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1. Introduction

Let K be a quadratic extension field of the rational numbers Q. Let Cj be the
2-class group of K in the narrow sense. It is a classical result that rank Cy=
t—1, where t is the number of primes that ramify in K/Q. Now let Ci
={a': ae C}, and let R denote the 4-class rank of K in the narrow sense; i.e.,
Ry=rank C;=dimg (CE/Cy). Here F, is the finite field with two elements, and
C:/C% is an elementary abelian 2-group which we are viewing as a vector
space over F,. Given a quadratic field K, one can compute R, by computing
the rank (over F,) of a certain matrix of Legendre symbols (cf. [11]).

Now assume K is imaginary quadratic. So K=Q(]/——m), where m is a
square-free positive integer. For each positive integer t, each nonnegative
integer e, and each positive real number x, we define

A= {K=Q(]/jr;): exactly t primes ramify in K/Q},
A, .={KeA;: mx},
A, .={KeA, Ry=¢},
Ay o ={KeA, . m=Zxj.

Next we define the density d, , of 4, , in A, by

. A, .
d, .= lim [y, e:]

1.1
m (1)

where |S| denotes the cardinality of a set S.
In this paper we derive an effective algorithm for computing d, , for =1
and e=>0. We also determine the limiting density

d, =limd,, (1.2)

t— 00

and obtain asymptotic formulas (as x — o) for each |4, .| and |4

t,e;x"
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If K is real quadratic, we write K =Q(]/“rr“1), where m is a square-free
positive integer. We then define

B,= {K=Q(]/E): exactly ¢ primes ramify in K/Q},
B,.,={KeB;:m<x},
B, ,={KeB, Ry=e},
B, ...,={KeB, ,: m=x},

. B el
d, ,=lim —%=, 1.3)
" X 00 IBt;x| (
&, ,=limd,,. (1.4)
t— 00

*; we shall determine

t, e

We shall derive an effective algorithm for computing d
d/

t,e;xl'

. ¢: and we shall obtain asymptotic formulas (as x — oo) for |B,. | and |B

Some numerical results for d, ., d., .. d; ., and d, , appear in Appendix II
and Appendix IV. Note that for imaginary quadratic fields, the 4-class rank e
=1 occurs most frequently, followed by e=0, e=2, e=3, .... For large t, 4, , is
approximately twice d, , (in fact d, , =2d o). Also for each 1,

d, o+d, ,+d, ,>099.

For real quadratic fields the 4-class rank e=0 occurs most frequently, followed
by e=1,e=2,e=3,.... For large t, d, , is approximately 1.5 times d; ; (in fact
d, o=15d,, ). Also for each ¢,

d, o+d,  +d, ,>0997.

Our formulas for the limiting densities are as follows: For imaginary
quadratic fields

277 [Ta-27%
d, =—2*L  for r=0,1,2,...; (L.5)

s F r

[Ta-27%

k=1

for real quadratic fields

o-rirt 1) 1—[ (1 _2-k)
dr — k=1

for r=0,1,2,.... (1.6)

r+1

[Ta-29TTa-24
k=1 k=1

Since the 4-class rank of a quadratic field is the same as the 2-rank of the
principal genus of the quadratic field, our formulas can be viewed as being in
perfect accordance with heuristic predictions of Cohen and Lenstra (made only
for primes p =z 3) on the p-class ranks of quadratic fields. (See [1] and [2].)
Although we have calculated density results for the 4-class ranks in the
narrow sense, the density results for the 4-class ranks in the usual sense are
close to our density results. In fact, for quadratic fields one can show that the
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4-class ranks in the narrow sense and in the usual sense can be different only if
the quadratic field is real, no ramified prime is congruent to 3 {(mod 4), and the
fundamental unit has norm +1. If d, , denotes the density for the 4-class rank
in the usual sense, then one can show that

oQ
Yod, —d;, J<27Y for 122
e=0

(For t=1,d, ,=d, ,.)So d, ,=d. .

We close this section by mentioning a few other papers that consider
densities of 4-class ranks of quadratic fields. [12] considers real quadratic fields
in which each ramified prime is congruent to 1 {mod 4) and obtains certain
densities for the 4-class ranks of these types of quadratic fields. In [10]

imaginary quadratic fields Q(]/ —m) with m=p,...p,_,q are considered, where
each prime p;=1 (mod 4) and the prime ¢ =3 (mod 4). Some density results are
obtained in terms of the density of the set of primes g having certain proper-
ties. In [6] the density d, , has been computed for t 2. [3] contains various
results and conjectures about the 2-class groups of quadratic fields, and it also
contains an extensive list of references.

Acknowledgements. The author thanks S.W. Graham for many helpful discussions. The author also
thanks J. Vaaler and the referee for helpful suggestions.

2. Preliminary results for imaginary quadratic fields

We let notations be as in Sect. 1. In this section we consider imaginary

quadratic fields K=Q(]/ —m), where m is a square-free positive integer. We let
pP1<p,<... be the odd prime numbers dividing m. If KeA,, then it is easy to
see that

m=p,...p, with an odd number of p;=3 (mod 4), or (2.1)
m=p,...p,_; with an even number of p,=3 (mod 4), or (2.2)
m=2p,...p,_,. (2.3)

If x is a positive real number, we let N, , denote the number of m<x satisfying
Eq. 2.1) (i=1,2,3). We let N_ be the number of square-free positive integers up
to x with ¢ prime factors. It is well known (see [7], Theorem 437) that

N 1 x(loglogx)~!
(-1 log x

(as x — o). (2.4)

Next we note that Ny, . ~3N, since the number of p;=3 (mod 4) that divide m
is assumed to be odd in this case. Also N, ,=0(N,) and N,, .=0(N,). So

1 1 x(loglogxy~!
T2(-1!  logx

|4, (as x— o0), (2.5)

and we may confine our attention to those m which satisfy Eq. (2.1).
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To each field K=Q(]/—m) with m satisfying Eq. (2.1), we associate a t X (¢
—1) matrix My =[a,;], where each q;,€F, is defined in the following way. Let
P=p, if p,=1 (mod 4), and let b= —p, if p,=3 (mod 4). Let P= —m/P, and let
(—) denote the Legendre symbol. Then

o) o

(=)= ’}’;‘ for 1<i<t and 1<j<t—1. (2.6)
(J> if i=j
D;

The matrix M% is the Rédei matrix (see [11]) written in additive notation.
Then the 4-class rank of K satisfies Ry=t—1—rank M%. (Remark: Actually
Rédei expresses the 4-class rank in terms of what we now call the null space of
MY, but of course dim (null space of My)=t—1—rank My.)

There are two other matrices closely related to M that we shall use. We
let My be the ¢ xt matrix whose entries are defined by Eq. (2.6), except with
1<j<t instead of 1<j<t—1. Using properties of Legendre symbols, we see
that the sum of the entries in each row of My is zero. So rank M =rank M.
By using quadratic reciprocity, we can also verify that the sum of the entries in
each column of M is zero. So we could omit any row and any column of M,
without changing the rank of the matrix. If p, is the largest of the primes =3
(mod 4) that divide m, we let My denote the (t—1)x{t—1) matrix obtained
from M by discarding the g-th row and g-th column of M. Then

Riy=t—1—-rank My=t—1—rank M =t —1—rank M}. 2.7

By using quadratic reciprocity and properties of Legendre symbols, we see that
the matrices My, MYy, and My are determined by the set of values

{(&) for 1__<__i<j§t},
D;

provided we know which primes are congruent to 1 (mod 4) and which primes
are congruent to 3 (mod 4).
Now let

S,.= {K=Q(1/——*m)eAt: m satisfies Eq. (2.1) with exactly [
primes p,=3 (mod 4)}, 1=£!/gt with [ odd.

Then for each positive real number x, let
S, 1 x=1KeS, 1 m=x},
and for 0r<t—1, let

S ={KeS, ,.,: rank M =r}.

t,Lrx
Then |4, I~ Y, IS, ...l (as x—>o0) and
1

|A

~

o]

|St, l,t—l»e;x' (aS x——)w)‘ (28)

t

t,e; x‘
1
i

o A
N

!
d
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Now we note that

AN 1 x(loglogx)—*
~{) 2t
S (l) (t—1)! log x

(as x> o0) (2.9)

t
where (l) is the binomial coefficient t!/I!(t —1)!, and the factor 2! comes

from the fact that each of the ¢ primes is congruent to 1 or 3 (mod 4). Next we
note that for 0<r<r—1,

|St,l,r;x|: Z(l) 5MK,r' (210)
Pt...PtEX
Here Z(” means that only those products p,...p,<x are considered where

1...PtEx

P
exactly [ of the p;=3 (mod 4). The symbol J,,_ is defined as follows: 6, =1
if rank Mg =r, and d,,, =0 if rank My #r, where K=Q(]/—p1...p,).

