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1. Introduction 

In this p a p e r  we will discuss some very na tu ra l  consequences  of  the  existence 
theorem of so cal led hype rgeomet r i c  shift opera tors ,  which is p roved  in [ 0 2 ]  
(Theorem 3.6). These shift ope ra to r s  p lay  a role, as their  name indicates,  in 
the theory  of  general ized hype rgeomet r i c  funct ions of  several  var iables  associa ted  
with roo t  systems as deve loped  in the papers  [ H O ] ,  [ H I ,  [ O 1 ]  and  [ 0 2 ] .  
The a b o v e  men t ioned  existence theorem is based  on the main  result  of  Heck-  
man ' s  p a p e r  [H] ,  which states tha t  a cer ta in  second o rde r  differential  o p e r a t o r  
L, associa ted  with a roo t  system R and  a mul t ip l ic i ty  funct ion ~ on  R, has  
cer ta in  special e igenfunct ions  tha t  are  Ni isson  class funct ions  with a prescr ibed  
m o n o d r o m y  behaviour .  The  under ly ing  pr inciple  in H e c k m a n ' s  result  is, as far 
as we unde r s t and  at  this momen t ,  the so called R i e m a n n - H i l b e r t  co r re spondence  
(in the form ob ta ined  by  P. Del igne [D]) .  

In  o rde r  to give the reader  an idea  what  shift ope ra to r s  are we take  a 
look  at  the s implest  poss ib le  example ,  namely  the case where R = B C 1 .  The  
general  t heo ry  boils  down  to the theory  of  the o r d i n a r y  hype rgeomet r i c  funct ion 

d 
F(~,/3, 7; z) here, and  an  example  of a shift o p e r a t o r  is the o p e r a t o r  d ~ '  by  

virtue of  the re la t ion  

~ d  F(~,  f l , ? ; z ) = ~ f l F ( ~ + l , / 3 + 1 ,  7 +  1" z). 
d z  7 ' 
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2 E.M. O p d a m  

The idea to apply such operators in the theory of multivariable analogues of 
hypergeometric functions associated with root systems was used for the first 
time in Koornwinder's paper [K] (he introduced such an operator for the system 
B C  2 and used it to study the Jacobi polynomials). 

Let me describe briefly the results we will achieve in this paper: 

(1.) (Section 4). Let R be a root system and ~ a Weyl group invariant function 
on R, with values in the nonnegative integers. The constant term of the Laurent 
polynomial 1-I (1-h~) ~- is equal to 

~ R  

(l(p (ke), ~)+e=+�89 
=~.l-I (I(P(~e), ~)+�89 

20~ 
where p(s189 ~ s  and e v _  This was conjectured by Macdonald 

([M 1], Conjecture 2.3). 

(2.) (Section 5). Let P(#,~f;h)= ~ F,(la,~e)h v be the Jacobi polynomial 
veC(.u) 

associated with R, normalized by the condition F.(/~, ~')=1. Then P(#, ,f; e) 
= ~ F~(/~, X)= 1/c(l~--p(~e), ,~), where c is Harish Chandra's c-function. This 

veC(~) 

is a special case of Conjecture 6.11 of [HO] (for a definition of Jacobi polyno- 
mials we refer the reader to [HO], Definition 3.13). 

(3.) (Section 6). Let D(~; x)= H [~(x)U% where x e ( P ~ . R ) * - a  and fi= 1 / ~  

Let d7 denote the Gaussian measure on a: d?(x )=(2zc ) -~e -~ lX l2dx ,  where n 
equals the rank of R and d x  is the Lebesgue measure on a. Then: 

(�88189 C,v))! 
D(~; x ) d T ( x ) =  1--I  (�88189 ~v))! 

Q r + 

This was also conjectured by Macdonald in his paper [M 1], (Conjecture 
6.1). 

(4.) (Section 7). Let R be reduced now. Let I =  1-I ~2 and consider I as 

an element of the polynomial algebra of W-invariants of R. The Bernstein-Sato 

f l a i l 1 ( , (  1 ~ )  polynomial b of I equals b(Y)= + ~ +  . This was a conjecture of 
i=1  j = l  

Yano and Sekiguchi in their paper [YS] (Conjecture 5II). Moreover, we will 
actually construct a differential operator B such that B I  '~ + 1 = b ('0 I'~. 

We refer the reader to [M 1] for an outstanding treatise on the conjectures 
1) and 3). Note that, if R is reduced and Y=,(~V~R,  1) is actually only the 
case q = 1 of a more general conjecture, the so called q-analogue of the constant 
term conjecture (see [M 1], Conjecture 3.1). This conjecture is of course beyond 
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the scope of the shift operators we use here. However, Macdonald has developed 
a theory of q-analogues of Jacobi polynomials (see [M2]) and one could hope 
for existence of q-analogues of shift operators in this theory, which could possibly 
be used towards the solution of this generalization. 

