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A. Introduction 

Let G be a group of M6bius tranformations of /~"=R"w{oo}; the action 
of G extends to the (n+t)-dimensional  hyperbolic space H "+ I 
= {(xl . . . . .  x,+ ~)eR "+ 1: x,+a >0}. A point xsR"  is a radial point of G if there is 
a sequence of elements gieG such that, given zeH "+ ~ and a hyperbolic line L 
with endpoint x, we can find M > 0  such that the hyperbolic distances from L 
are bounded, 

d(gi(z),L)<m, and that gi(z)-*X (A1) 

in /4"+ 1= H,+ 1 w/~" as i ~  oo; if (A1) is true, we say that gi(z) approach radially 
x. Since the elements of G preserve the hyperbolic metric d, it follows that if 
(A1) is true for some z and L, then it is true for all z and L, possibly with 
different M. 

Thus as we approach a radial point along a hyperbolic ray, we come 
infinitely often to a compact set in the quotient space H "+I/G. If we look at a 
G-invariant set of/~", similar images come infinitely often. Radial points are 
somehow generic points for G. The whole complexity of G must be present in 
every neighbourhood of a radial point. Thus it is natural to suspect that if a 
map f of /~" is compatible with G (see (A2)) and if it is differentiable at a 
radial point with a non-vanishing Jacobian, then f is, up to composition with 
M/Sbius transformations, an affine map of R". This is indeed so as we will see. 
Furthermore, if some often occurring conditions are met, then f is a M6bius 
transformation (Theorems A and D). 

We now express this more precisely. Let A c R "  be a G-invariant set (i.e. 
g (A)=A for g~G) and let f :  A--*/~" be a map such that there is a homomor-  
phism q~: G~G'  (G' another group of M6bius transformations of/~") such that 

~p(g) f (x) = f g(x) (A 2) 
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for every x e A  and geG. In this case we say that f is G-compatible or that f 
induces ~o. 

We will prove in this paper 

Theorem A. Let G be a group of M6bius transformations of R" and let f :  
R"--*R" be a G-compatible map which is differentiable with a non-vanishing 
Jacobian at a radial point of G. 7hen f is a M6bius transformation unless there 
is a point zeR" fixed by every geG. I f  there is such a point z, then there are 
Mdbius transformations h and h' such that h(oo) is fixed by every geG and that 
h'fh]R" is an affine homeomorphism of R". 

This is a special case of Theorem D. The idea of the proof is to look at f 
from the points gi(z), when gi(z) approach radially a point at which f is 
differentiable. As i~oo ,  f looks more and more like an affine map, and going 
back with the maps q)(gl)-1, ~0 as in (A2), we can show that f is indeed affine 
modulo composition with M6bius transformations. 

We remark that for Theorem A one needs only the first part of the proof of 
Theorem D so that one has formula (D13) which says that there are M6bius 
transformations h and h' such that h'fhlR" is affine. If  h(oo) is not fixed by 
every gEG, f is continuous by G-compatibility also at h(oo) and we can use 
Lemma C2 to conclude that f is a M6bius transformation. 

The final sections give some related theorems. Roughly, Theorem E says 
that we can replace in Theorems A and D the radial limit points by limit 
points (see (B 3)) if we require that f is continuously differentiable at the limit 
point. In Theorem F we consider a quasiconformal and G-compatible map f 
of /~" and show that if the matrix dilation (cf. (F0)) of f is approximately 
continuous at a radial point of G, or continuous at a limit point, then f is a 
M/3bius transformation if no z~/~" is fixed by every g~G; if this condition is 
not true then f is affine modulo M6bius transformations. 

Mostow's rigidity theorem. We can use our theorems to give an alternative 
proof of Mostow's rigidity theorem, and we now comment  on this. Let 
q~: Ga--.G 2 be an isomorphism of discrete M6bius groups of /~", n>=2, such 
that Hn+l/Gi has finite hyperbolic volume. Then Mostow's theorem says that 
~o is a conjugation by a M6bius transformation. The first step in the proof is 
to show that there is a quasiconformal map f:/~"--*/~" inducing ~p. Then an 
argument based on ergodicity of the action of G 1 and on absolute continuity 
of quasiconformal maps shows that f is in fact a M6bius transformation and 
rigidity follows. 

Our theorems assume the existence of a G-compatible map of/~" and so the 
first step is as before. However, once we know that there is a quasiconformal 
map of/~" inducing ~0, we can simply observe that quasiconformal maps are 
a.e. differentiable with a non-vanishing Jacobian. In the finite-volume case a 
point x~/~" is a radial point of G 1 unless it is fixed by a parabolic element of 
G1 (see Lemma B0). Since the set of such fixed points is countable, we can find 
a radial point at which f is differentiable with a nonvanishing Jacobian, and 
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we get the rigidity by Theorem A; in the present case no xe/~" can be fixed by 
every g~G 1 by Theorem B2 (see also Remark B2), the limit set being now 
obviously /~. Hence f is indeed a M6bius transformation and not only 
affine modulo M~Sbius transformations. 

Alternatively, we can observe that the matrix dilation of f is a.e. approxi- 
mately continuous (Federer [7, p. 159]) and we get the rigidity by Theorem F. 
This proof of the rigidity theorem is especially simple, modulo the theory of 
quasiconformal mappings, and gives a very clear expression to our basic idea. 

More generally, we obtain that if a discrete Mbbius group G is of the so- 
called divergence type, then it is Mostow-rigid. That is, if f :  /~"~/~", n>2,  is 
quasiconformal and G-compatible, then f is a M6bius transformation. This 
follows by the preceding argument since the radial point set of a discrete group 
has positive measure if and only if it is of the divergence type (see [4, Chapter 
VIII). Other proofs of this theorem are due to Sullivan [14] and Agard [1]. 

It is interesting to observe that, in contrast to Mostow's original proof, here 
we make use neither of ergodicity nor of absolute continuity of quasiconformal 
maps. It suffices to know that quasiconformal maps are a.e. differentiable with 
a non-vanishing Jacobian. Actually, it would suffice that f is differentiable with 
a non-vanishing Jacobian at a single point xER" not fixed by some parabolic 
g~G. 

If n = 1, the argument given above for the finite-volume case fails since in 
this case the map f :  / ~ 1 ~ 1  inducing ~o may be very irregular (although it is 
still a so-called quasisymmetric map). However, it follows by our theorem that 
if f is differentiable with a finite, non-zero derivative at a single point x~/~ ~ 
which is not fixed by some parabolic g~G~, then f must be a Mbbius 
transformation (see also Remarks D2 and D5). This result has been already 
obtained by Mostow [11, (22.14)] and, if HZ/G1 is compact, by Agard [-3]. 

The literature on Mostow's rigidity theorem is quite extensive and we now 
mention only Agard's paper [1], which discusses also some earlier results, and 
our sister paper [-17] which discusses aspects of rigidity connected with the 
absolute continuity of the map f and of which this paper was earlier a part. 

Some definitions and notations. We use cl. ? and int to denote the closure, 
the boundary and the interior, respectively. Usually these operations are taken 
in /~"+' but if some other space is meant we indicate this by an appropriate 
subindex. 

