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I. Introduct ion 

Let K be a quadratic extension field of the rational numbers Q. Let C K be the 
2-class group of K in the narrow sense. It is a classical result that rank C K= 
t - l ,  where t is the number of primes that ramify in K/Q. Now let C~ 
= {ai: a e  CK}, and let R K denote the 4-class rank of K in the narrow sense; i.e., 
RK= rank ~Kc z = dimv2 ttc'Z/t~41~K/~KJ" Here F 2 is the finite field with two elements, and 

2 4 CK/C K is an elementary abelian 2-group which we are viewing as a vector 
space o v e r  F 2. Given a quadratic field K, one can compute R K by computing 
the rank (over F2) of a certain matrix of Legendre symbols (cf. [11]). 

Now assume K is imaginary quadratic. So K=Q(1/~mm), where m is a 
square-free positive integer. For  each positive integer t, each nonnegative 
integer e, and each positive real number x, we define 

At= {K=Q(]/~mm):  exactly t primes ramify in K/Q}, 
At;x= {K~At: re<x}, 
At,,,= {K~At: RK=e}, 

A,,e;x= {K6At, e: re<x}. 

Next we define the density d,,e of At, e in A, by 

d,,e= lim IA'' e; x] (1.1) 
x-oo IA, xl 

where ISI denotes the cardinality of a set S. 
In this paper  we derive an effective algorithm for computing dr, e for 172> 1 

and e 2> O. We also determine the limiting density 

doo. e = lim dr, e (1.2) 
t~ O0 

and obtain asymptotic formulas (as x + ~ )  for each IAt; xl and [At, e; xl" 
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I f  K is real quadrat ic ,  we write K = Q ( I / m ) ,  where m is a square-free 
positive integer. We then define 

B t=  { K = Q ( I / m ) :  exactly t pr imes ramify in K / Q } ,  

Bt; x = { K ~ B , :  r e < x } ,  

B,, e = { K  eB ,  : R K = e}, 

B t ,  e; x = {KEB, . e :  m <  x} ,  

d;, e=  lim IBt'e; xl (1.3) 

d~o e = lim d' (1.4) , t, e" 
t~o<) 

We shall derive an effective a lgor i thm for comput ing  d't, e; we shall determine 
d'oo, e," and we shall obta in  asympto t ic  formulas  (as x--+ oo) for [Bt; xl and ]Br, e; ~l. 

Some numerical  results for d r e, d~ e, d' and d~ e appear  in Appendix  II , , t , e ,  , 

and Appendix  IV. Note  that  for imaginary  quadrat ic  fields, the 4-class rank  e 
= 1 occurs most  frequently,  followed by e = 0, e = 2, e = 3 . . . . .  For  large t, dr, 1 is 
approx imate ly  twice dr, 0 (in fact d~, 1 = 2doo, 0)- Also for each t, 

d,, o +dr, 1 +dr. 2 >0.99. 

Fo r  real quadra t ic  fields the 4-class rank e = 0  occurs most  frequently, followed 
by e = 1, e = 2, e =  3, . . . .  For  large t, d'r, o is approx imate ly  1.5 times d'r, 1 (in fact 
d'oo.o = 1.5d~, 1)- Also for each t, 

t t 
d , , o + d '  t ,  I "q- d t ,  2 > 0.997. 

Our  formulas  for the limiting densities are as follows: Fo r  imaginary  
quadra t ic  fields 

2 - r :  I )  ( 1 - 2  -k) 

d~, , -  k = 1 for r = 0, 1, 2 . . . .  ; (1.5) 

isi(1 _ 2 - k )  2 
k = l  

for real quadra t ic  fields 

2-r~r+l) I~I (1--2 -k) 
d' k =  1 

oo, r ~ r r +  1 

l-I ( 1 - 2  k) ]7[ (1- -2  -k) 
k = l  k = l  

for r = 0 ,  1,2 . . . . .  (1.6) 

Since the 4-class r ank  of a quadra t ic  field is the same as the 2-rank of the 
principal  genus of the quadra t ic  field, our  formulas  can be viewed as being in 
perfect accordance  with heuristic predict ions of  Cohen  and Lenst ra  (made only 
for pr imes p > 3 )  on the p-class ranks  of quadrat ic  fields. (See [1] and [2].) 

Al though we have calculated density results for the 4-class ranks  in the 
na r row sense, the density results for the 4-class ranks  in the usual sense are 
close to our  density results. In fact, for quadra t ic  fields one can show that  the 
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4-class ranks in the narrow sense and in the usual sense can be different only if 
the quadratic field is real, no ramified prime is congruent to 3 (mod 4), and the 
fundamental unit has norm + 1. If d't, e denotes the density for the 4-class rank 
in the usual sense, then one can show that 

• ld, e _ d ,  1<=2 (,-1) for t>__2. 
e = O  

(For t = 1, v, dr, e = dr, e .) SO drc,~,,e = d'c,c, e . 
We close this section by mentioning a few other papers that consider 

densities of 4-class ranks of quadratic fields. [12] considers real quadratic fields 
in which each ramified prime is congruent to 1 (mod 4) and obtains certain 
densities for the 4-class ranks of these types of quadratic fields. In [10] 

imaginary quadratic fields Q ( l / ~ m )  with m = p l  . . .p ,_  , q  are considered, where 
each prime pi = 1 (mod 4) and the prime q -  3 (mod 4). Some density results are 
obtained in terms of the density of the set of primes q having certain proper- 
ties. In [6] the density d,,e has been computed for t <2. [3] contains various 
results and conjectures about the 2-class groups of quadratic fields, and it also 
contains an extensive list of references. 

Acknowledgements. The author thanks S.W. Graham for many helpful discussions. The author also 
thanks J. Vaaler and the referee for helpful suggestions. 

2. Preliminary results for imaginary quadratic fields 

We let notations be as in Sect. 1. In this section we consider imaginary 

quadratic fields K =  Q ( 1 / - m ) ,  where m is a square-free positive integer. We let 
p l < p 2 < . . ,  be the odd prime numbers dividing m. If K e A t ,  then it is easy to 
see that 

re=P1 . . .P,  with an odd number of p i=3  (mod 4), or (2.1) 

m = p a  . . .P t -1  with an even number o f p i = 3  (mod 4), or (2.2) 

m =  2pl  . . .P t -1 .  (2.3) 

If x is a positive real number, we let Ni; x denote the number of m < x satisfying 
Eq. (2.1) ( i= 1,2, 3). We let N~ be the number of square-free positive integers up 
to x with t prime factors. It is well known (see [7], Theorem 437) that 

1 x(log log x )  t -  1 
Nx ( t - l ) !  logx (as x ~ o o ) .  (2.4) 

Next we note that N I ; x ~ � 8 9  since the number of p~=3 (rood 4) that divide m 
is assumed to be odd in this case. Also Nz; , ,=o(Nx)  and N3;, ,=o(Nx) .  So 

1 1 x (log log x )  t -  1 
Im,:~l 2 ( t - I ) !  logx (as x--+oo), (2.5) 

and we may confine our attention to those m which satisfy Eq. (2.1). 
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To each field K = Q ( I / ~ m  ) with m satisfying Eq. (2.1), we associate a t x (t 
- 1 )  matrix M~= [ai~], where each a~jsF 2 is defined in the following way. Let 
Pi=p~ if p i = l  (mod 4), and let Pi= -P l  if p~-3 (mod 4). L e t / ~ = - m / P  i, and let 
( - )  denote the Legendre symbol. Then 

for l < i < t  and l < j < t - 1 .  (2.6) 
( -  l)a'J= (~ )  i f i = j  

The matrix M~ is the R6dei matrix (see 1-11]) written in additive notation. 
Then the 4-class rank of K satisfies R r = t - l - r a n k M '  K. (Remark: Actually 
R6dei expresses the 4-class rank in terms of what we now call the null space of 
M~, but of course dim (null space of M~:) = t -  1 - rank M k.) 

There are two other matrices closely related to M~ that we shall use. We 
let M r be the t • t matrix whose entries are defined by Eq. (2.6), except with 
l < j < t  instead of l < j < t - 1 .  Using properties of Legendre symbols, we see 
that the sum of the entries in each row of M~ is zero. So rank M K= rank M~:. 
By using quadratic reciprocity, we can also verify that the sum of the entries in 
each column of M r is zero. So we could omit any row and any column of M K 
without changing the rank of the matrix. If pg is the largest of the primes -=3 
(mod 4) that divide m, we let M~ denote the ( t - 1 ) •  ( t - l )  matrix obtained 
from M K by discarding the g-th row and g-th column of M K. Then 

RK = t -- 1 -- rank M~: = t - 1 - rank M K = t - 1 - rank M~. (2.7) 

By using quadratic reciprocity and properties of Legendre symbols, we see that 
the matrices MK, M) ,  and M~ are determined by the set of values 

provided we know which primes are congruent to 1 (mod 4) and which primes 
are congruent to 3 (mod 4). 

Now let 

St, ~= { K = Q ( I / / - r e ) e A t :  m satisfies Eq. (2.1) with exactly 1 

primes P l -  3 (mod 4)}, 1 _< l_< t with 1 odd. 

Then for each positive real number x, let 

S,,I;~= {K~S,,t: m< x}, 

and for 0 < r < t - 1, let 

St, t , , ;~= {KeSt, z;x: rankMx=r} .  

Then ]At;x[~ ~ ISt,/;xl (as x--.oo) and 
l__<t<t 
I odd 

Ia~,e;xl~ ~ IS,, z, ,_ l_e:  xl (as x ~ o Q ) .  (2.8) 
l<=l<=t 

I odd 
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Now we note that 

[St, t ; x [ ~ ( t l ) . 2  t 1 x ( l o g l o g x )  t-1 
( t -  1)! logx (as x--* oo) (2.9) 

(tl) is the binomial coefficient t , / l !( t- l) , ,  and the factor 2- '  comes where 

from the fact that each of the t primes is congruent to 1 or 3 (mod 4). Next we 
note that for O<r<t -1 ,  

[S,,t.r;x] = ~(~) 6MK, r. (2.10) 
p l . . . p t  <=x 

Here ~") means that only those products pl . . .pt<x are considered where 
p l  . . . P t  < x  

exactly l of the pi=3 (mod 4). The symbol 6Mr,. r is defined as follows: 6M,,. = 1 

if rank MK=r, and 6M,,. =0  if rank MK+r, where K = Q ( ] , / - p  1 ---Pt)- 
Now suppose we consider a fixed K~=Q(1/~p'l...p;)eSt, z; x. Let uiseF 2 be 

defined by 

( -  1)"'J = (Pi~ for l < i < j < t .  
\P'i f = 

If K=Q(l/--pl.. .p,)eSt,,;~, we will call K equivalent to K 1 if P(~..)=(-1)"', 
�9 l t -- 

for l<i<j<=t and pi=-p'i (mod4) for l<_i<_t. Thus we can decompose St,~; x 
into equivalence classes of fields. From our earlier observations we know that 
MK=MK~ if K is equivalent to K~. 