Now suppose we consider a fixed K1=Q(]/—p’1...p;)eS,,,;x. Let u;eF, be
defined by

(—1)"'J=(P—{) for 1<i<j<t.
If K=Q(]/—p1...p,)eSt 1 we will call K equivalent to K, if (&)=(—1)"'1
o P;
for 1<i<j<t and p,=p; (mod 4) for 1<i<t. Thus we can decompose S, . .
into equivalence classes of fields. From our earlier observations we know that
Mg =My, if K is equivalent to K.
Now we let 6(p,, pj)=1 if (ﬁ)z(—l)“u, and we let 8(p;, p)=0 if (&>
pi p;

#+{—1)"». Next we observe that the conditions p,...p,<x and p, <p,<...<p,
imply
pr=x! py<pySO/p) Y, P <P  SX/py o)
P  <DEX/PyoPyy-

If we let N(K,) denote the number of fields K in S, ,, . with K equivalent to
K,, then

N(K,))= Y Y Y,... Y Y, (2.11)
pi=xtt  pr<pa<Sx/ppttTH Pe-1<PeEX/p1..pe-1
p1 = p1(mod4) p2 = p2(mod4) pe = pe(mod 4)
j=1

where Y;= [] 6(p;, p;) for 2<j<t. Now it can be proved that
=1

i=

1

1 x(loglogx)~

~ -2
N(K,)~2 (t—1! log x

(as x — c0). (2.12)
An intuitive explanation of Formula (2.12) might proceed as follows. A factor
of 4 is introduced by each condition p,=p; (mod 4) for 1 <i<t and by each

condition (Pl)z(—l)"'J for 1<i<j<t Since there are (t*+1t)/2 such con-

i
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ditions, we get the factor 2-@*%2 The other factors in Formula (2.12) come
from Formula (2.4). The actual derivation of Formula (2.12) from Eq. (2.11)
uses the same types of calculations used in proving Lemma 3 in [5], and we
refer the reader to [5] for details. We remark that a significant part of the
derivation of Formula (2.12) is to show that

x(log logx)’“1>
N A L @13
p1- Pt<x
where x, ., is a nonprincipal quadratic Dirichlet character with modulus
1---P._y. The analogous calculations in [5] use results from [4], Chap. 20.
Alternately one may view Eq. (2.13) as an analog for a hyperbolic region of a
result of Heilbronn [8] for a rectangular region. This analogy is considered in
detail in [6] for the case t=2. Finally we observe that Formula (2.12) is valid
for any K €S, ,.,; ie, Formula (2.12) is valid for every equivalence class of
fields in S, . ..

Now to evaluate the right side of Eq. (2.10), we need to know how many
equivalence classes in §, ;. contain a field K, with rank M =r. We consider
any K, Q(]/ —Ppy...p)ES, ;.. with the usual ordering p1<p2< .<p;,. We
now reorder the pr1mes as follows: p; <p; <...<pj and p, <p, ,<...<p,
where p; =3 (mod 4) for 1<j</ and p; =1 (mod4) for I+1<j<t For suf-
ficiently large x we can choose K, Q(]/ —py...p/)ES, ..» Where

Pi<pi<...<pj,pi=3 (mod 4)if 1<j<L p/=1(mod4)if [+1<j<t, and (f’)i)
I

=(~1)y"1s for 1<I<J<t. Then My, is obtained from M, by certain row
exchanges and corresponding column exchanges, and hence rank Mg,
=rank M, . We associate the equivalence class of each field K, in S, ,. . with
the equivalence class of the corresponding field K, described above. We note

that for a given K,, there are (t> equivalence classes associated to the
equivalence class of K. l

Now we recall that rank My =rank M, , where My, is the matrix obtained
from My, omitting the /-th row and I-th column. Because of the congruence
conditions (mod 4) for each p;, we see that My =[a;] with a;#a; when
1gi<j<l—-1 and with a;;=a;; when [<i<t—1 and lfjft—l We let N(t
—1,1-1,r) denote the number of (t—1)x(t—1) matrices M=[a;], each
a;;€F,, with a;#+a; when 1<i<j<i-1, with a;;=a; when ILi<t—1 and
1£jst—1, and with rank M =r. Now from Eq. (2.10), Formula (2.12), and the
above discussion, we have

ISe 1l ~NE—1,1=1,r)- (;).2~<t2+z)/z

1 x(loglogx)y~*
t—-1)! log x

(as x — o0). (2.14)

Then from Formulas (2.5), (2.8), and (2.14), and from Eq. (1.1), we obtain the
following proposition.
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Proposition 2.1. Let A, ., A, ..., and d, , be defined as in Sect. 1, and let | be a
positive odd integer. Let N(t—1,1—1,r) be defined as above. Then

1 1 x(loglogxy~!
2 (t—1) logx

JA,. (as x— w0);

t 2
[A, o~ Z N(it—-1,1-1,t—1—¢)- (l)~2‘“ +0/2
1<ist
lodd

1 x(loglogx)~!

=) logx (@s x -~ o0);

t 2
d.= Y N@—11-1i-1—¢). (1> 1wz g
oad'

In Sect. 3 we shall derive an effective algorithm for computing N(t—1,1-1,
t—1—e). Although the calculations in Sect. 3 involve only elementary linear
algebra, Sect. 3 is somewhat lengthy, and the reader may wish to skip to Sect. 4
to see how the results from Sect. 3 will be used before the reader examines the
details in Sect. 3.

3. Algorithm for computing N(t—1,1—1,t—1—¢)

Throughout this section all matrices have entries in F,. To simplify notation
we let n=t—1, k=]—1,and r=t—1—e. Then n=0, 0<k<n with k even, and
0=r<n. We shall develop in this section an algorithm for computing N(n, k, r).
We recall that N(n, k, ) is the number of nx n matrices M =[aq,;], each g;€F,,
with the following properties: (1) a;;#a;; for 1<i<j<k; (2) a;=a; when k
+1=Zi<n and 1£j<n; (3) rank M =r. One method for determining N(n, k, r)
is to compute the rank of each matrix M having properties (1) and (2), and
then to count those M with property (3). However there are 2 *+"/2 matrices
M having properties (1) and (2), and hence this method is not feasible except
for very small n. What we want is an algorithm for computing N(, &, r) such
that the number of computations required grows like a polynomial in » rather
than exponentially with n.

We first consider the case when n=k. At this point we shall consider odd k
as well as even k. So M=[aq,;] is an nxn matrix with a;;#a, for all i+j. We
shall call such a matrix antisymmetric. We note that the transpose of M
satisfies MT=M +1+J, where I is the nxn identity matrix, and J is the nxn
matrix each of whose entries equals 1. Let HeF; be the vector with each
component equal to 1. Our first lemma is an easy exercise.

Lemma 3.1. If n is even, then rank(I+J)=n. If n is odd, then rank(I+J)=
n—1. /f

For any matrix A, we let ¢(4) denote the column space of A. Then we have
the following result.
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Lemma 3.2, Let r=rank M, where M is an nxn antisymmetric matrix. If n is
even, then

dim[c(M)+c(MT)]=n and dim[c(M)nc(MT)]=2r—n.
If nis odd, then
dim[e(M)+c(MT)]=zn—1 and dim[c(M)nc(MTY]L2r—n+1.

Proof. First we assume n is even. If VeF}, then by Lemma 3.1, there exists
WeF; such that (I+J)W=V. So

V=MW+M+I1+J)W=MW+M"Welc(M)+c(M")].
Hence [c(M)+c(MT)]=F2, and dim [c(M)+c(M")] =n. Then
dim[e(M)nc(MT)]=dim [e¢(M)]+dim [¢(MT)]~dim[c(M)+c(MT)]=2r—n.

