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Introduction 

Much has been written recently on the role of Calabi-Yau manifolds in superst- 
ing theory (see for example [-4, 5, 18, 19, 39, 48]), and many specific examples 
have been studied in great detail [12, 11, 13, 14, 17, 36, 37]. Recall that a 
Calabi-Yau manifold is a smooth complex projective threefold with trivial canoni- 
cal bundle and no global 1-forms or 2-forms - equivalently it is a projective 
manifold with S U(3) holonomy [2]. Recall also that the general structure theo- 
rems of [-2, 3] imply that a Calabi-Yau manifold has finite fundamental group. 

Coincidentally, these objects have also arisen recently in algebraic geometry, 
as it is essentially these threefolds which constitute the big remaining gap in 
the threefold classification programme of Mori, Kawamata  and others, carried 
out in the last ten or so years. In the terminology of the survey article [-47], 
we wish to classify projective threefolds with Q-factorial terminal singularities 
and numerically trivial canonical divisor. It may be seen easily (cf. [23]) that 
any such threefold has a finite covering (ramified only over the singularities) 
which is an abelian threefold, the product of a K3 surface with an elliptic 
curve, or a simply connected projective threefold V with only Q-factorial com- 
pound Du Val (abreviated cDV) singularities, with zero canonical class and 
h 1 (Ov)= h2 ((~v)=0. This latter category is a very mild generalization of the cate- 
gory of simply connected Calabi-Yau manifolds, and the methods of this paper 
will be applicable essentially unchanged to this larger class. 

From the points of view of both physics and algebraic geometry therefore, 
Calabi-Yau manifolds are of interest. For  V a Calabi-Yau manifold, it is an 
open question whether the Euler number e (V) = 2 (h 1.1 (V)_ hi' 2 (V)) should be 
in a bounded range. Recall that h 1"~ is just the r ankp  of Pic(V), whilst h 1'2 
is the dimension of the versal deformation space of V. There are certainly exam- 
ples with e(V) either large negative or large positive - the latter being more 
difficult to construct than the former. We can restrict ourselves if we wish to 
the simply connected case, since the universal cover of a Calabi-Yau manifold 
is one whose Euler number is an integral multiple of the original Euler number. 
More specifically we shall in this paper study the case when h 1 '1=p is large 
(p > 19). 
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We shall say that a projective threefold V is a Calabi-Yau model if it has 
only rational Gorenstein singularities (i.e. canonical singularities of index 1) and 
for which there is a resolution of singularities (necessarily crepant) n: V--, V 
with ~" a Calabi-Yau manifold (see [31, 33] for definitions of terms here). We 
observe that the examples in the literature of Calabi-Yau manifolds with large 
Picard number p all arise as resolutions of Calabi-Yau models with much smaller 
Picard number but several singularities. For  instance, taking a certain quintic 
hypersurface in IP 4 with 126 nodes yields a small resolution which is a Calabi- 
Yau manifold with e = 5 2  and p > 2 6  [17]. By taking a triple cover of IP a 
branched over six planes forming a cube, we obtain a threefold with 9 singulari- 
ties, whose minimal resolution is a Calabi-Yau manifold with e = 72 and p > 36 

the exceptional locus above each singularity is a cubic Del Pezzo surface 
[17]. Lastly, an example is given in [37] of a fibre product of two rational 
elliptic surfaces which has 81 nodes, and with a small resolution which is a 
Calabi-Yau manifold with e =  168 (and hence p>84) .  Determining the Euler 
number e = 2(h L 1 _  h1,2) of these and other such examples is relatively straight- 
forward; finding the individual values of h 1'~ and h ~'2 is a very much more 
subtle question. Methods for calculating h a'l and h 1"2 have however been devel- 
oped by a number of authors and calculations performed on several examples 
[-7, 35, 36, 44, 45, 41]. In particular, Dr. Jtirgen Werner has pointed out to 
the author that h 2'1=0 in all the examples cited above (in the case of the 
quintic with 126 nodes, see the Appendix to [45]), and hence that the above 
inequalities on p are in fact equalities. 

The examples referred to above suggest that Calabi-Yau manifolds with 
large values for p should arise as resolutions of Calabi-Yau models with reason- 
ably small Picard number - this has now been proved. 

Main theorem. A Calabi-Yau manifold V is a resolution of a Calabi-Yau model 
~" with Picard number p < 19. 

One might note that the simplest class of Calabi-Yau manifolds (Calabi-Yau 
complete intersections of hypersurfaces in products of complex projective spaces) 
has (coincidentally) maximum value for p as 19 [12], although many such fami- 
lies do consist generically of small resolutions of nodal threefolds in other families 
[-141 . 

For  information on the singularities that can occur on a Calabi-Yau model 
V, I refer the reader to w of [31], and to [28]. In (2.12) of [31], we see that 
there is a partial resolution V*--, V, where V* has only c D V  singularities. Fur- 
thermore the exceptional locus on V* and the corresponding singularities on 
V are described in (2.13) of [31]; in particular the exceptional locus is a finite 
union of rational or ruled surfaces. Since each of these surfaces has discrepancy 
zero, there are corresponding ruled or rational surfaces on any full resolution 
P of V. In the second example given above, V* is a full resolution and the 
exceptional surfaces are cubic Del Pezzo. 

If on the other hand V= V* has c D V  singularities, then by w of [32] we 
may resolve the 1-dimensional Du Val locus (if it exists) and obtain the existence 
of ruled surfaces on any resolution V.. If however V has only isolated cDV 
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singularities (which is the case for the other two examples given above), the 
given morphism ~'~ V must be a small resolution of the singularities. For infor- 
mation on such small resolutions, the reader is referred to w 5 of [28] (see also 
[-30, 32]); in particular we note that the exceptional locus consists of a finite 
number of smooth rational curves. 