Now we let 6(p i,ps)=l if P(/)=(-1)" '~,  and we let 6(pi, pj)=O if P(~) 
/ x  

,s l - -  ' r l - -  

+(-1 )"" .  Next we observe that the conditions pt...pt<=x and p l < p 2 <  . . .<Pt 
imply 

pl <xl/~ ' pl <p2<(x/pl)a/(t-1) . . . .  P t_2<Pt_ l  <=(x/Pl ,, r = ~ �9 �9 " F t -  2 1  , 

Pt I<P,<X/pl'"Pt-1" 

If we let N(K~) denote the number of fields K in St,~; ~ with K equivalent to 
KI, then 

N(K~)= Z Z Y2... 2 Yt, (2.11) 
p l  <=x l / t  P l  < P 2 < = ( , X / P l )  l / ( t -  1) p t -  I < p t . ~ x / p l  . . . P t  1 

p l  - - p l ( m O d 4 )  p2  ~ p 2 ( m o d 4 , )  p t = - p t ( m o d 4 )  

j . - 1  

where Yj= I~ 6(Pi, Ps) for 2<j<t .  Now it can be proved that 
i = 1  

N(Ka)~2_,~+o/2. 1 x(log log x) '-1 (as x ~ oo). (2.12) 
(t - 1) ! l o g  x 

An intuitive explanation of Formula (2.12) might proceed as follows. A factor 
of �89 is introduced by each condition Pi-P'i (mod 4) for l < i < t  and by each 

condition P(--]=-(-1)"'J for l < i < j < t .  Since there are (t2+t)/2 such con- 
\Pi! 
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ditions, we get the factor 2 -(tz+t)/2. The other factors in Formula (2.12) come 
from Formula (2.4). The actual derivation of Formula (2.12) from Eq. (2.11) 
uses the same types of calculations used in proving Lemma 3 in [-5], and we 
refer the reader to [-5] for details. We remark that a significant part of the 
derivation of Formula (2.12) is to show that 

(x( loglogx) ' - l~ ,  
Z Z ..'Z)~p~...pt-,(P,) = ~  ~ ~ogx ! (2.13) 
p l  p 2  P t  

p l . . . p t  < x 

where Zp~...p,_, is a nonprincipal quadratic Dirichlet character with modulus 
Pl . . .Pt - I .  The analogous calculations in [-5] use results from I-4], Chap. 20. 
Alternately one may view Eq. (2.13) as an analog for a hyperbolic region of a 
result of Heilbronn [8] for a rectangular region. This analogy is considered in 
detail in [6] for the case t=2 .  Finally we observe that Formula (2.12) is valid 
for any K16St, t;x; i.e., Formula (2.12) is valid for every equivalence class of 
fields in St, z: x. 

Now to evaluate the right side of Eq. (2.10), we need to know how many 
equivalence classes in S~,I; x contain a field K I with rank MK~ =r .  We consider 

any K 1 =Q(l/ /-p ' l . . .p ' t )~St,  t;x with the usual ordering P'I <P~ <. - .  <f i r  We 
t p t ~ ! now reorder the primes as follows: pi l<p ' i<. . .<pi ,  and pi,+, pi,+<...<p'~,, 

where p'ij----3 (mod4) for l < j < l  and p'i=-I (mod4) for l + l < j < t .  For suf- 

ficiently large x we can choose K2=Q(] / -P '~- . IP ' / )~St ,  I;~, where 

. . . . . . . . . . . .  (pS  P ~ < P2 <. . .  < Pt, Pj = 3 (mod 4) if 1 < j < l, pj = 1 (mod 4) if l § 1 < j < t, and \P~' / 

=(-1)" ' , J~  for l < I < J < t .  Then MK~ is obtained from MKI by certain row 
exchanges and corresponding column exchanges, and hence rank MK~ 
= rank MK.  We associate the equivalence class of each field K 1 in St,~; ~ with 
the equivalence class of the corresponding field K z described above. We note 

that for a given Kz, there are Cl)equivalence  classes associated to the 
equivalence class of K 2. 

Now we recall that rank M"~ = rank MK~, where M"K~ is the matrix obtained 
from MK~ omitting the l-th row and l-th column. Because of the congruence 
conditions (mod 4) for each pl, we see that K~ =La~j_l with a~i+a2~ when 
l < i < j < l - 1  and with aij=aj~ when l < i < t - 1  and l < j < t - 1 .  We let N(t 
- 1, l -  1, r) denote the number of ( t -  1) x ( t -  1) matrices M =  [a~j], each 
aijEF2, with aij#:aji when l < i < j < l - 1 ,  with aij=aji when l < i < t - 1  and 
1 < j < t - 1 ,  and with r a n k M = r .  Now from Eq. (2.10), Formula (2.12), and the 
above discussion, we have 

'St, t,r; ~' ~ N ( t -  l, l -  l, r) " (tl) " 2--~t~ +t)/2 

1 x (log log x )  t -  1 
(as x ~ ~) .  (2.14) 

( t  - 1)  ! l o g  x 

Then from Formulas (2.5), (2.8), and (2.14), and from Eq. (1.1), we obtain the 
following proposition. 
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Proposition 2.1. Let A,; x ,  A t ,  e, x ,  and dt,  e be defined as in Sect. 1, and let 1 be a 
positive odd integer. Let N ( t -  1, l -  1, r) be defined as above. Then 

1 1 x (log log x) t- 1 
I , _ , A , ; ~ , ~  2 . ( t _ l ) !  logx (as X ---* o 0 ) ,  

'At, e;x'~ 2 N ( t - l , l - l , t - l - e ) .  (tl).2-(t2+')/2 
l<l<_t \ t /  
I odd 

1 x( log log x) t- 1 
(as x -~ oe); 

(t - 1) ! log x 

dt, e= 2 N ( t - l , l - l , t - l - e ) ' ( t , t  "2~-"2+')/a. // 
1 <l<t \ l !  
1 odd 

In Sect. 3 we shall derive an effective algorithm for computing N ( t -  1, l -  1, 
t - l - e ) .  Although the calculations in Sect. 3 involve only elementary linear 
algebra, Sect. 3 is somewhat lengthy, and the reader may wish to skip to Sect. 4 
to see how the results from Sect. 3 will be used before the reader examines the 
details in Sect. 3. 

3. Algorithm for computing N ( t -  1, l -  1, t -  1 - e) 

Throughout  this section all matrices have entries in F 2. To simplify notation 
we let n = t - 1 ,  k = l - 1 ,  and r = t - l - e .  Then n>O, O<_k<n with k even, and 
O<_r<n. We shall develop in this section an algorithm for computing N(n, k, r). 
We recall that N(n, k, r) is the number of n x n matrices M =  [alj], each a~jeF2, 
with the following properties: (1) aij+aj~ for l < i < j < k ;  (2) a~j=ajz when k 
+ l < i < n  and l < j < n ;  ( 3 ) r a n k M = r .  One method for determining N(n,k ,r)  
is to compute the rank of each matrix M having properties (1) and (2), and 
then to count those M with property (3). However there are 2 ~"2+")/2 matrices 
M having properties (1) and (2), and hence this method is not feasible except 
for very small n. What  we want is an algorithm for computing N(n, k, r) such 
that the number  of computations required grows like a polynomial in n rather 
than exponentially with n. 

We first consider the case when n = k. At this point we shall consider odd k 
as well as even k. So M=[a~j]  is an n x n  matrix with a~j~=aj~ for all i=t=j. We 
shall call such a matrix antisymmetric. We note that the transpose of M 
satisfies M r =  M + I + J ,  where I is the n x n identity matrix, and J is the n x n 
matrix each of whose entries equals 1. Let HeF~ be the vector with each 
component  equal to 1. Our first lemma is an easy exercise. 

Lemma 3.1. I f  n is even, then rank( I+J)=n .  I f  n is odd, then r a n k ( I +  J ) =  
n - 1 .  //  

For any matrix A, we let c(A) denote the column space of A. Then we have 
the following result. 
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Lemma 3.2. Let r=rank M, where M is an n • n antisymmetric matrix. I f  n is 
even, then 

dim [c(M)+c(MT)]=n and dim [c(M)c~c(MT)]=2r-n.  

I f  n is odd, then 

d i m [ c ( M ) + c ( M r ) ] > n - 1  and d i m [ c ( M ) c ~ c ( M r ) ] < 2 r - n + l .  

Proof First we assume n is even. If V~F~, then by Lemma 3.1, there exists 
WEF~ such that ( I+J)  W= V. So 

V = M W  + (M + I + J) W = M W  + M T W~[c(M) + c(Mr)]. 

Hence [c(M) + c(MT)] = F~, and dim [c(M) + c(MT)] = n. Then 

dim [c(M)c~c(Mr)] = dim [c(M)] + dim [c(MT)] -- dim [c(M) + c(MT)] = 2r-- n. 

When n is odd, the above arguments show V~[c(M)+c(MT)] if V~c(l+J).  
Since rank (I + J ) =  n -  1 when n is odd, then 

d i m [ c ( M ) + c ( M T ) ] > n - 1  and d im[c (M)c~c(MT)]<2r -n+l .  // 

Remark. Since 2 r - n > 0  (resp., 2 r - n + l > 0 )  when n is even (resp., odd) in 
Lemma 3.2, we get the following corollary. 

Corollary 3.3. Suppose M is an n x n antisymmetric matrix. I f  n is even, then 
rank M >= n/2. I f  n is odd, then rank M > (n - 1)/2, // 

Now recall that H~F~ is the vector with each component  equal to 1. When 
n is even, Lemma  3.2 implies that H~[c(M)+c(Mr)] .  Furthermore since 
d i m [ c ( M ) n c ( M r ) ] = 2 r - n ,  there exist 22r-" pairs of vectors {V, W} with 
V~c(M), WGc(MT), and H = V+ W. Then V+ H = WEc(MT). 

