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1. I n t r o d u c t i o n  

By far the most remarkable property of small perturbations of completely 
integrable Hamiltonian systems is the preservation of invariant tori corre- 
sponding to irrational frequency vectors which are not too well approximable 
by rationals. This fact and its various ramifications was discovered by A.N. 
Kolmogorov,  V.l. Arnold and J. Moser and became commonly known as 
K A M  theory. This theory leaves open the basic question, namely, what hap- 
pens to the rest of the invariant tori of the unperturbed completely integrable 
system? It is relatively easy to show that generically most of those tori, both 
rational and irrational, disappear. Thus, a more precise formulation of the 
above question should be like this. Are there special sufficiently simple motions 
in the perturbed system which are similar to the periodic and quasi-periodic 
motions on the destroyed tori, and therefore can be viewed as "traces" or 
"ghosts" of those tori? 

The study of small perturbations of non-degenerate completely integrable 
systems with two degrees of freedom can be reduced to the consideration of 
area-preserving twist maps of the annulus or the cylinder [15]. For such maps 
S. Aubry [4, 5] and J. Mather [17] (cf. also [13]) established the existence of 
special invariant sets which are projected injectively to the circle and carry 
motions with any given admissible rotation number. Furthermore, the map 
preserves the cyclic order of points on any of those invariant sets. For  any 
irrational rotation number such set is either an invariant circle, or, if the 
invariant circle for the given rotation number does not exist, it is a Cantor set 
with the motion described by A. Denjoy [1 1]. Moreover, the Cantor sets are 
always accompanied by order-preserving orbits doubly asymptotic to them [6, 
14, 18]. As might be expected, for any rational rotation number one has a 
collection of at least two order-preserving (Birkhoff) periodic orbits together with 
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homo- or heteroclinic orbits [14, 18]. All those objects possess certain con- 
tinuity properties with respect to the rotation number [18]. 

Translating the above-mentioned results to the case of small perturbations 
of non-degenerate completely integrable Hamiltonian systems one obtains a 
more than satisfactory solution to the problem of vanishing tori for systems 
with two degrees of freedom. Namely, there are always traces of those tori 
present in the form of either Denjoy type minimal sets together with double 
asymptotic orbits (for any admissible irrational rotation number), or of at least 
two Birkhoff periodic orbits accompanied by homo- or heteroclinic orbits (for 
any admissible rational rotation number). Furthermore, the Denjoy minimal 
sets appear as limits of Birkhoff periodic orbits. 

The Aubry-Mather  approach is based on two key ingredients: the varia- 
tional principle for finding desired motions and the regularity of the projection 
of any order-preserving orbit to the circle. Let us point out that the variational 
principle for finding order-preserving periodic orbits for twist maps can be 
substituted by certain topological arguments [7, 12]. The regularity of the 
projection allows us to take limits with respect to rotation number, thus, 
producing invariant circles or Denjoy type Cantor sets without any use of 
invariant measures or variational methods. 

On the other hand, solutions representing global minima in various varia- 
tional problems, associated to a twist map and posed without assuming pre- 
servation of order, turn out to be order preserving [6]. 

The earliest result concerning the preservation of some periodic orbits for 
Hamiltonian systems with more than two degrees of freedom is the Birkhoff- 
Lewis theorem [8, 9], (cf. also [2]) whose accurate proof was given by Moser [19]. 
Applying the method from [9] and [19] to our situation, one can find periodic 
orbits for a perturbation of a completely integrable system in a neighborhood 
of an invariant torus of the unperturbed system filled by periodic orbits of 
period, say, T, if the size of the perturbation is so small, that the orbits of the 
perturbed system stay sufficiently close to the original orbits during time T. We 
do not see how that method can be made to work uniformly in T for 
perturbations of fixed size. 

Conley and Zehnder [10] discovered a remarkable global method for 
finding periodic orbits for sympletic maps and Hamiltonian systems. In this 
paper we use a version of their main trick. The result of the [10] most relevant 
for our discussion is Theorem 3 which represents a global generalization of the 
Birkhoff-Lewis theorem. This theorem depends only on a sort of a boundary 
condition rather than on closeness of perturbed and unperturbed systems. 
However, it can not be directly applied to the finding of very long orbits for a 
perturbed system which stay near the original torus. 

Any attempt to carry out the Aubry-Mather  approach to the case of more 
than two degrees of freedom faces the obvious problem that the arguments 
based on the preservation of order are no longer available. On the other hand, 
the variational arguments can be used, at least under some extra assumptions 
on the unperturbed system. In the present paper we make the first modest, but 
we believe non-trivial, step in that direction. Our main result for systems with 
n degrees of freedom is the existence of at least n distinct periodic orbits with 
any admissible rational frequency vector near the corresponding torus of the 
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unperturbed system under the extra assumption that the Hamiltonian of the 
unperturbed system has convex energy surfaces in the action-angle variables. 

The reduction to the discrete-time case described in Sect. 7 allows obtaining 
this result from the corresponding result for sympletic maps (Theorem A, 
Sect. 1). This latter theorem follows immediately from Proposition 2 (Sect. 4) 
which provides certain estimates for specific critical points of the Lagrangian 
introduced in Sect. 2, and from Proposition 4 (Sect. 5) which establishes the 
existence of required critical points. 

In Sect. 6 we show that at least one of the orbits described in Theorem A 
satisfies certain regularity conditions (Theorem B) which allows one to take 
limits in frequency vectors (Theorem C). Unfortunately, the structure of the 
limit objects corresponding to irrational frequencies is not completely clear at 
that stage. 