2. Notations and general concepts 

Let a be an Euclidean space of dimension n provided with an inner product 
(.,.), and let R c a *  be a root system, possibly non reduced, that spans a*. 
Denote by W the group generated by the orthogonal reflections in the hyper- 
planes ~• the so-called Weyl group associated with R. Write P for the 

lattice of R, so P={2sa*l(2, ev)e7Zg~eR}, where ev= az~(av is called weight ( 
a coroot; the set {av},~R is again a root system, the coroot system), and write 
Q for the root lattice, thus Q = Z . R .  Let H be the complex torus characterized 
by the properties 1) Lie(H) = 1) = C |  a and 2)/-) = the character lattice of H = P. 
In other words: H ~ D / M  with M =  {X~t)[2(X)~2~iTZV2~P}. Write H = A T f o r  
the "polar decomposition" of H; here A is the split part of H and T the compact 
part. The natural map D ~ H  is denoted by "exp" and we will use the symbol 
h ~ for the character on H corresponding with 2eP (so hZ=e z~x) if XeD such 
that exp(X)=h). Choose a system of positive roots R+ in R. Let P+ be the 
corresponding set of dominant weights, i.e. P+ = {2eP[(2, e)>0VeeR+}. An ex- 
ponential polynomial on H is an expression of the form ~ Czh a, where only 

,1,ep 

a finite number of coefficients Case; are unequal to zero. If 21 . . . . .  2,cP+ is 
the set of fundamental weights we put 

zj= ~ hWZj(j=l, ..., n), 
w~W/Waj 

where W~J denotes the stabilizer of 2j in W. The zj are called the fundamental 
W-invariant exponential polynomials, and it is a well known fact (see for instance 
[B, p. 188]) that the algebra of all W-invariant exponential polynomials is equal 
to C[z~, ..., z,]. The Weyl denominator is by definition the following W-anti 
invariant function on H: 

A(h)= I ]  (h-~-h~), 
~ R  ~ 

where R ~ denotes the set of inmultiplicable roots in R (so ~ R  ~ if and only 
i f ~ R  and 2~r The map 

n - .  r  (2.1) 

h ~ (z 1 (h),..., z,(h)) 

is a W: 1 covering of t12 ", branched along the locus {/12=0) in tE ". This locus 
is called the (global) discriminant of R. The map (2.1) gives an identification 
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w\u,o~ - ,r 

with Hreg= {heHlh'+ 1V~eR}. 
Define ~ -- II;" as the vector space of all (complex valued) W-invariant func- 

tions on R (m equals the number of conjugacy classes of roots in R). Elements 
of Jd  are called multiplicity functions on R. Introduce the following function 
on H: 

6(,(; h)= I ]  (h-~-h{) 2'~% ,(egg: 
0t~R+ 

(Note that S is, in general, multivalued). Now let , ( ~  such that ,(,>0Vc~ER. 
We provide the space of W-invariant exponential polynomials with a Hermitean 
product: 

(f, g ) ,=  S f(t)g(t)]6(,(; t)l dr, 
T 

where d t is the Haar  measure on T normalized such that S dr= 1. Define the 
T 

Jacobi polynomials P(#, ,(; t)(#eP_) associated with R and multiplicity ,( by 
means of the following properties: 

(1.) P(#, ,(; t)= ~ F~(#, ,()P" (Here C(#) is the convex hull of the orbit W.#, 
2~C(#) 

intersected with # + Q) with Fu(#, s  1 and F~(#,  s  F~(#, ,()Vwe W. 

(2.) (P(#, ,(), P(v, ,())~=0VveP_ with v > #  (i.e. ve#+Q+, with Q+ =N+ .R+). 

As remarked in ([H], Proposition 8.1) one may equally well replace (2) by 
the condition that P(#, ,() is an eigenfunction of the differential operator L(,(): 

where 

and 

L(,() P (#, .4) = (#, # - 2 p (,()). P (#, ,(), 

p(~)=�89 ~ ~ 

L(,()= ~ O(X,) 2 -  ~ e~(l+h~)(1-h~)-'O(X~). 
i= 1 c~R 

(We use the symbol ~?(p) (for pelE[b*]) for the constant coefficient differential 
operator on H that corresponds with p by considering p as element of the 
symmetric algebra on [); X,  ED is the vector such that (X,, Y)=~(Y)V YeD). 

Introduce the following function 

r ( -  (L ~)  + �89 @ 
(z, ~) ~ ~1-[+ r (-(L ~ )+  ~ + ~ )  
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This function is closely related to Harish-Chandra's c-function: 

~(2, ~) 
c(L ~)-  

~(-p(~), e). 

(Note that this definition of the c-function is a considerable simplification com- 
pared with our original definition (see [HO], Definition 6.4). We are indebted 
to Prof. Macdonald for suggesting this simplification to us). The c-function 
plays an important role in the theory of hypergeometric functions and, as we 
will see, in particular in this paper. 

The following theorem is due to Heckman, and will be used in Sect. 4. 