From the Main Theorem and the above discussion, we observe that a Calabi- 
Yau manifold with p >  19 must contain rational curves. For  non-simply con- 
nected Calabi-Yau manifolds with fundamental group nl, we deduce that there 
are rational curves as long as e(V)> 38/I n l I. The physical relevance of rational 
curves on Calabi-Yau manifolds is discussed in [49, 10]; basically they are 
unwelcome! By considering the relative effective cone of 1-cycles for the mor- 
phism V--, V in the Main Theorem, it is straightforward to deduce that the 
rational curves on a Calabi-Yau manifold V generate a subgroup in Hz(V, ;g) 
of corank<19;  this should be compared with the far stronger conjectures of 
Reid [34]. 

The theory described in this paper essentially ignores the torsion part of 
the Picard group, supporting the view that the most crucial case is when our 
Calabi-Yau manifold V is simply connected. From the theory of Wall [43], 
such manifolds are determined up to diffeomorphism by the integral cohomology 
groups H2(V, ~ ) -  Pic V and H3(V, 2g), the symmetric trilinear form # on H2(V, 2g) 
given by cup product, and the linear form on H2(V, Z) given by the second 
Chern class c2~H4(V,  7]). We shall use all this information apart from the co- 
homology in degree 3. 

One of the main techniques of this paper is to study the cubic form on 
Pic(V) given by p; with slight abuse of notation we have kt: Pic(V)-- ,Z given 
by/~(D) = D 3. The paper looks at the Diophantine Geometry of the cubic hyper- 
surface in D ~ ~ defined by/~ and the relative position of the hyperplane defined 
by c2, and relates these to the geometry of the Calabi-Yau manifold V. Using 
(hard) facts about solutions of integral cubic forms, we obtain the number 19 
in the above theorem. If the cubic hypersurface defined by p is non-singular, 
we shall have a contraction so long as p > 9. The author should confess however 
to his feeling that by using more specific information on the cup product, one 
might hope for a result along the lines that any Calabi-Yau manifold is the 
resolution of a Calabi-Yau model with p < 3. The obstruction to proving such 
a result is the need to show that the cubic hypersurfaces which turn up have 
enough rational points. 

The other main techniques of the paper are those developed in the last 
10 or so years for studying the birational classification of threefolds. The reader 
will observe the obvious influence of the ideas of Mori, especially in Sect. 3. 
The reader unfamiliar with these techniques might wish to consult the various 
survey articles, for instance [24, 26, 33, 47]. 

Finally the author wishes to thank Dr. Roger Heath-Brown for the benefit 
of some extremely useful comments, which in particular enabled him to extract 
the desired result on cubic forms from the papers of Davenport.  With the proof 
below in its present form, it is essentially the power of the Hardy-Litt lewood 
method from analytic number theory which enables us to deduce the existence 
of the desired contractions. 
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1. Structure of the proof and further notation 

Suppose that V is a C-Y model, as defined in the Introduction (from now 
on we shall usually abreviate Calabi-Yau to C-Y). For  any extension field K 
of Q, we denote by PicK(V) the vector space P i c ( V ) |  over K. The Picard 
number p(V) is just the dimension of any such vector space. 

Definition. Given a C-Y model V, a Calabi-Yau contraction is a birational mor- 
phism f:  V~  ~" where ~" is a normal projective threefold with p(VZ)<p(V). It 
follows automatically (notation and terminology as in [31, 33]) that K r  
and that V has index 1 canonical (i.e. rational Gorenstein) singularities; thus 

will also be a C-Y model. 
If V is a C-Y model with n: ~ '~ V the C-Y resolution of singularities, we 

can define a linear form c2: Pic(V)~2~ by sending a Cartier divisor D to the 
integer g * D ' c 2 ( V ) ;  we shall denote this simply by D.c2(V) o r  D . c  2. Observe 
that even in the slightly more general case when ~" has Q-factorial c D V singulari- 
ties, we can still define the number D . c  2 in the natural way (cf. [46], Sect. 5). 
It is well-known that for any C-Y manifold, the linear form c2 is non-trivial 
(see Theorem 1.5 of [25]). We shall be able to restrict attention to Calabi-Yau 
models for which this is also true. 

The main result as stated in the Introduction will follow by induction from 
(1.1) below. 

Theorem 1.1. I f  V is a Calabi-Yau model with p(V)>19 and c2(V) non-trivial, 
then there exists a Calabi-Yau contraction f: V ~  V z with c2(V) non-trivial. 

Remark. We might observe in passing that, as we are dealing with varieties 
whose canonical class is trivial, we do not run into the problems which arise 
from small contractions in the Minimal Model programme - see [47], Proposi- 
tion 7.1. Our varieties here do not remain Q-factorial under the contractions, 
but the singularities do remain canonical of index 1. 

Our first step towards finding C-Y contractions is contained in a Key techni- 
cal lemma, the proof of which constitutes Sect. 2 of this paper. Recall first that 
a Cartier divisor D~Pic(V) is called numerically effective or nef if D. C > 0  for 
all curves C on V (see [47] for more details). 

Key lemma. I f  a Calabi-Yau model V contains an ample divisor HePic(V) and 
a divisor DePic(V) which is not n e f b u t f o r  which D3>0,  D Z . H > 0  and D.H2 >0,  
then there exists a Calabi-Yau contraction f: V ~  V. 

In Sect. 3, we use the Key lemma and other results from classification theory 
to prove: 

Proposition 3.2. Suppose V is a Calabi-Yau model and DePic(V) with D3=0,  
D ' c  2 =t = 0 and D 2. H > 0 for some ample divisor H~Pic(V), then either a Calabi- Yau 
contraction exists, or V has the structure of  an elliptic fibre space 49: V--* S with 
S a normal surface and 49 corresponding to the linear system h nDl for  some integer n. 

In the case above of an elliptic fibre space 49: V ~ S ,  we have that 49* PicQ(S) 
is a linear subspace of Pic•(V) containing D and of dimension p(S). If p(S) 
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< p ( V ) - 1 ,  an easy argument on the relative effective cone NE(V/S) yields the 
existence of a C-Y contraction on V. 

We now consider the cubic hypersurface W in F(Picr IW- 1 consisting 
of points representing divisors D with D 3=0.  The above results tell us that 
under the assumptions of (3.2), either there exists a C-Y contraction on V or 
D is contained in a hyperplane component  of W. Observe here the slight abuse 
of notation (which occurs throughout  Sect. 4) whereby for DePic(V) not numeri- 
cally trivial, we shall use the same symbol to denote the corresponding points 
of PicK(V) and IPP-1 (K)=  IP(PicK(V)), K an extension field of Q. 