The hyperbolic metric of H "+1 is d, and the euclidean distance of two 
points in of R "+'  is Ix-Y]. 

The standard basis of R" is e 1 .. . .  ,e,. Affine and linear maps of R" are 
extended to/~" by means of the rule oo~--,oo. A similarity is a map of a subset 
of R" into R" which multiplies euclidean distance by a constant. 

The orthogonal group of R" is O(n). 
The identity map of a set X is id. 

Remark. After the first version of this paper was completed (which was then 
contained in [-17]), we received Agard's papers [1-3] which contain related 
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material. In [3] he proves, as ment ioned above, our  theorem in a special case, 
and [1, 2] contain auxiliary results on M/Sbius groups which to some extent 
overlap with our  Sections B and C. 

B. MObius groups 

We denote the group of M6bius transformations of R" by MOb(n); it includes 
also orientation reversing elements. Every gcMOb(n)  can be extended in a 
unique manner  to a MObius t ransformation of the closed hyperbolic  (n+  1)- 
space /~,+1 (and this can be further extended to 1~,+1); we do not  distinguish 
between g and its extension. An  element gcMOb(n) \{ id}  can be classified as 
loxodromic, parabolic, or elliptic (see, for instance [1, 2.2]). The map  g is elliptic 
if g is a conjugat ion (in M 0 b ( n +  1)) of an or thogonal  linear map of  R "§ 1; it is 
parabolic  if it is a conjugat ion (in MOb(n)) of an affine map  h of R" of  the form 

h(x)= fl(x) + a (B1) 

where acR", a~O, and ricO(n) fixes a (1); it is loxodromic  if it is a conjugat ion 
(in M6b(n)) of  a map  of  the form 

h(x) = ,~ N x )  (B 2) 

where 2 > 0  and ricO(n). A map  g is hyperbolic if (B2) is true with fl=idcO(n). 
Equat ion  (B2) implies that a loxodromic  g has exactly two fixed points in 

/~". One of  these is the attractive fixed point  and is denoted P(g), and the other 
is the repulsive fixed point  and is denoted N(g); these names should be self- 
explanatory.  A parabolic g has exactly one fixed point  which is denoted by 
n(g)=X(g). 

A M6bius group of /~" is a subgroup of MOb(n). Such a group is a 
topological  group, the topology being given by the compact -open  topology. It 
is not necessary for us to assume that  the groups under considerat ion are 
discrete. Therefore we do not  make this assumption a l though we do not  know 
whether the non-discrete case leads to interesting situations. 

The limit set of a MObius group G is 

L(G) =/~" c~ cl Gz (B 3) 

where z e H " + l ;  since elements of  G preserve the hyperbolic metric of  H "+1, 
this definition is independent  of the choice of z. I f  G is discrete, this is the 
usual limit set. Obviously it is G-invariant and closed. By [9, 13.15], L(G) is a 
perfect set if it contains more  than two points. 

Note  that  the radial points of G defined in the In t roduct ion  are also limit 
points but  that  the converse need not  be true. However,  there are some 

~1) We have not found a reference to the representation (B1) and therefore indicate it here. If g 
fixes only 0% then it is clear that it has the representation (BI) where one assumes only that a~V 
=(fl-id)(R"). Conjugating by a translation one obtains that a is orthogonal to V and hence to 
fl(a)-a. But then fl(a)=a 
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important special cases in which we can characterize when a limit point is a 
radial point. 

A discrete MGbius group of/~" is geometrically finite if its action in H "+ 1 
has a finite sided hyperbolic fundamental polyhedron; for a more exact defini- 
tion see [16, 1B]. 

Lemma B0. Let G be a geometrically finite M6bius group of R", Then xGL(G) 
is a radial point of G unless it is fixed by some parabolic gEG. 

This holds also if H "+ 1/G has finite hyperbolic volume. 

Proof The first paragraph was proved for n = 2  by Beardon and Maskit [6, 
Theorem 2]. The same proof  applies also for n =  1 and the proof  was general- 
ized by Apanasov [5, Theorem 5.2] for n>2.  They use actually a slightly less 
general definition of a geometrically finite group, assuming that G has a finite- 
sided hyperbolically convex fundamental polyhedron. But the proof  boils down 
to the existence of so-called parabolic cusps at parabolic fixed points, whose 
existence follows also from the present definition [16, Theorem 2.4]. 

If H"+I/G has finite volume, then G is geometrically finite [8, 13, 19] and 
so the lemma holds also in this case. 

We will now present some general theorems involving MSbius groups and 
their limit sets; especially we need information on loxodromic elements in the 
group. We use Gottschalk-Hedlund [9, pp. 121-123] as our reference. In this 
book n =  1 but the proofs are valid for n >  1 as well. In fact, the only change 
needed seems to be to interpret intervals and arcs of [9] as closed or open 
n-balls of/~". Another reference is the set of notes [2, Section 5] by Agard. 

Theorem B1. Let G be a M6bius group of R" and suppose that no xGR" is f ixed 
by every geG and that L(G) consists of more than two points. Then L(G) is an 
infinite perfect set such that if x~, x2eL(G ) and U i is a neighbourhood of x i in 
R", then there is a loxodromic gGG with one fixed point in U: and the other in 
U 2 . 

In particular, no xGR" is fixed by every loxodromic gGG. 

Proof This follows from [9, 13.15 and 13.24]. 

A discrete M6bius group G whose limit set consists of more than two 
points, is usually called a non-elementary group. In this case the assumption 
that no xe/~" is fixed by every gsG is automatically satisfied. In view of the 
importance of the discrete case we give this as a separate theorem. 

Theorem B2. Let G be a discrete M6bius group of R" and suppose that L(G) 
consists of more than two points. Then no x~R" is f ixed by every loxodromic 
g~G, and hence the conclusions of Theorem B1 hold. 

Proof Since L(G) contains more than two points, there are in G two loxo- 
dromic elements g and h with at most one common fixed point by [9, 13.21]. 
If xe/~" is fixed by every element of G, then x is fixed also by g and h. 
Consequently g and h have exactly one common fixed point which is im- 
possible by 
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Lemma B1. Two loxodromic elements in a discrete M6bius group of R" have 
either two common fixed points or no common fixed points. 

Proof We must show that if g and h are loxodromic and have one, and only 
one, common fixed point x, then the group G generated by g and h is not 
discrete. We can assume that x is the repulsive fixed point of g. Let g ' = h g h - i  
and let gi=glg'g -~. Let L be the hyperbolic line with endpoints P(g) and N(g) 
and let L i be the line with endpoints P(gi) and N(gl)=N(g ). Then d(z,g(z)) 
=d(z',gi(z')) for z6L and z'~L i. Since Li--~L in an obvious sense, we have for 
z~L 

lim g~- 1 g(z) = z. 
i ~ c r  

This is a contradiction since {g- lg :  i>0} is infinite and since discreteness of G 
is equivalent to the fact that G acts discontinuously in H "+1, see Ahlfors [4, p. 
79]. 

Finally, we prove a couple of lemmas concerning loxodromic elements and 
G-invariant sets. 