Now suppose M 1 = [bij], each blj6F2, is an (n+ 1)• (n+ l) antisymmetric 
matrix with bij=a o for 1 <i<_n and 1 <j<n.  We may write 

M M V 
I=[(V+H)T  V] w h e r e  VEF~ and veF  2. (3.1) 

If we assume r a n k M = r ,  then r a n k M  l = r ,  r +  1, or r + 2 .  Given M, we would 
like to know how many of these matrices M1 have r a n k M ~ = r ,  r a n k M t = r  
+1,  and r a n k M l = r + 2 .  Suppose n is even. If r a n k M  l = r ,  then Vec(M) and 
(V+H)Te(row space of M). But then {V, V+H} must be one of the 2 2r-" pairs 
with Vec(M) and V+Hec(MT).  Write V = M X  and V + H = M T y  with 
X, YeF~. For v=(V+H)TX,  we have r a n k M l = r .  If we wrote V = M ( X + Z )  
with Ze(null  space of M), then 

(V+ H)T(x + Z) = (V+ H) r X + (V+ H) T Z = (V+ H) T X + (M r y)T Z 

=(V+ H)T X + Yr M Z = ( V +  H)r X. 

Hence given V,, there is only one choice of v such that r a n k M l = r .  We have 
proved the first part  of the following proposition. 
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Proposition 3.4. Let M be an n x n antisymmetric matrix with rank M= r, and let 
M 1 be any (n+ 1 ) x ( n +  i) antisymmetric matrix satisfying Eq. (3.1). Assume n is 
even. Of all possible M 1, 

(i) 22r-n have r a n k M l = r ;  
(ii) 2 r + 2 - 3 . 2 2  .... have r a n k M l = r + l ;  

(iii) 2"+1+22r  , + 1 _ 2 , + 2  have r a n k M ~ = r + 2 .  

Proof. We have already proved (i). To prove (ii) we describe the ways in which 
r a n k M ~ = r + l .  First {K V+H} could be one of the pairs with Vec(M) and V 
+HEc(MT), but we could choose v # ( V + H ) r X  when V=MX.  This situation 
gives 22r " choices for M~. Next  we could have VEc(M), V+H~c(Mr),  and v 
arbitrary. This situation gives (2r--22r-") �9 2 choices for M 1. Finally we could 
have V4Ac(M), V+H~c(MT), and v arbitrary. This situation gives another  (2 ~ 
- 2 2 r  "). 2 choices for M 1. Since 

2 2~ , + ( 2 ~ _ 2  2r "). 2 + ( 2 r - 2  2' "). 2 = 2 r + 2 -  3 . 2 2r ,, 

we have proved (ii). Finally (iii) follows from calculating 2 " + ~ - ( 2  2 . . . . .  -I-2 "+2  
--3" 2 2r n). 

We now suppose n is odd. When n =  1, it is trivial to calculate N(1, 1, r). So 
we suppose n > 3 .  If dim[c(M)+c(Mr)]=n, then Proposi t ion 3.4 will also be 
valid for M. However  because n is odd, rank (I + d ) =  n - 1 ,  and it is possible 
that dim[c(M)+cfMr)]=n - 1. So we need to find the M for which d im[e (M)  
+ c ( M r ) ] = n - 1 .  N o w  recall that M r = M + I + J ,  and hence c ( I+d)c[c (M)  
+ c ( M r ) ] .  If d im[c (M)+c(Mr)]=n-1 ,  then since r a n k ( I + d ) = n - 1 ,  we must  
have c (M)cc ( I+d)  and c(Mr)cc( l+d) .  Since n is odd, we note that the sum 
of the entries in each column of  I+Y is zero (in F2) .  Then c (M)cc ( I+Y)  
implies that the sum of the entries in each column of  M is zero, and c(M r) 
c c ( I + d )  implies that the sum of the entries in each row of M is zero. So 

M0 
M=[(Vo+Ho) T vV~] (3.2) 

where M o is an ( n - 1 ) x ( n - l )  ant isymmetric  matrix with r a n k M o = r ,  
H0~F~ -1 is the vector with each componen t  equal to 1, Vo=MoHo, and v o 
=(Vo + Ho)T Ho . 

Suppose we have a matrix M satisfying Eq. (3.2), and suppose M 1 satisfies 
Eq. (3.1). F r o m  our previous discussion the sum of the entries in each row of 
M is zero, and the sum of the entries in each column of  M is zero. Note  
however that the sum of the entries in H is 1 (in F2) since n is odd. The it is 
impossible for the sum of the entries in both V and V+ H to be zero. So we 
cannot  have both  V~c(M) and V+ H~c(MT), and hence rank M 1 +r .  If we now 
replace 22~-" by 0 in the proof  of Proposi t ion 3.4, we obtain the following 
result. 

Proposition 3.5. Let M be an n x n antisymmetric matrix with rank M = r, and let 
M 1 be any ( n + l ) x ( n + l )  antisymmetric matrix satisfying Eq. (3.1). Assume n is 
odd and n>=3. I f  M does not satisfy Eq. (3.2), then of all possible M 1, 



498 F, Gerth, III 

(i) 2 2 r -n  have r a n k M l = r ;  
(ii) 2 '+ 2 - -  3- 2 2 r - n  have rank M 1 = r + 1 ; 

(iii) 2 "+ l + 2 2 , - , +  1 _2 r+2  have rank M 1 = r + 2 .  

I f  M does satisfy Eq. (3.2), then of all possible M 1, 

(iv) 2 "+2 have r a n k M  l = r + l ;  
(v) 2 " + 1 - 2  "+2 have r a n k M l = r + 2 .  // 

Remark. For  n = l  and 2 and for O<_r<_n, we can compute  N(n, n, r) directly by 
examining all ant isymmetric  1 x 1 and 2 x 2  matrixes. In fact, N(1, 1 ,0 )=1 ,  
N(1, 1, 1 )=1,  N(2, 2, 0 ) = 0 ,  N(2, 2, 1)=6,  N(2, 2, 2 )=2 .  Then  we can use Propo-  
sition 3.4 and Proposi t ion  3.5 to compute  N(n,n,r)  for n - -3 ,4 ,  5 . . . . .  and 
O<_r<_n. Let n o be a positive integer. To compute  N(n, n, r) for all 1 <-n<_n o 
and 0 _< r _< n requires O(n g) calculations. 

We may combine  Proposi t ions 3.4 and 3.5 as follows. 

Proposit ion 3.6. Suppose M = [ai~ ] is an n x n antisymmetric matrix with n even 
and rank M=r .  Suppose M 2 =  [bit ] is an ( n + 2 ) x  (n+2)  antisymmetric matrix 
with bis=a~s when 1 <_iNn and 1 <=iNn. Then of all possible M 2, 

(i) 2 4 " - 2 " - 1 - 2 2  . . . .  1 have r a n k M 2 = r ;  
(ii) 3 . 2  a ' - "+2  - 1 5 . 2 4 ' - 2 " -  1 + 3 .22  . . . .  1 have rank M 2 = r +  1 ; 

(iii) 1 3 - 2 2 ' + 2 - 2 1  �9 2 3 " - " + 2 + 3 5 . 2 4 " - 2 " - 2 2 ' - "  have r a n k M  2 = r + 2 ;  
(iv) 3 . 2  " + " + 4 -  3 9 . 2 2 " + 2 + 2 1 - 2  a r - " + 3 - 1 5 . 2 4 " - 2 " + 2  have r a n k M  2 = r + 3 ;  
(V) 2 2 " + 3 - - 3 . 2 " + " + 4 + 1 3 . 2 2 " + 3 - - 3 . 2 3 r - " + ~ + 2 4 " - 2 " + 5  have r a n k M 2 =  

r + 4 .  / /  

We are now ready to determine N(n,k ,r)  when n>k.  We start with the 
case k = 0 .  Then  our  n x n  matrix M is symmetric.  Fo r  our  ( n + l ) x ( n + l )  
matrix M 1, we write 

M 1= v r  , where VeF~ and vsF2.  (3.3) 

As before we let c(M) denote  the column space of  M. Since M is symmetric, 
then V e c ( M ) ~  V e c ( M r ) ~  v r e ( r o w  space of  M). Then proceeding as we did in 
proving Proposi t ion  3.4, we have the following result. 

Proposition 3.7. Suppose M is an n x n symmetric matrix with rank M = r .  Let 
M 1 be any ( n + l ) x  ( n + l )  symmetric matrix satisfying Eq. (3.3). Then among all 
possible M 1, (i) 2 '  have rank M 1 = r; (ii) 2" have rank M 1 = r + 1; (iii) 2 " + 1 -  2 "+1 
have rank M 1 = r + 2. // 

Remark. For  other  approaches  to comput ing  the number  of symmetr ic  n x n 
matrices with a given rank, see [10] and [12]. 

We now want to compute  N(n, k, r) with k even and k>__2. As described in 
the remark following Proposi t ion  3.5, we can compute  N(k, k, r). N o w  for fixed 
k we shall describe an a lgor i thm for comput ing  N(n, k, r) for n>k.  So we 
consider an n x n matrix of  the form 

 34, 
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where A is a k • k ant isymmetric  matrix, B is a k • ( n - k )  matrix, and C is an 
( n - k ) •  symmetr ic  matrix. Let M 1 be an ( n + l ) •  matrix of the 
form 

vT , where VeF~ and veF  2. (3.5) 

Alternately we may write 

We let 

and 

where VI~F2 k, V2~F~ -k, and VEF 2. (3.6) 

D = [ C  ] (3.7) 

 12] M I =  B T C , 

v? 

(3.8) 

The following lemma is analogous to L e m m a  3.2, and we omit the proof. 

Lemma 3.8. Let  r= rank M and s= rank D in Eqs. (3.4) and (3.7). Assume k is 
even. Then 

d i m [ c ( M ) + c ( M r ) ] = k  +s and d i m [ c ( M ) c ~ c ( M r ) ] = 2 r - k - s .  // 

We note that  dim [c(M) c~ c(MT)] >= rank D = s. So 2 r -  k -  s >= s, and hence 
0 < s <_ r -  (k/2). Also r < k + s, and hence r -  k < s. Also s < n - k. Thus we have 
the following bounds  on s. 

Lemma 3.9. Max(0, r - k) _< s < min(r - (k/2), n - k). // 

N o w  given M satisfying Eq. (3.4) with rank M = r ,  we want  to know how 
many  M 1 satisfying Eq. (3.5) have rank M 1 = r, rank M 1 = r + 1, and rank M 1 = r 
+2.  Our  next proposi t ion is analogous to Proposi t ion 3.4, and we omit  the 
proof. 