The strategy is now clear: if we can find a rational point on W (i.e. D e Pico(V) 
with D 3 =0)  which is neither on any hyperplane component  of W nor on the 
hyperplane defined by the linear form c2, and such that D 2 . H > 0  for some 
ample divisor H, then the above results yield a C-Y contraction. This is a 
problem in the Diophantine geometry of the cubic hypersurface W. The geomet- 
ric properties of Wwhich we use are those derived from the Hodge index theorem 
on V -  this for instance tells us that W is not a cone. We shall see in Sect. 4 
that a rational point of the required type exists in the following cases: 

(1) Wirreducible and contains a singular rational point. 

(2) W reducible and p > 5. 

(3) W irreducible and contains a rational linear space of dimension > 2. 

(4) W smooth and p > 9. 

(5) Warbi t ra ry  and p >  19. 

Of these results, (1) is essentially obvious, (2) and (3) depend crucially on 
the well-known result ([38], p. 43) that an indefinite quadratic form in 5 or 
more variables has a non-trivial rational solution, (4) follows from the results 
of [16], and (5) follows from (3) and results of Davenport  [8, 9]. Using [8] 
it is also possible to prove the existence of a point of the required type in 
the case when W has a real singularity and p >  15, but we shall not need this 
and so do not prove it. 

An easy geometric argument shows that we may choose our divisor D to 
satisfy D.e2>O, and this is sufficient to ensure that c2 is non-trivial on the 
Picard group of the contracted variety. 

In all the cases under consideration we shall show that the rational points 
are dense in the real locus W(IR) of our cubic hypersurface W in ~'P-1. The 
conditions that we require from the rational point of W sought are all open 
conditions, and so in fact there are infinitely many rational points of the required 
type. Whether one can exploit this feature to produce infinitely many rational 
curves on V seems an interesting question (cf. the case of the quintic hypersurface 
[63). 

2. Proof of the key lemma 

In this section, we prove the Key Lemma as stated in Sect. 1. The first observa- 
tion to make is that for Cartier divisors D on V, we can use Riemann-Roch 
and Vanishing theorems on cohomology in the same formal way as we could 
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if V was smooth. If n: V ~  V denotes the C-Y resolution of singularities, we 
h a v e  R i n ,  (tip = 0 for all i > 0 since the singularities of V are rational. Thus for 
any Cartier divisor D on V, we have Rin,  Ce(n*D)=O for all i > 0  (using the 
projection formula as on p. 253 of [15]), and so hi(Cv(D))=hi(Cv(n*D)) for all 
i (using the degenerate Leray spectral sequence). Adopting the definition of 
c2" D introduced in Sect. 1, we see that Riemann-Roch remains true on V. 

In the Lemma, we may clearly assume H to be a very ample divisor, and 
in particular from [31, 33] that it is a surface with at worst Du Val singularities 
(i.e. rational double points). We may also use Riemann-Roch in a formal way 
for Cartier divisors on H. 

Since D 2 . H > 0  and D.H2>O, Riemann-Roch shows that h~ 
for some m > 0 .  Write mDIn=A +E, where E is the fixed part  of the complete 
linear system containing mD In, and I A ] the mobile part. Note  the above standard 
abuse of notat ion whereby we use equality to denote linear equivalence (alterna- 
tively we are failing in notat ion to distinguish between a divisor and its linear 
equivalence class). 

We now consider the two possibilities: 

(a) D In is not nef. 

(b) D[n is nef. 
We concentrate first on the former case. There are clearly only finitely many 

curves C on H for which D. C < 0  (only the components  of E are candidates). 
We can therefore choose a rational number  2 > 0  for which the Q-divisor 
D' = D  + 2 H  is nef on H, but has degree zero intersection with some non-empty 
(finite) set of curves on H. Observe also that (D'[n)2=D2.H+22D.H2+22H 3 
>0,  and so D'ln is nef and big (recall [47] that a nef divisor is called big 
if its top power is strictly positive). 

In case (a) we shall set L to be a suitable integral multiple of D' so as 
to be a Cartier divisor on V; in case (b) we merely set L =  D. 

Claim 1. Given that L[n is nef and big, we have h a (Ov(--L))=0.  

Proof Consider the short exact sequences of sheaves 

0 -,  Ov(--L--H) -~ ~v( - -L)~  ~H(--L)~0. 

Since LIn is nef and big, an appropriate  form [20, 44] of Kodaira  Vanishing 
shows that h I ( C n ( - L ) ) = 0 .  Taking cohomology of the above sequence, we see 
that 

h~ ((gv(- L-- H))> hl (Cv(- L)). 

Continuing by induction on m, we see that 

hl(Cv(--L--mH))>hl((gv(--L)) for all m>0 .  

But h l (Cv( -L-mH))=O for m sufficiently large ([15], p. 244), and so Claim 1 
follows. 

With L as defined above, we observe that L 3 >0 ,  L 2.H>O and L.H2>O, 
since the inequalities were assumed true for D. Applying Riemann-Roch on 
V, we have 

Z((gv(nL))= ~ n 3 L3 + ~ nL.c2 , 
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and Cla im 1 applied to nL  shows that  h2((gv(nL))=hl(g)v(--nL))=O for n > 0 .  
Therefore  

h~ 3 L3+~2nL.c2 for n > 0 ,  

and so for n sufficiently large, the linear system [nLI is non -empty ;  we now 
fix such an n. 

Claim 2. In the case when L is not nef, we can find a rational 6 > 0 such that 
the Q-divisor L + J H  is nef on V, but has zero intersection with some (possibly 
infinitely many) curves. 

Remark. If L is nef, then we were in case (a) above  and L itself is zero on 
some curves (including necessarily some curves on H). 

Proof of  Claim 2. Since nL is effective, we have  tha t  L is a Q-Car t i e r  effective 
Q-divisor.  The singularities of  V are canonical ,  and so for sufficiently small 
ra t ional  e > 0, the pair  (V, e L) has only log-terminal  singularities (for a discussion 
of the condi t ion log-terminal ,  see w 0-2  of [24]). 