When n is odd, the above arguments show Ve[c(M)+c(MT)] if Vec(I+J).
Since rank (/ +J)=n—1 when n is odd, then

dim[c(M)+c(MT)]=zn—1 and dim[c(M)nc(M")]<2r—n+1. J/

Remark. Since 2r—nz=0 (resp., 2r—n+1=0) when n is even (resp., odd) in
Lemma 3.2, we get the following corollary.

Corollary 3.3. Suppose M is an nxn antisymmetric matrix. If n is even, then
rank M =n/2. If n is odd, then rank M2 (n—1)/2. //

Now recall that HeF? is the vector with each component equal to 1. When
n is even, Lemma 3.2 implies that He[c(M)+c(MT)]. Furthermore since
dim[c(M)nc(MT)]=2r—n, there exist 22"~" pairs of vectors {V, W} with
Vec(M), Wee(M™), and H=V+ W. Then V+ H=Wec(M").

Now suppose M, =[b;], each b;eF,, is an (n+1)x(n+1) antisymmetric
matrix with b;;=a;; for [Si<n and 15j<n We may write

M Vv
Ml:[(V—i—H)T v]’ where VeF} and veF,. (3.1)
If we assume rank M =r, then rank M, =r, r+1, or r+2. Given M, we would
like to know how many of these matrices M, have rank M, =r, rank M, =r
+1, and rank M, =r+2. Suppose n is even. If rank M, =r, then Vec(M) and
(V+ H)Te(row space of M). But then {V, V+ H} must be one of the 22"~ " pairs
with Vec(M) and V+Hec(MT). Write V=MX and V+H=M"Y with
X, YeF3. For v=(V+H)" X, we have rank M, =r. If we wrote V=M(X +2Z)
with Ze(null space of M), then

V+H) (X +Z2)=(V+HT" X+(V+H) Z=(V+H X +(M"Y)" Z
=(V+H'X+Y"MZ=(V+H)"X.

Hence given V, there is only one choice of v such that rank M, =r. We have
proved the first part of the following proposition.
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Proposition 3.4. Let M be an n x n antisymmetric matrix with rank M =r, and let
M, be any (n+1)x(n+ 1) antisymmetric matrix satisfying Eq. (3.1). Assume n is
even. Of all possible M,
(i) 2%"~" have rank M, =r;
(i) 27+2—3.2%2""" have rank M, =r+1,
(iil) 2"t 4227+ 272 hape rank M, =1 +2.

Proof. We have already proved (i). To prove (it) we describe the ways in which
rank M, =r+1. First {V, V+H} could be one of the pairs with Vec(M) and V
+Hec(M7), but we could choose v#(V+H)' X when V=MX. This situation
gives 22"~" choices for M,. Next we could have Vec(M), V+Hé¢c(M7), and v
arbitrary. This situation gives (2"—22"~")-2 choices for M,. Finally we could
have Vé¢c(M), V+Hec(MT), and v arbitrary. This situation gives another (2"
—2%r=m).2 choices for M,. Since

22r—n+(2r__22r—n). 2+(2r__22r—n)‘ 2___2r+2__3 . 22r—n’

we have proved (ii). Finally (iii) follows from calculating 2"+'— (2% "4 27+2
—3.2%m,

We now suppose n is odd. When n=1, it is trivial to calculate N(1, 1,r). So
we suppose n=3. If dim[c(M)+c(MT)]=n, then Proposition 3.4 will also be
valid for M. However because n is odd, rank (I +J)=n—1, and it is possible
that dim[c(M)+c(MT)]=n—1. So we need to find the M for which dim[c(M)
+c(MT)]=n—1. Now recall that MT=M+1+J, and hence c(I+J)yc[c(M)
+e(MD)]. If dim[e(M)+c(MT)]=n~1, then since rank (I +J)=n—1, we must
have c(M)cc(I+J) and c(MT)=c(I +J). Since n is odd, we note that the sum
of the entries in each column of I+J is zero (in F,). Then c(M)cc(I+J)
implies that the sum of the entries in each column of M is zero, and ¢(M7)
cc(I+J) implies that the sum of the entries in each row of M is zero. So

_ M, Vo
M_[(Vo“'“Ho)T 00:I 32)

where M, is an (n—1)x(n—1) antisymmetric matrix with rank M,=r,
H,eF; ! is the vector with each component equal to 1, V=M H,, and v,
=(V,+H," H,.

Suppose we have a matrix M satisfying Eq. (3.2), and suppose M, satisfies
Eq. (3.1). From our previous discussion the sum of the entries in each row of
M is zero, and the sum of the entries in each column of M is zero. Note
however that the sum of the entries in H is 1 (in F,) since n is odd. The it is
impossible for the sum of the entries in both V and V+H to be zero. So we
cannot have both Vec(M) and V+ Hec(MT), and hence rank M, #r. If we now
replace 22"~" by 0 in the proof of Proposition 3.4, we obtain the following
result.

Proposition 3.5. Let M be an n x n antisymmetric matrix with rank M =r, and let
M, be any (n+1) x (n+1) antisymmetric matrix satisfying Eq. (3.1). Assume n is
odd and n23. If M does not satisfy Eq. (3.2), then of all possible M |,
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(i) 22"~ " have rank M, =r;
(i) 2"*2—3-2>""" have rank M, =r+1;
(iii) 2n+1+22r—n+1_2r+2 have rankM1=r+2_
If M does satisfy Eq. (3.2), then of all possible M,

(iv) 2"*? have rank M, =r+1;
(v) 2"*1—2"*2 have rank M =r+2. //

Remark. For n=1 and 2 and for 0<r<n, we can compute N(n, n, r) directly by
examining all antisymmetric 1 x1 and 2x2 matrixes. In fact, N(1,1,0)=1,
N(1,1,1)=1, N(2,2,0)=0, N(2,2,1)=6, N(2,2,2)=2. Then we can use Propo-
sition 3.4 and Proposition 3.5 to compute N(n,n,r) for n=3,4,5,..., and
0<r=n. Let n, be a positive integer. To compute N(n, n,r) for all 1 <n<n,
and 0 <r <n requires O(n3) calculations.

We may combine Propositions 3.4 and 3.5 as follows.

Proposition 3.6. Suppose M =[a;;] is an nxn antisymmetric matrix with n even
and rank M =r. Suppose M,=[b;] is an (n+2)x(n+2) antisymmetric matrix
with b;;=a;; when 1 <i<n and 1 < j<n. Then of all possible M,,

(i) 2%r—2n=1_-22r="=1 hgve rank M, =r;

(i) 3.23—"+215.24r—2n-143.22r=~1 pgpe rank M, =r+1;

(iif) 13-22r+2-21.23"~n+24.35.24—2n_22r=t hape rank M, =r+2;

(iv) 3.27+m+%-39.22r+24.21.237="+3 _15.2% 2"+ 2 hgpe rank M, =1+ 3;

(V) 22n+3_3 ‘2r+n+4+13 '22r+3_3 . 23r4n+5+24r72n+5 have rankM2=
r+4. //

We are now ready to determine N(n, k,r) when n>k. We start with the
case k=0. Then our nxn matrix M is symmetric. For our (n+1)x(n+1)
matrix M,, we write

M V
M1=[VT v]’ where VeF} and veF,. (3.3)
As before we let ¢(M) denote the column space of M. Since M is symmetric,
then Vec(M)<>Vec(M")<VTe(row space of M). Then proceeding as we did in
proving Proposition 3.4, we have the following result.

Proposition 3.7. Suppose M is an nxn symmetric matrix with rank M =r. Let
M, be any (n+1)x (n+1) symmetric matrix satisfying Eq. (3.3). Then among all
possible M, (i) 2" have rank M, =r; (ii) 2" have rank M | =r+1; (iii) 2"+! —2+!
have rank M, =r+2. //

Remark. For other approaches to computing the number of symmetric nxn
matrices with a given rank, see [10] and [12].

We now want to compute N(n, k,r) with k even and k=2. As described in
the remark following Proposition 3.5, we can compute N (k, k, r). Now for fixed
k we shall describe an algorithm for computing N(n, k,r) for n>k. So we
consider an n x n matrix of the form

M———[A B] (3.4)
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where 4 is a k x k antisymmetric matrix, B is a k x (n—k) matrix, and C is an

(n—k) x (n—k) symmetric matrix. Let M, be an (n+1)x (n+1) matrix of the
form

MV
Mlz[VT v]’ where VeF; and veF,. (3.5)

Alternately we may write

A B v
M,=|B" C V,|, where V,eF% V,eF:~* and veF,. (3.6)
vl vl owe
We let
B
D= i
[c] )
and
B V
D,=|Cc w| (3.8)
v ow

The following lemma is analogous to Lemma 3.2, and we omit the proof.