2.1. Theorem. ([HI, Theorem 8.5). The polynomials P(I~, ,(; t), #~P_,  are orthogo- 
nal with respect to the inner product (.,.)~. Moreover 

(P(/~, k), P(/z, k)), = lira c ( - I t+p( ,C)+e ,  ~)c(-p(~C)+Woe,  ~() 
~-o c(p(~t)+e, ,Oc( f i_p (~)+Woe  ' ~() ~ 16(~, t)[dt 

T 

where w o ~ W is the longest element and fi = - w oI~. [] 

3. Properties of  shift operators 

We now arrive at the important notion of shift operator. A shift operator S 
with shift f e ~  is an element of ~ [ J f ] @ ~ ,  (~ ,  being the Weyl algebra of 
polynomial differential operators in the variables zi) which satisfies: 

S (J()o (L(J() + (p (#), p (J())) = (L(,( + () + (p (~ + #), p (,( + ())) o S (Y). 

From this definition it is clear that S(Y) acts on the Jacobi polynomials as 
follows: 

S (,4) P (#, ,4) = r/(S (,4)) (# - p (~e)). p (p + p (d), ,4 + d) (3.1) 

for some q (S(~))e �9 [~:U] | ~ [b*]. Note  that q (S) determines S because the Jaco- 
bi polynomials form a ~-basis for C [ z  1 . . . . .  z,]. 

In order to formulate the existence theorem we introduce the following nota- 

tion. Let R = H cz be the decomposition of R in conjugacy classes of roots. 
i = l  

Let ,~E~ff be the function defined by e~(Cj)=6ij (Kronecker's symbol). Write 
2,~ for the basis of # f  consisting of the vectors ~i=e~ if 2Cic~R=~b, and ~/=(2e~ 
- e j) if 2 C~ = Cj. 

3.1. Theorem (existence of  shift operators). ([Op2], Theorem 3.6). (1.)  There 
exist nontrivial shift operators if  and only if E ~ Z . ~ .  
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(2.) I f  :e7Z_ . ~  there exists a shift operator G(:, ~) such that 

e(2, ~ + : )  
t l ( G ( : ,  ~f))(2) = (3.2) e(2, ~) 

Moreover, every shift operator S(~f) with shift : can be decomposed like S(~f) 
= G(:, ~f)oS'(~f), where S'(,() commutes with L(Y). [] 

Among the properties that are derived in [Opl]  we mention the following, 
which will be used in the subsequent sections of this paper 

(A) For P c & ,  we write P* for the formal transpose of P(i.e.:(PtPz)* 
/ 

\ 

- P2 P1, z* = z~ and (?z " 

3.2. Proposition. ([Opl], Prop. 3.4, 3.5). Let : eZ+ .~.  The differential operator: 

~(:, ~ )=~( - : -~  +�89 #+:)o~(~_1~), 

where ~ = ~ % is a shift operator with shift :, and 
i: 2C ic~R=O 

(3.3) 

r/(G (:, ~r (4) = r/(G ( - :, Z + :)) (- 4) = 
e ( - 2 ,  ~) 

e ( - 2 , ~ + : ) .  
[] 

Note that we may also write 

G(:, ~f)= 6 ( - : - ~ f ) o  G + ( - &  ,( + :)o 6(,0, (3.4) 

where G + denotes the formal transpose of G as operator on H (so f +  = f  for 
a function f on H, and 8(x) + = 0(-x)) .  

(B) The degree of G(:, ~')(:eZ+.M) is equal to ~ : , .  The highest order 
aeR+ 

part of G(:, ,() does not depend on Y, and for : = : i  such that 2Cic~R=0 this 
1 

highest order part is equal to (on H): 6(�89 h) lV~ ~?(X~v) (because this expres- 
creCy+ 

sion is equal to G(~, 0) as one can check directly from the definition of shift 
operator). 

(C) It is a well known fact that the polynomial W-invariants on b form 
a polynomial algebra IE[p~ . . . . .  p,], where the p~ are homogeneous invariants 
of degree d~ (the di are determined by R; they are called the primitive degrees 
of R). Let R be a reduced root system now. The map 

D ---}l~n 

X --" (p ,  (X) . . . . .  pn(x))  

is a 114]: 1 covering of IE", branched along the set I = 0, where I =  I-I ct2. The 
~t~R+ 

locus I = 0  in (E" is called the infinitesimal discriminant of R. Consider the 
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map q~, defined in a neighbourhood of the origin of II2", which makes the follow- 
ing diagram commute: 

e x p  , H 

I 1 
IIY ~o , C"  

It is easy to see that q~ is a biholomorphic map from a neighbourhood of 
the origin to a neighbourhood of the identity element. So if Pe~,(zi)  we can 

write P = ~ fk  (where k denotes a multiindex), with fk analytic in a neigh- 

bourhood of the origin. Let e(P) denote the lowest homogeneous part of P 
8 

with respect to the weighted Euler vectorfield E = ~  ~ dipi ~p~p. We thus obtain 

a map: 

~: & . ( z ~  . . . . .  z . )  --, ~ , ( p ~  . . . . .  p.). 

It is not difficult to see that e is actually the same map as defined in ([Opl], 
Sect. 4). The eigenvalue of e(P) with respect to ad(E) is called the lowest homoge- 
neous degree of P (denoted by 1.h.d. (P)). From [Opl],  Theorem 4.4 we have: 

3.3. Theorem. (i) I f  EETZ+.r162 then I.h.d. (G(f, ~))= - 2  ~. {~. 
�9 e R  + 

(ii) I f  f E~_. ,~ then 1.h.d. (G((, ~r [] 

3.4. Corollary. Let E67Z .~  and let f be a C~176 at e6H, the identity element 
of H, such that G(f, JOf is again C~176 at e. Then: 

G (Y, ~) f (e) = t/(G (f, tO) ( -- p (Y)). P (p (f), *r + (;  e) .f  (e). (3.5) 

Proof Theorem 3.3 (ii) implies (CT denoting constant term): 

G(f, s  CT(G([, Y))(e).f (e). 