Lemma 112. Let G be a M6bius group of R" and suppose that G has radial 
points. Then it is true that 

(a) there are loxodromic elements in G, 
(b) L(G) contains at least two points, 
(c) if X c R "  is a set with two elements which is f ixed setwise by every g~G, 

then L(G)= X = the set of radial points of G, 
(d) if A mR  n is a G-invariant set containing at least three points, then A is 

infinite. 

Proof If  L(G) contains more than two points, we get (a) by [9, 13.21]. Hence, 
since radial points are also limit points, we can assume that L(G) consists of 
one or two points. We can assume that ooeL(G).  Let H = { g e G :  g(oo)=oo} 
which is a subgroup of index one or two. If g e H  is non-loxodromic, then g is a 
euclidean isometry of R" and R "+1. Hence H preserves sets of the form 
R"x{t} ,  t>0 ,  if every geG is non-loxodromic and we would have that if 
zEH n+l, then G z m R ~ x { t , t  '} for some t , t '>0 .  It would follows that G does 
not have radial points and hence (a) is true. 

Since fixed points of a loxodromic geG are in L(G), (b) follows. To get (c), 
observe that if a loxodromic geG does not fix x e X ,  then X is infinite. Hence 
X is the fixed point set of any loxodromic geG and so, by (a), X c L ( G ) .  If 
X#:L(G), there would be by [9, 13.21] a loxodromic geG such that g does not 
fix some x e X .  Hence L ( G ) = X  which is clearly also the radial point set of G. 
Thus (c) is proved. 

Finally, (d) follows by [9, 13.14]. 

Lemma B3. Let gi~M/Sb(n) f ix  some yER" and suppose that, for some z~H "+ 1, 
gi(z) approach radially xER" (i.e. (A1) is true). Then there are loxodromic 
elements in the sequence. 

Proof Assuming that y = ~ one sees as in the proof of the preceding lemma 
that if all g~:s are non-loxodromic, then always gi(z)ER"x {t} for some t > 0  
which is impossible. 
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Remarks. B1. If G is non-discrete, then L(G) may contain more than two 
points, and still there may be a point xe/~" fixed by every geG. An example is 
the group of similarities of R" for which the limit set is R" but oo is fixed by 
every gsG. 

Note that if L(G) contains at most two points, then G fixes either a point 
xe /4  "+1 or a point-pair {x,y}c/~";  this is clear if L(G)4=O. If L(G)=0,  then 
Gz is bounded in the hyperbolic metric for z e H  "+1. Hence the center of the 
hyperbolic disk D containing Gz with minimal radius is well-defined (see [-15, 
p. 75-] or [18, Lemma E] for the easy argument). Then the center of D is fixed 
by every geG. 

B2. It is interesting to note that the theorems on M/Sbius groups presented in 
this section are not needed in the first part of Theorem D, to prove that a 
G-compatible map differentiable at a radial point can be composed with M6bius 
transformations in such a way that it becomes affine in R". The only exception 
is Lemma B2 (d) which is needed to show that the set A is actually infinite (it 
would suffice to know that it contains at least four points). The results of this 
section are needed in the second part, to show that this affine map under 
certain circumstances is in fact a M6bius transformation. 

In the most important application of Theorem D, in Mostow's rigidity 
theorem (corresponding to case (a) of Theorem D), one needs only that a 
group G with a finite-volume hyperbolic quotient space contains an element 
not fixing a given point of/~". In this case obviously L(G)=/~" and the group is 
discrete and hence the existence of such an element (which is even loxodromic) 
follows by Theorem B2. 

If G is torsionsless and H "+ 1/G is compact, the existence of geG not fixing 
a given x6/~" follows even more simply. In this case every g~G\{ id}  is 
loxodromic and one easily sees that there are in G two loxodromic elements g 
and h with at most  one common fixed point. Now the simple Lemma B1 
implies that they can have no common fixed points. Hence, if x~/~", either 
g(x)4:x or h(x)+x. 

Thus in these cases there is actually a loxodromic g~G not fixing a given x. 
Then, for instance, the geometric argument of Sect. C shows (see Remark C 1) 
that the mapping occurring in Mostow's rigidity theorem is indeed a M6bius 
transformation. 

C. Affine conjugations of Miibius transformations 

We now consider conjugations of a M6bius transformation g by an affine 
homeomorphism e of R". If e g ~ - i  is again a M6bius transformation, then 
must be a similarity provided that g does not fix oo (Agard [1, Lemma 2.2]). 
We need the following variant of this theorem. 

Lemma C1. Let g, g'6M~Sb(n) where g is loxodromic, let ct be an affine ho- 
meomorphism of R n and let a E R  n. Suppose that 

gk(a) = g'* a(a) (C 1) 
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for all keZ.  Then ct[V is a similarity when V is the affine subspace of minimal 
dimension such that Vko{c~} contains a and the points fixed by g. 

Proof. If  g fixes c~, then V is at most  one-dimensional  and the l emma  is clear. 
Hence  we can assume, by compos ing  with similarities, that  g fixes _+e 1 (el 
= (1 ,0  . . . .  ,0)), that  e 1 is the a t t ract ive fixed point  of  g and that  c~ fixes pointwise 
the x~-axis. Fur thermore ,  we can assume tha t  a = a l e l + a 2 e  2 and that ct(a) 

t 
= a '  1 e 1 + a  2 e 2. 

The case that  a is on the xl -axis  is again clear. Hence  we can assume that  
V=c~(V) is the x txz-plane .  Thus  g' is loxodromic  with _+e 1 as the fixed points,  
e I being the at t ract ive fixed point. Fur thermore ,  e has in V the expression 

0{(X 1, X2) ~---(X l ,  2 X  1 -1- lAX2) (C2) 
where 2, _~eR. 

If  u E R " \ {  ___el}, let S(u) be the circle passing through the points  u and _+e 1. 
If  bo th  g and g' are hyperbolic,  then g preserves S(a) and g' preserves S(o~(a)), 
and it follows that  gk(a)eS(a) and g'ke(a)=o~gk(a)eS(c~(a)) for all integers k. 
Hence  

~(S(a)) = s(~(a)) .  (C 3) 

Thus e maps  a circle of  V onto  another  circle and the l emma  follows in this 
case. 

The p roo f  for general loxodromic  g and g'  is similar but  more  complicated.  
First we augment  the definition of S(u) by setting for e > 0 

S~(u)={S: S is a circle passing through +_e 1 such that  the angle between S 
and  S(u) at the points  +e~ is less than e}. 

Then  we recall that  there are h, h'eM/Sb(n) such that  

hgh-  l(z) = 2fl(z), h'g'h'- ~(z)= 2'if(z) 

for zeR", where 0 < 2 ,  2 ' < 1  and /~, fl'eO(n). The crucial fact is that  there 
arbi trar i ly large p such that  fl+-v and fl' +-p are in a prescr ibed ne ighbourhood  of 
the neutral  element of the compac t  g roup  O(n). 