One of the crucial ingredients of our method is a global topological trick 
which is very similar to the one used by C.C. Conley and E. Zehnder in [10]. 
This trick allows us to show the existence of solutions of the variational 
problem with sufficiently low values of our Lagrangian. Then the estimates of 
the Lagrangian show that these solutions correspond to periodic orbits with 
desired properties. 

We work with discrete time symplectic maps and in the last section show 
how the results about continuous time Hamiltonian systems are derived from 
those for symplectic maps. 

2.  P r e l i m i n a r i e s  a n d  f o r m u l a t i o n  o f  m a i n  r e s u l t  

Let us consider the space M=JYnxlRn={(q)~. . . tp , , r l . . . r , , ) ,  ~0ielR/TZ,, r~elR} 
with the natural sympletic 2-form 

Q= ~ ,d tP iAdr  i 
i - - 1  

and let fo : lr" x u --, 11"" x u be an integrable symplectic diffeomorphism, i.e. an 
f2-preserving diffeomorphism of the form 

jo(qo, r)=(qo+~(r),r), ~o~'g ~, r~U. 

Here U c l R  ~ is a set diffeomorphic to an open n-disc. 
Let, furthermore F o: IR" x U ~ I R  n x U be a lift of Jo to the universal cover, 

so that for x ~  ~, r e U  
Fo(x , r )=(x +a(r), r). (1) 

Throughout this paper we will assume the following non-degeneracy condition 

(i) a: U-~IR ~ is a regular injective map. 

Then the map F o can be represented via a generating function Ho(x, x') so that 
if Fo(x , r )=(x ' ,  r') then 

, Uo 
- , r' - (2)  

?x ?x' 
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It follows immediate ly  from (1) and (2) that  the function H 0 actually depends 
only on the difference x ' - x ,  Ho(x, x ' )=h (x ' - x ) .  Let b: a(U)--+ U be the m a p  
inverse to a. Then from (2) 

dh(6)=b(6)d6. 

Condi t ion  (i) is a discrete-t ime equivalent  of the s tandard non-degeneracy 
condi t ion in K A M  theory,  cf. e.g. [1] or [3], Apprendix  8. Next  we will 
introduce an addit ional  non-trivial  restriction which will also be assumed in all 
subsequent considerat ions,  usually without  any separate  mentioning.  

(ii) h is a strictly convex Junction on a(U), i.e. the Hessian of h at every 
point 6ea(U) is a positive definite quadratic .form. 

In Sect. 7 we will interpret  condit ions (i) and (ii) in terms of cont inuous 
time Hami l ton i an  systems. 

Suppose that  a lift F of f can be represented by a generat ing function 
H(x, x') so that  F(x, r )= (x ' ,  r') if and only if 

~H f)H 
(x, x')=r ,~x~ (x ,x ' )=-r ' .  

Suppose in addi t ion that  the per turba t ion  f preserves the r - componen t  of the 
center of masses on each torus ] r " x  {%} for roeU, or, equivalently, that  for any 
mEZ n 

H(x + m, x' + m)= H(x, x'). (3) 

So we can write H(x, x ' ) = h ( x ' - x ) + P ( x ,  x') where P satisfies (3). In order  
for H(x, x') to exist, it suffices to assume that  f is Cl-close to fo. Then H is C 2- 
close to H 0. Conversely,  if H(x, x') is a small C2-per turbat ion of H o then it 
defines a small C l -pe r tu rba t ion  of the m a p  fo- However ,  our  results depend 
only on the smallness of the C 1 size of the per turba t ion  P(x,x ')  of the 
generat ing function. So it suffices to assume that  f is C o close to fo provided 
that  f can be represented by a generat ing function. 

Let ro6U and so=a(ro). We will study orbits  of the m a p  f which stay 
sufficiently close to the torus "11"~o = ' I P  • {%}. 

Our  first ma in  result establishes the existence of such orbits  if the vector  s o 
has rat ional  coordinates.  

Let  (qo, r)e'l[" • IR ~ be a periodic orbit  of the m a p  f ~ i th  the pr ime period q 
and let (x, r)cF," •  n be a lift of the point (q~, r). Then  there exists a vector 

w 
w6Z" such that Fq(x, r )=(x+w,  r). We will call the v e c t o r -  the rotation vector 

q 
of the point  (qo, r). The  rota t ion vector  depends on the choice of the lift F but it 
is uniquely defined modu lo  Z n. 

Theorem A. Let f be a perturbation of an integrable symplectic map fo satisfying 
(i) and (ii). Let w = ( w  I ... w,)6Z", q be a positive integer such that w 1 ... %,  q are 

w 
relatively prime and the vector -- belongs to a(U). Let furthermore rw, q 

q 
= a  1 ( ~ ' ) .  Thereex is t sacons tant  A d e p e n d i n g o n f o  b u t n o t o n w a n d  qsueh 

that for any 6 </I if the map f is defined by the generating function H = h + P 
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where the C ~ norm of  the perturbation part P of  H is equal to 6, then the map f 
w 

has at least n + l  different periodic orbits with rotation vector which lie 
q 

completely inside the Ca ~ neighborhood of  the torus 7y" x {rw, q} and at least one 
o f  those orbits lies inside the Ca ~ neighborhood of  that torus. Here C depends 
only on the unperturbed map fo. 

This theorem follows immediately from Proposi t ion 2 which is proved in 
Sect. 4 and Proposi t ion 4 proved in Sect. 5. 