On the other hand, the function 1 is equal to the Jacobi polynomial P(0, ~f; h). 
Hence 

CT(G(f, Y)) = G(t ~, ,0(1) = G(f, ,0 (P (0, ,0) = t/(G(f, Y))( - p (,()). PiP (f), ~ + #) 

from which we conclude the validity of (3.5). [] 
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4. The constant term of a certain Laurent polynomial associated with a root 
system; proof of the constant term conjecture of I.G. Macdonald 

Let R be a (possibly non reduced) root system. Define 

a(~; h)= ~ (1 -ha)  '= (Y~{'). 

In [M1] Macdonald conjectured that, if ~ , ~ 7 1 + V ~ R ,  the constant term of 
the Laurent polynomial o-(Y) should be equal to: 

Iq 

([M1], Conjecture 2.3). This conjecture is a generalization of a conjecture of 
Dyson (the case R = A, in Macdonald's conjecture), which was already proved 
at that time by Gunson [Gu] and Wilson [W] (see I. Good [G] for a short, 
elegant proof). Macdonald gives a proof of his conjecture if R = B C ,  or D,, 
by means of a clever change of variables in Selberg's integral formula (see [S] 
and [M1],  Sect. 2). Finally, it is shown in [M1]  that the formula holds for 
arbitrary R if Y = e  or 2e (recall that e =  ~' ei) ([M1], Sect. 2 and 3). 

i; 2 C i c ~ R = O  

Observe that, if ~(~r +, V ~r R, the constant term of a(~) is equal to the= integral 
S a(~;t)dt .  Also note that, if f i e f  arbitrary, a ( ~ ; t ) =  1-I [t~-t-~[ 2~ 

T a ~ R  + 

(=[6(~; t)] i f~  is real), so S a(~; t)dt makes sense V ~ s U  with Re (Y~)>0V~R.  
T 

Moreover, ~ ab(; t)dt depends analytically on Y(Re(,(,)>0). With the aid of 
T 

shift operators it is easy to prove Macdonald's constant term conjecture in 
full generality: 

4.1. Theorem. Let R be a possibly non reduced root system, and ~f~f" such that 
Re(.4~)>OV~R. Then 

r((p (e), ~") + e~ + ~,~ + 1) r((p (,0, ~v) _ ~ _ ~ ~ + 1) 
.[ a(~; t )d t= I-I r((p(e), ~V)+l~+ 1) r((p(,0, ~V)_k~+ 1) . (4.1) 
T a ~ R +  

Proof Take diEM and choose #6P_ arbitrarily. Consider the following identity, 
which obviously holds if ~ , E R +  is sufficiently positive (Va~R) (see Sect. 3, pro- 
perty A)) 

(G ( - d i ,  ff + d,) P (/2 + p (di), ~r + di), P (#, ~))~ 

= ( - 1) , ~  r176 (# + P (di), ~ --~ dl), G (di, ~) P (#, ~())~ + 8,. 
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This is equivalent to 

(P (1~ + p (~), '4 + E,), P (la + p (~,), '4 + d,),~ + ~, 
(P(/~, '4), P(g,  ~r 

= ( -  i) .}~ (~')" , 7 ( ~ ( -  ~,, e + ~,))(~,- o('4)) 
r/(G (8,, ,4)(fi -- p ('4)) 

If we use formula (3.2) and (3.3) of Sect. 3 and Theorem 2.1 this becomes:  

o('4 + ~ ;  t )dt  
T 

a(,C t)dt 
T 

= ( - 1) , ~  (~')~ l i m c  (p ('4 + ~i) + 5, ,4 + 5~) 
-~ o c (p ('4) + 5, '4) 

(4.2) 

(so the dependence on ~t cancels as should !). 

The function 

r(  - (p (•), ~v) _ (5, cd3 + �89 "40 r((p (,f, ~v) + �89 "4~ + "4~) 
c(p('4)+5, '4)= ~+l-I r(-(p('4), ~)-(5,  r +�89 ~v)+�89 

can be factorized as f(5,  '4).g(5, '4) where f(5, ~f) is holomorphic  on R e 0 0 > 0  
and g(e,'4) is a meromorphic  function which satisfies g(5 ,~f+d/)= 

( -  1) ,~. (e')~ g (5, '4), by means of the formula F(z) F(1 - z) = n/sin ~ z. F o r  instance, 
take 

r((p ('4), ~v) + (5, ~v)_ �89 '41_'4~ + 1) r((p ('4), ~v) + �89 "4~ + '4~) 
f (5, '4)= ~[ 

and 

,~,~+ r((p('4), ~v)+(5, ~'9-�89 + 1) r((p('4), ~'9 + �89 

g(5, '4)= FI 
sin rr ((p ('4), a v) + (5, ev) _ �89 '4~ _ '4,) 

sin rc((p ('4), c~ v) + (5, ~v) _ 1'4_~) 