Proposition 3.10. Suppose k > 2 is an even integer. Suppose M, M~, D, and D 1 are 
given by Eqs. (3.4) through (3.8). Let r = r a n k  M and s = r a n k  D. Of  all possible 
M 1 and D~, 

(i) 2 s have rank M 1 = r and rank D~ =s ,  
(ii) 2 2r-k ~ - 2  ~ have rank M 1 = r  and rank D 1 = s +  1'  

(iii) 2 r + 2 - 3 . 2  2r-k ~ h a v e r a n k M ~ = r + l a n d r a n k D l = S + l ;  
(iv) 2 "+1-2k+~+1 have rank M 1 = r + 2  and rank D l = s + 2 ; 
(v) 2 k + s + l + 2  2r k s + l _ 2 r + 2 h a v e r a n k M l = r + 2 a n d r a n k D l = s + l .  // 

Remark. Let k be a fixed even positive integer. Let N(n, k, r, s) be the number  of  
matrices M of the form specified by Eq. (3.4) such that  rank M =  r and rank D 
--s, where D is given by Eq. (3.7). We can use Proposi t ions 3.4 and 3.5 to 
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compute  N(k, k, r, O) and then use Proposi t ion 3.10 to compute  N(n, k, r, s) for n 
= k + 1, k + 2 . . . . .  Using L e m m a  3.9, we then get 

m i n ( r -  ( k / 2 ) ,  n - k )  

S(n,  k, r) = ~ S(n,  k, r, s). 
s = m a x  ( 0 ,  r -  k )  

Let n o be a positive integer. The computa t ion  of  N(n, k, r, s) for all 1-<n < n 0, 
O<_k<_n with k even, 0_<r_<n, and max(O,r -k )<=s<=min(r - (k /2 ) ,n -k )  re- 
quires at most  O(n~) calculations. 

Remark. Although we have assumed k is even in Proposi t ion 3.10, one can 
obtain results for k odd by some modifications of our arguments.  In particular 
suppose k is even and we replace V r by (V 1 + H O r  in Eq. (3.6), where H1eF2 ~ is 
the vector with each componen t  equal to 1. Then by interchanging rows k +  1 
and n + 1 and by interchanging columns k + 1 and n + 1, we see that  the matrix 
M1 will have a ( k + l ) x ( k + l )  ant isymmetric  submatrix. By going through 
calculations similar to those we have performed in proving Proposi t ion 3.10, 
we eventually see that N(n + 1, k + 1, r) = N(n + 1, k, r) for 0_< r_< n + 1 when k is 
even. Since we know how to compute  N ( n + l , k , r )  with k even, we can 
compute  N(n + 1, k + 1, r) with k + 1 odd. 

4. C a l c u l a t i o n  o f  d, .  e a n d  doo,e 

Proposi t ion 2.1 and our  algorithms in Sect. 3 for comput ing  N ( t -  1 , 1 - 1 ,  r) 
provide us with algori thms for comput ing  dt, e for t = 1,2 . . . . .  and e = 0, 1, 2 . . . . .  
To investigate the behavior  of dr, e, we first rewrite dr, e f rom Proposi t ion 2.1 as 
follows. 

dt, e = 2 Ct, l .~t, l ,e '  (4.1) 
1 <_l<_t 
l-odd 

where 

and 

We observe that 

c,,z= (tl) . 2-{ ' -  *) (4.2) 

f ,  t, e = N(t - 1, l -  1, t - 1 - e). 2 - " t -  1)/2 (4.3) 

% i= 1. (4.4) 
1 <-l<-t 
l~d~t 

N o w  we let N ( t - 1 ,  1 -1 )  denote the number  of  ( t - 1 ) x  ( t - 1 )  matrices M 
=[ai~ ], each a i F F  2, with ai~q=aji when l < i < j < l - 1 ,  and  with a~=aji  when 
l<_i<_t-1 and l < j < t - 1 .  Then it is easy to see that N ( t - l , l - 1 ) = 2  "'-1)/2. 
Thus f,,~,e in Eq. (4.3) represents the probabil i ty that a randomly  chosen 
matr ix M of the specified form has rank M = t - 1 - e. 

We now use our  results f rom Sect. 3 to generate denumerable  Markov  
processes for comput ing  the quantit ies f,,t, e for t = 1, 2, 3 .. . .  ; l =  1, 3, 5 . . . .  ; e 
= 0 ,  1, 2 . . . . .  We refer the reader to [9]  for properties of denumerable  Markov  
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processes. To be consistent with the notat ion of [9], we shall write our 
matrices on the right in our Markov  processes. First we let 

u,,i=f,,,,i for t = 1 , 3 , 5  . . . . .  and i = 0 , 1 , 2  . . . . .  

We shall think of the values of i as the states of a Markov  process and the 
values of t as discrete time points. (Of course i actually represents values of  the 
4-class ranks of imaginary quadrat ic  fields, and t represents the number  of  
ramified primes in the imaginary quadrat ic  fields.) If we divide each term in (i) 
through (v) of  Proposi t ion 3.6 by 22"+3 (Note:  2 2n+3 is the sum of the terms in 
(i) through (v) of  Proposi t ion 3.6), and if we let n = t -  1 and r = t -  1 - i, we get 
M a r k o v  Process C specified in Appendix  I. In Markov  Process C, j corre- 
sponds to (t + 2 ) -  1 - rank M 2. Markov  Process C is closely related to another  
Markov  process, which we have called Markov  Process D in Appendix  I. One 
can check that 

Q~) = QD QD + 2 - '  Qc (4.5) 

where Qc = [q'ij] with i = 0, 1, 2 . . . .  ; j = 0, 1, 2 .. . .  ; 

- 2  2 2i if j = i  

: . =  _3 �9 2 - 3 - 2 i .  if j = i + l  

q" / O  2 - 3 - 2 '  i f j = i + 2  

otherwise. 

Before we specify our next Markov  process, we recall from Sect. 3 that 
N(n, k, r, s) is the number  of matrices M of the form specified in Eq. (3.4) with 
rank M = r and rank D = s, where D is given by Eq. (3.7). We define 

gt.~ . . . .  = N ( t - l , l - l , t - l - e , t - l - w ) . 2  t(t- 1)/2. (4.6) 

Using L e m m a  3.9 with n = t - 1 ,  k = l - 1 ,  r = t - l - e ,  and s = t - l - w ,  we see 
that 

max(0, e - ( l - 1 ) / 2 )  < w< min(e, t - t ) .  

Then 

ft,,,e=~,gt, t ..... " (4.7) 
u, 

We let l be a fixed odd positive integer. For  t = l, 1 + 1, l + 2 . . . .  ; i = 0, 1, 2 . . . .  ; 
and wi=O , 1 . . . . .  i; we define 

{ gt, t,i,w, if max(O, i - ( l -1 ) /Z )<w,<min( i , t -1 )  (4.S) 
tvt, ,, w,) = otherwise. 

If we divide each term in (i) th rough  (v) of  Proposi t ion 3.10 by 2 "+ 1 (Note:  The 
sum of the terms in (i) through (v) of  Proposi t ion 3.10 is 2"+1), and if we let n 
= t - l ,  k = l - 1 ,  r = t - l - i ,  and s = t - l - w  i, then we get Markov  Process E t in 
Appendix I. In Markov  Process El, j corresponds to ( t+  1 ) - 1 - r a n k M  1 and wj 
corresponds to (t + 1 ) -  l - r a n k  D 1 . No te  that Markov  Process E z is initialized by 
using the vector U~ from M a r k o v  Process C. This initialization forces ~v,,,,w, ) 
= 0  if w i does not satisfy max(0, i - ( 1 - 1 ) / 2 ) < w i < m i n ( i , t - l ) .  M a r k o v  Process 
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E t is closely related to another  Markov  process, which we have called Markov  
Process F~. In fact 

Q~Et ~ - - l  tt Qv, + 2 Q~, (4.9) 

where Q~, = [zq'('~, w,), (j, ~,)] with i = O, 1, 2 . . . .  ; j = O, 1, 2 .. . .  ; 

O<=wi<=i; 0 < w  < i "  

- 2  w' i f j = i + l ,  wj=w~ 

" = 2 w. i f j = i + l ,  w j = w i + l  lq(i, w,), (j, w j) 

0 otherwise. 

Al though the Markov  Processes C and E z are the ones that arise naturally 
in our problem, the M a r k o v  Processes D and F t are easier to analyze, and we 
shall approximate  C and E z by D and F t. Before analyzing these processes, we 
introduce one more  notation.  If a vector X = ( x  o, x 1, x 2 . . . .  ) with each x i a real 
number,  we define IIXll = Ix0l + IXll + ]x21 + ... .  N o w  in the terminology of [9], 
Markov  Process D is a recurrent Markov  chain which is noncyclic and er- 
godic. So there is an invariant probabil i ty vector Y=(Yo,Yl ,  Y2 ... .  ); i.e., YQo 
= Y; and lira ]lX(Qo)'-Yll = 0  for every probabil i ty vector X = ( x o ,  x t , x  2 . . . .  ). 

t ~ O G  

In  fact one can verify by induct ion that  the components  of  the invariant 
probabil i ty vector Y satisfy 

So 
yi=21-21(1--2-i)-2yi_ 1 for i = 1 , 2 , 3 , . . . .  

Y=c~ 1 (1,2,4/9,  
i 

.... 2-~2 l-I ( 1 - 2 - " )  -2  . . . .  ) ,  (4.10) 
r a = l  

+ . . . + 2  -~2 ( 1 - 2 - r n ) - 2  + . . . .  ( 1 - 2 - ' ) ,  
m = l  m = l  

where ~-  1 = [ 1 + 2 + 4/9 

cf. [7], Theorem 351. Numerical ly  c~- t ~ 0.288788095. 

L e m m a  4.1. Let U~ (for t = 1, 3, 5 . . . .  ) be specified by Markov Process C, and let 
Y be defined by Eq. (4.10). Then l im II U , -  Yll =0 .  

t ~ O 0  

Proof. Let  e > 0 be given. We choose a positive odd  integer t o so that  2 - ' ~  e/4. 
F r o m  our  previous discussion we know that  lim H U, o(Qo)'-YH =0 .  Now from 

t ~ O 0  

the definition of  Markov  Process C and from Eq. (4.5), Uto+2=Uto(Qv)Z+Xz, 
[2 ' where X 2 = 2  - t~  toQc, and hence IlXzl I < 2  -t~ Next  

U,o+a = U,o+ 2(QD) 2 + 2  - ' o - z  U,0+2 Q~-= Uto(QD) 4 +X4,  

where  X4=X2(Qt ) )2+2- t~  t3' Note  that I{X4{ I < 2 - ' ~  ,0-2 In gen- 
t o  + 2 " ~ C  �9 - -  �9 

eral 

U,o+ 2~=U,o(Q,,)2' + x~, 
with 

H X z i H < 2 - t ~ 1 7 6 1 7 6  - ' ~  for i = 1 , 2 , 3  . . . . .  
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Hence IlUto+ei-Uto(Oo)aill<2-'~ for i = 1 , 2 , 3  . . . . .  Now choose I so 
that II 2i Uto(QD) --YII <e/2 for all i>I.  Then for i>  I, II Uto+21-YII <e, and hence 
the lemma is proved. // 

Lemma 4.2. Let tV~ ( for  t=l ,  l+1 ,  1+2 . . . .  ) be specified by Markov Process El, 
and let tVl+m ( for  m=0,  1,2 . . . .  ) be the vector with components 

i 

f t+ , , , i=  ~ (zVl+m, li,~O) .for i = 0 , 1 , 2  . . . . .  
w , = 0  

Let Y be given by Eq. (4.10). Then for each e>0 ,  there exists a positive integer 
T (depending on ~) such that for I> T, 

I l l r /+m-YIl<~/2 if O<m<_4l. 