We conclude this section with the description of a reduction of our prob- 
lem to another  one which is defined globally in IF"x IR" and which coincides 
with our problem in a ne ighborhood of  g~"o- We use the word "p rob lem"  
instead of " m a p "  because we are going to modify the generating function H 
and we do not  care whether the perturbed generating function defines a map. 

Let V be a ne ighborhood of c5 o such that the function h in V is sufficiently 
close to its second Taylor  polynomial  T 2. By the convexity assumption (ii), T 2 
is a convex second degree polynomial  which can be defined in ~" .  Thus, it is 
easy to see that one can construct  a C 2 small function g/on 111" which coincides 
with h -  T 2 on V, and vanishes outside of a compact  set. Therefore, k7% f T 2 + ~/is 
a strictly convex function which coincides with h in V and with T 2 outside of a 
compact  set. Similarly we modify the generating function H ( x , x ' ) = h ( x ' - x )  
+P(x ,  x') of the diffeomorphism f into a function /](x,  x ' ) = h ( x ' - x ) + f f ( x ,  x') 
where the function /5 is uniformly C 1 small, coincides with P for x ' - x e V  and 
vanishes when x ' - x  lies outside of a certain compact  set. Naturally,  we can 
m a k e / ]  satisfy periodicity condit ion (3). 

Obviously, if x ' - x e V  then setting 

r = r ~ - -  
3 x '  ~?x' 

we have F(x, r )=(x ' ,  r') because locally k ] = H .  Fur thermore  if xie~," is a finite 
or infinite sequence of vectors such that 

~I~ (Xi' Xi+ 1)  ( ~ / ~  , , de f  = XiJ = r i ~X --~X I (Xi- 1, 

and 
Xi+I--Xi@V for all i (4) 

then the sequence (xl, ri) is an orbit  or an orbit  segment for F. 

3. Periodic states with given rotation vector 

Let us fix w = ( w  1 . . . w . ) e Z "  and qe2~+ such that w 1 . . . .  , w , , q  are relatively 
prime. Let us consider the space 7*w, q of all double-infinite sequences x 
= (  .. . .  x 1, Xo, xl  . . . .  ) of vectors from N" satisfying the following periodicity 
condit ion 

Xi+q:Xi-[-W for all ieZ.  (5) 
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Every sequence {x~} is uniquely determined by a q-tuple of vectors (x I . . . . .  xq), 
so ~Uw, q can be naturally identified with (R")q. We introduce two kinds of 
identifications in q~w,q. First, for any m~Z" we identify {xi} with { x i + m  }. 
Secondly we identify every sequence {x~} with its shift {y~}, where y i=x i+  ~. In 
other words, our identifications are generated by the translations Tin: {xi}~--.{x i 
+m} and the shift S: {xi}~-~{x ~ 1}. The quotient space of qJ,,q corresponding 
to the first identification will be denoted by ~*,q, and the result of both 
identifications will be denoted by 4)~,q. 

A convenient coordinate system in 7~w,q is given by the parameters (v, t) 
= ( V ,  t I . . . . .  tq I) where 

X o + . . . + x  q ~ w 
V --~- , t i = X i - - X i  ~ - - - ,  i= 1, . . . ,q - -1 .  

q q 

In terms of these coordinates we have 

Tm(v , t ) = ( v + m ,  t) 

( w ) (6) 
S(v , t  I . . . . .  tq_t)= V + q , t  2 . . . . .  tq 1 , - - t l - - t 2 - - . . . - - t q  1 " 

Thus, the space #*q  is diffeomorphic to T " x  R"~q-1) and it represents a q-fold 
covering of ~bw, q. By (6) the latter space is an IR "t~- 1) bundle over the torus 9"  
and thus it is homotopically equivalent to Jr". 

We define the function Lw, q on 7Jw, q by 

q 

Lw, q(X)= 2 ~l (x i '  Xi+ 1)" (7) 
i -1 

Obviously, the function Lw, q is both T,, and S invariant, so it defines a function 
on ~ , q  which we denote by the same symbol L,,q and will sometimes call the 
Lagrangian. 

A point x~qgw, q is called an equilibrium state if x is a critical point of L~,q. 
Such a state must satisfy the following conditions: 

�9 O B ( x ,  1, xi) 0=~L~  q_?~H(xi ,  xi+ l) 
c~x~ ~x ~x' 

If an equilibrium {xg} satisfies additional conditions: x~+ 1 - x ~ e V  for all i then, 
as we noted at the end of Sect. 2, it corresponds to an orbit of F which by the 
periodicity condition (5) can be projected onto a periodic orbit of f with 

W 
rotation vector --. 

q 

4. Critical points of the Lagrangian Lw. q 

Proposition 1. Lw, q is a proper funct ion  on q~w, q and is bounded.fbom below. 

P r o o f  Since /4(x,x') is bounded from below and goes to +0o as I x ' - x l - - , ~ ,  
the statement follows from (7). [] 
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Thus we have the following 

Corollary 1. The function Lw, q reaches its absolute minimum l o at some equilib- 
rium state x ~ 

W 
In our  next statement we will show that  if the rotat ion vector -- is 

( qt q sufficiently close to a(ro), in particular, if a(r0)= w , then this equilibrium 

state satisfies the condit ion (4) and determines a periodic orbit of  f with 
w 

rotat ion vector - -  which lies near the torus g2o" Moreover,  under  a somewhat  
q 

stronger assumpt ion on the size of the perturbation we can prove (4) for every 
critical point  x of  gw, q with the critical value less than 10+ C, where C does 
not  depend on w or  q. 

