimizing the number of meridian discs of S n N ( K )  we obtain a 2- 
sphere S .~ M,./i(K) not bounding a ball in M,~/t(K), such that S o(S 3 -  N(K)) is 
incompressible in S 2 -  N(K). This genus zero surface in S 3- / ( r (K) must also be 
0-incompressible, since otherwise it would be a 0-parallel annulus (as men- 
tioned at the beginning of w 1), and then S could be pushed into N(K), where it 
would bound a ball. 

(b) Let S c M,./t(K ) be an orientable incompressible surface, intersecting (we 
may assume) N(K) in a number of meridian discs. Surgering S across a 
compressing disc for S~(S3-]~(K) )  in S3--]V(K), if any exists, must split S 
into a 2-sphere S 2 and another surface S', since S is incompressible in Mm/z(K). 
This S 2 bounds a 3-ball in Mm/~(K ) since M,,/~(K) is irreducible. Hence S is 
isotopic to S'. Moreover, S' meets N(K) in fewer meridian discs than S, since 
S Ec~N(K) ~eO. This process of isotoping S to eliminate intersections with N(K) 
can be repeated until Sc~(S3-1V(K)) is incompressible in S3-]~(K) .  It must 
also then be d-incompressible, otherwise it would be a ~-parallel annulus and S 
would be a 2-sphere. [ ]  

Proof of  Theorem 2. (a)Al l  the single-sheeted surfaces carried by a given 
X[b I . . . .  , bk] are diffeomorphic, and any n-sheeted surface S ,=S , (n  1 . . . .  , nk_l) 
carried by S,[b 1 . . . . .  bk] is, abstractly, an n-fold covering space of this single- 
sheeted S 1. Hence )~(S,)=nx(S1)=n(1-k).  Let S, be obtained from S, by 
capping off its n (by Proposition 2) boundary circles with discs. If S. is 
orientable, connected, and of genus g, then 2 - 2 g = Z (S,) = n (1 - k) + n = n (2 - k). 
So g = 0  only when (k, n)=(0, 1) or (1,2). If k=0 ,  Kp/q is the trivial knot, 
yielding the exception (ii) in Theorem 2. In the case k = 1, p = ___ 1 (rood q) and 
K is a torus knot. Lemma 3 and the formula for m(b~ . . . .  , bk) then yield the 
exceptions in (i). 

(b) This is immediate from Proposition 2 and Lemma 3. []  

w 5. Proof of Proposition 1 

For this, only the mod 2 values of the bi's are relevant, so we can assume the 
edge-path involves only the slopes 1/(3, 0/1, and 1/1, just as at the beginning of 
the proof of Proposition 2. 

Consider three successive vertices of the mod2  edge-path. There are two 
possibilities (up to change of coordinates), according to whether the b i in 
question is even or odd: 
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[-oo] 

a+b a.b 

r  -bl o+b.1 
a a l . j  -b b J l  a§ a*b 

a+ l l ~ ' - -~ la  + 1 

[I:I] 
od/  .... ) ) 

o-b.1  'Z-b  o-b.1 
o-b 

Fig. 30 

After the first bunch of n saddles, the four cycles of n sheets at the four strands 
of K are identified to one cycle. In the case when the third slope is the same as 
the first (b i even), there is no further identification of sheets in the third slope's 
level set. In particular, if all bi's are even, the surface has n components. 

In the other case when the third slope is different from the first (b i odd), the 
cycle of n sheets is folded in half along the diameter separating a from a + 1 
(independent of what b is): 

a 

S 
a-b*1 1 ~  

a+1 

= / a§ 

y a§ 

Fig. 31 

So if some b i is odd, a two-sheeted surface is connected. If only one bl is odd, 
there is just one folding, so the n sheets are identified at most two-to-one, 
hence a connected surface can have at most two sheets. If at least two b~'s are 
odd, there are two foldings of the n-cycle. These can be chosen arbitrarily, by 
suitable choice of " a "  at each bunch of n saddles, so one can realize a rotation 
by two notches of the n-cycle of sheets. If n is odd, this already means all 
sheets are connected together. If n is even, it means alternate sheets are 
connected, but then a single folding already connected two adjacent sheets. 
(E.g., the Example given in the proof  of Proposition 2 is a connected n-sheeted 
surface.) []  
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