Proof. Using Lemma 4.1 and the fact that Y is invariant under QD, we can 
choose T large enough so that I[ UI(QD)"--Y[I <e,/4 and I. 2 -*<  e/32 for all I=> T 
and m>0 .  For  l>  T, we consider ~V t in Markov Process E t. We have 

~V~+ ~ =lVtQ~ =lVt(Qv, + 2-1Q'~,) 

by Eq. (4.9). L e t  X 1 - ") i 1-7 tr)  t ,  T h e n  
- - ~  I ' I , ~ E I "  

iVl+l=lVIQv,+X1 with I[X,[l<2 '+~. 

Next IVI+z=tVI+a(QF, -I  t, + 2  QE,)=tV~(Qv)Z+x2 with X z = X ,  QF,+2 ltV~+lQ" E l "  

Note that ]JX2II<2 l + l + 2 - t + * = 2 . 2 - 1 + ~ . I n g e n e r a l  

iVt+,,= tV~(Qv,)" + X,, (4.11) 

with IIX,,l[ =<m'2 -l+~ for m>0 .  Now we note that because ~vt,,,w,)=0 if wi4=0 
(see initialization of Markov Process El), then tVl(Qvz)" has (i, wi) component  
equal to zero if w i 4=0 (see definition of QF, in Markov Process Fl). Furthermore 
we note that lq',,o),~j,o) in Markov Process F l equals q~j in Markov Process D 
for all i > 0  and j > 0 .  We let IV/+,, be defined as in the statement of Lemma 4.2; 

i! we let 1V~+,, be the vector with components 

i 

t t  - -  V l  m lVl+m,i - ~ (1 l(Qf) ),,w,) for i = 0 , 1 , 2  . . . .  ; 
w , = O  

and we let X~, be the vector with components 

i 

x'~,i= ~ (Xm)ti, w,) for i = 0 , 1 , 2  . . . . .  
w , = O  

Then from Eq. (4.11), we have lVl'+,,=lVt+,.+X~,, with I [ X ' l l < m . 2  - l+ l  for 
m>0 .  Furthermore our above discussion shows that lvi+m,i=(tVt(Qv)m),,o) 
= (UI(QD) ' ) / .  So 

t 
y~+ ~ = U,(Q~) ~ + X'm. 
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Hence for 1 > T and 0 < m < 4 l, we have 

I[tg/+m- YII ~ II UZ(QD) ~ -  YI[ + IIX~[I <e/4+e/4=~:/2. //  

Remark. F r o m  Eqs. (4.7) and (4.8) and from the definition of tVt'+,~, we see that 
lv't,i=f~,~,i for t = l , / + 1 , / + 2  . . . .  , and i = 0 ,  1,2 . . . . .  

Theorem 4.3. Let dr, ~ be defined by Eq. (1.1), and let Y be given by Eq. (4.10). 
Let  Gt=(dt, o, dr, l, dt. 2 . . . .  ). Then 

lim II G, - Y [1 = 0. 
t ~ o o  

Proof. Let e > 0  be given. F rom Eq. (4.1) and the remark following L emma  4.2, 
we have 

Gt= ~ ct,~(yt' ). (4.12) 
l<_l~_ t  

l -odd  

Next  let W t (for t-> 1) be the r andom variable which takes on the value 1 (for 
1 <_l<_t, /odd)  with probabil i ty ct, t. Then one can check that the expected 

value of W~ is t/2 and the s tandard deviation of W t is ]/ t /2 .  For  large t, W t is 

approximate ly  normally distributed. Since the s tandard deviation ]/[/2 is much 
smaller than the expected value t/2 for large t, then if 

h ,( j )= 
l < _ l < j  

i odd 

ct, ~ (the cumulative probabil i ty for W 0, (4.13) 

we can choose t sufficiently large so that  ht(t/4 ) is arbitrari ly small. We choose 
t o so that ht(t/4)<e/4 for all t > t  o. Now we write Gt=G't+GI', where 

t t tt t G,=  Z ct, t(1Vt) and G t =  ~ c,.l(,Vt). 
1 < l < t / 4  t / 4 < l < t  

l o d d  I odd 

We let Y'=ht ( t /4  ). Y and Y" = ( Y -  Y'). Let  T o = m a x ( t  o, 4T),  where T is speci- 
fied in L e m m a  4.2. Then for t > T o, we have 

with 

and 

JIG,- Y[[ < IIG't- Y']t + JIG'{- Y"I4 

IIG;- Y'H <= ~ ct, tl[tV[N +ht(t/4)LIYI[ <e/4+e/4=~:/2, 
1 <~l<~t/4 

l odd 

[]G't'-Y"II < ~ c, .zHtV/-Y][<e/2 
t / 4 < l < = t  

I odd 

by Eqs. (4.4) and (4.13) and by L e m m a  4.2. So 

I IG , -YI I<e  for all t > T  o, 

and the p roof  is complete.  // 

Numer ica l  values of d~, ~ for small t and e and also numerical  values for the 
limiting density d~, ~ appear  in Appendix  II. 
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5. C a l c u l a t i o n s  for  the  rea l  q u a d r a t i c  c a s e  

We let notat ions be as in Sect. 1. In this section we shall present the results for 
the real quadrat ic  case and discuss the similarities and differences of the real 
quadrat ic  case and the imaginary quadratic case. For  a real quadrat ic  field K 

we write K=Q(] / /m) ,  where m is a square-free positive integer. We let 
Pl <P2 <- . -  be the odd prime numbers  dividing m. Analogous  to Eqs. (2.1), 
(2.2), and (2.3), we have 

m = P l . . .  Pt with an even number  of  Pi = 3 (mod 4), or (5.1) 

m = Pl ... Pt- 1 with an odd number  of Pi ~ 3 (mod 4), or (5.2) 

m = 2 p ~ . . . p ,  1. (5.3) 

Analogous  to Formula  (2.5) we have 

1 1 x(log log x)  ~ - 1 
IB';xl 2 ( t - I ) !  l o g x  (as x--,oo), (5.4) 

and we may confine our at tention to those m which satisfy Eq. (5.1). Next we 

associate to each K = Q ( t / m  ) the t x ( t - 1 )  matrix M'K=[aij], each aijeF 2, 
where 

( - 1 )  a'~= _ for l<_i<_t and l<=j<=t-1. (5.5) 

Here Pj=pj  if p j-= 1 (mod 4); P j = - p j  if p j---3 (mod 4); and /}= rn/P~. We let M K 
be the t x t matrix whose entries are defined by Eq. (5.5), except with l<j<=t 
instead of l<=j<=t-1. As in the imaginary quadrat ic  case the sum of the 
entries in each row of M K is zero. So rank M K = r a n k  M~:, and we could omit  
any column of M K without  changing the rank of the matrix. However  in 
contrast  to the imaginary quadratic case, the sum of the entries in each column 
of M K is not  always zero in the real quadratic case. In fact for real K one can 
check that the sum of the entries in the j- th column of M K equals zero if 
pj---1 (rood4) but equals one if p i = 3 ( m o d 4 ) .  Now we let pg denote the largest 
of the primes _= 3 (rood 4) that divide m. (If no prime = 3 (mod 4) divides m, we 
take Pg=Pr )  Then we let M~ be the t x ( t - l )  matrix obtained from M K by first 
discarding the g-th column of M K and then replacing the g-th row of the 
resulting matrix by the sum of the rows of that  matrix. If  R K is the 4-class rank 
of  K (in the nar row sense), then the analog of  Eq. (2.7) is 

R K = t - 1 - rank M~ = t - 1 - rank M K = t - 1 - rank M~. (5.6) 

Next  we let St, l=  {K=Q(I / /m)~Bt :  m satisfies Eq. (5.1) with exactly l primes 
p~-~3(mod4)}, 0_<l<_t with 1 even. Then we can proceed to obtain formulas 
analogous to Formulas  (2.8) through (2.12), except with B instead of  A and 



506 F. Gerth, III 

with l taking on the even values in the interval 0 < l < t .  So assume we have 
already obtained formulas analogous to Formulas (2.8) through (2.12), and 
assume we have real fields K~ and K 2 analogous to the Ka and K 2 in the 
imaginary quadratic case. Now we have reached a point where the difference 
between the real and imaginary quadratic cases becomes significant for sub- 
sequent calculations. The matrix M" in the real quadratic case is a t • ( t - 1 )  Kz 
matrix instead of a ( t -  1) x ( t -  1) matrix and has the following properties when 

! ! t />2 :  m ~ =  [a';j] with a'~j*aj~ when l < i < j < l - 1 ;  alj=l for l<j<=l-1 and a~j 
! t t = 0  for l < j < t - 1 ;  %+~)j=aji when l<i<_t-1 and l < j < / - 1 ;  and a~+~)j 

t =atj+~)i when l<_i<t-1 and l < j < t - 1 .  
Now by applying certain row exchanges to M" and then taking the 

K 2  

transpose of the resulting matrix, we get a ( t -  1) x t matrix 

1 - - [ H l _ l l i M  ( 5 . 7 )  M =  0t , 

where HI_IEF~ -x is the vector with each component equal to 1; 0t_ t is the 
zero vector in F~-~; and 

M=[aij], each aijeF 2, l<_i<_t-1, l__<j__<t-1, (5.8) 

with aij+aji when l < i < j < l - 1 ,  and with aij=aj~ when I<_i<t-1 and 
- -  t t  - -  l < j < t - 1 .  Because of the way M was obtained from MK2, we have r a n k M  

= r a n k M ~  . For 1>2, we now let N ' ( t - l , l - l , r )  denote the number of mat- 
rices _M of the form given by Eq. (5.7) with M satisfying Eq. (5.8) and such that 
r a n k M = r .  When /=0,  the appropriate ( t - 1 ) x t  matrix M has as its first 
column the zero vector 0 t 1 in F~ -1, and the ( t - 1 ) x ( t - 1 )  matrix M is 
symmetric. We then let N' ( t -1 ,  - 1 ,  r) denote the number of these matrices M 
with rank .M=r. We can then obtain a result analogous to Proposition 2.1. 