We begin with some general estimates. We will use the letter C with 
various indices to denote various unspecified constants which may depend on 
the map.fo but no t  on w or  q. Let  x =  {xi} be an arbitrary state, set ai=x i - x i_  1 
and let 6k(k=0,  1) be the CCnorm of the per turbat ion /5 of  the generating 
function. We will assume throughout  the rest of the paper that  c~ k < 9 ,  k =0,  1 
where the constant  ~ is chosen once and for all for a given map  Jo. 

Lemma 1. If  x is a critical point of Lw, q then [ai+l-ail< C61 for every i. 
Besides, if x is a point of absolute minimum Jbr Lw, q then lai+ 1 - a i l <  C6o. 

Proof. Let a ~ = a + z ,  ai+~=a-z ,  and let y=�89 0 so that x~=y+r. 
Consider a family of states x(a), a~lR" defined by 

x j (a )=fx j  for j#:i(modq) 
( �89 for j - i ( m o d q ) .  

We have 

Lw, q(X(a))-Lw, q(X) 
=Et(x i 1 ,y+a)+lq(y+a,  x i + O - H ( x i _ l , y + r ) - I Z I ( y + z ,  xi+l) 

= P ( X i _ l , y + a ) + P ( y + a ,  x i + O - P ( x  i 1 , y + z ) - P ( y + r ,  xi+ 1) 

+ ~(a + G) + /7 (a -  ~) - &a + ~ ) -  ~(a - ~). (8) 

The sum of  the first four terms is bounded by  460. If  x is a point  of absolute 
min imum then for a = 0  

Lw, qix(Oll- L qfxl = 0 
so we have 

h(a + r) + t-~(a - r) - 2 tT(a) =< 43 o. 

On the o ther  hand, by the convexity of/~ 

h(a + z)+ h ( a -  z ) -  2h(a)> C 1 ]rb 2. 

Therefore, C l l r l 2 < 4 6 o  and lai+l-ai]<C26 o. This proves the second state- 
ment of the lemma. 
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If x is a critical point  then ~ Lw, q(x(a))l,,: ~ =0.  The differential of the 

sum of the first four terms in (8) at a = z  is bounded  by 261. The last two terms 
do not depend on a and the differntial of h(a+a)+/7(a-a)  at a = z  equals d/7(a 
+'c)-d/7(a-z).  Let Q(s) be the matr ix  of second derivatives of /7  at s. By our 
construct ion of the function k7 (cf. Sect. 2) (Q(s)r ,z)>C31zl  2. On the other  
hand by the Mean  Value theorem ( d h ( a + z ) - d / 7 ( a - z ) , r ) = ( Q ( a + 2 z ) 2 z ,  r) 
for some 2~( - 1, 1). Therefore,  Idh(a + z) -dff(a - r ) l  > 2 C 3 Izl. 

Combin ing  all terms in (8) we have C 31r1<61 or }a~+l -a~l<  C461. [ ]  

L e m m a  2. Suppose x is a point of absolute minimum for Lw, q. Then for any i, j 

lai-ajl < C min (6~, 6o). 

Proof. Let  f lo=maxlal-at+ll ,  fl be any number  greater  than rio, "c=lal-ail 
l 

and suppose that  k is an integer such that  kfl<'r/5. We can assume that  i < j < i  
q 

+ ~ .  Then the sets {i . . . . .  i+k} and {j . . . .  , j+k}  are disjoint m o d q  so i l=i  

+ k < j  and j ~ = j + k < i + q .  Next  we per form a sort  of surgery and construct  
for every me7Z" a state y(m) such that  

1- i  
x i + ~ -  [xil - m - xi] 

yz(m) = x t - m  

xj - m + L~_ [x j, - (xj -- m)] 

X l 

and extend it for all 1 by periodicity. 

i<_l<_i 1 

i1<1< j 

j<=l<=ji 

j~ < l < i + q  

We will try to choose m to make  the vectors  (Yi,-Yi) and (Yjl-Yj) as close 
to each other  as possible. Fo r  that  purpose  choose as m any of the integer 
lattice vectors  nearest  to �89 Let us est imate the difference 

Lw.q(X ) -  Lw, q(y(m)) f rom below. This difference is equal to 

k 

2 [I~(Xi+l' X'+l 1){-n(xj+l, xj+ l-l) 
/ = 1  

--H(y~+I, Y~+z- O--/4(Y~+,, Yi+t ~)] 
k 

= y~ [p(xi+l, Xi+l_l)+P(xj+, ,  xj+,_l) 
1=1 

-P(Yi+l, Yi+t- l)-ff(Yj+l, Ya+t 1)3 

+ ~ [ / ~ ( a , + , ) + / ~ ( a ~ + , ) - / 7 ( ~ ) - / 7 ( Y J ~ ) ]  �9 
/ = 1  

The  absolute  value for the first sum is obviously bounded  by 4k6 o. Let us 
rewrite each te rm of the second sum. Let  a~+~=b+pz where b is the average of 
{ai+ 1 . . . .  ,ai+k} and ~ p t = 0 .  Similarly let aj+l=c+a l, ~at=O.  Obvious ly  
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[ptl <k fi, latl <k fl. In particular, r = l a i - a j l = l b - c  + po-aol  and 

I ~ - I b - c l [ < 2 k f l < 2 ~  so I b - c l > ~ .  Also 
Z 

Yi,-Yi b+c Yh-YJ  b+c 
k - 2 ~-~ and k - 2 ~ where ICI<~ 

(d depends only on the dimension n of 71""). Furthermore 

k 
h(a, + z) = k h(b) + (d/~(b), ~ p,) + 0 (k(k [:0 2) = k h(b) + 0 (k 3 fi2). 