Put f ( ' 4 ) = l i m f ( 5 ,  '4). So (4.2) takes the form: 
8 ~ 0  

a('4+~ 5 t)dt/~ a(~e; t)dt=f('4+~,)/f(~.), 
T T 

or equivalently, the function 

h(~)-- ~ ~('4; t)dt/f('4) 
T 
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is periodic on ~(  with period lattice ~ .  Consequently, h(Y) is an entire function 
(because it is certainly analytic on Re (s 0). From Stirling's asymptotic expan- 
sion formula 

' 1 1 
F(z)~ e- ~ z~ ( 2~nz ) " [ l + i~z + ~ + . . .] (larg zl < n) (4.3) 

we see that, if ~eY{" fixed such that d, elR+, and z e G  a complex indeterminate: 

(4.4) 

for some CeIR> o. On the other hand, 

I ~ ~(z.,q t)dtl<= ~ a(Re(z).~f; t)dt. 
T T 

(4.5) 

If we choose ,r such that ~f~eNV~e~,  then z~h(z .d)  is periodic, and thus 
bounded as a consequence of (4.4) and (4.5). Therefore, by Liouville's theorem, 
h(~) is a constant: 

a(d; t)dt=a.f(d) 
T 

for some a e ~ .  

We determine a as follows: 

((p(~), ~v) + ~ )  
1 =lira  ~ a(~r t)dt=a.limf(e,O=a, l]  

~ o  r ~ 0  ~R+ ((P(~), ~ ) + � 8 9  

Hence 

((p(~), ~v) + ke~ + G) 
a =  I-[ =lWl. (4.6) �9 ~.+ ((p(~), ~v)+�89 

The last equality is obtained in the following way: if we put ~ = e = ~ ei 
i: 2 C i n R = r  

then VaeR ~ (p(~), ~v)=(p(e), aV)=ht(av), the height of av in the root system 
h t(ctv)+ 1 

(R~ v. So we have: a =  [ l  ht(av) . In order to see that his is equal to [WI 
aER~ 

we take the limit t ~ 1 in the following identity of Macdonald, Bott and Solomon 
(see for instance [C], Sect. 9.4 and 10.2): 

Y t"w'= H - ~ - 1 )  

where l(w) denotes the length of we Wand  dl, ..., d, are the primitive degrees 
o f R  ~ []  
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5. Evaluation of  Jacobi polynomials at the identity element 

In [HO] we conjectured that the value at the identity element e~H of the 
hypergcometric function associated with the root system R should be 1, in analo- 
gy with the group case ([HO], Conjecture 6.11). In this section we will show 
that the existence of shift operators implies a partial affirmation of this conjec- 
ture. (For a definition of F(2, ~; h), the hypergeometric function, we refer the 
reader to [-HO], Sect. 6 or [HI, Sect. 7). 

5.1. Theorem. F(2, ~f; e) = 1 if herTZ+ .~. 

Proof. From the determination of the constant a=lVv] in the proof of Theo- 
rem 4.1 (see formula (4.6)) we see that 

lim 5 ( -  p(~f), e,f) = I Wl. 
e+O 

Therefore it is obvious that 

F(2, 0; e)= IVAE[)*. 

Suppose that F(2, ~; e )=  1 for all 2El* and ~ =  ~ nigi with n ~ Z +  and ~ ni<=N. 
i=1 i 

Take ~62E+.~ with ,~= ~, n~f'i and ~ n~=N+l. Let i t { l ,  . . . ,m} such that 
n'i > 0. Then: i=1 i 

G(-{,,  ,~) F(2, ,4; h)=q(G(-d,, ~))(2) F(2, (Y-g,); h). (5.1) 
c(2, ~ - ~ )  

This formula (5.1) is the generalization of formula (3.1) to the case of arbitrary 
hypergeometric functions (instead of Jacobi polynomials), and can be derived 
from the definition of shift operator in a completely similar fashion (recall that, 
in general, P(p, ~4)=(1/c(p-p(,4), ~r ~) if /~P_  (see [HI,  Sect. 8)). 
Now evaluate formula (5.1) at h = e, and use Corollary 3.4: 

c(-p(,~), ,0 q(G(--d,, ~))(--p(~)) r(-p(,4), ~ - ~ ;  e).F(2, ,4; e) 
c ( - p (~), ,4 - ~)  

c(;~, ~) 
= q (G( -{ i ,  ,4))()~) F(2, ~r e). 

c(2, ~--~i) 

Thus, from the induction hypothesis: 

q(G(-~i, ~())(2) c(2, ,4) c(-p(,4), ~4-~) 
F(2, #; e) 

, 7 ( G ( - ~ , ,  ~ ) ) ( - p ( ~ ) )  c ( L , ~ - ~ , )  c(-p(,O, ,r 
1 

- 1 ,  []  
- c ( - p ( , O ,  ~) 

5.2. Corollary. P(#, ,~; e)= V/~EP_, s  
c (~ , -  p (~), ~) 
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Proof P(#, ,(; e)= ~ F~(/~, '0 is a rational function in #. Therefore, this corol- 
wC(~) 

lary follows from Theorem 5.1 and the remark that Z + . ~  is Zariski dense in 
~ .  [] 

6. Proof  of I.G. Macdonald's  generalization of  a conjecture 
of M.L. Mehta  

The following formula was also conjectured by Macdonald in his paper [M 1] 
(Conjecture 6.1) 

~D(Y; x)dT(x)= I1 (�89188 ev))! (6.1) . ~R+ (l~f~ + �89 ~v))! 