Proposition 5.1. Let B r ~, B t ~. x, and d' be defined as in Sect�9 1, and let l be a 
nonnegative even integer. Let N' ( t -1 ,  l - 1 ,  r) be defined as above. Then 

1 1 x(log log x )  t -  1 

]B';xl~2 ( t - l ) !  logx  (as x ~ ) ,  

IB,,e;xl ~ ~ N ' ( t - l , l - l , t - l - e ) ' ( t l ) ' 2  -"2+')/2 
O<l<_t 

l e v e n  

1 x(log log x )  t -  1 
(as x --, oe), 

( t - l ) !  logx 

d't,e = 2 N ' ( t - l , l - l , t - l - e ) "  (tl) "21-tt2+')/a" 
O<l<t 

l e v e n  

// 

Our next goal is to develop an algorithm for computing N' ( t -1 ,  l - 1 ,  t - 1  
- e ) .  To simplify notation, we let n = t - 1 ,  k = l - 1 ,  and r = t - l - e .  First we 
suppose /=0 ,  and hence we want to compute N ' ( n , -  1,r). Since M =  [0 ,M]  
with M symmetric, we obtain the following result by using Proposition 3.7. 
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Proposit ion 5.2. Let M = [ 0 n M  ] be an n x (n+  1) matrix with O, the zero vector 
in F~, with M =  [alj ] an n • n symmetric matrix, and with rank  ]~t=r .  Suppose 
M I = [ 0 , + I M 1 ]  is an (n+ l ) x ( n +  2) matrix with 0,+ 1 the zero vector in F~ +1 
and with M 1 = [blj ] an (n+ 1) • (n + 1) symmetric matrix such that bij=aij for 
l<_i<_n and l<__j<=n. Then among all such Ml, (i) 2 ~ have r a n k M l = r ;  (ii) 2 r 
have rank  M l = r +  1; and (iii) 2 " + 1 - 2  r+l have rank M 1 - - r + 2 .  // 

We may  now suppose l>__ 2, and we want  to develop a lgor i thms for comput -  
ing N'(n, k, r). As in the imaginary  quadrat ic  case, we next suppose n=k,  and 
we shall consider both  odd and even k. N o w  Eq. (5.7) becomes  

= [ H .  M ]  (5.9) 

where H ,~F~  is the vector  with each componen t  equal  to 1, and M is an n x n 
an t i symmetr ic  matrix.  

We let S O (resp., $1) be the subset of  F~ consisting of all vectors  Y~F~ with 
the sum of the componen t s  of  Y equal  to 0 (resp., 1). No te  that  S O is a 
subspace of F~, and d i m S o = n - 1 .  Also note that  if I11 is one vector  in $1, 
then S 1 = {I11 + Y: Y~So}. 

L e m m a  5.3. Let c(M) denote the column space of )U, and let co(Mr)= {M T Y: 
YcSo}. Assume rank  _~t = r .  Then dim co(MT)=r - 1. I f  n is odd, then 

d im[c(M)+co(mr)]=n and d i m [ c ( M ) n c o ( m r ) ] = 2 r - n - 1 .  

I f  n is even, then 

d i m [ c ( M ) + c o ( m r ) ] > n - 1  and d i m [ c ( M ) ~ c o ( m r ) ] < 2 r - n .  

Proof. First  we claim that  d im co(Mr)=r - 1. Fo r  suppose Y~S o. Then  YT~-I 
=[OyTM]=[O(MTY)T].  Let Z = { Y r M :  Y~So}. Then  dimco(Mr)=dimZ.  
Since rank  M = r  and d im S o = n - 1 ,  then d im Z must  be r or r - 1 .  Howeve r  
each vector  in Z has first componen t  equal to 0, whereas each row of M has 
first c o m p o n e n t  equal to 1. So in fact d im c o ( M r ) = d i m  Z = r - 1 .  Next  we shall 
show that  d im [c(M)+co(MT)]>n-1 .  Since M is ant isymmetr ic ,  then M r = M  
+ I  + J ,  where I is the n • n identity matrix,  and J is the n x n mat r ix  each of 
whose entries is 1. Let WES o. Then W = ( I + J )  W = M W + ( M + I + J )  W~[c(~ t )  
+ c o ( m  r)]. So So c[c(M)+co(Mr)] ,  and hence d i m[ c ( M) + c o ( Mr ) ] > n - 1 .  
Now suppose  n is odd. Then H,r o but  H,~[c(M)+co(Mr)].  So d i m [ c ( ] ~ )  
+ c 0 ( M r ) ]  = n  if n is odd. Hence  when n is odd, 

d im [-c (_M) c~ c o ( m r ) ]  = rank 3~ + dim c o ( m  r) - d im [e (M) + c o ( m r ) ]  

= r + ( r - 1 ) - n = 2 r - n - 1 .  

When n is even, one obtains  d im [c(_~t)c~ co (mr ) ]  < 2  r - n .  / /  

Since 2 r - n - 1  > 0  (resp., 2 r - n > 0 )  when n is odd (resp., even) in Lem-  
ma  5.3, we get the following corollary.  

Corol lary 5.4. Suppose M is given by Eq. (5.9) with M an n • n antisymmetric 
matrix. I f  n is odd, then rank M > (n + 1)/2. I f  n is even, then rank  M > n/2. //  
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Now let I(1 be one vector  in S 1 which will be fixed th roughout  this 
discussion. Let  c l ( M r ) = { M r Y : Y e S 1 } = { M r Y I + M T Y o :  YoeSo}. When  n is 
odd,  L e m m a 5 . 3  implies that  H , + M  r Y~e[c(M)+co(Mr)]. F u r t h e r m o r e  since 
d im[c (M)~co (M r ) ] - -2 r -n -1 ,  then there exist 2 2~ "-~ pairs of vectors 
{ V, W} with Vec(M), Weco(Mr), and H, + Mr YI = V + W. Then V + H, 
= Mr I11 + W6Cl(MT) ' 

N o w  suppose M 1 is an (n + 1) x (n + 2) matr ix  of the form 

(V  + H. )  T g ]  (5.10) 

where H ,  and M are given by Eq. (5.9), V~F~, and v E F  2. If we assume rank  M 
= r ,  where M is given by Eq. (5.9), then rank MI  = r ,  r +  1, or r + 2 .  Given  M, 
we want  to know how m a n y  Ma have rank  2~1 = r, r ank  M1 = r + 1, and rank /~1  
= r + 2. Suppose n is odd. If r ank  M~ = r, then Vec(M.) and [1 (V+ H,) T] ~(row 
space of M). But then V+H,  ec~(MT), and hence {V, V+H,} must  be one of 
t h e  2 2 . . . .  1 pairs with Vec(M) and V+H,  eCl(MT). Write V=3~X and V+H,  
= M T y  with X~F~ + 1 _  and Y~S 1. For  v=[I(V+H,__)T]x, we have rank M l = r .  
I f  we wrote  V = M ( X + X ' )  with X 'e (nu l l  space of M), then 

[1 (v  + u . )  r] ( x  + x ' )  = [1 (v + H.) r] X + [1 (V + U.) r ] X '  

= [I(V+H.) T] X +  [1 (Mry)T]X ' 

= [1 (V+ H.) r ] X  + [1 YrM] X' 

= [1 (V+H.) T] X +  yT[H.M]  X '= [I(V+H.) T] X. 

So given V, there is only  one choice of  v such that  r a n k M l = r .  We have 
proved  the first par t  of  the following proposi t ion.  

Proposi t ion 5.5. Let 2~ be given by Eq. (5.9) with r a n k M = r .  Let I~ 1 be an), 
matrix satisfying Eq. (5.10). Assume n is odd. Of all possible M1, 

(i) 22 . . . .  1 have r a n k ) ~ l = r ;  
(ii) 3 . 2  r -  3 .22  . . . .  1 have r ank  M1 = r + 1 ; 

(iii) 2 "+ 1 +22  . . . .  3 . 2  r have r ank  -M1 = r + 2 .  

Proof (i) has a l ready been proved.  To prove  (ii), we describe the ways in which 
r a n k 2 ~ l = r + l .  First  {V, V+H,} could be  one of  the pairs with Vec(M.) and V 
+H, ecl(Mr), but  we could choose v=I=[I(V+H,)r]X when V=I~X. This 
s i tuat ion gives 22 . . . .  1 choices for 2~1- Next  we could choose Vec(M), V 
+ H,e}c t (Mr), and  v arbi t rary.  This  si tuation gives (2 r -  22 . . . .  1). 2 choices for 
-/~1. Finally we could choose Vq~c(M.), V+H, Ecl(MT), and v arbi t rary.  This 
s i tuat ion gives ( 2 ~ - 1 - 2 2  . . . .  1). 2 choices for 2~ 1. Since 

2 2 . . . .  1 + ( 2 r _ 2  2 . . . .  1 ) . 2 + ( U - 1 _ 2  2 . . . .  1). 2 = 3 . 2 r - 3  .2 2 . . . . .  1, 

we have proved  (ii). Final ly  (iii) follows f rom calculat ing 2 "+ ~ - ( 2  2 . . . .  1+  3 . 2  r 
_ 3 . 2 e ~  .-1) .  / /  

We now suppose  n is even. I f  dim 1-c(34)+ co(Mr) -] = n, then Propos i t ion  5.5_ 
will be valid for M. However  because n is even, it is possible that  d im [c(M) 
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+ c o ( M r ) ] = n - 1 .  So we need to find the M for which d im[c (M)+c o(Mr) ]=n  
- 1 .  From the proof of Lemma 5.3, we recall that So~ [c(M)+co(MT")]. Since 
d i m S o = n - 1 ,  then we must have [c(M)+co(M~)]=So . So the sum of the 
entries in each column of _M (and hence of M) is 0. Then the sum of the entries 
in each column of ( M + I + J )  equals 1 since n is even. Since M ~ = M + I + J ,  
then the sum of the entries in each row of M is 1, and hence the sum of the 
entires in each row of M is 0. So 

M = [ H ~  -x M~ V~ (5.11) 
(Vo + H,_ I) r Vo 

where H,_16F~ -1 has each component equal to 1; M o is an ( n - 1 ) •  
antisymmetric matrix; Vo=MoH, ,  where M o = [ H  . 1Mo]; and v o = l + ( V  o 
+ H , _ O T H , _ I .  We can now proceed in a straightforward manner to obtain 
the following analogs of Propositions 3.5 and 3.6. 