Choose  a small ra t ional  n u m b e r  ~/>0 so that  the Q-divisor  L+ qH remains  
not  nef on V. Apply ing  the T h e o r e m  of the Cone for log- terminal  varieties 
(see T h e o r e m  4-2-1 of [24]), we observe that  the par t  of  the cone of effective 
divisors NE(V)  on which (Kv + eL) + ~ ~lH is non-posi t ive  is finite polyhedral .  

Therefore  for J > q  a ra t ional  number ,  the Q-Car t i e r  divisor L + J H  is nef 
if and only if it is non-negat ive  on some finite set of  (numerical  equivalence 
classes of) curves. Thus  for some rat ional  number  6>~/, the Q-Car t i e r  divisor 
L +  6 H is nef on V, but  (L+  6 H ) - C  = 0 for some curves C on V; thus Cla im 2 
is proved.  

We are now in a posi t ion to p rove  the Key  Lemma.  If  L defined above  
is not  nef, we observe  that  the nef Q-divisor  L + J H  produced  in Claim 2 is 
also big. We then set M to be a Cart ier  divisor ob ta ined  by taking a suitable 
integral mult iple of  this Q-divisor.  I f  on the o ther  hand  L is nef, we merely 
set M = L .  In bo th  cases, M is nef and big, but  nevertheless zero on some 
curves. The results of K a w a m a t a  [21] (see also T h e o r e m  5.1 of  [47]) imply 
that  for m sufficiently large, the linear system ImMI is free, and that  the corre- 
sponding m o r p h i s m  4' = 4'mU: V--" ~'is a birat ional  m o r p h i s m  to a normal  projec- 
tive threefold V,, which contracts  down  precisely those curves C with M.  C = 0. 

It  is now an easy check to see tha t  4'* Pi%(P')  is a linear subspace  of PicQ(V) 
of  d imension p ( V ) <  p (V). Thus  4': V-~ V is the required C-Y contract ion.  

3. Consequences of key lemma 

F o r  V a C-Y model ,  we can use the Key L e m m a  to deduce impor t an t  results 
on the s tructure of  V, which follow once we k n o w  that  certain divisors on 
V exist. 

Corollary 3,1. I f  H ~ Pic(V) ample and D EPic (V) with D 3 = 0, O 2" H :> O, then either 
a C- Y contraction exists, or else one of  ++ D is nef 
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Proof From the Hodge index theorem on H ([15] p. 364), we have (D2.H)(H 3) 
~ ( D - H 2 )  2. Our hypotheses then ensure that D.H2@ 0. By working with _+D 
as appropriate, we may assume that D. H 2 > 0. 

Suppose now that D is not nef; then for small rational e>0 ,  the Q-divisor 
D+eH is not nef. Since D3=0,  D Z . H > 0  and D . H 2 > 0 ,  we have that (D +eH )  3 
>0, (D+eH)2.H>O and (D+eH).H2>O. The appropriate multiple of D + e H  
therefore satisfies the conditions of the Key Lemma, and so a C-Y contraction 
does exist. [] 

This Section will deal with the case above when one of D or - D  is nef. 
The main result will be Proposition 3.2 as stated in Sect. 1. Given (3.1), we 
are reduced to proving the following: 

(3.2)' Suppose there exists a nef divisor DePic(V) with D3=0,  D.c2#:O and 
D 2 . H > 0  for some ample H~Pic(V), then for some n>0 ,  {nD[ is free and the 
corresponding morphism ~b = qS,D: V--, S defines an elliptic fibre space structure 
on V (where S is a normal surface). 

Proof As in the proof of (3.1), we have D - H e + 0 ;  since D is assumed nef, it 
follows that D.H2>O. Since D is nef, it also follows from Theorem 1.1 of [27] 
that D.cz > 0; under the assumptions of (3.2)' therefore, we have O.c  2 > O. 

As before, we may clearly assume that H is very ample, and in particular 
that it is a surface with at worst Du Val singularities [31, 33]. Since D is nef 
and D 2. H > 0, it follows from an appropriate form of Kodaira Vanishing [20, 
42] that hl((gn(-nD))=O for all n>0 .  Since H + n D  is ample for all n_>-0 (cf. 
[47], Proposition 2.3), we see that h I ((gv(-- H - -  nD))= 0. By taking cohomology 
of the short exact sequences of sheaves 

0 ---r C v ( - - H - n D )  --+ Cv(--nD) -~ Cn(- -nD)~0,  

we have that h2((gv(nD))=hl(Cv(-nD))=O for all n>0.  Applying Riemann- 
Roch to n D, we deduce that h ~ (Cv (n D)) > 1�89 n D. c2. 

Claim. In the terminology of [21, 22], the nef divisor D is good; i.e. if 0,o 
denotes the rational map determined by the complete linear system [nDI, then 
the image ck, I~(V ) is a surface for some n sufficiently large. 

Remark. The proof  of this very natural Claim is a little technical, and so the 
reader may wish to omit it on first reading. The proof is similar in style to 
that of (7.3) of [22], but also involves the theory of divisors of canonical type 
on a surface as developed in [29]. 

Proof of Claim. With re: ~--* V denoting the C-Y resolution of V, we can consider 
rc*D on ~'; proving the Claim for rc*D will imply it for D. We may assume 
therefore that V is smooth. 

Suppose that the Claim is incorrect then O,o(V) will be a curve for all 
n sufficiently large, since h~ is at least linear in n. Since this curve 
is normal and the irregularity of V is zero, we have q~,o(V)=IP ~ for large n. 
By taking n sufficiently large, we may assume that ~b*o: I12(~'1)~I13(V), with 
qS* D I12(~ a) algebraically closed in IE(V) ([40], w 5). 
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We now fix such an n and resolve the base locus of the mobile part of 
[nD[, as in w of [-40]. We have a birational modification /~: V * ~  V with V* 
smooth and with p*(nD)=mF+~r iE  i say, where F is a smooth fibre of the 
morphism determined by [p*nD [, and ~r~ Ei the fixed part  of the linear system. 
Moreover, if we set d:=~riE i, the theory of [40] (stated in Theorem 5.10 and 
proved in w shows that ~(F,o~[v)--0 (note slight difference of notation com- 
pared with [40]), i.e. no multiple of ~ [r moves on F. 