Here R is any (possibly non reduced) root system and ~fe~," such that Re(~f~) 

>0V~eR,  and D(~; x)= 1-[ c~(x) = I1 I~(x)l% The measure dT(x) den- 
~teR+ ~teR+ 

otes the Gaussian measure on a, i.e. dT(x)=(2n) ~e ~lXl2dx, where dx is the 
ordinary Lebesque measure on a. One might think of this formula as the Lie 
algebra counterpart of formula (4.1), and this idea leads to a proof of (6.1) 
if ,( corresponds to the multiplicity of a symmetric space with reduced root 
system R (see [M 1], Sect. 6.b). Formula (6.1) is Macdonald's "root  system gener- 
alization" of an older conjecture due to Mehta (the case R=An) , which can 
be proved using Selberg's integral formula ([M1], Sect. 4). In ([MI],  Sect. 6) 
Macdonald establishes formula (6.1) for all other classicals root systems, again 
by making use of Selberg's integral formula. 

The shift operators enable us to prove (6.1) in a uniform way, as we will 
see in Theorem 6.4. First of all, let us formulate two facts (Lemma 6.1 and 
Theorem 6.3) that are needed in the course of the proof of Theorem 6.4. 

6.1. Lemma. Let i~{1, ..., m} such that 2C~c~R=0. Then (recall that e, denotes 
the lowest homogeneous part): 

Proof From Sect. 3B) and C) we know that E(G(~/, ~f))~,(Pl  . . . . .  p,) (the Pi 
being a set of fundamental polynomial W-invariants), and this operator has 

/ 

degree ~ (d~),, while its homogeneous degree {with respect to the weighted 

~ n ,  ,~" ~p~) , [xl2 The Euler vector field E =  dlps equals - 2  ~ (fl)~. Choose P l -  2 " 
�9 0 t E N +  
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only summands of e(G(~, ~f)) that do not annihilate the function e p' are those 

of the form p" (~-p~)r (with e=(a~ . . . . .  e,)e(~+)" a multiindex and fle~+). But 

deg(p'(~-Y~l=fl<= ~ {(~i), (6.3) 
\ \ P~/ /  ~n~ 

and 

h.d. ( (~-p~)~p= = ,~=1 d ' e ' - 2 f l = - 2  ~g ~ + (#~)~" (6.4) 

These relations imply that fl = ~ (d~)= and c~ = 0, which shows that e m is indeed 
aeR+ 

an eigenfunction of e(G(di, ~f)). In order to determine the eigenvalue, observe 

that f(~r @~-pl) E (<}~ .... occurs, for some f(Af)e 112 [ ~ ] ,  as a summand of the highest 

order part of e(G(~, ~f)). The highest order part of e(G({, ~f)) does not depend 
on ,(, as we remarked in Sect. 3B). Consequently, f ( ' 0  is a constant, f say, 
and we may determine this eigenvalue by calculating 8(G(~, O))(em). According 

to Sect. 3B) we have: e(G{~i, 0)) (--1)lc'+l H O(X~). Hence: 
FI (~) ~ , +  

f =e-m (_l)l~,~l Fi (_~v) 2 
]~l c~ p~c,+[I 8(Xe~)(em)=(-1)lc"l=~C'+H c~ -,~c,+ [[  I~l 2" 

6.2. Remark. If C i is a conjugacy class such that 2Ci=CjcR then one can 
show that (if di = 2 e j -  e j): 

e(G(~i,~))e-1'x'2 Q~c,+~-)e-~'x'2 = [ I  

This calculation is similar to the calculation above, but more complicated be- 
cause there is not such a simple formula for G(d~, 0) available in this case. 
Moreover, this result is not necessary for the proof of Theorem 6.4. [] 

6.3. Theorem. (Carlson, see [T] Theorem 5.81). Let fbe  a function of one complex 
variable z, and suppose that 

(i) f is analytic and bounded on Re(z)> 0, 
(ii) f(z)=Ofor z=0 ,  1, 2 . . . .  

Then f (z) = 0 identically. [] 
After these preparations we can prove 

6.4. Theorem. Let R be a root system and ,(&,f such that Re(,f,)>0Vc~eR. Then: 

~D(~; x)&(x)= [I (�89 ~v))! 
~ ,~R+ ( �88 ~v))! 
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Proof Consider  identi ty (3.4) on A: 

G + (~ ,  , (--  ~)o 6 (~) = 6 ('4-- d~)o G ( -- dz, ,0 

and let this act  on the funct ion 1 =P(O,  ~): 

G + (gi, '4 - ~,)(6 ('4)) = q (G ( - ~,, Y))( -- p (Y)) P ( - p (~,), ,( - ~i). 6 ('4 -- ~i). 

