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Let X be a stratified topological space with only even (real) dimensional strata (see 
section 0 for precise definitions). Beilinson, Bernstein, and Deligne have defined a 
category P (X) called the category of perverse sheaves on X constructible with 
respect to the given stratification [BBD]. It  was defined to be the full subcategory of  
Db(X) whose objects are complexes of  sheaves satisfying three conditions (see 
section 0 below), where Db(X) denotes the (bounded) derived category of the 
category of sheaves on X. The category P (X) is important  for several reasons: I f  X 
is a complex analytic manifold with an analytic stratification, then P(X)  is 
equivalent to the category of holonomic r.s. @-modules whose characteristic 
variety is contained in the union of conormal bundles to the strata ([BK], [Mel], 
[Me2], [Br]). I f  X is a special fiber of  an algebraic variety Z over a curve, then a 
perverse sheaf on Z - X  specializes to a perverse sheaf on X, with appropriate 
stratifications. For any X, the category of perverse sheaves on X forms an abelian 
category whose simple objects are the intersection homology sheaves of  the 
strata of  X. 

The definition of P (X) as a subcategory of D b (X) has several drawbacks. Two 
objects may be very different as complexes of  sheaves and still be equivalent in 
Db(X); similarly different chain maps may represent the same morphism. The 
kernel and cokernel of  a morphism are not the naive ones. In this paper, we give a 
construction o f P  (X) which is "elementary" in two senses: it is not subject to these 
drawbacks of  the definition through Db(X), and the structure o f P  (X) may be read 
off from the topology of  X and its stratification. 

Our construction is inductive on the strata of  X, starting with the largest ones. 
The inductive step constructs P (X) from P ( X -  S) under the assumption that S is a 
closed stratum. (This suffices because we can always order the strata so that each 
one is closed in the union of it and the preceding ones.) Then P (X) is constructed as 
a category whose objects consist of  an object A of  P ( X - S )  together with a 
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commutative triangle of  ordinary sheaves 

F ( A )  rA , G(A)  

B 

where F and G are certain functors on P ( X - S )  and T is a natural transformation. 
We give two versions of  this inductive step: one for a topological stratified space 
using combinatorial topology (Sect. 3 and 4) and one for a complex analytic 
manifold using conormal geometry (Sect. 5). To complete the induction, we must 
describe the F, G, and T for adding the next stratum in terms of  our construction of 
P (X). This is carried out in principle at the end of Sect. 4, where it is shown how to 
reconstruct a combinatorial complex of sheaves from our data. It is done explicitly 
in an example in [MV2]. In Sect. 6 we give some examples and some general 
theorems about  P (X) which can be proved using our results. 

Both of the versions of  the inductive step require some extra structure normal to 
the stratum S. In the first version, a subspace of the link of S called a perverse link 
must be chosen. The second version uses conormal vectors to S. It appears to be 
impossible to give a complete elementary construction of  P (X) without such an 
extra structure, but Sect. 2 gives a partial result in this direction. The objects of 
P (X) are determined and, for any two of them, the group o fhomomorph i sms  from 
one to the other is determined up to an extension. In Sect. 7, this is extended to study 
the structure of  Db(X) in terms of  D b ( X - S ) .  

We benefitted from conversations with Beilinson and Deligne, and from a letter 
of  Deligne [D1 ] containing an elementary description of P(X)  for two dimensional 
X. Galligo, Granger, and Maisonobe [GGM] have given a non-inductive 
elementary construction of P (X) for X stratified by normal crossings, and Verdier 
[V 1 ], [V 2] has studied extensions of  perverse sheaves across a principal divisor and 
has applied this to prove some of our results of  Sect. 5. The results of  Verdier were 
independently obtained by Beilinson [Be]. Further work along these lines has been 
done by several people [GrM], [GK], IN] and [MV2]. 

The main theorems of this paper were announced in [Mac] and [MV1]. 

O. Notations 

We will consider a Thom-Mather  stratified space Xwith a fixed stratification 5~(see 
[T], [Ma] for the definitions). For example, all analytic spaces and all Whitney 
stratified spaces can be endowed with a Thom-Mather  structure. As part of  the 
structure, each stratum S of 5 p has "control data"  consisting of  a tubular 
neighborhood T s with a projection r~ s to S and a function Ps measuring the distance 
to S. Since we will only consider the middle perversity, we will assume that all of  our 
spaces have only even codimensional strata. In Sect. 5 and 6, where we consider 
complex analytic spaces, we will impose additional assumptions on the stratifi- 
cation 

We fix a field k. In this paper all sheaves will be sheaves of  k-vector spaces and 
all vector spaces will be k-vector spaces unless otherwise stated. 
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We denote by D b (X) the derived category of complexes of  k-sheaves on Xwhose 
cohomology is bounded. As in [BBD] we define the category of perverse sheaves 
P (X)  as a full subcategory of Db(x)  consisting of complexes of  sheaves A" 
satisfying the following three conditions: 

i) Hk(i*A ") is a local system of finite rank on S 

ii) Hk(i*A ") = 0 for k > - dimS/2 

iii) Hk(irA ") = 0  for k < - dimS/2 

tbr all strata S s 5ewhere i: S ~ X denotes the inclusion. The category of perverse 
sheaves P (X) defined above is that associated to the middle perversity N ([GM2]). 
We treat only the case of  the middle perversity in this paper although the results 
with the exception of Sect. 5 are valid for an arbitrary perversity. We denote by 
Db~ (X) the full subcategory of D b (X) whose objects satisfy the condition i) above. 