It follows that, given e > 0 ,  there are arbi t rar i ly  large p such that  
S(g• and S(g'• But g'•177 and it is thus a 
point  of  S,(e(a))c~e(S~(a)). Lett ing ~ 0 ,  we get that  the circle S(e(a)) and the 
ellipse e(S(a)) are tangent  to each other  at the points  _+ e~. 

In part icular ,  the tangents  of c~(S(a)) at _+e~ are symmetr ic  with respect to 
the xz-axis. In view of (C2), this is possible only if 2 = 0  in (C2). Hence  the 
equat ion of ~(S(a)) is of  the form 

X21 +((X 2 -- u)/b) 2 -- 1 q-u2/b 2 (ueR, b > 0 )  

since ++_eleS(a)). On the other  hand, the equat ion of the circle S(e(a)) is of the 
form 

X 2 -~ (X 2 - -  1)) 2 = 1 "}-/)2 (/)sR). 
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Since they are tangent to each other at the points + e  1, we get the condition 

v = u/b2. 

If b~: 1, then it follows that a(S(a))c~S(a(a))= { +el}.  This contradicts the 
fact that :~(a)4{ +e l}  is also a point of this intersection. Hence b =  1 and we get 
again (C3) and the lemma follows. 

If (C1) is true for all aeR", and if oo is not fixed by g, then :r is a 
similarity for all 2-planes V containing the fixed points of g. Hence ~ is a 
similarity. Actually, it is not now necessary to assume that g is loxodromic, g 
can be any M6bius transformation not fixing ~ and we have 

Lemma C2. Let A = V w { o o }  for some affine subspace V of R", let a be an 
affine homeomorphism of R" and suppose that g6M/Sb(n) does not f ix  cc and 
that g(A)= A. I f  

c~glV=g' alV 

for some g'~M/Sb(n), then e]V is a similarity. 

Proof This is clear if n = l  and follows from Agard [1, Lemma 2.2] if n>2.  
Agard considers only orientation preserving M6bius transformations but the 
proof is valid even without this assumption. If n = 2  (and everything is orien- 
tation preserving), then Agard's lemma is a fairly direct consequence of the 
composition rule for the complex dilatation. 

Remarks. C1. We use Lemma C2 for case (a) of Theorem D. If L(G) contains 
more than two points, we could then by Theorem B 1 assume that g in Lemma 
C2 is loxodromic. So in this case (which covers most important  applications) 
we could be self-contained and get Lemma C2 from Lemma C I as indicated 
above. 

C2. Lemma C1 is valid also for parabolic g, provided that we interpret the set 
V as follows. One sees from (B1) that there is a l-circle Sg through P(g) such 
that g(Sg)=Sg; there may be more than one such circle but they all are tangent 
to each other at P(g). Let now V be the affine subspace of minimal dimension 
such that Vw{oo} contains {P(g),a} and such that V and Sg are tangent to 
each other at P(g). With this modification, Lemma C 1 is valid with a similar 
proof. 

If we modify Lemma C1 in this manner for parabolic g, it is then possible 
to get Lemma C2 for parabolic g not fixing oo in quite the same manner as we 
indicated above for loxodromic g. 

However, for elliptic g our method seems difficult since {gk(z): k integer} 
may be finite even if z is not fixed by g. 

D.  Differentiability and rigidity 

N o w  we c o m e  to our main  theorem. This theorem is quite general and we 
need to k n o w  what  one means  by the differentiability of a map  defined at an 
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arbitrary subset of/~". Assume that f :  A~/~", A ~/~", is a map and that xeR". 
Then we say that f is differentiable at x if there is an affine map ~ of R" such 
that 

If(Y) -~(Y)] 
* 0 (D 1) 

ly - x l  

as y ~ x  in A; we do not require that x~A but if xEA we also require that f is 
continuous at x. If xr  then (D1) is satisfied vacuously, and hence we 
regard f differentiable at x. 

If fl is a linear map  such that ~ = fl + constant, then fl is called the derivative 
of f at x. If the map  ~ can be chosen to be an affine homeomorphism of R", 
then f is differentiable with a non-vanishing Jacobian at x; if ~ can be chosen 
to be a similarity, we say that f has a conformal derivative at x. 

We extend these definitions to the case that x =  ~ or f ( y ) ~  as y ~ x  by 
means of auxiliary M6bius transformations. Note that these definitions do not 
depend on the dimension of the space /~" into which A is embedded: if n 
varies, the differentiability properties of f do not change. 

A sphere (or a k-sphere) of/~" is a set of the form h(/~ ~) for some heM6b(n) 
and some integer ke[0,  n]. If Ac /~"  contains at least two points, then the 
minimal sphere of R" containing A is well-defined. If a M6bius group G has 
radial points, then L(G) contains at least two points by Lemma B2, and hence 
the minimal spheres occurring later are well-defined. 

In the following we also call restrictions of maps f e M b b ( n )  M6bius trans- 
formations. Recall that affine maps are extended to /~" by means of the rule 
c/)k---~ OO. 

We will now see that if a G-compatible map f is differentiable at a radial 
point of G with a non-vanishing Jacobian, then f is affine modulo M6bius 
transformations, apart  from a special set of circumstances, and even then with 
at most one exceptional point; in many natural situations f is even a M6bius 
transformation. 

Theorem D. Let G be a M6bius group of R" and let A c R "  be a G-invariant set 
containing at least three points. Let f :  A ~ R "  be a map inducing a homomor- 
phism (p of G onto another M6bius group. Suppose that f is differentiable with a 
non-vanishing Jacobian at a radial point x of G. Then there are M6bius transfor- 
mations h and h' of R" and an affine homeomorphism fl of R" such that 

h' fh(y) = fl(y) (D 2) 

for all y e h - l ( A ) n R  ". I f  f has a conformal derivative at x, then fl can be chosen 
to be a similarity. 

Furthermore, if a=h(oo)sA,  then (D2) is true also for y =  oo except in the 
following case: a and the radial point x (we have x4=a) are fixed by every geG 
and f is non-continuous at a; setting 

f ' = h ' - l  flh -1, 

then f ']A also induces (p and f ( a )= f ' ( x )  ( = f ( x ) / f  xeA). 
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Regarding the question when f is a Mgbius transformation, we have 
(a) if A is a k-sphere for some k<n  and if the point a=h(oo) is not fixed by 

every geG, then f is a M6bius transformation, 
(b) if A is a subset of a 1-sphere, then f ' lA is a MSbius transformation. 
Quite generally, if a=h(oo) is not fixed by every geG, then 
(c) f[Scc~A is a M6bius transformation for every ceR" 

when S c is the minimal sphere containing L(G)u {c}. 

Remark. The condition that A must be a k-ssphere in (a) is far too strong. The 
most general, if somewhat cumbersome, condition that we get is the following. 
Let S a be the minimal sphere containing A u L(G) and let S '=  U S,, S, as in 

a ~ A  

(c). Suppose now that for all affine homeomorphisms fl of R n and 
gi, g'~M6b(n), i=  1, 2, such that ~sclgi(A), the condition 

(d) g'~flgllS'=g'zflg2lS' implies g'~flg~lSA=g'zflg2[S a. 
Then f is a MSbius transformation provided that a=h(oo) is not fixed by 
every geG. 