/=1 

Similarly 
k 

y,  ~(aj+ ~) = k ~(c) + 0 (k ~ l~), 

- / b + c  - b+c [b+c\  
h t ~ - +  = 2). 

By the convexity of/~ 

h ( b ) + h ( c ) - 2 h ( ~ C ) > C l  b ~  2>C5"c 2. 

Combining all these inequalities we have 

Lw, q(X) -- Lw, q(y) > C 5 k'c 2 - 4k 6 o - C 6 k 3 f12 _ C 7  k-  1. (9) 

Since x is a point of absolute minimum 

7:2 < Cs6o + C9k2 f12 + Clo k-2. (10) 

Now we are ready to complete the proof. By Lemma 1 we can choose fl 
=C~61 or C26 o. Take k~ f l  -~. If kfl>r/5 then r < C l l f l  + and for fl=C461 
(resp. C 2 6 o ) r <  C126 ~ (resp. ~< C136o). If however kfl<z/5 then we can apply 
the surgery described above and from (10) obtain the estimate r 2 <  C~4fl and 

< C15fi~ and we repeat the preceding argument. [] 

Lemma 3. For every E > 0  there is C > 0  such that if x is a critical point of Lw, q 
with Lw, q(x)<E +inf(Lw, q) then for any i,j  lai-a~l < C @  

Proof By Lemma 1 we can choose fl=C461. As before z=la~-@.  Take 
k~ f i  ~-. If kfl>r/5 then ~<C~66~1 and we are done. Otherwise we can apply 
the surgery from the proof of Lemma 2 and from (9) obtain the estimate: 

"c2<(C17E+ C l 8 )  fl ~. 

Since f i= C 461 we have z <  C196~. []  

w = a _ l ( q ) .  Let 6 be th e Cl_norm of the Proposition 2. Suppose --~ V and rw, q 
q 

perturbation P of the generating function. Then 
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a) any point in ~w,q of absolute minimum Jor Lw, q determines a periodic orbit 
w 

with rotation vector -- which lies completely inside the e-neighborhood of the 
q 

torus ~ff" x {rw, q} , where e= C3 ~. 
b) for any E>O there is A >0, independent on w and q, such that if 6<A 

then any critical point xs~w, q of gw. q with Lw.q ( x ) <E  + inf(Lw, q) determines a 
w 

periodic orbit with rotation vector -- which lies completely inside the e-neigh- 
q 

borhood oJ" the torus T" x {rw, q} where e= C61. 

Proof Let x be a critical point  of Lw, q satisfying condit ions of a) or b). Let 

at? aP 
ri=c~x (xi, xi+ O=dh(ai+ 1)+~x (xi, xi+ 1)" 

q a~ q By L e m m a s  2 and 3 for any i , j  lal-ajl<e. Since w = ~ a  i we have - <e.  
1 

~P ,~PxP 
~xx=O(6) by definition of 6. But 6 = O ( e )  so =O(e).  On the other  hand 

W 
d h ( : ) = r w ,  q and d h ( a i + l ) - d h ( q ) = O ( a i + l - q ) = O ( ~  ). Therefore  [ri-r~,ql 

= o(e). [] 

5. Existence of (n + 1) critical points 

Let us recall that  we denoted the quot ient  space of Tw, q modulo  the g roup  of 
integral t ranslat ions by ~*w,q. The function L w.q is natural ly  defined on ~w,q�9 
Let as before l o = inf(Lw, q) and let 

M* = { x ~ *  q l Lw, q(x) < t}, 

Mr= {xeq)w, q I gw, q(X) < t}. 

Proposition 3. For a given h and 6 0 there exists a constant E such that for any 
perturbation P un!formly bounded by 6 o there exists a continuous map 
F: qF"~M~o+e , such that for any w and q the composition of F with the inclusion 
it M*o+E--. crp* q is a homotopy equivalence between qF" and 4~w, q. 

Proof We begin with defining some pre l iminary  tools�9 Let  

1, if t - k q e [ O ,  1] for some k ~ Z  

~p(t)= 0, otherwise 

i 

ai(t)= ~ ~o(t)dt, ieTZ. 
i--I 

It  can be easily seen that  

(a) ai(t +q)=ai(t)+ 1 
(b) ai+q(t)=ai(t ) 
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(c) ai(t)=ai+ l(t)~Z for all but  at most  three values of ie[1 ,  q] and for these 
exceptional  i's lai(t)-ai+ l(t)] < 1. 

Let  fur thermore  A( t )=  {ai(t ), ie7/} be the sequence of numbers  ai(t ). For  

any vector  z=( t  1 . . . .  , t,)slR" let V(z)={v~(z), i eZ}  e'f ~, A(tj)ej where e 1 . . . . .  e, 
j - 1  

is the s tandard basis of N". So V(z) is a family of double-infinite sequences of 
vectors depending on z as a parameter .  Condi t ions  (a), (b), (c) immediate ly  
imply that  

(a') vi(z-t-qm)=l)i(z)+m, m~Z" 
(b') Vi+u(Z)=Vi(z ) 
(c') vi(z)=vi+l(z)cZ" for all but at most  3n values of  ie{1 . . . . .  q} and for 

those exceptional  i each coordinate  of  vi+l(z)-vi(z)  does not exceed one in 
absolute value. 