Lemma 3.8. Let r=rank M and s=rank D in Egs. (3.4) and (3.7). Assume k is
even. Then

dim[e(M)+c(MT]=k+s and dim[c(M)ne(M")]=2r—k—s. //

We note that dim[c(M)nc(MT)]=rank D=s. So 2r—k—s=s, and hence
0=s=<r—(k/2). Also r<k+s, and hence r—k<s. Also s<n—k. Thus we have
the following bounds on s.

Lemma 3.9. Max(0,r—k)<s<min(r—(k/2), n—k). //

Now given M satislying Eq. (3.4) with rank M =r, we want to know how
many M, satisfying Eq. (3.5) have rank M, =v, rank M, =r+1, and rank M, =r
+2. Our next proposition is analogous to Proposition 3.4, and we omit the
proof.

Proposition 3.10. Suppose k=2 is an even integer. Suppose M, M,, D, and D, are
given by Egs. (3.4) through (3.8). Let r=rank M and s=rank D. Of all possible
M, and D,,
(i) 2° have rank M, =r and rank D, =s;

(i) 227=*=*—2° have rank M, =r and rank D =s+1;

(iii) 2r+2—3.22""%=% have rank M, =r+1 and rank D, =s+1;

(v) 2" 1 =255+ hagve rank M, =r+2 and rank D =s+2;

(v) 2kts+lyp2r—k—s+1_2r+2 pave rank M, =r+2 and rank D, =s+1. //

Remark. Let k be a fixed even positive integer. Let N(n, k,r, s) be the number of
matrices M of the form specified by Eq. (3.4) such that rank M =r and rank D
=5, where D is given by Eq. (3.7). We can use Propositions 3.4 and 3.5 to
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compute N(k, k,r,0) and then use Proposition 3.10 to compute N(n,k,r,s) for n
=k+1,k+2,.... Using Lemma 3.9, we then get

min(r—(k/2), n—k)
N, k,r)= > N(n, k, 7, s).

s=max(0,r—-k)
Let n, be a positive integer. The computation of N(n, k,r,s) for all 1<n=<n,,

0<k<n with k even, 0<r<n, and max(0,r—k)<s<min(r—(k/2),n—k) re-
quires at most O(n}) calculations.

Remark. Although we have assumed k is even in Proposition 3.10, one can
obtain results for k odd by some modifications of our arguments. In particular
suppose k is even and we replace VT by (V,+H,)T in Eq. (3.6), where H,eF% is
the vector with each component equal to 1. Then by interchanging rows k+ 1
and n+1 and by interchanging columns k+1 and n+1, we see that the matrix
M, will have a (k+1)x(k+1) antisymmetric submatrix. By going through
calculations similar to those we have performed in proving Proposition 3.10,
we eventually see that N(n+1,k+1,r)=N(n+1,k,r) for 0<r<n+1 when k is
even. Since we know how to compute N(n+1,k ) with k even, we can
compute N(n+1,k+1,r) with k+1 odd.

4. Calculation of d, , and d, ,

Proposition 2.1 and our algorithms in Sect.3 for computing N(t—1,1—1,7)
provide us with algorithms for computing 4, , for t=1,2,..., and e=0,1,2,....
To investigate the behavior of d, ,, we first rewrite d, , from Proposition 2.1 as

t,e?
follows.
de= 2 ¢ ifipe @.1)
1<ist
lodd
where
t
= (1) e (42)
and
fire=N{i—11-11t—1—¢)- 27112 (4.3)
We observe that
¢ =1 (4.4)
18l
fodd

Now we let N(t—1,/—1) denote the number of (t—1)x(t—1) matrices M
=[a,;], each q;;€F,, with a;;#a;;, when 12i<j<I—1, and with a;;=a; when
I<i<t—1 and 1<j<t—1. Then it is easy to see that N(t—1,1—1)=2/¢~1/2
Thus f,,, in Eq. (4.3) represents the probability that a randomly chosen
matrix M of the specified form has rank M=t—1—e.

We now use our results from Sect.3 to generate denumerable Markov
processes for computing the quantities f,,, for t=1,2,3,...; [=1,3,5,...; e
=0,1,2,.... We refer the reader to [9] for properties of denumerable Markov
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processes. To be consistent with the notation of [9], we shall write our
matrices on the right in our Markov processes. First we let

u,;=f..; fort=1,35.. and i=012, ...

We shall think of the values of i as the states of a Markov process and the
values of t as discrete time points. (Of course i actually represents values of the
4-class ranks of imaginary quadratic fields, and ¢ represents the number of
ramified primes in the imaginary quadratic fields.) If we divide each term in (i)
through (v) of Proposition 3.6 by 22"+3 (Note: 22"*3 is the sum of the terms in
(i) through (v) of Proposition 3.6), and if we let n=t—1 and r=r—1—1i, we get
Markov Process C specified in Appendix . In Markov Process C, j corre-
sponds to (t+2)—1—rank M,. Markov Process C is closely related to another
Markov process, which we have called Markov Process D in Appendix 1. One

can check that
&=0p0p+27"Q¢ (4.5)
where Q’C———[q’ij] with i=0,1,2,...;j=0,1,2,...;

27 g

C 3273 j=itd

B\ —o-s-2t  joig
0 otherwise.

Before we specify our next Markov process, we recall from Sect. 3 that
N(n, k,r,s) is the number of matrices M of the form specified in Eq. (3.4) with
rank M =r and rank D =s, where D is given by Eq. (3.7). We define

Crew=N{—11-11t—1—et—1-w)-271¢- 12 (4.6)

Using Lemma 3.9 with n=t—1, k=[—1, r=t—1—e, and s=tr—1—w, we see
that

max(0, e—(I—1)/2)Sw=< min(e, t —1).
Then

f;,l.?zzgt,l,e.w' (47)

We let [ be a fixed odd positive integer. For t=1, [+1,14+2,...;i=0,1,2,...;
and w;=0,1,...,i; we define

, _{g,’l, iw, i max(0,i—(—1)/2)<w,Smin(i,t—1) 48)

LW T ) otherwise.

If we divide each term in (i) through (v) of Proposition 3.10 by 2"*! (Note: The
sum of the terms in (i) through (v) of Proposition 3.10 is 2"**), and if we let n
=t—1,k=1-1,r=t—1—1i, and s=t—1I—w,, then we get Markov Process E, in
Appendix 1. In Markov Process E,, j corresponds to (t+1)—1—rank M, and w;
corresponds to (¢ +1)—[—rank D, . Note that Markov Process E, is initialized by
using the vector U, from Markov Process C. This initialization forces v, ; .,
=0 if w; does not satisfy max(0,i—(I—1)/2)<w;<min(j, ¢t —I). Markov Process
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E, is closely related to another Markov process, which we have called Markov
Process F,. In fact

QE,=QF,+2_I 0%, (4.9)

where Q¢ =[4(, w.). (i, w,)] with i=0,1,2,...; j=0,1,2,...;
0Sw,Si; 0w, J;

=277 if j=i+l,  w;=w,
,ng,w')y(j’wj)= 2= if j=i+1, wj:wi+1
0 otherwise.

Although the Markov Processes C and E, are the ones that arise naturally
in our problem, the Markov Processes D and F, are easier to analyze, and we
shall approximate C and E, by D and F,. Before analyzing these processes, we
introduce one more notation. If a vector X =(x,, x,, x,,...) with each x; a real
number, we define || X| =|x,|+|x,|+]|x,|+.... Now in the terminology of [9],
Markov Process D is a recurrent Markov chain which is noncyclic and er-
godic. So there is an invariant probability vector Y=(y,, ¥, V3,.-.); 1., YO,
=Y; and lim | X(Qp)— Y| =0 for every probability vector X =(xq, x;,X;,...).

t— 00
In fact one can verify by induction that the components of the invariant

probability vector Y satisfy

=21A2i(1_2—i)'2yi_] for 1:1,2,3,
So

Y=o ! (1,2,4/9,.. [=] (1—2- ) (4.10)

i -1 00
where a—1:[1+2+4/9+...+2—*'2 I (1—2~"')~2+...] = T] =2,

m=1

cf. [7], Theorem 351. Numerically o~ !~ 0.288788095.