Proposition 5.6. Let M be given by Eq. (5.9) with rank M = r .  Let M t be any 
matrix satisfying Eq. (5.10). Assume n is even. I f  M does not satisfy Eq. (5.II), 
then of all possible M1, 

(i) 2 2 r - n  1 have rank_h41=r; 
(ii) 3 . 2 ' - 3 . 2 2 r - "  ~ have r a n k M l = r + l ;  

(iii) 2 "+1+22r " - 3 . 2  r h a v e r a n k ) ~ l = r + 2 .  

I f  M does satisfy Eq. (5.11) then oJ" all possible M1, 

(iv) 3-2  r h a v e r a n k M  l = r + l ;  
(v) 2 " + l - 3 . 2  r have r ankM 1 = r + 2 .  // 

Remark. We can directly compute N'(1, 1, 1)=2 and N'(1, 1,0)=0.  Then we 
can use Propositions 5.5 and 5.6 to compute N'(n,n,r)  for n=2 ,  3,4 . . . . .  and 
O<_r<n. By combining Propositions 5.5 and 5.6, we get the following result. 

Proposition 5.7. Suppose M is given by Eq. (5.9) with n odd and r a n k M = r .  
Write M =  [aij]for 1 < i < n  and 1 < j < n  in Eq. (5.9). Suppose )~2 = [Hn+2M2] is 
an (n + 2) x (n + 3) matrix with the following properties: H,+zcF~ +2 is the vector 
with each component equal to 1; M2= [bij ] is an ( n + 2 ) x  (n+2) antisymmetric 
matrix ; and bij = a,s.for 1 < i < n and 1 <= j < n. Then of all possible M2, 

(i) 24r 2 " - 3 - 2 2  . . . .  2haverank_Mz=r;  
(ii) 9.23~ " 1-15 .24~ 2"-3+3-22~ " 2 h a v e r a n k M z = r + l ;  

(iii) 7 .22~+2-63.23~ " 1 + 3 5 . 2 ~ - 2 "  2 - 2 2  . . . . .  1 have r ank_Me=r+2 ;  
(iv) 9- 2 r+n+2-21 - 22r+2 + 6 3 . 2 3 ~ - " -  15.24r-zn have rank ]~f2 = r + 3 ;  
(v) 2 2 " + 3 - 9 . U + " + 2 + 7 . 2 2 ' + 3 - 9 . 2 3 ~  n+2+2~r-Zn+3 have r a n k M 2 =  

r+4 .  // 

We now want to compute N'(n, k, r) with k odd. As described in the remark 
following Proposition 5.6, we can compute N'(k, k, r). Now for fixed k we shall 
describe an algorithm for computing N'(n,k ,r)  for n>k.  So we consider an n 
x (n+ 1) matrix M with rank ]Q=r  and with 

A 
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where HkEF k has each c o m p o n e n t  equal  to 1; 0._ k is the zero vector  in F ~ - k ;  

A is a k x k  ant i symmetr ic  mat r ix ;  B is a k x ( n - k )  matr ix;  and C is an ( n - k )  
x ( n - k )  symmet r ic  matrix.  We let M1 be an (n+  1) x (n+2)  mat r ix  of the form 

- -  B r C (5.13) 
M I = O ; - k v 1 T  g r 

where V leF  ~, V2eF~ -k, and v e F  2. We let 

and 
v, o1:[; ,515, 

F o r  each matr ix  L, we let c(L) denote the co lumn space of L. For  those 
matr ices  L with h columns,  where h>k, we let co(L)={LY: YeF h and the sum 
of the first k componen t s  of Y equals 0}. We can then obta in  the following 
analogs of  L e m m a  3.8, L e m m a  3.9, and Propos i t ion  3.10. We leave the details 
to the reader.  

L e m m a  5.8. Suppose rank  M = r  and rank D=s in Eqs. (5.12) and (5.14). Assume 
k is odd. Then 

dim [c (/~t) + Co (Mr)]  = k + s and dim [c (M) c~ c~ (Mr)]  = 2 r -- k - s - 1. / /  

L e m m a  5.9. Max(0 ,  r - k ) < s < m i n ( r - ( k +  1)/2, n - k ) .  //  

Proposi t ion 5.10. Suppose k >__ 1 is an odd integer. Suppose M, M1, D, and D 1 are 
given by Eqs. (5.12) through (5.15). Let r = r a n k  M and s = r a n k  D. Of all possible 
M 1 and D 1, 

(i) 2 s have r ank  M 1 = r and r ank  D 1 = s; 
(ii) 22 r -  k- s -  I _ 2 s have rank  M1 = r and rank D 1 = s + 1 ; 

(iii) 3- U - 3  �9 22r-k-s- 1 have r ank  ~ t  1 = r +  1 and rank D 1 = s +  1 ; 
(iv) 2 "+1 - 2  k+s+l have r a n k M  1 = r + 2  and r a n k D  1 = s + 2 ;  
(v) 2 k + s + X + 2 2 ' - k - s - - 3  ' 2 '  have r a n k 2 ~ l = r + 2  and r a n k D l = S + l .  // 

Remark. Let  k_>_ 1 be a fixed odd integer. Let  N'(n, k, r, s) denote  the n u m b e r  of 
matr ices  M of the form specified by Eq. (5.12) such that  rank  ] ~ = r  and r a n k D  
= s ,  where D is given by Eq. (5.14). We can use Propos i t ions  5.5 and 5.6 to 
compu te  N'(k, k, r, 0) and  then use Propos i t ion  5.10 to compu te  N'(n, k, r, s) for 
n = k + 1, k + 2 . . . . .  Then  using L e m m a  5.9, we get 

min(r- -  (k+  1)/2, n--k) 

N'  (n, k, r ) =  ~ N '  (n, k, r, s). 
s =  max(0 ,  r--k) 

Also by slight modif ica t ions  in our  arguments ,  one can show that  N ' ( n +  1, k 
+ 1 ,  r )=N' (n+l ,  k,r) for 0 _ < r _ < n + l  when k is odd. 
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We are now ready to calculate d' and d~ ~. Ana logous  to Eq. (4.1) t ,  e 

through (4.4), we have 

d;,~= Z c,.tf/,,,~ (5.16) 
0<,=<t  

/ e v e n  

q,l= (tl) " 2 -"-1), (5.17) 

fti,,e=N'(t - 1, l - i ,  t - 1  - e ) .  2 t(t-- 1)/2, (5.18) 

% l=  1. (5.19) 
o ~ , ~ t  
,even 

Since we have an a lgor i thm for comput ing  N'( t -1 ,  1-1, t - l - e ) ,  we can 
compute  d't, ~ for t = 1, 2, 3 . . . . .  and e = 0, 1, 2 . . . . .  As in the c o m p u t a t i o n  of dr, 
in Sect. 4, we actually per form the calculat ions by using denumerab le  M a r k o v  
processes for comput ing  the quantit ies f/,,. ~, and f rom these M a r k o v  processes 
we then determine d'~,~. Appendix  I I I  lists the M a r k o v  processes that  are 
analogous  to the M a r k o v  processes in Appendix  I. Since the procedures  we use 
now are very similar to those we used in Sect. 4, we skip directly to our  final 
result, which is the analog of Theo rem 4.3, and we let the reader  fill in the 
details. 

Theorem 5.11. Let d' be defined by Eq. (1.3). Let t ,  e 

( ' ) y ,= /~ - i  1,2/3,4/63 . . . . .  2-'"+1~ H ( 1 - 2  ~)-1(1--2-m- ' )  - '  . . . . .  
m = l  

where 

f l - ~ =  l + 2 / 3 + 4 / 6 3 + . . . + 2 - , i + ~ l p [ ( l _ 2 - m ) - a ( l _ 2 - m - ~ ) - ~ + . . .  
m = l  

= l~I (1_2 -m)=2c~  -1 
m = 2  

r t d ~ ! r Let Gt=(dt,  o, t ,~,d, ,a  . . . .  ). Then lim ] l G t - Y ' l l : 0 .  / /  

Remark. Numer ica l ly  fl 1 ~0.577576190. 

Append ix  IV contains numerical  values of d' t ,  e 

numerical  values for the limiting density d' fX3, e"  

for small  t and e and also 

Appendix I. Markov processes for imaginary quadratic case 

M a r k o v  process C:  Sta t e s  ut, i w i t h  t =  1, 3, 5, . . . ,  a n d  i=O,  1, 2, . . . .  

L e t  U~ = (ut, o, u~, 1 . . . .  ). T h e n  Ut+ 2 = Ut Q~), w h e r e  
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t n q,j -- 

" 1 _ 3 . 2  ~ i + 1 3 . 2 - z i _ 3 . 2 2  a i + 2 z  ~i 

3 . 2  * i _ 3 9 . 2 . - * - z i + 2 1 .  2 ~ i _ 1 5 . 2  ~--4, 

1 3 . 2  ~ 2i 2 1 . 2 - ~ - 3 , + 3 5 . 2 - 3  4 i _ 2 - 2  zi , 

3 . 2 - ~ - 3 1  15.2.-4 4 1 + 3 . 2  3 2i-t 

2 4 a~--2 3 2 ~ ,  

i 0 

Ini t ia l  vector :  U~ = (1, 0, 0 . . . .  ). 

wi th  i = 0 ,  1, 2 . . . .  ; j = 0 ,  1 ,2  . . . .  ; 

if j = i - 2  

if j = i - I  

if j = i  

if j = i + l  

if j = i + 2  

otherwise.  

Markov process D: States  Yt. ~ wi th  t = 1, 2, 3 . . . . .  and  i = 0 ,  l ,  2 . . . . .  
Let  Yt=(y,. o, Yt, 1 . . . .  ). Then  Y~+ 1 = Y~Qo, where 

Qo=[q~j] with i = 0 ,  1 ,2  . . . .  ; j = 0 ,  1,2 . . . .  ; 

I 1 + 2 - 2 1 - - 2 1 - I  if j = i - - 1  

J 2 1 - i - - 3 - 2 - 1 - 2 1  if j = i  

qiJ=12-1 21 if j = i + l  

l0 otherwise.  

In i t ia l  vector :  Y~ = ( 1 , 0 ,  0 . . . .  ). 