Now we are ready to define the map  E Let x be a point  of absolute  
m i n i mum of Lw, o in 7Jw, q. Let  x(z) be the following n-parameter  family of  
states: x ( z )=x+V(z ) .  By proper ty  (b') x(z)eT~w, q. Denote  the m a p  zv-,x(z) by 
X : I R " ~ w ,  q. Fur the rmore  by proper ty  (a') the m a p  X:IR"-~ ,~ ,q  can be 
projected to a m a p  F:  ~ " = N " / q Z " ~  CI)w,* q. First  we show that  F is homotop ic  

Z W 
to the s tandard embedding Fl:z~--~{w~(z)} where wi(z)= + i - -  and therefore 

q q 
effects a h o m o t o p y  equivalence between g "  and 45w,0. This h o m o t o p y  is given 

by the explicit formula  F~: z~---~{wi(e,z)} where wi (e , z )=(1 -e )x i+e  i + 
Z 

( 1 - e ) v i ( z ) + e - .  Next we show that  F(TY")cM~+ E. To that  end we est imate the 
q 

difference Lw, q(x(z))-Lw, q(X)=Lw, q(X(Z))-I o. By proper ty  (c') ffI(xi(z),xi+l(Z)) 
coincides with I4(x~,xi+l) for all but 3n values of i s{ l  . . . . .  q}. Let i be one of 
the exceptional  values. Then all coordinates  of  vi(z)-vi+ l(z) are less than or 
equal to one in absolute value. Since by L e m m a  2 for a given 6 o the differences 
Ixi+ 1 - xil are uniformly bounded,  I x~+ 1 ( z ) -  xi(z)l = I(xi+ 1 - xi) + (vi+ 1 ( z ) -  vi(z)) I 
are also uniformly bounded  and 

I/~(Xi(Z), Xi+ 1 (Z))- Fl(Xi, Xi+ 1)1 ~ I/~(Xi(Z), Xi+l (Z))l "~ I/-I(Xi~ ' Xi+ 1)1 ~ C. 

Therefore  ]Lw, q(X(Z))-Lw, q(X)[<3nC. [] 

Proposit ion 4. For given h and ~o there exists a constant E independent of w, q 
such that for any perturbation P uniformly bounded by ,5 o there are at least n + 1 
different critical points of Lw, q in cI)n, w with critical values less than 1 o + E. 

Proof We will show that  the Lusternik-Shnire lman category (for definition see, 
e.g. [16], Sect. 3 or [20], Chap.  5), of the set M~o+E is at least n + l .  This 
implies the existence of n + l  critical points ([16], Sect. 3). The category of M is 
greater  than k if there are o~ 1 ...COk~Hl(M,~,) such that  ~O~UCOzU...UOOk4=O 
(cf. [20], Theo rem 5.14). We will derive the existence of such cohomology  
classes f rom the following commuta t ive  diagram.  
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"~n F , 
M l o + E - -  

~ P , q - -  

+ Mto+E 

i2 

IfI) w , q 

Here  ii, i2 are inclusions, ~ is the projection,  and F is the m a p  constructed in 
Propos i t ion  3. Let  col ... co, be generators  of Hl(Cl)w,q; ~). Then co= col w ... wco, 
is a genera tor  of  Hn(~w,q;~)  and ~*co=qcoo where coo is a genera tor  of 
Hn(cl)*q; 7Z). Here  w means  cup-produc t  in cohomology  groups. Since 7 is a 
h o m o t o p y  equivalence we have 04= 7*(qcoo) = 7" 7c* co=F*  re* i* (u  coi) 
=r*~*(u(i~co3). So if we denote  i*o) i by Oi~Hl(Mlo+e,]g) and their cup 
product  by 0 we have F*~*O=#0,  thus ~ + 0 .  And  the category of M~o+E is 
greater than  n. [ ]  

6. Weak regularity of minimal orbits 

Let co: [0, 1 ) ~ I R + ,  co(0)=0, be a modulus  of continuity i.e. a non-decreasing 
cont inuous  non-negat ive  function which is strictly positive outside 0 and let 
(~Pi, ri)=fi((Po, ro) E~ff" x N "  be an orbit  o f f  We say tha t  this orbit  is co-regular 
if for any i, j e Z  

[r i -- r j[ <= co(dist (q~i, ~0j)). 

In part icular ,  co-regularity implies that  two different points  on the orbit  do 
not  have the same tp coordinates.  If co(t)=Lt for some constant  L we call co- 
regular orbits  Lipschitz regular. For  n = l  all orbits  cor responding to the 
absolute  m i n i m u m  of the Lagrang ian  are Lipschitz regular  [13] with a fixed 
constant  L which depends only on the map.  As we ment ioned  in the in- 
t roduct ion,  regularity plays the key role in the whole theory of twist maps.  We 
are not able to prove any co-regularity for the minimal  orbits for n > l .  
However ,  a slightly weaker  p roper ty  does hold in that  case. 

Proposition 5. Under the assumptions of  Theorem A let (~oi, ri)=fi(q~o, ro), (~Pq, rq) 
=((Po, ro) be any periodic orbit o f f  corresponding to a state which minimizes the 

functional Lw, q. Assume in addition that the second derivatives of H are bounded. 
Then there exist e o and C depending only on f such that if i,j, k are different 
m o d  q and max (dist ((Pl, ~oj), dist ((p j, (Pk)) < ~o then 

[r~ --rk] < C(dist (~pi , q~2)+ dist ((pl , (pk)) ~. 

Proof As usual we pass to the universal cover  and consider the state x 
={x,},~,~Pw, q generat ing the given periodic orbit. We will assume that  i = 0  
and O < j < k < q .  The case O < k < j < q  is considered similarly. F r o m  the con- 
ditions of  the propos i t ion  we have for some m 1, m2eTl" 

[Xj -[ - -ml- -Xk[<g,O,  [Xk- l -m2- -Xq]<~,  O. 