Lemma 4.1. Let U, (for t=1,3,5,...) be specified by Markov Process C, and let
Y be defined by Eq. (4.10). Then lim | U,— Y| =0.
t—o00

Proof. Let ¢>0 be given. We choose a positive odd integer t, so that 27" <g/4.
From our previous discussion we know that lim |U, (@) — Y|[=0. Now from

t— o0
the definition of Markov Process C and from Eq. (4.5), U, ,,=U, (Qp)’+ X,

where X ,=2""U, Q, and hence | X,| £27". Next

Ut0+4= Uto+ Z(QD)2 +2A!0A2 Uto+2 QIC= Uto(QD)4 +X4,

where X ,=X,(Q,)*+27°"2U,, ,Qc. Note that |X,| <2742~ In gen-
eral

Ut0+2i= (JIO(QD)Zi+X2i
with

[X,, €2 42 =24 J2-fo-2it2cp=to%l  for j=1,23,....
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Hence U, , ,;— (QD)2i||<2“°“<8/2 for i=1,2,3,.... Now choose I so
that [|U,, (Qp)* — || <egf2 for all iz 1. Then for iz 1, |U, ,,;— Y| <&, and hence
the lemma is proved. //

Lemma 4.2. Let |V, ( for t=1, 1+1, 14+2,... ) be specified by Markov Process E,,
and let \V/ ., ( for m=0,1,2,...) be the vector with components

i
Wiim = Z (Wrpm owy)  SJor i=0,1,2,....

w.=0

Let Y be given by Eq. (4.10). Then for each £>0, there exists a positive integer
T (depending on &) such that for 2T,

| Viom=Yi<e/2 if 0Sm=4l

Proof. Using Lemma 4.1 and the fact that Y is invariant under Q,, we can
choose T large enough so that ||U(Q,)"— Y| <e/4 and [-27'<¢g/32 for all =T
and m=0. For [>T, we consider ,V, in Markov Process E,. We have

1Vl+1lelQE,:le(QFl'*‘z_ng,)
by Eq. (4.9). Let X, =2""V,Qf,. Then
V1= VQp+ X, with X, <2711,

Next 1V1+2=1V1+1(QF1+2AIQ%,)21VI(QF)2+X2 with X, =X, QF1+2711V1+1Q’E:1‘
Note that | X,|| <271 42-1+1=2.2-1+1 In general

Vem= Q)"+ X, 411

with || X, [|<m-27"*" for m>0. Now we note that because v,  ,,,=0 if w;+0
(see initialization of Markov Process E)), then V(Qp)" has (i, w) component
equal to zero if w; +0 (see definition of Q, in Markov Process F). Furthermore
we note that ,q;; o, (. o) I Markov Process F, equals gq;; in Markov Process D
for all i=0 and j=0. We let |V}, be defined as in the statement of Lemma 4.2;

we let V], ,, be the vector w1th components

Wy m i = Z (IVZ(QFI)m)(i. w.) for i=0,1,2,...;
w, =0

and we let X, be the vector with components

Xpi= 2 (X wy for i=0,1,2,....

we=10

Then from Eq. (4.11), we have |V .=V, +X, with [ X, |<m 27" for

mz=0. Furthermore our above discussion shows that v, ;=(Vi(Qr)"); o)
=U(Qp)"):- S
Viem=Ul@p)" + X,
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Hence for [>T and 0<m <41, we have
LV m= YIS NUQp)" = Y + [ Xl <e/d+e/d=¢/2. [/

Remark From Eqgs. (4.7) and (4 8) and from the definition of |}
i=hofort=L1+1,1+2,...,and i=0,1,2, ..

Theorem 4.3. Let d, , be defined by Eq. (1.1), and let Y be given by Eq. (4.10).
Let G,=(d, ¢,d, 1, d, ;,...). Then

we see that

+m>

lim [G,— Y| =0.

100

Proof. Let ¢>0 be given. From Eq. (4.1) and the remark following Lemma 4.2,

we have
Gr Z ¢ V) (4.12)

i
d

o II/\
°-||A

Next let W, (for t=1) be the random variable which takes on the value [ (for
1<I=<t, lodd) with probability c,,. Then one can check that the expected

value of W, is t/2 and the standard deviation of W, is 1/t/2 For large t, W, is

approximately normally distributed. Since the standard deviation ]/ t/2 is much
smaller than the expected value /2 for large ¢, then if

h,(j)= Z ¢,,; (the cumulative probability for W), 4.13)

1
d

°© W\
Ca-!l/\

we can choose ¢ sufficiently large so that k,(t/4) is arbitrarily small. We choose
t, so that h,(t/4)<e/4 for all t=t,. Now we write G,=G,+ G}, where

G= Y c,(V) and G/= 3} ¢ (W)

121=1/4 ta<l<t
lodd

lTodd

We let Y'=h,(t/4)-Y and Y"'=(Y-Y"). Let Ty=max(t,,47T), where T is speci-
fied in Lemma 4.2. Then for 12 T, we have

1G,~ Y| =[G = Y| +IIG/ = Y"|
with
lIGQ—Y/Ilé Y VI 4R/ Y <e/d+e/d=¢/2,
Ist/4
odd

o~ V\

and
Gy =YY"= Y, e W/ —Yli<e2

ﬁ4<l<t
lodd

by Eqgs. (4.4) and (4.13) and by Lemma 4.2. So
IG,—Y|<e forall t=T,,
and the proof is complete. //

Numerical values of d, , for small t and e and also numerical values for the
limiting density d,, , appear in Appendix IL
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5. Calculations for the real quadratic case

We let notations be as in Sect. 1. In this section we shall present the results for
the real quadratic case and discuss the similarities and differences of the real
quadratic case and the imaginary quadratic case. For a real quadratic field K
we write K=Q(l/m), where m i1s a square-free positive integer. We let
p<p,<... be the odd prime numbers dividing m. Analogous to Egs. (2.1),
(2.2), and (2.3), we have

m=p, ... p, with an even number of p,=3(mod 4), or 5.0
m=p,...p,_; with an odd number of p,=3 (mod 4), or (5.2)
m=2p ...p, ;- (5.3)

Analogous to Formula (2.5) we have
-1

1 1  x(loglogx)
|By, o~
2 (-1 log x

(as x> o0), (5.4)

and we may confine our attention to those m which satisfy Eq. (5.1). Next we
associate to each K:Q(]/m) the tx(t—1) matrix Mg=[a;], each q;,€F,,

where
P
(4) if it
(— 1)y = Pi for i<i<t and 1Zj<t—1. 5.5)

P
(%) i
Di

Here P=p; if p;=1(mod4); Pb= —p; if p;=3(mod4); and Ii:m/]?. We let M
be the t xt matrix whose entries are defined by Eq. (5.5), except with 1< <t
instead of 1<j<tr—1. As in the imaginary quadratic case the sum of the
entries in each row of M is zero. So rank M =rank M}, and we could omit
any column of M, without changing the rank of the matrix. However in
contrast to the imaginary quadratic case, the sum of the entries in each column
of M, is not always zero in the real quadratic case. In fact for real K one can
check that the sum of the entries in the j-th column of M, equals zero if
p;=1(mod 4) but equals one if p;=3(mod4). Now we let p, denote the largest
of the primes =3(mod4) that dmde m. (If no prime =3(mod4) divides m, we
take p,=p,.) Then we let M be the ¢ x (¢ —1) matrix obtained from M by first
discarding the g-th column of My and then replacing the g-th row of the
resulting matrix by the sum of the rows of that matrix. If Ry is the 4-class rank
of K (in the narrow sense), then the analog of Eq. (2.7) is

Ry=t—1—rank My=t—1—rank M =t—1—rank M. (5.6)

Next we let §, ;= {K=Q(]/a)eB,: m satisfies Eq. (5.1) with exactly ! primes
p;=3(mod 4)}, 0<I<t with [ even. Then we can proceed to obtain formulas
analogous to Formulas (2.8) through (2.12), except with B instead of 4 and
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with [ taking on the even values in the interval 0<I<t. So assume we have
already obtained formulas analogous to Formulas (2.8) through (2.12), and
assume we have real fields K, and K, analogous to the K, and K, in the
imaginary quadratic case. Now we have reached a point where the difference
between the real and imaginary quadratic cases becomes significant for sub-
sequent calculations. The matrix My, in the real quadratic case is a tx(t—1)
matrix instead of a (t—1) x (t—1) matrix and has the following properties when
122: Mg,=[a;;] with a;;#a}; when 1<i<jsi—1;a;=1for 1<j<I-1 and qj;
=0 for ISj<st—1; ay,,;=a); when ISi<t—1 and 1<j=1-1; and aj, 4;
=a;,); when ISist—1and ISjst—1.