Since everything here is real-analytic (fl-outside oo), (d) is true if, for 
instance, 

(e) ints~(cl S') 4=0. 

Proof. Before starting the proof proper, we introduce notation and list some 
facts to which we will refer later. 

If ue/4 "+1 and vsR' ,  u:t:v, let 

L(u, v)= the hyperbolic line or ray with endpoints u and v; 

we take L(u,v) be closed in H "+a, i.e. vq~L(u,v) and u~L(u,v) if and only if 
u~H,+ 1. If ucH "+ 1 and v, ws/~", let 

ang(u, v, w) = the  angle between the rays L(u, v) and L(u, w) (s[-0, n]). 

This is obviously M6bius-invariant: if g~M6b(n), then 

ang(g(u), g(v), g(w))= ang(u, v, w). 

Let 
T" = {(u, v, w)~(/~")3: u, v, w distinct}; 

if t: R"~R"  is injective, it operates on T" by 

t (u,  v, w) = (t(u),  t(v),  t(w)). 

We can also define a projection P: T " ~ H  "+t by 

P(u, v, w)=the orthogonal projection of w onto L(u, v); 

that is, p=P(u,v,w)~L(u,v) and L(u, v) and L(p, w) are orthogonal. Finally, we 
define for m > 0 

Cm= {UeHn+ l: d(u,L(O, ~))__<m}. 
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We will need the following properties of ang and P :  

1 ~ P is MObius compatible  in the sense that if ueT" and geMSb(n) ,  then 

Pg(u)=gP(u). 

2 ~ If ~: R"~R" is linear and non-singular,  then 

d(P(u), P a(u)) < m' 

for all ueT" such that  P(u)eC,. and where m'=m'(m,c O. 

3 ~ . If u~H "+1 and vc/~" are fixed and we/]" varies in such a way that 
ang(u, v, w)~0 ,  then w~v .  

4 ~ If m > 0  and 6 > 0  and if u~C,., then ang(u,v, oo )>6  implies that Ivl/lul<m" 
for some m" = m"(m, 6). 

5 ~ . Given e > 0  and m > 0 ,  there is 6 ' = s  such that  if ueCm, v, weR" 
and Iv-wl/lu[ < 6', then ang(u, v, w)<e.  

6 ~ . Given e>0 ,  there is 6~>0 such that if u=(ul,u2, u3)~T" and v 
=@1, Vz, v3)e(/~") 3 satisfy ang(P(u), u;, vj)<6~ for j =  1, 2, 3, then veT" and 

d(P(u), P(v)) <= ~. 

7 ~ Given e > 0  and m>__0, there is 6 " = 6 " ( ~ , m ) > 0  such that if w, w'eH "+l and 
v, v'e/]", then d(w, w') < m and ang(w, v, v') < 6" imply that ang(w', v, v') < e. 

Some of  these claims are obvious and for others we give some explanation. 
For  2 ~ we may  note that  

S,,={p~C,,: Ipl= 1} 

is compact  and hence so is P-1(Sin) since each P-l(p),  pert,+ 1, is homeomor -  
phic to the compact  space of  2-frames of  R "+ 1. Hence 2 ~ is true if P(u)eS,, by 
compactness  and continuity.  Since P(2u)=2P(u) for 2 > 0  by 1 ~ we have 2 ~ for 
all ueT" such that P(u)eC m. 

In 4 ~ and 5 ~ one can replace u,v and w by 2u, 2v and 2w where 2 > 0 .  
Hence one can assume that  u is in the compact  set S m defined above. Then 4 ~ 
is immediate  and for 5 ~ we need only to note that for compact  K ~ H "+ 1 there is 
c=c(K)>O such that  ang(u,v,w)<clu-w[ for ueK and v, weR". 

In 6 ~ we can replace u by g(u) and v by g(v) where gEM6b(n). By the 
transitivity of the action of  M5b(n) on T", we can then assume that u=(0 ,  oo, el) 
and 6 ~ follows now by the continuity of P. Similarly in 7 ~ we can assume that 
w = e , +  1 and use the compactness  of  {p~H "+ 1: d(p, w)<m}. 

After these preliminary steps, we can start to prove Theorem D. By compos- 
ing with MSbius transformations, we can assume that  x = 0  is a radial point of G 
and that (D1) is true for some linear homeomorphism ~ of R" which is a 
similarity if f has a conformal derivative at x. We can also assume that 

ooeA. (D3) 

Let then gisG be a sequence such that if zEH "+1, then (A1) is true for x = 0 .  
By passing to a subsequence, we can assume that 
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Setting 

lim gi- 1 (~  = a6/~". (D4) 
i ~ a 3  

g'i = cP(gi)- 1, 

we claim that if yEA\{a} ,  then 

f (y)  = lira g'i ~g~(y) and (D5) 

f [ A \ { a }  is an injection. 
To  prove (D5), we pick points Yl =Y, Y2, Y36A\{  a} such that  yj are distinct. 

Since A is actually infinite by L e m m a  B2, we can find such points. Let 

z = P(Yl, Y2, Y3), 

and 
(~ i i "~" ang(gi(z), o% gi(Y j)) = ang (z, g[ 1(oo), y j). 

In view of (D4), we can find 8 > 0  such that 

for big i and all j. 
Let 

hi j> 6 > 0 (D6) 

z, = g~(z) = P(g,(y 1), g,(Y2), g~(Y3)) 
and 

z'i'= P(~gi(Yl), ~gi(Ya), ~gi(Y3)). 

Since z~=gi(z ) approach  radially 0, there is m > 0  such that  all z~ are in the cone 
C m. Hence 2 ~ implies that  for some M " > 0  and all i, 

d(z i, z'i') < m". (D7) 

By 4 ~ and (D6), there is M o > 0  such that  

Ig,(yj)l/Izil < M o 

for big i and all j. Since f has the derivative ~ at the origin and z~--.0, it follows 
that  

Ifgi(Yj) - =gi(y~)l/Iz~l--'O 

as i ~  ~ .  By 5 ~ then 

ang(zi,fgi(Y.i), ~gi(yj))~O 

as i--.oo for al l j .  In view of (D7) and 7 ~ we get now that 

ang(z'i', fgi(yj), ~g,(yj))--,0 

as i ~  oo for all j. Hence 6 ~ implies that 

z'i = P ( f  gi(Y ~), f gi(Y 2), f gi(Y 3)) 

(D8) 
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is defined for big i and that 

as i---~ ~ .  Finally, by 7 ~ 

as i ~os  for allj. 
Now 

d(z'i, z'i')--,O 

ang(z'i, f g(y j), ct gi(y j) ) ~ 0  

z '  = g'i(z'i) : P(g'i f gi(Y O, g'i f g,(Y 2), g'i f gi(Y 3) ) 

= P(f(Yt), f(Y2), f(Y3)) 

P. Tukia 

(D9) 

does not depend on i. By (D9), 

ang(z; f(y), gl ~gi(Y)) = ang (g'i(z'i), g'i fg,(Y), gl ~g~(Y)) 

= ang(z'i, fgi(YO, ~gi(Y 0) ~ 0  

as i~oo. By 3 ~ this proves the limit relation of(D5). 
We also proved that if Yl, Ye, Y3eA\{  a} are arbitrary distinct points, then 

fgi(YO, fgi(Y2), fgi(Y3) are distinct for big i. Hence f(Y0, f(Y2), f(Y3) are distinct 
by G-compatibility. It follows that f lA \ {a}  is injective and (D5) is proved. 