Set L=p*nD; then L is nef with L3=0. Observe that Kv.=~aiEi ,  where 
as in the proof  of the Key Lemma we may assume that rg_>a~ (i.e. we take 
an 'economical '  resolution and do not blow up unnecessarily; to make things 
easier, we may assume n has been chosen so that h~ and so the 
multiplicity of the fibre m >  1). Set d~'=EaiEi, Gi=Ei[F, G=o~[~ , and G'=g'lv. 
Since no multiple of G moves and KF = G' < G, we have that to(F) =0 .  We should 
also observe that G # 0 ;  to see this consider the smooth surface H * = / ~ * H  on 
V* and the corresponding fibre space map H* ~ F  1. If G = 0 ,  then o~ln, is con- 
tained in fibres, and so the same is true for #*(nD)[n,. A standard lemma from 
the theory of surfaces ([1], page 90) implies that (l~*(nD)ln,) 2 <0, contradicting 
our assumption that D 2. H > 0. 

Let F denote the smooth minimal model of F, with ~: F - ~ / v  say. Note 
that K p =  0, i.e. all the components  of G' are contracted under a. Let G denote 
the image of G in F; then G is nef and G=~*G+AI- -A  2 say, where A1, d 2 

are effective divisors supported on the exceptional locus of ~. 
Since la*nD is nef with (/~* nD) 3 =0 ,  it follows that ~ 2 - F = 0 .  Thus 

O= G2 =(o~ * G + A  1 -A2)  2 
= G2q-(A 1 --A2) 2 

where (A 1 -A2)Z=AZ-2A1.Az+A~<O, with equality only if G=o~*(~ (an easy 
deduction from the Hodge index theorem on F, [15], p. 364). Therefore G2>0,  
with equality only if G = ~* (~. 

Since G 2 = 0  and G is nef and effective, we have that G. G i = 0  for all compo- 
nents Gi of G. Since any exceptional curve under ~ is a component  of G ' <  G, 
it is clear that any component  of A1 or A2 is a Gv Thus G.~* G = G  2 =0.  Suppose 
now that (~2>0; the Hodge index theorem would then imply that G2<0,  a 
contradiction. We must therefore have (~2= 0 and G = ~* (~. 

On F, the divisor (~ is nef with (72 = 0. Since Kv = 0, we have in the terminolo- 
gy of [29] that (, is a divisor of canonical type, and so using Step III  on p. 334 
of [29], we deduce that some multiple of G moves on F. From this it follows 
that some multiple of G moves on F, contrary to assumptions. The Claim has 
now been proved. 

(3.2)' now follows easily from the above Claim and Theorem 6.1 of [-22]. 
We have shown that the nef divisor D is good, and the other conditions of 
the theorem are clear in our case. Hence for some large n, the linear system 
]nDI is free, and the corresponding morphism ~b,o: V-~S will exhibit V as a 
fibre space over a normal surface S, and the general fibre will be an elliptic 
curve since Kv=O. [] 
Remark. Given the properties of V, it follows immediately that S will be a rational 
surface. 
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Proposition 3.3. In the situation of (3.2)' where we have an elliptic space structure 
4): V ~  S, (~* Pic~(S) is precisely the linear subspace of  Pico(V ) consisting of lI~- 
divisors X such that X .  C = 0 whenever D. C = O. 

Proof. Clearly any element of ~b* Pic~(S) satisfies the given condition; we need 
to prove the converse. Suppose therefore that LePic(V) has the property that 
L. C = 0 whenever D. C = 0. 

Choose a very ample divisor P on S. Since L is relatively nef for ~b, the 
divisor M = L + s O * P  is nef for all s sufficiently large. Clearly such an M is 
not big, since for any fibre f of q~, we have M . E = 0 .  Thus M 3 = 0 .  By taking 
s sufficiently large, we can however assume that the numerical M-dimension 
v(V, M ) = 2  (see Sect. 1 of [22]); i.e. M a . H > O  for some ample divisor H. 

Since for our original divisor D (giving rise to the fibre space structure) 
we had D . c 2 > 0 ,  we may assume (taking s large enough) that M . c 2 > 0 .  We 
can now apply (3.2)' to the divisor M to deduce that for some r > 0 ,  the linear 
system [rM[ is free a defines a fibre space morphism ~b': V-*S';  by taking 
s large enough, we may assume that our original morphism ~b factors via ~b'. 

Our assumption on L ensures that exactly the same curves are contracted 
by ~b and ~b'; since S and S' are normal, Zariski's Main Theorem ([15] p. 280) 
ensures that S = S' and M eq~* Pic(S). Hence Le~b* Pic(S), and the Proposit ion 
is proved. []  

In the case therefore of (3.2) giving an elliptic fibre space qS: V ~  S, we have 
seen that ~b* Pic~(S) is a linear subspace of Pico(V ) containing D and of dimen- 
sion p(S)<p(V).  We shall consider the Sect. 4 the case when this linear space 
is a hyperplane (see Lemma 4.3), i.e. p ( S ) = p ( V ) - 1 .  We conclude this Section 
by showing that when p ( S ) < p ( V ) - l ,  we do have a C-Y contraction on V 
(indeed one which respects the elliptic fibre space structure can be found). 

Proposition 3.4. With qS: V ~  S as in (3.3) and p ( S ) < p ( V ) - 1 ,  there exists a C-Y 
contraction on V. 

Proof. Consider the relative effective cone of 1-cycles NE(V/S)  as defined in 
[213 ; this contains the numerical class of the general fibre f (an elliptic curve), 
but will also contain the class of some other curve C, numerically independent 
from that of f (by (3.3), the elements of ~* PicQ(S) are characterized by the 
conditions X .  Z = 0 for every 1-cycle Z ~ N E(X/S), and so our assumptions imply 
that NE( X /S )  contains at least two independent classes). We may assume that 
the curve C is irreducible, and choose a divisor M on V such that  M . C < 0  
but M . f  >0.  Choosing an ample divisor P on S, we can consider the divisor 
D = M + s ~ * P  for large s. 