Now by applying certain row exchanges to My, and then taking the
transpose of the resulting matrix, we get a (t — 1) x ¢t matrix

— [H,_ |
M=[ '*I:M] (5.7)
0,
where H,_,cF,~' is the vector with each component equal to 1; 0, , is the

zero vector in F5™!; and

M=[a;], -each g;eF,, 1=ist—1, 15j=st-1, (5.8)

with g;;#a; when 1=i<j<I—1, and with a;;=a; when [Si<t—1 and
1<]<t—1 Because of the way M was obtamed from Mg,, we have rank M
=rank Mg . For 122, we now let N'(t—1,/—1,r) denote the number of mat-
rices M of the form given by Eq. (5.7) with M satisfying Eq. (5.8) and such that
rank M=r. When [=0, the appropriate (t—1)xt¢ matrix M has as its first
column the zero vector 0, ; in Fi™', and the (t—1)x(t—1) matrix M is
symmetric. We then let N'(t—1, —1,r) denote the number of these matrices M
with rank M =r. We can then obtain a result analogous to Proposition 2.1.

Proposition 5.1. Let B, ,, B, ..., and d; , be defined as in Sect. 1, and let | be a
nonnegative even integer. Let N'(t—1,1—1,r) be defined as above. Then

t—1

1 1 Xx(loglogx)

B, |~=
B ~3 0211 T logx (as x~ o),
IBt,e;x|~ Z N/(t_l,l— l_e) () 2 t2+1)/2
e
1 x(loglogx)~!
t—D! log x (as x—o0),
d,= ¥ N@-1,I-11 1_8).(> at-wson

Our next goal is to develop an algorithm for computing N'(t—1,1—-1,t—1
—e). To simplify notation, we let n=t—1, k=[—1, and r=t—1—e. First we
suppose /=0, and hence we want to compute N'(n, —1,r). Since M=[0, M]
with M symmetric, we obtain the following result by using Proposition 3.7.
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Proposition 5.2. Let M=[0,M] be an nx(n+1) matrix with 0, the zero vector
in ¥3, with M=[a;;] an nxn symmetric matrix, and with rank M =r. Suppose
A—/I_1=[0,,+1M1] is an (n+1)x(n+2) matrix with 0,, , the zero vector in Fj*+!
and with M =[b;;] an (n+1)x(n+1) symmetric matrix such that b;=a;; for
1<isn and 1<j<n. Then among all such M,, (i) 2" have rank M, =r; (ii) 2"
have rank M, =r+1; and (iii) 2"** —2"** have rank M, =r+2. //

We may now suppose /22, and we want to develop algorithms for comput-
ing N'(n,k,r). As in the imaginary quadratic case, we next suppose n=k, and
we shall consider both odd and even k. Now Eq. (5.7) becomes

M=[H,M] (5.9)

where H €F} is the vector with each component equal to 1, and M is an nxn
antisymmetric matrix.

We let S, (resp., S,) be the subset of F; consisting of all vectors YeF} with
the sum of the components of Y equal to O (resp., 1). Note that S, is a
subspace of ¥}, and dimS,=n—1. Also note that if Y, is one vector in §,,
then S, ={Y,+Y: YeS,}.

Lemma 5.3. Let ¢(M) denote the column space of M, and let c,(MT)={M"Y:
YeS,}. Assume rank M =r. Then dim c,(MT)=r—1. If n is odd, then

dim[c(M)+coMT)]=n and dim{c(M)nc,(MT)]=2r—n—1.
If n is even, then
dim[c(M)+c,(MT)]Zn—1 and dim[{c(M)nc,(MT)]<2r—n.

Proof. First we claim that dim ¢y (M")=r—1. For suppose YeS,. Then Y' M
=[0Y"M]=[0(M"Y)"]. Let Z={YTM: YeS,}. Then dimc,(MT)=dimZ.
Since rank M=r and dim So=n—1, then dim Z must be r or r—1. However
each vector in Z has first component equal to 0, whereas each row of M has
first component equal to 1. So in fact dim ¢,(MT)=dim Z =r—1. Next we shall
show that dim [c¢(M)+co(MT)]=n—1. Since M is antisymmetric, then MT=M
+I+J, where I is the n xn identity matrix, and J is the n x n matrix each of
whose entries is 1. Let WeS,. Then W=(I+J)W=MW +(M +1+J) We[c(M)
+co(MN]. So Syclc(M)+cy(MT)], and hence dim[c(M)+co(MT)]zn—1.
Now suppose n is odd. Then H, ¢S, but H,e[c(M)+c,(MT)]. So dim[c(M)
+co(MT)]=n if n is odd. Hence when n is odd,

dim [c(M)ncy(MT)]=rank M +dim c¢o(MT)—dim [c(M) +co(MT)]
=r+(r—1)—n=2r—n-1
When n is even, one obtains dim[c(M)nco(MT)]1€2r—n. //

Since 2r—n—120 (resp., 2r—n=0) when n is odd (resp., even) in Lem-
ma 5.3, we get the following corollary.

Corollary 5.4. Suppose M is given by Eq. (5.9) with M an nxn antisymmetric
matrix. If n is odd, then rank M =(n+1)/2. If n is even, then rank M Zn/2. //
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Now let Y, be one vector in S, which will be fixed throughout this
discussion. Let ¢, (MT)={M7Y:YeS,}={M"Y, +M" Y,: Y,eS,}. When n is
odd, Lemma 5.3 implies that H,+M" Y,e[c(M)+c,(M7)]. Furthermore since
dim[c(M)nc,(M™)]=2r—n—1, then there exist 2"~ "~!' pairs of vectors
{V,W} with Vec(M), Wec,(M"), and H,+MTY =V+W. Then V+H,
=MTY, + Wec,(M").

Now suppose M, is an (n+1) x (n +2) matrix of the form

_rH, MV
M1=[1 VT v] (5.10)

where H, and M are given by Eq. (5.9), VeF;, and veF,. If we assume rank M
=r, where M is given by Eq. (5.9), then rank M, =r, r+1, or r+2. Given M,
we want to know how many M, have rank M, =r, rank M, =r+1, and rank M,
=r+2. Suppose n is odd. If rank M, =r, then Vec(M) and [1(V+ H,) " |e(row
space of M). But then V+H,ec,(M"), and hence {V, V+ H,} must be one of
the 227~"=! pairs with Vec(M) and V+ H, ec,(M"). Write V=MX and V+H,
=M"Y with XeF;*! and YeS,. For v=[1(V+ H,)"] X, we have rank M, =r.
If we wrote V=M (X + X’) with X'e(null space of M), then

V+H)1IX+X)=[1(V+H) 1 X+[1(V+H)" X'
=[1(V+H) 1 X+ (M) X'
=[1(V+H) 1 X+[1Y™M]X'
=[1(V+H)1X+Y" [HM]X'=[L(V+H)"]X.

So given V, there is only one choice of v such that rank M,=r. We have
proved the first part of the following proposition.

Proposition 5.5. Let M be given by Eq. (59) with rank M=r. Let M, be any
matrix satisfying Eq. (5.10). Assume n is odd. Of all possible M,

(i) 2" ' have rank M, =r;
(ii) 3-2"=3-2%""""! have rank M, =r+1;
(iil) 2"+ *+227-"—3.2" have rank M, =r +2.