N o w  take the lowest homogeneous  par t  of  this equa t ion  (see Sect. 3 C)): 

(G + (d,, Y - {,)) H (2'4) = q (G ( - di, Y))( - P (~)) P ( - P (d,), '4 - ~i; e). H (2 ('4 -- d,)) 

where H(,(;  x ) =  IF] I~(x)l ~= (so in this fo rmula  we assume that  '4~6R+,  suffi- 
ceR+ 

ciently positive. No te  that  the m a p  e we used here us an extension to the localiza- 
tion of ~k,(z~ . . . .  , z,) at A2.O of the m a p  we defined in Sect. 3C)). Use  the 
expression (3.2) for q(G(-gi, ~)) and Cor.  5.2 to write this as follows: 

e(G + (d,, ' 4 -d i ) )  H (2 '4)= 
e (  - p ( ~ -  e , ) ,  '4 - e , )  

~(p(~). ~) . H ( 2 ( e - -  ~)). 

Observe  tha t  e(G+)=e(G) +, where + denotes  the formal  t ranspose  on A and 
a respectively. Hence,  if '4 is real and sufficiently positive, we have:  

D ( 2 ( ~ - g l ) ;  x) e-�89 
a 

= ~I  [~[2(~-t,)= ~ H ( 2 ( ' 4 - d i ) ;  x)e-~l~l~(2n) -~dx 
a ~ R  + 

2(~-~')= r ~(-- p(e), '4) II I~J ~'-~'~" J. ~ ( -  pr "4-~,) 
�9 ~ R  + 

e(G (~i, '4-- ~i)) + (H(2'4;  x)) e -  ~ 1~12(2 n)-~dx 

2(~-~')~ c a ( - p ( , O ,  '4) 
I-I I=1 z~-~'~= ~ ~(-p('4-~3, '4-~) ~ t ~ R +  

/ / (2 , ( ;  x)e(G(di, k-di)(e- ~lxl:)(2n)-~dx. (6.5) 

At this poin t  we assume that  i~{1 . . . .  ,m} is such tha t  2 C ~ n R = 0 ,  and  we 
apply  L e m m a  6.1. F o r m u l a  (6.5) becomes:  

D (2 ('4 -- ~i); x) d 7 (x) = 
a 

? ( - -  p(~r ,4) ! D(2'4; x)dT(x), 

where we assume 2C~c~ R = 0 .  Therefore,  i f '4~ ~ Z+ .ei, we have 
i = l  

a('4) (6.6) S 0(2~r x)d~(x) ~(p('4),'4), 
a 
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where a(Y) is a function that  (only) depends on ~f~ with 2 a e R .  However ,  it 
is obvious  tha t  the left hand  side of  this equa t ion  is in fact a funct ion only 

1 
depending on  Y, + Y~, and it is an easy calculation to see that  f 0 f ) =  

a ( -  p (~), ~) 

has the p roper ty  that  f(z.~i)=f(z.ej)Vz6C, if 2Ci=Cj. So a(~) is a constant ,  
also denoted  by a. 

The  a rguments  so far establish the theorem (up to the cons tant  a) for 

~ ~ 7]+.ei. In  the remaining par t  of  the p roof  we will see how this implies 
i = 1  

the general case Re  (~(,) => 0. Consider  the following functions of the complex  
variable z: (fix ~ ~,> o. el) 

i 

q~(z) = ~ D(2z~r x)dT(x)= ~ D(2,(;  x)=d?(x) 
a i1 

] r(z (,r + �89 ~ + (p 60, ~))1 
~(z)= c ( -  2zp(,O, z,O - ~.1]+ r(z(k,~+(p(,O, ~v))) 

First we s tudy the asympto t i c  behav iour  of these two functions. F r o m  its explicit 
expression, it is clear tha t  (use Stirling's asympto t ic  expans ion  for F(z) (see (4.3))) 

te(z)~(N.z) .... 

for a certain N~IR> o and  Iz[ large (with R e z > 0 ) .  
As for cp, i f z E ~ > o  then 

~p(z) = z .... ~ (D(2~f; y).e-+lrl~)=e-+lvl~~(2n)-~dy 
a 

and this identi ty holds for all z with Re z > 0 because of analyt ici ty in z. The  
function D(2Y; y).e -+lvl2 is b o u n d e d  on a, and we choose N'e~- .>o such that  
D(2~f; y)e-+lyl~<N' on a. Hence:  

]~o(z)[<[z .... i](N') = J~, , ~ e - + 1 0 2 ( 2 n )  
ItKez~l , 

So on the half  plane Re (z) > 1 we have 

I~P(z)t<l(N''z) .... I 

-~dt 

,' ~ , , '  ~ 11~ the funct ion for some N elR> o. Thus,  for a suitable constant  . . . . .  o, 

-( ~ ~o)z-�89 
a(z)=(N'" z) .... [~p(z)-aO(z)] 
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is analytic and bounded on R e z > l .  If we take ~fey' .Ns i then, by virtue of 
i 