An easy calculation verifies that for H any ample divisor on V and s sufficient- 
ly large, D3>0, D 2 . H > 0  and D . H 2 > 0 .  By construction however, D.C<O, 
and so the Key Lemma can be used to provide the required contraction. []  

4. Diophantine geometry of the intersection form 

For V a C-Y model, we consider the cubic hypersurface W in ~(Picr IP p-  l 
consisting of points representing divisors D with D 3 = 0 (we shall often not distin- 
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guish notationally between a divisor D, its numerical equivalence class and 
the corresponding point of ~,o- 1). In IW- 1 we also have the hyperplane defined 
by the linear form c2 (see Sect. 1). Summarising and rephrasing the results of 
Sect. 3, we obtain: 

Corollary 4.1. I f  W contains a rational point (represented by a divisor DePic(V)) 
not contained in any hyperplane component of W and not contained in the hyper- 
plane defined by c2, and such that D Z ' H > 0  for some ample divisor H~Pic(V), 
then a C-Y  contraction exists on V. 

The question of what geometric properties the cubic hypersurface W and 
its real locus W(IR) satisfy seems rather a subtle one - essentially the only 
properties we use are those derived from the Hodge index theorem. 

Lemma 4.2. Given divisors L, H~Pic(V), L not numerically trivial but with L 3 =0 ,  

and where H is very ample, then the real valued function g ( t ) = ( L + t H )  3 cannot 
have a triple root at t=0 .  I f  moreover L 2.H<=O, we can find a real number 
2=1=0 with (L+ 2H) 3 =0  and (L+2H)Z .H>O.  

Proof  Observe that g ' (0 )=3L2.H and g " ( 0 ) = 6 L . H  2. If t = 0  were a triple root, 
then we would have L 2. H---L-H e =0. Using the Hodge index theorem on H 
(assumed general in its linear system), we deduce that L[n is numerically trivial. 
A slight generalization of the Lefshetz Hyperplane theorem implies that L is 
numerically trivial, contrary to assumption. For  completeness, we give a brief 
proof  of this last step: since h~(Cn)=0, the Picard group Pic(H) is discrete 
and so Cn(dL)= (gn for some d > 0. An appropriate form of Kodaira Vanishing 
gives h~(Cn( -nH) )=O for all n>0 ,  and an argument by induction similar to 
one used before then shows that h 1 ((9v(dL-H))=O. Taking sections of the exact 
sequence 

0 ~ C v ( d L - H )  ~ ~v(dL) ~ (~n ~ O, 

we obtain h ~ ((9 v (dL))> 0, and thus d L is trivial in Pic(V). 
If L 2 .H =g ' (0)~0 ,  we observe that the cubic g must have a real root 24:0 

with g '(2)>0; hence (L+2H)  3 = 0  and ( L + 2 H ) 2 . H > O  as claimed. []  

We deduce from (4.2) that W is not a cone. Hence if p > 3 ,  W does not 
consist of 3 hyperplanes; moreover if W contains a hyperplane, it must be ratio- 
nal. 

Lemma 4.3. I f  p > 5 and W contains a hyperplane, then W contains a rational 
point (represented by a divisor D~Pic(V)) not on the hyperplane and also not 
on the hyperplane defined by c2, and such that D 2 . H > 0  Jot some ample divisor 
H~Pic(V). Moreover, the rational points are dense in the real locus. 

Proof  Set W= M ~ Q with M the rational hyperplane and Q the residual quadric. 
Let H~Pic(V) be any ample divisor on V. Choose a rational point on M repre- 
senting a divisor E on V with E. H 2 = 0. The Hodge index theorem on H implies 
that E2.H<=O. Applying (4.2) with L = E ,  we obtain a real point on W but 
not on M for which the corresponding element F~PicR(V) satisfies F 2 . H > 0 .  
By varying E, we can clearly obtain infinitely many such real points of Q not 
on M. 
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We consider first the case when Q is singular. Since W is not a cone, Q 
must be a quadric cone with point vertex not on M. As there are other real 
points of Q apart  from the vertex, we see that Qc~ M has real points. Since 
dim M > 4 ,  we deduce the existence of a rational point on Qr~M, using the 
well-known result that an indefinite rational quadratic form in 5 or more vari- 
ables must have a non-trivial rational zero ([38] p. 43). But Q n M  is non- 
singular, and so the rational points of Q n M  are dense in the real locus with 
respect to the classical topology. This in turn implies that the rational points 
of Q are dense in the real locus Q(IR). This result is however also true when 
Q is non-singular, since the above quoted standard result on quadratic forms 
yields a rational point on Q, and this ensures that the rational points are dense 
in Q (IR). 

With FeQ(IR) as obtained above, we can find (since the rational points 
are dense in the classical topology) a rational point on Q near to FsQ(IR) 
representing a divisor DePic(V) with D.c2=t=O and DE.H>O, as claimed by 
the Lemma. []  

Corollary 4.4. I f  p > 5  and W is reducible, then there exists a C-Y contraction 
on V. 

Proof Use (4.1) and (4.3). [] 

We now restrict ourselves to the case when W is irreducible. The tie-up 
between the Diophantine Geometry  of W and the geometry on V is given by 
the following result. 

Proposition 4.5. I f  W irreducible, p > 2, and the rational points of W are dense 
in the classical topology on W(IR), then there exists a C-Y contraction on V. 

Proof. Since W irreducible, we can choose a rational point on W whose corre- 
sponding divisor L has L "c2 +0.  Let H~Pic(V) be an ample divisor; if L 2 - H >  0, 
we merely set D = L and apply (4.1). 