Markov process E z ( l =  1, 3, 5, ...): States lvt.{i, wa with t=l ,  l +  1, 1+2,  . . . ;  i = 0 ,  1, 2 . . . .  ; and  O<wi~i. 
Let  y t= ( iv , ,m ,m . . . . .  lv,,,.wo . . . .  ), where  the c o m p o n e n t  ivt,(i,w,) precedes  tv,,o,w,~ if i<j ,  or if i= j  
and  wi<w j. Then  iVt+l=lV, Q~,, where 

Qe=[zqo, wo.O,w,i] with  i = 0 ,  1 ,2  . . . .  ; j = 0 ,  1,2 . . . .  ; O~wi<=i ; O~wj<-<_j; 

1 - 2  ~' if j = i - 1 ,  w ~ = w , - 1  

2 ~ ' + 2 - a i + " - 2 1  -i if j = i - 1 ,  w j = w  i 

21"- i - -3"2  - l -21+w'  if j = i ,  Wj=W i 

lq(i,",),tj, w,)=~2-1--21+~.__2-w.-t if j = i + l ,  Wj=W i 

2 - w ' - l  if j = i + l ,  Wj=wi-t-1 

0 otherwise.  

f for 0 < i < ( 1 - 1 ) / 2  
Ini t ia l  vector :  ~V l has  ~ tvt'"'~ 

ktvt,(i, w,) = 0 otherwise.  

Markov process F t (I = 1, 3, 5, ...): States  tz,.ti, w,) with  t = l, l + 1, 1 + 2 . . . .  ; i = 0, 1, 2 . . . .  ; and  0 < w i < i. 
Let  IZ,=(tz, .m. op . . . ,  tzt.ti, w,l, ...), where  the c o m p o n e n t  izt.~, w,) precedes  zzt, j. w,~ if i<j ,  or if i= j  
and  wi<w j. Then  iZ,+ 1 =tZtQr~, where  

Qr=[tq'~i,.,,~,o.~,)] with  i = 0 ,  1 ,2  . . . .  ; 

1 - 2  ~'' 

2 w ' + 2  2 i + w ' - 2 1 - i  

Iq,i, wo.o, w,~=/21 - i _  3 . 2 - 1  21+w, 

120-1 21+w' 

j = 0 ,  1, 2, . . . ;  O<w~<i; 

if j = i - 1 ,  w j = w i - 1  

if j = i - 1 ,  w j = w  i 

if j = i ,  w j = w  i 

if j = i + l ,  w j = w  i 

otherwise.  

O < w j < j ;  

Ini t ia l  vec tor :  ~Zt = ~V~. 
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Appendix II. Densities for 4-class ranks of imaginary quadratic fields 

In  the fol lowing table,  t denotes  the number  of ramified pr imes  for an imag ina ry  quadra t i c  field; e 
denotes  the 4-class rank  of the imag ina ry  quadra t i c  field; and  dr, e is the densi ty  defined by Eq. 
(1.1). 

Values  of d~, ~, 

t•Q 0 1 2 3 4 5 

1 1.0 
2 0.5 0.5 
3 0.4375 0.46875 0.09375 
4 0.375 0.515625 0.101563 0.007813 
5 0.350586 0.523682 0.117188 0.008240 0.000305 
6 0.331299 0.538666 0.120659 0.009079 0.000292 5.7 • 10 ~ 
7 0.319630 0.547553 0.123847 0.008670 0.000296 4.9 x 10 -~ 
8 0.311068 0.555336 0.125113 0.008225 0.000253 4.5 x 10 -0 
9 0.305101 0.560985 0.126023 0.007673 0.000215 3.4 x 10-6  

10 0.300759 0.565305 0.126574 0.007182 0.000178 2.6 x 10 -0 

15 0.291461 0.574843 0.127857 0.005758 0.000080 5.8 x 10- ~ 

20 0.289408 0.576950 0.128222 0.005365 0.000055 2.0 • 10 7 

0.288788 0.577576 0.128350 0.005239 0.000047 9.7 • 10 8 

5 . 2 •  8 
3 . 9 •  8 
3.4 x 10 -8 
2 . 3 •  8 

3 . 1 •  9 

4.6 • 10 lo 

4.9 x 10 11 

(Rows may  not  add  up  to 1 because of roundoff  error.) 

Appendix IIL Markov processes for real quadratic case 

Markov  process C' : States ut, i wi th  t = 2, 4, 6, . . . ,  and  i = 0, 1,2, .... 
Le t  Ut =(ut,  o, ur, 1, ut, 2 . . . .  ). Then U,+ 2 = Ut Q~!!, where 

( t )  _ ( t )  Q c ' - [ q ~ ]  with i = 0 ,  1, 2 . . . .  ; j = 0 ,  1, 2 . . . .  ; 

' 1 - 9 . 2  -1 i + 7 . 2  z / - 9 . 2  i 31+2 4i 

9 . 2  I - ' - 2 1 . 2  1 2 i + 6 3 . 2 - - 3 - 3 1  15. 2 3 ,*i 

7 - 2  1 - 1 1 - 6 3 . 2  4 - 3 i + 3 5 - 2  ~ 4 i - 2  3.-2~-t 
( )  

qij = 9 . 2 _ 4  3i 1 5 . 2 . 6  4 1 + 3 . 2  4 21-t 

2 ~  ~ -z l  t 

0 

Ini t ia l  vector :  U: =(1,  0, 0, . . . ) .  

Markov  process D' : States Yt, i with t = 2, 3, 4, . . . ,  and  i = 0, 1, 2 . . . . .  
Let  Yt=(yt. o, Y~, l, Yt, 2 . . . .  ). Then Yt+ 1 = YtQD,, where 

if j = i - 2  

if j = i - 1  

if j = i  

if j = i + l  

if j = i + 2  

otherwise.  
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Q~.=[q~j] with i=0 ,  1, 2 . . . .  ; j = 0 ,  1,2 . . . .  ; 

1 + 2  1 2 / _ 3 . 2 - ~  ~ if j = i - 1  

~ 3 . 2 - ~ - i _ 3 . 2 - 2  ~i if j = i  

q/-~=/2 2-2/ if j = i + l  

t0 otherwise. 

Initial vector: Ye =(1,  0, 0, ...). 

Markov process E'o: States or,. i with t = 1, 2, 3 . . . . .  and i =  0, 1, 2, .... 
Let o V~ = (or,. o, or,. ~, or,. ~ . . . .  ). Then o Vt+ ~=o V~ Q e;, where 

Q~; = [oq~] with i=0 ,  1,2 . . . .  ; j = 0 ,  1,2 . . . .  ; 

1 - 2  -~ if j = i - - I  

/ 2  ~.-i if j = i  

~ ~-~ if j = i + l  

otherwise. 

Initial vector: oV~ =(1,  0, 0, ...). 

Markov process E' t ( l=  2, 4, 6, . . . ) :  States tv~,~i. ~,)with t = l, l + 1, I +  2 , . . .  ; i =  0, 1, 2 , . . .  ; and 0 < w i < i. 
Let tV~=(tvt,~o, o ,  ..-, tv~.~. ~,~ . . . .  ), where the component  ~v,.~. ~,) precedes ~v~.~j. ~} if i<j,  or  if i=j 
and  w~<wj. Then IV,+~ =~V,Q~;, where 

with i=0 ,  1, 2, ...; j = 0 ,  1, 2 . . . .  ; O<w~<i; 

tq(i, w,). (j. wa) = 

1 - - 2  - w '  

2 1-21+~ '+2  . . . .  3 . 2  x-i 

3 . 2  1-i 3 . 2  2-2i+~, 

2 -2 -2~+~ ,_2 -w ,  t 

2 w, 1 

0 

Initial vector: iVt has ( ~ lvl'ti'~ 
for 0<i<_(t-2)/2 

~tv~.~, w,) = 0 otherwise. 

O<wj<j;  

if j = i - 1 ,  w j = w i - 1  

if j = i - - l ,  wj=w i 

if j=i ,  w j=w i 

if j = i + l ,  wj=w i 

if j = i + l ,  w j = w i + l  

otherwise. 

Markov process F/ ( / = 2 , 4 , 6 ,  ...): States tzt, tl.w,) with t=l,  l + l ,  l + 2 ,  ...; i=0 ,  1,2, ; and O<wi<i. 
Let tZt = (tzt, to, o) . . . .  , ~zt.0. w,) . . . .  ), where the component  ~zt,~ ' w,) precedes ,zt.tj ' wj~ if i< j, or if i=j 
and  w i < w~. Then lZt+ 1 = iZt QF I, where 

QG=[zq~,w,),tj, w~] with i=0 ,  1,2 . . . .  ; j = 0 ,  1,2 . . . .  ; O<wi<i; O<wj<j;  

1 - 2  -w' if j = i - 1 ,  w j = w ~ - i  

[ 2 - 1 - 2 1 + ~ ' + 2  . . . .  3 . 2  -L-~ if j = i - 1 ,  wj=w i 
' ---'12 2 1-1 ~ 2-2-21§ lq~i.,~,~.~i.,~,~- V .  - ~ .  if j= i ,  wj=w~ 

[20- 2-  2i+w' otherwise, i f j = i + l ,  wj=w, 

Initial vector: tZz = ~V~. 

Appendix  IV. Dens i t i e s  for 4-c lass  ranks o f  real quadratic fields 

In  the following table, t denotes the number  of ramified pr imes  for a real quadrat ic  field; e denotes 
the 4-class rank of the real quadrat ic  field; and d'f, ~ is the density defined by Eq. (1.3). 
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Values of d't, 
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t• 0 1 2 3 4 5 6 

l 1.0 
2 0.75 0.25 
3 0.6875 0.28125 0.03125 
4 0.648438 0.3125 0.037109 0.001953 
5 0.627930 0.328369 0.041504 0.002136 6.1 x i0 5 
6 0.613953 0.341690 0.042076 0.002222 5.8 x 10 5 9.5 x 10 v 
7 0.604473 0.351600 0.041839 0.002032 5.5 x 10-5 7.8 x 10 7 
8 0.597573 0.359503 0.041062 0.001818 4.4 x 10- 5 6.7 • 10 7 
9 0.592507 0.365631 0.040228 0.001599 3.5 x 10- "~ 4.7 x 10- ~ 

10 0.588735 0.370372 0.039456 0.001410 2.7 x 10-5 3.3 • 10 ~ 

15 0.580189 0.381558 0.037357 0.000888 8.4 x 10 -6 5.1 x 10 8 

2"0 0.578191 0.384230 0 .036831 0.000745 4.2 x 10 6 1.1 x 10 8 

oo 0.577576 0.385051 0.036672 0.000699 3.0 x 10- ~ 3.1 x 10 9 

7.5 x 10 9 
5.3 x 10 -9 
4.2 x 10 -9 
2.7 x 10 -9 

2.5 • 10- lo 

2.6x 10 - l i  

7.7x 10 -13 

(Rows may not add up to 1 because of roundoff error.) 
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