The idea of the proof  is to rear range  the pieces Xo, . . . ,  xi_ 1 ; xj . . . . .  Xk- 1 and 
XR, ..., xq_ ~ of the state x into a new state y and then est imate bo th  the value 
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of the Lagrangian  and its derivatives at y. Thus,  we define 

I 
x1, O<=l<j 

yt = xl+ k j - m 1 ,  j < = l < j + q - k  

i.xl+ k q-}-m2, j + q - k < = l < q  

and then extend y~ to other  l according to (5) in order to obta in  a s t a t e  yfflltw, q. 
Let us est imate Lw, q(y ) f rom above.  We have 

L. .  q (y ) -  1 o = Lw.q(y) -- gw,  q(X) 

= H ( x j _ l , x k - m x ) - H ( x j  1,xj) 

+H(Xk--1 ,Xq--mz)- -H(xk  1,xk) 

+H(xq 1 , x j + m l + m 2 ) - H ( x  q 1,Xq) 

< C l ( I x j + m l  -- xkl+lxk +m2--  xql+lXq--ml --m2--xj])  

= C 1 (dis t (~oj, (Pk)+ dist ((Pk, Oq)+ dist (~Oq, ~oj)) 

< C2 (dist (~Oo, q)j) + dist (~o o , ~ok) ). (11) 

On the other hand 

~L.,, c~/q ?/q 
(~Xo q (Y)=(~-~ (Xk 1 --13"12--mx, Xo)+ s x  (Xo, x l )  

and 
~9// (?// 
c~ x '  ( x k _  1, xk)  = - rk, (? -x  (x  o, x , )  = r o. 

Since the second derivatives of H are bounded,  we can assume that the second 
derivatives o f / q  are bounded  too. Thus, we have 

~Lw, q _ ( r o _ r k  ) < ~Xo (y) C 3 Ix k - x  o - m ~  - m 2 [ - -  C 3 dist (q~o, (Dk). (12) 

Using the fact that  x is a point  of absolute m i n i m u m  for Lw, q and boundness  
of the second derivatives of tq we obtain from (12) that  for all positive t and 
for some C 4 > 0 

Lw. q ( y ) -  ()r k - rol - C 3 dist ((Po, cPk)) t + C 4 t 2 > Lw. q (x) 

and f rom (11) 

C 4 t 2 - ( I G - r o l -  C 3 dist (Cpo, ~Ok))t+ C2(dist (q)o, q~j)+ dist (q~o, ~0k)) >0 .  

Consequent ly  

(Ir k -- rol - C 3 dist (q)o, (Pk)) 2 < C5 (dist (~0 o, ~0~) + dist (Cpo, ~0k) ) 

which implies the s ta tement  of the proposi t ion.  [ ]  

Weak  regulari ty does not  imply regulari ty for two reasons. First, it is 
possible that  the orbit  in considerat ion contains two points  whose q)-coor. 
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dinates are very close or even equal, while all other points have (p-coordinates 
far away from the two. In this case the assertion of Proposition 5 is vacuous. 
Second, in the situation of Proposition 5 one may have 
dist(~oi,(Ok)~dist(cPi, cpj). In this case the estimate for Ir~--rkl becomes very 
weak, although the corresponding estimate for [r~-rj[ which can be obtained 
by re-naming indices is good. The last observation is refined in the following 
statement. 

Theorem B. Under the assumptions of Proposition 5 for every point (q~i, r~) of the 
orbit the inequality 

I ri - -  r j l  < C (dist ((Pl, q) j))5 

holds Jbr all except probably one j e{0  . . . . .  q - 1 } .  The constant c depends only on 
f, but not on w and q. 

Proof Let k, i < k < i + q  be such that 

dist(cp i, r min dist(~0~, ~oj). 
i < j < i + q  

Then for every j + k ,  i < j < i + q  one has from Proposition 5 

Jri-rjl <c(dist((oi, ~0j)+dist((oi, (pk))~' <c'(dist(ep~, ~0j)) ~. [] 

Theorem B allows us to make the first modest step toward the extension of 
results by Aubry and Mather to higher dimensions. Namely we will show that 
limits of minimal periodic orbits are regular. 

w(n) 
Theorem C. Under the assumptions of Proposition 5 let - -  n = l , 2  be a q(n) ' "'" 

sequence of rotation vectors and (qo ("), r (")) be a sequence of points whose f-orbits 
correspond to absolute minima of the functionals Lw(,,,,q(, . Suppose that the 
sequence (~o ("), r ("~) converges to a point (~o, r) which is not an isolated point of its 
orbit. Then the orbit of (q), r) is co-regular where co(t)=ct ~. 

Proof Let us note first that (~0, r) is not a periodic point and all points of its 
orbit are not isolated. Consider any two points on the orbit of (~0, r), say (~0i, r~) 
=f~(~o, r) and (~oi, r j) =fJ(q~, r). Let us show first that q~ #: ~0j. For  otherwise one 
can find k such that dist(q~i,q~k) is very small compared to Iri-rjl  2, then 
approximate the piece of orbit containing all three points by a piece of orbit of 
(~o ("), r (")) with very high precision and use Proposition 5 for the approximation. 