Proof. (i) has already been proved. To prove (ii), we describe the ways in which
rank M, =r+1. First {V, V+ H,} could be one of the pairs with Vec(M) and V
+H,ec,(M7), but we could choose v+[1(V+H)"1X when V=MX. This
situation gives 2"~ "~' choices for M,. Next we could choose Vec(M), V
+ H, ¢c,(M7), and v arbitrary. This situation gives (2"—22"""~1).2 choices for
M,. Finally we could choose Vé¢c(M), V+H,ec,(MT), and v arbitrary. This
situation gives (2"~ ! —22""""1).2 choices forM Smce

22rAn“1+(2r_22r*nvl)_2+(2rA1_22r‘n41)'2___3_2r_3.22r-—n—1’

we have proved (ii). Finally (iii) follows from calculating 2"*!— (2"~ 143.2"
_3_22r—n~1)' //

We now suppose n is even. If dim [e(M)+c,(MT)]=n, then Proposition 55
will be valid for M. However because n is even, it is possible that dim [¢(M)
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+¢o(MT)]=n—1. So we need to find the M for which dim [c(M)+c,(MT)]=n
—1. From the proof of Lemma 5.3, we recall that S,<[c(M)+c,(MT)]. Since
dimS,=n—1, then we must have [c(M)+c,(MT)]=S,. So the sum of the
entries in each column of M (and hence of M) is 0. Then the sum of the entries
in each column of (M +T1+J) equals 1 since n is even. Since M =M +1+J,
then the sum of the entries in each row of M is 1, and hence the sum of the
entires in each row of M is 0. So

M:[Hn—l MO VO]

5.11
1 (Vo+H,_ )" v, 11

where H,,‘_IEFQ‘1 has each component equal to 1; M, is an (n—1)x(n—1)
antisymmetric matrix; Vo=M,H,, where M,=[H, ,M,]; and v,=1+(¥,
+H, )"H,_,. We can now proceed in a straightforward manner to obtain
the following analogs of Propositions 3.5 and 3.6.

Proposition 5.6. Let M be given by Eq. (5.9) with rank M=r. Let M, be any
matrix satisfying Eq. (5.10). Assume n is even. If M does not satisfy Eq. (5.11),
then of all possible M,

(i) 2" ! have rank M, =r;
(i) 3-27—3-2%""""' have rank M, =r+1;
(iil) 27+ 4227~ "—3.2" have rank M, =r+2.
If M does satisfy Eq. (5.11) then of all possible M,,
(iv) 3-2" have rank M, =r+1;
(v) 2"*'—3.2" have rank M, =r+2. //

Remark. We can directly compute N'(1,1,1)=2 and N’(1,1,0)=0. Then we
can use Propositions 5.5 and 5.6 to compute N'(n, n,r) for n=2,3,4, ..., and
0<r=n. By combining Propositions 5.5 and 5.6, we get the following result.

Proposition 5.7. Suppose M is given by Eq. (5.9) with n odd and rank M =r.
Write M =[a;;] for 1 Si<nand 1 <j<n in Eq. (59). Suppose M,=[H,, ,M,] is
an (n+2)x (n+3) matrix with the following properties: H,, ,eF3*? is the vector
with each component equal to 1; M,=[b;] is an (n+2)x (n+2) antisymmetric
matrix; and b;;=a,; for L Sisn and 1< j=<n. Then of all possible M,

(i) 24273 22r-"=2 hape rank M, =r;

(i) 9.23 "1 15.2% " 2n=343.227 72 hape rank M, =r+1;

(iil) 7.22+2-63.23 =1 4 35. 04— 2n=2_22r=n-1 hape rank M, =r+2;

(iv) 9-2r+n+2_21.22r+24.63.23 " _15.2% 2" hgpe rank M, =r+3;

(v) 22m+3 Q. Qram+2 4 7. 2r+3 Q. p3rmnt 24 p4r=2n43 have  rank M, =
r+4. //

We now want to compute N'(n, k, r) with k odd. As described in the remark
following Proposition 5.6, we can compute N'(k, k,r). Now for fixed k we shall
describe an algorithm for computing N'(n, k, r) for n>k. So we consider an n
X (n+1) matrix M with rank M =r and with

_ i H, 4 B]
= | = 5.12
M [Onfk : M] [On——k BT C -12)
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where H,eF% has each component equal to 1; 0,_, is the zero vector in F4~%;
A is a kx k antisymmetric matrix; B is a k x (n—k) matrix; and C is an (n—k)
x (n—k) symmetric matrix. We let M, be an (n+ 1) x (n+2) matrix of the form

H 4 B V,
M,=|o,_, B* C v, (5.13)
o WV v

where V,eF%, V,eF;7% and veF,. We let

B
Dz[c] (5.14)
and
B V,
D=l Cc 1| (5.15)
|

For each matrix L, we let c¢(L) denote the column space of L. For those
matrices L with h columns, where h>k, we let ¢, (L)={LY: YeF} and the sum
of the first k components of Y equals 0}. We can then obtain the following
analogs of Lemma 3.8, Lemma 3.9, and Proposition 3.10. We leave the details
to the reader.

Lemma 5.8. Suppose rank M =r and rank D=s in Egs. (5.12) and (5.14). Assume
k is odd. Then

dim[c(M)+cy(MT)]=k+s and dim[c(M)ncyp(MT)]=2r—k—-s—1. //
Lemma 5.9. Max (0, r—k)<s<min(r—(k+1)/2,n—k). //

Proposition 5.10. Suppose k21 is an odd integer. Suppose M, M,, D, and D, are
given by Egs. (5.12) through (5.15). Let r=rank M and s=rank D. Of all possible
M, and D,,

(i) 2° have rank M, =r and rank D, =s;
(ii) 227 *==1 2% have rank M, =r and rank D, =s+1,
(iii) 3-2"—3.2% %51 hgpe rank M, =r+1 and rank D, =s+1;
(iv) 2+t —2k+s+1 phape rank M, =r+2 and rank D, =s+2;
(v) 2k+s+1y p2r—k=s_3.9" hgpe rank M, =r+2 and rank D, =s+1. //

Remark. Let k=1 be a fixed odd integer. Let N'(n, k, r, s) denote the number of
matrices M of the form specified by Eq. (5.12) such that rank M =r and rank D
=5, where D is given by Eq. (5.14). We can use Propositions 5.5 and 5.6 to
compute N'(k, k, r,0) and then use Proposition 5.10 to compute N’'(n, k, r, s) for
n=k+1, k+2,.... Then using Lemma 5.9, we get

min(r—(k+1)/2, n—k)
N'(n k,r)= Y N'(n, k, 1, 5).
s=max (0, r—k)
Also by slight modifications in our arguments, one can show that N'(n+1, k
+1,r)=N(@n+1,kr)for 0Lr<n+1 when k is odd.
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We are now ready to calculate d,

. and d_ .. Analogous to Eq. (41)
through (4.4), we have

d.= Y i fin. (5.16)
0=t
leven
t —(t-1)
=\, 2 , (5.17)
Jone=N{{-11-1,t—1—¢). 271012 (5.18)
2 ¢ =L (5.19)
oslst

leven

Since we have an algorithm for computing N'(t—1,1—1,t—1—e¢), we can
compute d; , for t=1,2,3,..., and e=0, 1,2, .... As in the computation of d, ,
in Sect. 4, we actually perform the calculations by using denumerable Markov
processes for computing the quantities f;, ., and from these Markov processes
we then determine d, .. Appendix III lists the Markov processes that are
analogous to the Markov processes in Appendix 1. Since the procedures we use
now are very similar to those we used in Sect. 4, we skip directly to our final
result, which is the analog of Theorem 4.3, and we let the reader fill in the
details.

Theorem 5.11. Let d; , be defined by Eq. (1.3). Let

Y=p"" (1, 2/3,4/63,...,271+D 1—[ 271 =2mm >,

where
i -1
/3‘1=[1+2/3+4/63+...+2‘“"+“ H (1-—2"")'1(1—2""“1)‘1—1-...]

m=1
= (-2 =24"".
m=2

Let G,=(d, o, d, ;. d, 5, ...). Then lim |G, Y'|=0. //

t— 00

Remark. Numerically f~!~0.577576190.

Appendix IV contains numerical values of d; , for small ¢t and e and also
numerical values for the limiting density 4, ,

Appendix I. Markov processes for imaginary quadratic case

Markov process C: States u, ; with t=1,3,5,...,and i=0,1,2, ...
Let U=(u, ¢, 4, ,,...). Then U, ,=U, 0%, where

t+2
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Q¥ =[q¥ with i=0,1,2,...; j=0,1,2,...;

ij
1-3.207413.2-213.02-3i 4 92-4i if j=i-2
3.2171-39. 2712 01 -3 5.7 1% if j=i—1
o 13.2-1-2i.21.2-1-31435.9-3-4i_9-2-2i- if j=i
4 = 3.2-1-3i 1§, 9~4-4iy 3, 9-3-2i-t if j=i+1
9-4-di_g-3-2i if j=i+2
0 otherwise.