By passing to a subsequence we can assume that in addition to the limit 
(D4), also the limit 

lim g'i(oo) 

exists. The existence of these limits implies that we can find h, h', hi, h'ieMbb(n ) 
for i > 0  such that both glhi and h'ig' i fix oo and that high and h'i~h' as i~o~ 
uniformly in the spherical metric of/~". 

By the uniform convergence, (D4) implies that h i- l (a)~ oo and hence 

h-  l(a) = oo. (D 10) 

Furthermore, fixing oo, gihl and h'ig' i are similarities of R, and consequently 

h' ' ~xi= igio~gihi (Dl l )  

is an affine map of R". Hence by (D5), 

h'f(y) = lim ~h;- l(y) (D12) 
i~oo 

for y~A\{a}.  
Let V be the affine subspace of R" generated by h- l (A\{a})  (which is a 

subset of R" by (D10)). Then (D12) implies that there is an affine map fl of R" 
such that lim ~i(y)=fl(y) for yEV and that 

i~oo  

h' f (y) = flh- ~(y) (D 13) 

for y~A\{a}.  
We claim that here actually fl[ V is an embedding. To see this, observe that 

the maps h'ig' i and glhl in (Dl l )  are similarities, and hence there is K >  1 such 
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that 
1/K < I~i(u ) -~i(u')l/l~i(v) --~i(v')l < g 

whenever lu-u'[ =[v-v ' l .  Since fl[V cannot be constant by (D5), it follows that it 
indeed is an embedding. 

Thus we can choose that fl is an embedding and then, in view of (D10), 
(D13) is (D2) written in another manner. 

If f has a conformal derivative at x, then a and ~i are similarities. Hence fl] V 
is also a similarity, and we can choose fl to be a similarity of R". 

This proves the first paragraph of Theorem D. We will now examine the 
validity of (D2) for y =  oo. We claim that the point a=h(oo) satisfies 

ascl(A\{a}). (D14) 

By (D3) and (D4), this is clear if {g~-l(oo): i>0} is infinite. If it is not, then by 
passing to a subsequence we can assume that g~lg i fixes a. Since g]-lgi ap- 
proaches radially g~-X(x) by (A1), it follows by Lemma B3 that some g~lg i is 
loxodromic and fixes a. Since A is G-invariant and contains at least three points, 
(D 14) follows. 

Consequently, if a=h(oo)eA and (D2) is not true for a, f must be non- 
continuous at a. Suppose that f is non-continuous at a. Then every gsG must 
fix a since f is G-compatible and continuous at all other points of A by (D2), 
continuity being a G-invariant property. It follows that every geq)(G) fixes f(a). 

Let f '  be as defined in the statement of Theorem D. Then f '  is a homeomor- 
phism of 12" such that f ' lA\{a} =f]A\{a}. Using (D14) and the fact g(a)=a for 
all geG, one sees that every ge~o(G) fixes f'(a)4:f(a). It follows that f'[A also 
induces ~o. 

Pick loxodromic heG; by Lemma B2 there is such h. Then the fixed points 
of h are in cl A (since A contains more than two points). It is now easy to see 
that ~o(h) is also loxodromic with fixed points in clf '(A); these fixed points are 
f(a) and f'(a) which are fixed by all gE~o(G). Thus f(a), f'(a)eclf'(A). It follows 
that every g~G fixes x'=f'-l(f(a))4:a. Thus {x',a} is a doubleton fixed by every 
geG and Lemma B2 implies that xe{x',a}. Since f is continuous at x if xeA, it 
follows that x =x' .  Hence f (a)=f ' (x)=f(x)  if xsA. 

This proves the second paragraph of the theorem. To get the rest, we replace 
f by h'fhlh-l(A) (and A by h-l(A), etc.). Note that then by (D10), 

a = oo ~cl(A\{a}). (D 15) 

It is also clear that we can assume that f is continuous (by changing f at a if 
necessary), and we have 

and thus, if geG, 

f}A=B]A 

q~(g) flJA= fl g]A. (D16) 

Now (a) is an immediate consequence of Lemma C2 since oo~clA by (D 15). 
Similarly, (b) is clear by (D 15). 
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Part (c) is more complicated. Note that L(G) contains at least two points by 
Lemma B2. If L(G) contains exactly two points, then S c is a 1-circle (or a 0- 
circle). In this case Lemma C 1 implies (c) since there are loxodromic elements in 
G by Lemma B2. 

If L(G) contains more than two points, then we get (c) as follows. Let S be 
the minimal sphere containing L(G) and let k be its dimension. Pick now 
x o .... ,xp~L(G)c~R" such that the affine subspace V of R" generated by x i 
contains L(G) c~R". Then p=k or p=k+ 1 according to whether ooES or oo~S. If 
(AnSc)\(Vu{oc})+r pick Xp+l~(Ac~Sc)k(Vw{oo}). Let V' be the affine sub- 
space of R" generated by x i (i<p or i < p + l  if Xp+ t exists). By Theorem B1, 
there is a loxodromic geG such that the fixed points of g are arbitrarily near 
given x i and xj, i ,j<p. Let V~jq be the affine 2-plane containing the points xi, xj 
and xq for distinct i, j, q. Then Lemma C1 implies that every /3lV~i q is a 
similarity. It follows that/3 preserves the ratios [x~-xjl/[x k -xql for distinct i, j, k, 
q, and hence/3pV' and/31S~\{oo} are similarities. This proves (c). 

Finally, we prove claim (d) in the Remark. By (c), both sides of (D16) are 
M/Sbius transformations on Sa, coinciding on L(G)w {a}. Since S, is the minimal 
sphere containing L(G)u {a}, it follows that they coincide on S, and hence on S', 
too. In view of (D15), condition (d) (which is unaffected by the substitution of 
h'fh for f )  guarantees that they coincide even on S A and hence the claim of the 
remark follows by case (a). 

Everything is now proved. 

Remarks. D1. The exceptional case of the second paragraph of Theorem D can 
occur. Let G o be the subgroup of MSb(n) consisting of elements fixing 0 and oo, 
let A=/~" and define f by f l R " = i d  and f (oo)=0 .  Then f induces id: GonG o 
and is differentiable at the radial point 0 of G o with a non-vanishing Jacobian. 
Any group G for which the exceptional case can occur is (up to conjugation) a 
subgroup of G o . 

D2. Let G be a M/ibius group of S t which has parabolic elements. Let f be a 
homeomorphism of S 1 inducing an isomorphism G-~G', G' another MiSbius 
group. Then f is differentiable with a non-vanishing Jacobian at parabolic 
fixpoints of G as a simple calculation shows. Teichmi.iller space theory provides 
examples of Fuchsian G and G-compatible homeomorphisms f such that f is 
not the restriction of a M6bius transformation. This example shows that it is 
essential in Theorem D that x is a radial point, it does not suffice that x is a 
limit point. 