Similarly if q~i+q)j, let us find k such that dist (q)~, ~Ok)~dist (q h, (o j). Assume 
i < j < k .  Other cases can be treated similarly. Approximate the piece of orbit 
from i to k by a piece of orbit of (~o ("), r (")) and again apply Proposition 5 for 
the approximation. [] 

At the current stage we are not able to make a comprehensive description 
of orbits which appear as limits defined in the last theorem. We hope that if 
W (n) 
- - ~ c ~  then the limit orbits have rotation vector ct and are fairly similar to q(n) 

quasi-periodic orbits with that rotation vector. 
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Let  us note that  in the si tuation described in Theo rem C even if (~0, r) 
happens  to be a periodic orbit,  it satisfies the same regularity condit ion if the 
approx imat ing  orbits pass near  that  orbit  several times. 

7. Continuous time Hamiltonian systems 

Let us consider a completely  integrable Hami l ton ian  system with n degrees of 
freedom. Let  ( I ,~0)=(l  1 . . .I, ,~pl.. .(p,), I c U  be an open set in R", ( p e g  n be 
the act ion-angle coordinates  for that  system ([3], Sect. 50) so that the Hami l -  
tonian which we will denote  by H o depends only on I and the time evolut ion 
leaves every torus {/col} • invariant.  Let us fix P~ U and assume that  

8H0 
811 (1(~ (13) 

Then in the ne ighborhood  of the invariant  torus {i(ol} • 11-,, one can define the 
Poincar6 m a p  T on the hypersurface ~0~ =0 .  This map  has the following form 

( Clio 8Ho Clio ~ 9 _ ~  (14) 
T(I'~~ I ' q ) 2 + ~  811 . . . . .  ~P"+--CSf n c l ,  ]" 

The restriction of the m a p  T to the 2 n - 2 - d i m e n s i o n a l  invar iant  manifold N 
={Ho(I)=Ho(l(~ q~l=0} is a symplectic m a p  with respect to the induced 

symplectic form ~ dI~ Adios. 
i = 2  

By the implicit  function theorem, on the hypersurface Ho(I)=Ho(P ~ one 
can locally express 

11 =S(I 2 ... I,). (15) 

We will make  the following assumpt ion:  

(iii) the hypersurface in I-space Ho(I)=Ho(l (~ is strictly differentiably 
convex at the point I (~ 

This condit ion is satisfied for example,  if the function H o is strictly convex 
r Ho[ 

in I at i(o), i.e. if the Hessian ~ c i  It=w, is a positive definite quadrat ic  form. 

Condi t ion (iii) implies that  S is a strictly convex function of (I 2 ... I ,)  near  
/co) i~o)). 

2 ~ " ' ' ,  

Proposition 6. The generating function for the lift of the map T: N ~ N to the 
universal cover has the form J r ( x ,  x ' ) = h ( x ' - x )  where h is the Legendre transfor- 
mation of the function S. 

Proof One has from (15) for i = 2  . . . . .  n 

8s= 8Uo. --1 
~]i ~Ii \711 ] 

8S ~h 
so that  f rom (2) if 8 i = ~ -  , then ~ = I  i. [ ]  

c,l i uoi 



240 D. Bernstein and A. Katok 

By P r o p o s i t i o n  6 if a s s u m p t i o n  (iii) is satisfied, h is a s tr ict ly convex  
func t i on  because  it is a Legendre  t r a n s fo rm  of a str ict ly convex  func t ion .  T h u s  
c o n d i t i o n  (iii) for H 0 impl ies  tha t  c o n d i t i o n s  (i) a n d  (ii) f rom Sect. 2 are local ly  
satisfied for the  Po inca r6  m a p  T. 

C o n s i d e r  n o w  a C 2 smal l  H a m i l t o n i a n  p e r t u r b a t i o n  H(I, q~) of the H a m i l -  
t o n i a n  H 0. The  f i r s t - re turn  m a p  on  the m a n i f o l d  N H = { ~ 0 1 = 0 ,  H(I, qo) 
= H 0 ( P ~  is still symplect ic .  Since ma n i fo l d s  N n a n d  N are close and  the 
p ro j ec t ion  a long  11 d i rec t ion  is a symplec t ic  map,  the new m a p  can  be v iewed 
as a C 1 smal l  symplec t ic  p e r t u r b a t i o n  of  the m a p  T. Thus ,  this  m a p  is 
d e t e r m i n e d  by a g e n e r a t i n g  func t i on  which  is C 2 (and  hence  C 1) close to h so 
tha t  all resul ts  f rom the p rev ious  sec t ions  can  be app l ied  to this case. The  
p roper t i e s  of the Po inca r6  m a p  can  be in  the obv ious  way ex tended  to the 
c o n t i n u o u s  t ime  systems.  We  leave exact  f o r m u l a t i o n s  of the resul ts  for H a m i l -  
t o n i a n  sys tems c o r r e s p o n d i n g  to T h e o r e m s  A, B, C to the  reader.  

Remark. T h e  C 2 c loseness  of the p e r t u r b e d  H a m i l t o n i a n  to the o n e  for the 
in t eg rab le  sys tem is on ly  sufficient b u t  n o t  necessary  for a p p l i c a t i o n  of ou r  
resul ts  because  we on ly  need  C ~ c loseness  for the g e n e r a t i n g  func t i on  ( compare  
with d i scuss ion  in Sect. 2). H o w e v e r  since the r e l a t i onsh ip  be tween  the  H a m i l -  
t o n i a n  a n d  the g e n e r a t i n g  func t i on  of a Po inca r6  m a p  is r a the r  compl i ca t ed  for 
the n o n - i n t e g r a b l e  case, we do n o t  try to in te rp re t  the weaker  c o n d i t i o n  in 
t e rms  of the  H a m i l t o n i a n .  
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