Initial vector: U; =(1,0,0, ...).

Markov process D: States y, ; with t=1,2,3, ..., and i=0,1,2, ...
Let Y,=(y, o, V1> ---) Then ¥, (=Y, Qp, where
Op=[g;] with i=0,1,2,...; j=0,12,..;
14272001t if j=i—1
21-i3.2-1-28 4f j—y
271 if j=i+1

0 otherwise.

q:i;=

Initial vector: Y, =(1,0,0, ...).

Markov process E, (1=1,3,5, ...): States v, ; ,,, with t=L [+1,1+2,...,i=0,1,2, .. ; and 0=<w; <i.
Let V,=(0, 0, 0s -+-+ iUr, 3, wy> ---»» Where the component v, ,,, precedes v, ; ,,, if i<, or if i=j
and w;<w;. Then |V, =,V,Q;,, where

(i, w,

Or=[dawy.wy]  With i=01,2.5 j=0,1,2,...; 0Sw,Sii 0Zw,<);

1-2— if j=i—1, w;=w,~1
27wig 2w _otef o jg ], w;=w;
2132t 2w if j=i, w=w,

R P L ' Ft TR vy
2wt if j=i+1, w=w;+1
0 otherwise.

P 0=t,; for 0Zis(-1)2

Initial vector: ,V, has ;
O wy =0 otherwise.

Markov process F, (1=1,3,5, ...): States z, ; ,, with t=L1+1,1+2,...;i=0,1,2,...; and 0=w, i
Let \Z,=(2, (0. 0)> =++» 1Ze.G;, wyy» -+ -)» Where the component z, ; ,,, precedes ;z, ; ,, if i<, or if i=j

and w;<w;. Then \Z, ;= ,Z,Qy , where
Or =0l wo, g, wpd  With i=0,1,2, .5 j=0,1,2, .. 0w, gi; 0=w;Zj;
1—2" i jmiet, w1
2oLl =i, w=w,
i, g, owp =) 21 I3 27T = w=
27 i 2w if j=i+1, w,=w,

0 otherwise.

Initial vector: Z,= V.



The 4-class ranks of quadratic fields 513
Appendix I1. Densities for 4-class ranks of imaginary quadratic fields

In the following table, ¢ denotes the number of ramified primes for an imaginary quadratic field; e
denotes the 4-class rank of the imaginary quadratic field; and d, _ is the density defined by Eq.
(1.1).

te

Values of d, ,

e 0 1 2 3 4 5 6
t
1.0
0.5 0.5
0.4375 0.46875 0.09375
0.375 0.515625 0.101563 0.007813

0.350586 0.523682 0.117188 0.008240 0.000305

0.331299 0.538666 0.120659 0.009079 0.000292 57%x10°°

0.319630 0.547553 0.123847 0.008670 0.000296 49x10-° 52x10-8
0.311068 0.555336 0.125113 0.008225 0.000253 45%x10-° 39%x10-8
0.305101 0.560985 0.126023 0.007673 0.000215 34x10-° 34x10°8
0.300759 0.565305 0.126574 0.007182 0.000178 26x10-¢ 23x1078

—
O N 0 NN BN

15 0.291461 0.574843 0.127857 0.005758 0.000080 58x%x10°7 31x107°
20 0.289408 0.576950 0.128222  0.005365 0.000055 20x1077 46x 10710

o 0.288788 0.577576  0.128350  0.005239 0.000047 9.7x10-8 49x 101!

(Rows may not add up to 1 because of roundoff error.)

Appendix III. Markov processes for real quadratic case

Markov process C': States u, ; with t1=2,4,6,...,and i=0,1,2, ...
Let U=(u, o, t, 1. 1, 5....). Then U, ,=U,Q&, where

D ={q) with i=0,1,2,...; j=0,1,2,..;
1-9.2-1-ip7.2-21_9.p-1-31 94 if j=i—2
Q.27 1 1 2p. 27 2632733 15,2734 ff j=i—|

o 7.271-2 632743 35,0543 2imnf ey

9/ 7Yg. g-a-3i_1g5.9 6 4iy3.9-4- 2~ if j=i+1
g -6~di_ g-4--2i-t if j=i+2
0 otherwise.

Initial vector: U,=(1,0,0, ...).

Markov process D': States y, ; with t=2,3,4, ..., and i=0,1,2,....
Let Yr:(yuos Ve, 1o Yy, 20 ) Then Y, ;= Y. Qp > where
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Op=I[g;]1 with i=0,1,2, .;
1+2-1-2_3.2-1-8
3.9-1-i_3.p-2-2i

;= g-2-2i
0

Initial vector: ¥,=(1,0,0,...).

Markov process Ey: States gv, ; with t=1,2,3,..., and i=0,

j=01,2,...;
if j=i-1

if j=i

if j=i+1

otherwise.

1,2, ...

Let oV =(ov,, 05 0¥, 15 0%, 25 ---)- Then oV, =0V, @, where

QE‘UZ[Oqij] with i=0,1,2,...; j=0,1,2,...;
=27 if j=i—1
2717 f =i
i U T R S
0 otherwise.

Initial vector: 4V, =(1,0,0, ...).

Markov process E; (1=2,4, 6, ...): States v,

oy With £=1 LH 1, 142, .05 i=0,1,2,

F. Gerth, 11

...;and 0= w;<i.

Let V,=(0, g, 01> -+ » Ve, wyy» ---)» Where the component v, (; ,,, precedes o, ; ., if i<j, or if i=j

and w;<w;. Then ,V,, =1V,QE;, where

Qe =l wo,gwpd  With i=0,1,2, .0 j=0,1,2,..; 0Zw,<i; 0=w;<j;

1-2-"

2 1-Zitw pg-wi_ g, p-1-i
3.p-1-i_3.9-2-2i+wm
i, w. Gowy ™= D=2 2itw, _p-w-l

9wl

0

Initial vector: V] has P10ty or 0;:§({—2)/2
P, wy=0 otherwise.

if j=i—1 w=w;—1
if j=i~1, w;=w,

if j=i, w=w,

il j=i+1, wy=w,

if j=i+l, w=w;+1

otherwise.

Markov process F) (1=2,4,6,...): States ,z, , .., with =1 I+1, [+2,..;i=0,1,2,; and O=w;Si.

Let . Z,=(2, 0, 09> ++> %0.i, w» ---)» Where the component .z, ; ,,, precedes z

and w;<w;. Then ,Z, _,=,Z,Qp, where

QF;=[,q2i,w‘),(ijJ)] with i=0,1,2,...; j=0,1,2,...; O0Sw;si;

1-27"
2A1A2i+w,+2—w|_3 .zvl—i
iqzi‘w.),(;‘, w3)= 3 . 2—1—1‘__3 . 2A242i+w.
2—2—-2!’+w;
0

Initial vector: ,Z,=,V,.

LU w

if j=i—1, wy=w;—1
it j=i—1, w=w,

if j=i, w,=w,

if j=i+1, w=Ww;

otherwise.

Appendix TV. Densities for 4-class ranks of real quadratic fields

o i<, or il i=j

0=w;<j;

In the following table, t denotes the number of ramified primes for a real quadratic field; e denotes

the 4-class rank of the real quadratic field; and d, , is the density defined by Eq. (1.3).
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Values of d; ,

;eO 1 2 3 4 5 6
t

1.0

0.75 0.25

0.6875 0.28125 0.03125

0.648438 0.3125 0.037109 0.001953

0.627930  0.328369 0041504  0.002136 6.1x10-°

0.613953 0.341690 0.042076 0.002222 58x107>  95x1077

0.604473 0.351600 0.041839 0.002032 55x107%  78x1077 75x10°°
0.597573 0.359503 0.041062 0.001818 44x107°%  67x1077 53x10°°
0.592507 0.365631 0.040228 0.001599 35x107°%  47x10°7  42x10°°
0.588735 0.370372 0.039456 0.001410 27x1075  33x10°7  27x10°°

—
OO 0 NN R Wt

15 0.580189 0.381558 0.037357 0.000888 84x10-%  S51x10"% 25x10°1°
20 0.578191 0.384230 0.036831 0.000745 42x107°  11x107% 26x10~1!

0 0.577576 0.385051 0.036672 0.000699 30107  31x107°  77x10°'3

(Rows may not add up to 1 because of roundoff error.)
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