If  L 2. H__< 0, we apply (4.2) to deduce the existence of a point in W(~Q repre- 
senting F~PicR(V) with F 2 . H > 0 .  Since by assumption the rational points of 
W are dense in WOR) (and W does not contain a hyperplane), we can find 
a rational point of W (near to the real point representing F) representing a 
divisor DEPic(V) with D.c2 4:0 and D E. H > 0. Now apply (4.1) again. []  

Corollary 4.6. I f  W is irreducible and contains a singular rational point, then 
a C-Y  contraction on V exists. 

Proof Using (4.1) we see that p > 2 ;  we have also seen that  W cannot  be a 
cone. An obvious argument  then shows that the rational points of W are dense 
in W(]R), and so (4.5) applies. [ ]  

Remark. If W is non-singular and p > 9, then the results of Heath-Brown [16] 
(see in particular the top of p. 230) ensure that the rational points are dense 
in the real locus, and so there is a C-Y contraction on V. As yet the author 
does not know any examples where W turns out to be irreducible and singular, 
but without singular rational points. 

Proposition 4.7. I f  WclPP-1 (p > 5) is irreducible and contains a rational linear 
space A of dimension 3, then the rational points of W are dense in W(~Q. 
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Proof. Choose an arbitrary ample divisor H~Pic(V) and consider the 4-dimen- 
sional rational linear space containing A and the point of PP-1 determined 
by H. Let W denote the intersection of W with this l~ '4; then W= A w Q = ~,4, 
where Q is the residual quadric hypersurface. 

If Q is singular, then it is a cone; using (4.2) we observe that Q can only 
have one vertex, which is rational and does not lie on A (cf. also the proof  
of (4.3)). 

However, unless W has singularities at rational points (in which case we 
have already observed in (4.6) that the result holds), we can choose our ample 
divisor H (and thus our 4-dimensional rational linear space containing A) so 
that no such singularity occurs on Q - here we are essentially just applying 
Bertini's theorem. We may assume therefore that  our residual quadric Q is 
non-singular. 

F rom this we deduce that for the general 4-dimensional rational linear space 
through A, the intersection of W with this space, W ' =  A w Q' with non-singular 
residual quadric Q'. 

For  each such intersection, the previously used standard result on indefinite 
quadratic forms [38] shows that  if Q' has real points, then the rational points 
of Q' are dense in the real locus Q'(R). Since this holds for the general 4- 
dimensional rational linear space through A, we deduce that the rational points 
of W are dense in W(~,) as claimed. [ ]  

We now turn to the important  work of Davenpor t  [8], which uses the Hardy-  
Littlewood method to produce rational points on cubic hypersurfaces, provided 
that the number  of variables is at least 16. We however need a slight generaliza- 
tion of the 17 variable case. 

Theorem 4.8 (Davenport). I f  a cubic hypersurface W ~ " - l  does not contain 
any rational linear space of dimension r and if n >= 17 + r, then the rational points 
of W are dense in the real locus W(R).  

Proof The proof  of this is essentially an easy modification of the 17 variable 
argument  in [8]. The result however does appear  more or less explicitly in 
[9]. If the reader consults p. 658 of that paper  (in particular the statement 
of Theorem 1 and the two paragraphs following), together with the last para- 
graph of the paper on p. 671, he will recover the result stated above. I remark 
that Davenport  is dealing with the affine case, and so his cubic cone will just 
be the affine cone over W; moreover,  we are only interested in the homogeneous 
case (in his notation q~=C). His deduction on p. 671 that the vectors from 
the origin to the solutions lie asymptotically everywhere dense on the cubic 
cone is just our statement that  the rational points are dense in W(IR). His 
invariant h(C) defined on p. 658 is the maximum integer h for which W contains 
no linear spaces of dimension => n - h ;  the conditions of (4.8) ensure that h (C)> 17 
as required by his Theorem 1. []  

Proof of Theorem 1.1, and hence the main theorem. We show first that a C-Y 
contraction exists. In the statement of (1.1), we are given that p(V)>19.  In 
the light of (4.4), we may  assume that the cubic surface W c  ~'P- 1 is irreducible. 
Using (4.7) and (4.8) taken together, we see that the rational points of W are 
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dense in W(~) .  The required C-Y contrac t ion f :  V--* ~" is then provided by 
(4.5). Let PeP ic (V)  denote  the pul l-back of a hyperplane section ~'; thus P 
is nef and big. Using Theorem 1.1 of  [27],  we observe that  P . c 2 ~ 0 ;  if P ' c 2  > 0 ,  
then we also have the required condi t ion that  c2 (V) is non-trivial. 

Suppose therefore that  P . c  2 = 0 (i.e. P is in the hyperplane defined by c 2 = 0). 
We shall produce  a C-Y contrac t ion of  V which definitely does no t  trivialize 
the form c2. 

We choose  a nef divisor L~Pic~(V) on the hyperplane c 2 = 0, with the proper-  
ty that  L - e P  is not  nef for any e > 0 .  If  L 3 >0 ,  it follows that  U .  H > 0  and 
L.H2>O. We can now  choose D~PicQ(V) close to L with the properties that  
D is not  nef but  D 3 >  0, O 2' H > 0, O" H 2 >  0 and O ' c  2 > 0. The C-Y cont rac t ion  
provided by the Key  L e m m a  does not  then trivialize c z, since the divisor M 
which gives the morphism has the proper ty  that M .  c2 > 0. 

We  may  suppose therefore that  Le  W(IR). Since L is nef, we have L z. H > 0, 
and since it is also no t  numerically trivial we have L.H2>O. Since c2.N>O 
for any nef divisor N, we know that  c2- H > 0. 

We  consider first the case above when L z. H > 0. Since x(V, P ) =  3, we deduce 
that L 2. P > 0, and hence that  ( L -  e p)3 < 0, ( L -  e p)2. H > 0 and (L-- e P). H 2 > 0 
for all sufficiently small e > 0. To such a divisor L--eP,  we m a y  add some positive 
multiple of H to achieve a divisor R e W ( I I )  with R 2 . H > 0 ,  R.H2>O and R.c2 
> 0. Both for Wreducible  and irreducible, we have however  seen that the rational 
points of W are dense in W(N,), and so we can find a rational point  of  W 
close to R represented by a divisor DePic (V)  with D 3 = 0  and satisfying the 
inequalities D 2-H > 0, D . H  2 > 0 and D- Cz > 0. The results of  Sect. 3 then yield 
a C-Y contract ion which does not  trivialize c2. 