D3. In parts (a) and (c) of Theorem D it is necessary to assume that the point a 
is not fixed by every g~G as the following counter-example shows. 

Let G be the group of similarity maps of R" of the form z~--*2z+b, 2 > 0  and 
beR"; now ~ is fixed by every g~G. Then 7G~-I=G for any affine homeomor-  
phism ~ of R ~. Hence if we take f = ~  and A=R", then every xeA is a radial 
point of G at which f is differentiable with a non-vanishing Jacobian but 
f[A n L ( G ) = ~  is not a M6bius transformation unless ~ is a similarity. 

D4. The next example shows that, even if no x6/~ n is fixed by every g~G, some 
conditions like (a) or (d) are necessary for the conclusion that f is a MSbius 
transformation. 



Differentiability and rigidity of MObius groups 573 

Let G be a Fuchsian group of i~ 2 whose limit set is 1~ 1 and extend G in the 
natural manner to a M6bius group of/~3. Let ~ be an affine map of R 3 such 
that, when A 1 = R  2 x {0} c R  3 and A 2 = R  x {0} x R c R  3, then elA 1 = id  and c~[A 2 
is an isometry o n t o  ~(A2)  but that ~ is not a similarity. Let A=AIuAzu{Oo } 
and let f=ct[A which induces id: G--,G. Then G is non-elementary, it has radial 
points in /~1 (for instance, we can assume that every x e R  1 is a radial point) at 
which f is differentiable in the sense of (D 1) with a non-vanishing Jacobian but 
f is not a M6bius transformation. 

D5. If G1 and G 2 a r e  geometrically finite M6bius groups of/~" and if (p: G1---~G 2 
is an isomorphism which carries parabolic elements bijectively onto parabolic 
elements, then there is a homeomorphism f :  L(GO~L(G2)  inducing q~ ([16, 
Theorem 3.3-]). In the geometrically finite case a point xeL(G 0 is a radial point 
of G~ unless it is fixed by some parabolic gsG a (Lemma B0). Suppose that f is 
not a M6bius transformation. Then the set where f is differentiable with a non- 
vanishing Jacobian is at most countable, being contained in the set of 
points fixed by some parabolic g~G1; if G1 does not contain parabolic 
elements, then this set is empty. 

In particular, if G i are Fuchsian groups such that Ha/G~ is compact, and if 
f :  R ~ R  fixes o% then f can have at no x ~ R  a finite, non-zero derivative 
unless f is a M/Sbius transformation. This striking result was already obtained 
by Mostow [11, 22.14] and Agard [3]. 

D6. Actually, the requirement that f is differentiable at a radial point x is still 
too strong for Theorem D. What we need is that as we approach x and look at 
x from the points gi(z) as in (A1), then f looks more and more like an affine 
map  but we can disregard the scale. This can be expressed as follows. Suppose 
that there is an affine homeomorphism c~ of R" and numbers 2 i>0 and a 
sequence gi(z) as in (A1) such that, normalizing x = 0=  c~(x), 

If(Y) - 2 ,  c~(y)l < ~, 2~ r~ (D 17) 

if yeA ,  l y - x [ < c i r  i. Here ri=[gi(z)[ and e /~0  and ei--.oo as i~oo.  
If this is true, Theorem D remains valid with much the same proof. However, 

now d(z~, z'i) need not be bounded which requires some slight changes. In fact, 
one needs only to replace, beginning from the displayed formula immediately 
before (D 8), z i by 2 i z i, z' i' by 2 i z' i' and ~ with 2~ ~. 

In addition, one substitutes 2~c~ for e in (D5) and refers to (D17) instead of 
the differentiability. These are the only changes needed. 

If H"+~/G is compact, we need not be concerned about the sequence g~(z) 
and can simply suppose that this is true for some sequence r i>0 such that r i~0  
as i~oo ;  we can forget also the requirement that  x is a radial point since all 
X E/~n a re .  

D7. I am indebted to the referee for the observation that one could assume in 
Theorem D that only the limit (D1) exists at the radial point x (with non- 
singular ~) but not that f is continuous at x if x~A.  Otherwise the conclusions 
of Theorem D are valid but the exceptional case needs some revision. Now f ' (y) 
= f ( y )  for all y ~ A \ { x , a }  where x is the radial point and a=h(oo) is as before. 
We have that x ~ a and that {x, a} c cl A and that f and f '  may fail to coincide 
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at ye{x,a}c~A if and only if f is non-continuous at y. We relabel {a,x} as 
{x0,xl} and can say that 

(,) if xi~A, then f(xl)4:f'(xi) if and only if f(x~)=f'(xj) where {i,j} = {0, 1}. 
If both x o and x 1 are fixed by every g~G, then conditions (,) for x o and x 1 

are independent of each other. However, if there is seG such that S(Xo)=xt, then 
f(Xo)•f(Xo) if and only if f ( xO+f ' ( x l ) .  

This can be proved by considerations similar to the proof of the exceptional 
case of Theorem D. One sees also that if the exceptional case can occur, then G 
is a subgroup (up to conjugation) of the group Gt consisting of geM6b(n)  which 
map the set {0, oo} onto itself. 

D8. Suppose that n > 2. Then we say that f has a K-quasiconformal derivative at 
x if the map e in (D 1) can be chosen to be a K-quasiconformal affine map. In 
this terminology, f has a conformal derivative at x if and only if f has a 1- 
quasiconformal derivative at x. Our proof shows that if f has a K-quasiconfor- 
mal derivative at the radial point x of Theorem D, then the map / / in  (D2) can 
be chosen to be K-quasiconformal. 

D9. Finally, a trivial remark. Obviously Theorem D is true if A is empty or 
contains only one point. However, if A contains exactly two points, then it need 
not be true. To see this, let G=G o, G o as in Remark D1, let A={0,  ov} and 
define f by f({0, oo}) = {0}. Then the conditions of Theorem D are satisfied and 
although the first paragraph is true, the second is not since f is continuous. 

E. Differentiability at a limit point 

As we observed in Remark D2 of the preceding section, differentiability at a 
limit point is not sufficient for rigidity. However, if we strengthen the assumption 
on differentiability, we can replace radial points by limit points in Theorem D. 
For  instance, we could require in Theorem D that f is continuously differ- 
entiable with a non-vanishing Jacobian at a limit point of G (and that L(G) 
contains at least two points). 

The proof of this fact is based on the fact that if L(G) contains at least two 
points, then every neighbourhood of a limit point of G contains radial points. 
Hence the continuous differentiability implies that there is a radial point at 
which f is differentiable with a non-vanishing Jacobian. So the continuity is 
used only to find such points and we have the more general 

Theorem E. Let G and A be as in Theorem D and suppose that L(G) contains at 
least two points. Let f: A--*R" be a G-compatible map such that there is xeL(G) 
which has a neighbourhood U such that f is differentiable with a non-vanishing 
Jacobian at every ye U. Then the conclusions of Theorem D hold. 