(6.6), a (z )=0  for z e N .  Consequently, by Carlson's theorem (Theorem 6.3), the 
equality q)(z)= a ~ (z) holds whenever e e ~  N e i. This, in turn, implies immediate- 
ly that: 

a 
D(2,(; x)dT(x)= c(-p(e), , () 'V'(egC with Re(,(=)>0VcceR 

a 

If we take the same type of limit as in the proof of Theorem 4.1 (see formula 
(4.6)) we get: 

(L, + �89 + (p (~), c~v)) 
a=lWr= 1FI 1 

This completes the proof  of Theorem 6.4. []  

6.5. Remark. Macdonald also generalized Mehta's conjecture to the case of an 
arbitrary finite reflection group on a (see rM 1], Conjecture 5.1). From the classi- 
fication of finite reflection groups (see [B]) we know that, apart from the Weyl 
groups or crystallographic finite reflection groups, there exist the following non 
crystallographic types: H 3 and H 4, with Coxeter diagrams 

5 5 : -" : and : -- -- -- 

respectively, and the dihedral g roups /2 r ( r=  5, r >  7) with Coxeter diagram 

F 

Our methods do not apply to these non crystallographic groups, but the dihedral 
case can be verified by means of a direct calculation (see rM 1], Sect. 5). Summar- 
izing, Conjecture 5.1 of [M 1] remains unproved for the groups H3, H 4 only. []  

7. The Bernstein-Sato polynomial of the infinitesimal discriminant; 
proof of a conjecture of T. Yano and J. Sekiguchi 

The following theorem was conjectured by Yano and Sekiguchi in their paper 
rY.s]. In this section we will show that this theorem is an easy consequence 
of the previous section of this paper. 

7.1. Theorem. Let R be a reduced root system and put I =  l-I ~2. Interpreted 
~eR+ 

as an element of the polynomial algebra ~ [ P l  . . . . .  P.3 of polynomial W-invar- 

iants, the Bernstein Sato polynomial b of I equals b(Af)= H ~f+�89 , 
where the d~ are the primitive degrees of R. i= 1 ~= 1 �9 
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Proof We derive from formula (3.3) that 

e(G(1, ~ -  1))*U -~ - g ( -  P ( Y -  1), Y -  1) i~_~, 
~(-p(~), ~) (7.1) 

just as we did in the proof of Theorem 6.4. Here we identify IR. e c Yg with 
1 

IR by sending e to 1. The expression reduces, in this special case 
5(-- p (~), ~) 

of equal multiplicities for all roots, to the expression 

• i  r(deO 
i =  1 I ' ( ~ )  

Hence, if we use Gauss' multiplication formula, (7.1) becomes" 

n d l -  l 

e(G(l, J(+�89 =114~ I-I 1-~ (d,('4+�89 I'~ 
i = 1  i = 1  

It is easy to see that G(1, 1(+ �89 = ( - D  Ig+ I G(1, l _ y ) ,  so 

e(G(1, �89 +1 --(--1)ln+lll4q 1~I d, - -1  - [ I  (d,(~4+ �89 + j ) I  '~. 
i = 1  j = l  

(7.2) 

n d i -  1 

Define b'(J0 = I~ 1~ (di(J( q- �89 If b (~0 denotes the b-function of I, the relation 
i = 1  j = l  

(7.2) implies that 

bib  (7.3) 

In order to prove that ~ is actually minimal (so is equal to b) introduce the 
following notations: if f is a meromorphic function on r  we define the following 
multiplicity function 

re(f): r  

Z ---+ n if f (w)= ~ ak(w--z) k with a ,+0 .  
k = n  

For any polynomial P ~ [z] we define 

m~(P): ~ - ~ Z  

z ~  ~ m(1)(z+n). 
n ~ Z  + 

Note that m(P)(z) = m~(P)(z + 1) - m~(P)(z). 
So (7.3) implies 

mz(b)>mx(g). (7.4) 
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But  f rom the  Berns t e in  e q u a t i o n  

B U  + 1 = b (~) I t (for some  B elI~ Is(('] | & ,  (pl . . . . .  P,)) 

it is o b v i o u s  t ha t  

m (~ I t + ~ (x) d 7 (x)) > ms (b). 
a 

O n  the  o the r  hand ,  f rom the expl ici t  f o r m u l a  (6.1) for ~ It(x)dT(x) we see tha t  
a 

m(~ I'~+i(x)dy(x)) = m~(~). 
a 

H e n c e  mz(5)=mx(b) a n d  thus  b a n d  ~" are  e q u a l  up  to  a mu l t i p l i ca t i ve  cons t an t .  
This  comple t e s  the  p r o o f  of  T h e o r e m  7.1. [ ]  

7.2. Remark. Y a n o  a n d  Sek iguchi  ac tua l ly  c o n j e c t u r e d  tha t  the  f o r m u l a  for the  
b - func t i on  of  the  in f in i t es imal  d i s c r i m i n a n t  s h o u l d  h o l d  for n o n - c r y s t a l l o g r a p h i c  
finite ref lec t ion  g roups  as well. U n f o r t u n a t e l y ,  o u r  m e t h o d s  are res t r ic ted  to 
the W e y l  g r o u p  cases (see also R e m a r k  6.5). [ ]  
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