Finally, we consider the case when L 3 = L 2. H = 0. As in (4.3), we can consider 
the real divisors - -L+tHePicR(V) ,  and  the real valued function g ( t ) =  
( - L + t H )  3. Observe that  g ( 0 ) = 0 = g ' ( 0 )  and g " ( 0 ) < 0 ;  thus for some t > 0  we 
obtain  a real divisor R =  - - L + t H  with R 3 = 0 ,  R 2 . H > 0 ,  R . H 2 > 0  and  R . c 2 > 0  
(recall that  by  assumpt ion L.c2=O ). As in the previous case, we can  then find 
a rat ional  divisor D with D 3 = 0  and satisfying the previous inequalities, and 
then the results of Sect. 3 yield a C-Y contrac t ion of the required type. [ ]  
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Oblatum 2-I-1989 

Corrigendum added in proof 

Prof. N. Nakayama has pointed out to the author  that  the proof of (3.3) is not valid. To circumvent 
this, we show instead that not  too many  (in a sense to be made explicit below) divisors D with 
D 3 = 0  correspond to elliptic fibrations which cannot  be dealt with easily, and then appeal to the 
density results of Section 4. We first replace (3.3) by: 

(3.3)' I f  (o: V-~S is as in (3.2)' and NE(V/S) contains numerically independent 1-cycles, then there 
exists a C- Y contraction on V. 

The proof of this is as in (3.4). 
We now consider the surface S; by Corollary (0.4) of Nakayama 's  paper [On Weierstrass Models; 

in Algebraic Geometry and Commutat ive  Algebra in Honor  of M. Nagata,  pp 405-431. Academic 
Press, 1989] we know that S has only log-terminal singularities (which for surfaces are Q-factorial), 
and that - K s is an effective Q-divisor. 

We observe that if S admits a birational morphism g: S--*S contracting a curve C to a point, 
then V itself admits a C-Y contraction. To see this, we consider the Q-Cartier divisor E=~b*C 
on V, and show that its restriction to a general hyperplane section H gives an element of NE(V/S) 
which is not numerically equivalent to a multiple of the general fibre of q~. 

It is easily checked that - K s  is not  numerically trivial; indeed cz.D = --12Ks.  M for an appro- 
priate hyperplane section M of S. We then apply Mori 's theory of contracting extremal curves 
on the log-terminal surface S (see [24]). Arguing in this way, it follows that unless S = F l x  ~1 
or S is a log Del Pezzo surface with p(S)= l, then a birational morphism g as above can be found 
on S, and hence that a C-Y contraction exists. 
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The main extra ingredient is to prove that not too many elliptic fibrations arising via (3.2)' 
can have S being one of the above two types. As usual, we let H denote a general hyperplane 
section of V. 

Proposition 3.4'. Suppose that there is no C-Y contraction on V: then given e > O, 

(i) there exist only finitely many elliptic fibrations (o: V--*S arising via (3.2)' with p(S)= 1 and 
such that the divisor D of (3.2)' satisfies D.c 2 >-e D. H2 ; 

(ii) there are also only .finitely many fibrations with S = ~ 1 •  P~ and such that D.Cz>=~:D.H 2 
for some O in the pullback of the nef cane from S. 

Proof Under our assumptions, there can be only finitely many distinct elliptic fibrations qS~: V~S~ 
with non-equidimensional fibres. This follows since for each i, we have a Weil divisor Ei contracted 
to a point by qSi and a curve C~=E~I ~ on H. If Ei and Ej were to contain a common curve for 
some i+j, a C-Y contraction (contracting this curve) would he easy to find. So, given our assumptions, 
it will follow that the C~ are disjoint, numerically independent curves on H, and hence there are 
no more than p(H) of them. 

In both (i) and (ii) therefore, we can restrict ourselves to the case of equidimensional fibres. 
Thus given an irreducible curve C on S, (with possibly finitely many exceptions) E =  q~-~(C) is an 
irreducible Weil divisor on V; moreover, since C is Q-Cartier on S, so too is E on V. 

We prove (i) and leave (ii) as an exercise. Let S denote a minimal desingularization of S and 
S* its minimal model. On S*, we take C* to be a general line if S*=IP 2 and a general fibre if 
S* is ruled (recall that S is rational). Let C be the curve on S corresponding to C*; a straightforward 
check verifies that 0 < - - K  s. C_< 3. Let D O be the tl)-Cartier irreducible Weil divisor ~b ~(C) on V. 
Since p(S)= 1, the original D is just a rational multiple of Do. 

To calculate Do.c2, we first compute L.e2 for L the pullback of the general hyperplane section 
M of S. Riemann-Roch, the adjunction formula and Corollary 12.3 from [1] together yield that 

c2. L = -- Ks. M. Since p(S) = 1, this holds for the pullback of any II~-divisor on S, and in particular 
that c2"Do= - 12Ks. C<-36. 

We now let A denote the discrete subgroup of Pico(V) generated by the q-Cartier Weil divisors. 
That part of the nef cone in Pico(V) given by the inequality X.H2<36/e  is clearly compact, and 
hence contains only finitely many elements of A. Since any of the elliptic fibrations in question 
arise from such a Weil divisor Do, the claimed result follows. 

We prove (ii) similarly, noting that if E~=qS-~(Ci) for Ci a line in one of the two rulings of 
S, then c2.E~=24. Moreover, the pullback under ~b* of the nef cone on S is generated by the divisors 
E1 and E2 on V. [] 

The arguments in Sect. 4 of the paper remain essentially unchanged. If we happen on a nef 
divisor D with D3=0, DZ.H>O and O-c2>0, we can choose e>0  with D . c z > e D . H  2. Since the 
rational points of W are dense in the real locus W(R) for all the cases considered, we may assume 
(using (3.4)') that D has been chosen so as not to give rise to an elliptic fibration over either P~ • ff'~ 
or a log Det Pezzo surface with p =  1. The above arguments together with (3.2) then imply the 
existence of the desired C-Y contraction. 