In particular, if f :  R"--*R" is a G-compatible map and if no zeR" is fixed by 
every geG, then f is a M6bius transformation as soon as it is differentiable at a 
neighbourhood of a single limit point x of G and the derivative is continuous and 
has a non-vanishing Jacobian at x. 
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Proof As observed above, apart from a minor remark (see below) concerning the 
case when f has a conformal derivative at x, it suffices to show that every 
neighbourhood of x contains radial points of G. We prove this by showing that 
every neighbourhood of x contains fixed points of loxodromic geG which are 
radial points. 

If L(G) contains at least three points, this follows from [9, 13.20 and 13.14]. 
If L(G) contains exactly two points, then no g~G can be parabolic. If geG is 
non-loxodromic, then either g fixes pointwise the hyperbolic line L joining the 
points of L(G) or then g interchanges the points of L(G). If no geG is loxo- 
dromic, it would follow that L(G)= 0. Hence there is loxodromic geG whose fixed 
point set is L(G). 

The proof is complete if we remark that if f has a conformal derivative at x, 
then, by continuity, for every e>0,  there is a radial point of G at which f is 
differentiable with (1 +e)-quasiconformal derivative and hence the map/3 in (D2) 
can be chosen to be (1 +e)-quasiconformal (see Remark DS). A limit process 
now shows that the map fl in (D2) can in fact be chosen to be 1-quasiconformal, 
that is a similarity. 

Note that in the second paragraph of the theorem we need not assume that 
L(G) consists of at least two points since if L(G) consists of one point, then this 
point is fixed by every geG. 

F. Matrix dilatation and rigidity 

We now prove a theorem similar to Theorems D and E by considering the 
matrix dilatation of a quasiconformal map. If f :  U--*V (U, V domains of R") is 
differentiable at xe  U, the matrix dilatation of f at x is 

I~:(x) = I det f'(x)l- 2/"f'(x)rf'(x) (F0) 

when f'(x) is the differential at x and f'(x) r its transpose. Thus/~:  is defined a.e. 
in U. 

If n =2, one sees that # :  gives the directions of the principal axes of the 
dilatation ellipsoid of f'(x) as well as their ratios. Thus the matrix dilatation and 
the complex dilatation of a quasiconformal f determine uniquely each other. We 
conclude that the matrix dilatation is the generalization of the complex dila- 
tation for n > 2. 

The composition rule for the matrix dilatation is 

/~sg(X) = [det g'(x)[- 2/, g,(x)Tt~:(g(x))g'(x) (F 1) 

which is valid a.e. in U. If feM6b(n),/~s(g(x)) is the unit matrix and so one sees 
that composition on left with M6bius transformations does not change the 
matrix dilatation. 

This latter observation enables us to extend #s(X) to the case that x + oo but 
f(x) = oo by means of auxiliary MObius transformations. On the other hand, if 
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x = oo, then I~:(x) cannot  be defined by this method  but the propert ies  of /~:  like 
continuity and approx imate  continuity (cf. [7, p. 159] or [18, (A2)]) are well- 
defined also for x = oo. 

In considerations involving the complex or matrix dilatation, it is usually 
best to identify two such dilatations if their domain  of definition and values are 
the same up to a null-set. Hence we regard /~: continuous or approximate ly  
continuous at a point  if it can be made  to have this proper ty  after a redefinition 
in a null-set. Thus even if # :  is continuous at a point, f need not be differenti- 
able at it (N/i~it~inen [12, 5.4]) and so case (a) of the next theorem is not a 
special case of Theorem D. 

We will now show that if f is a G-compatible  and quasiconformal  map  of/~" 
and if the matrix dilatation of f is sufficiently continuous at a limit point  or at a 
radial point  of G, then f is, if not a MObius transformations,  at least affine 
modulo  MObius transformations.  

T h e o r e m  F. Let G be a MObius group of _R", n> 2, and let f be a G-compatible 
quasiconformal map of R". Suppose that I r~e matrix dilatation #g of f is either 

(a) approximately continuous at a radial point of G, or 
(b) continuous at a limit point of G. 

Then f is a MObius transformation provided that no zeR" is fixed by every geG. 
I f  there is such a point z, then there are MObius transformations h and -h such that 
h(oo) is fixed by every geG and that hfh is affine in R". 

Proof We prove case (a). Case (b) is similar. 
Suppose that 0 is a radial point  of G at which /~: is approximate ly  con- 

tinuous. Pick zeH "+ 1 and giEG such that gi(z) approach  radially 0. Choose then 
hieMiJb(n ) such that  h i fixes z and glhl fixes oo. Thus gihi is a similarity of R". 
Fur thermore ,  one sees easily that the maps  h i can be chosen in such a way that  

glhi(x) = )~iX + b i (F2) 

for some 21>0 and bieR". Since the set of  MObius t ransformations fixing z is 
compact ,  one can assume by  passing to a subsequence that  there is heMOb(n) 
such that  

high (F3) 
as i ~ o o .  

Suppose that f induces q~. Then 

f h  i = q0(gi)- l f glhi. 

Here ~0(gl)-leMOb(n) and hence composing with it does not change the matr ix  
dilatation of fglhl. In  view of (F2), the composi t ion rule (F 1) now gives 

# :h,(x) = # :(gihi(x)). (F4) 

Let /~: have the approximate  limit #o at 0. Since gi(z)=glhi(z) approach  
radially 0, (F4) implies that, as i-~oo, 
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pSh -+/Zo (F5) 

in measure (with respect to the spherical measure of/~n). 
Since hi-+h, also fhl--+fh. In view of (F5), one can now show that 

['lfh ~--- #0  ~--- a constant. (F6) 

This is a consequence of the so called good approximation theorem for quasi- 
conformal mappings (see [18, Corollary D] if n > 2  or [10, IV.5.6] if n=2).  This 
theorem is fairly deep and in the present case one gets (F6) by the following 
much simpler argument. 

If A and B are non-singular n x n-matrices, let A[B] =IdetA[-2/"ATBA. Then 
the composition rule (F 1) gives 

/~Sh,(x) = h'i(x ) [#f(hi(x))]. 

which is valid for a.e.x. That is, since hi(x ) is orthogonal, 

(h,i(h[- l (x ) )  ) -  1 [~fh,(hz 1 (X))- ] = ,Uf(X). 

which is also valid a.e. in R n. Since hi~M/Sb(n ) and h ~ h ,  also the derivatives 
converge: (h'iohf-1)-~---~(h'oh-1) -1 as i---~. Hence it follows by (F5) that 

# f(x) = (h'(h - 1 (x)))- 1 [#o] 

a.e. in R". That is, h'(x)Et~f(h(x))]=l~fh(X)=t~o a.e. and (F6) is proved. 

We must now only to choose /~M6b(n) such that hfh(oo)= oo. Then hfh 
also has the matrix dilatation #0 and hence is affine. A reference to Lemma C2 
completes the proof. 

Remarks. F1. Sullivan [14] has proved the related theorem which says that if 
the action of a discrete G is conservative in/~n and if f is a G-compatible and 
quasiconformal map of/~n, then f is a M6bius transformation. 

F2. A proof of case (a) of Theorem F could be based also on Theorem D and 
Remark D6. 
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