I f A  ~ is a complex of sheaves on a space Z and i: Y c~ Z is a subspace we write 
A'LY for i*A. If  Y is closed in Z and j: Z -  Y ~  Z denotes the inclusion of 
the complement we write IH* (Z, Y; A')  for IH* ( Z , j ~ A ' I ( Z - Y ) ) .  We denote by 
6: i.A" [ Y~j~A" I ( Z -  Y) [1] the degree raising map in the triangle 

j~A ' I (Z -Y) - - ->A ' - -* i .A ' [Y  t~l , j ~ A ' I ( Z - Y ) .  

which gives rise to the long exact sequence of the pair (Z, Y). 

1. A construction of abelian categories 

In this section we will present a purely category theoretic construction which is the 
key to our work on perverse sheaves. 

We will consider the following data: two categories ~ ' a n d  M, two functors F 
and G from ~ ' t o  M, and a natural transformation Tfrom F to  G. Symbolically F, G: 

N ~  and F r > G. We define the category ~(F,  G; T) to be the category whose 
objects are pairs (A, B)~ Obj ,~x  Obj~  together with a commutative triangle 

FA rA ~ GA 

B 

and whose morphisms are pairs (a, b) s M or ,~ ' x  Mor ~ such that 

commutes  

TA 
FA > 

Fa 

B 

FA' hi rA' 

B' 

GA 

, GA' 

Proposition 1.1. l f  ~q and ~ are abelian categories and if F is right exact and G is left 
exact then the category c~ (F, G; T) is abelian and the functors taking (A, B) ~ A and 
(A, B ) ~  B from C~(F, G; T) to ~r ~ are exact. 
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Proo f  It is clear that Cg(F,G; T) is an additive category. We must show the 
existence of  kernels, the existence of  cokernels and that the canonical map from the 
coimage to the image is an isomorphism ([P], p. 27). First we construct kernels in 
Cg(F, G; 7). Let (a, b): (A, B ) ~ ( A ' ,  B')  be a morphism in off(F, G; 7). Consider the 
diagram r(Ker a) 

F(Ker  a) , G (Ker a) 

Ker(F(a))  , Kerb  , Ker(G(a))  

where the vertical maps are the canonical maps arising from the definition of the 
kernel. The map on the right is an isomorphism because G is left exact. The diagram 
of  compositions 

F(Ker  a) , G (Ker a) 
% Z 

ker b 

is the kernel of (a, b) in ~ (F, G; 7). 
The construction of cokernels using the right exactness of F is dual. The 

canonical map coim (a, b) ~ Im (a,b) is an isomorphism because the maps 
coim a ~ Im a and coim b ~ Im b are. 

We want to compare two categories ~ (F, G; 7) and ~ (F' ,  G'; T') constructed 
from different data. Assume now that ~ is an abelian category. Suppose that we 
have functors F, G, F '  and G' from s~to N and natural transformations ~ T', f a n d  
g according to the following commutative diagram: 

F r ~G 

F'  ) G '  
T'  

An (f,g)-map from F A - * B - * G A  in ( d ( F , G ; 7 )  to F ' A ' ~ B ' ~ G ' A '  in 
cg (F', G'; T') is a pair of maps (a, b), a: A ~ A' and b: B ~ B' such that the diagram 

F ( A )  .) B ) G ( A )  

F' (A')---. 8'----, a '  (A') 
commutes. 

Consider the following commutative diagram 

F ( A )  " , B " ~. G(A)  

F ' ( A )  , B I I v A F ' A  " , G ' (A)  

where the map n' is given by the universal property for the fiber sum II. We define a 
functor 01: Cg(F, G, T) --. cg (F' ,  G'; T')  by 0, (FA--*B--*GA) = F 'A  -'-~B[1FA F 'A  --* 
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G'A. The above diagram gives us an (f ,g)-map from XsCg(F,G;T) to 
01 (X) e ~g (F',  G'; T') which by the universal property of  H induces an isomorphism 

Hom(:,g)(X, Y) ~- Horn (01 X, Y) 

for X6Cg(F,G;T) and YeCK(F',G';T'). 
Dually we define 02: C~(F', G'; T')~Cg(F, G; T) by sending F'A--.B--.G'A to 

FA ~ B x C'A GA ~ GA and we have 

Homey, g) (X, Y) ~ Hom (X, 02 Y) 

for X~Cg(F,G;T) and Y~Cg(F',G';T'). 
Therefore (01,02) is a pair of adjoint functors. 

Proposition 1.2. I f  for every object A ~ ~r the natural transformations f and g induce 
isomorphisms Ker TA ~ Ker T'A and Coker TA ~ Coker T'A then the functors 01 
and 02 are equivalences of categories. 

Proof We have to show that the adjunction maps N: I d ~ 0 2 o 0 t  and N*: 
0tO0z---~Id are natural isomorphisms. The map N is (IdA,NB) where NB: 
B~(BHFsF'A)• is given by NB(x)=(x,O, n(x)). It remains to be 
checked that N 8 is an isomorphism. Let NB(x) = 0. By definition this means that 
n (x) = 0 and there exists y ~ FA such that f (A )  (y) = 0 and m (y) = x. But now 
T(A) (y) = n (m (y)) = n (x) = 0. Because f (A )  ] Ker T(A) is an injection y = 0 and 
therefore x = 0. Similarly we can show that N B is a surjection. 

The proof  that N* is a natural isomorphism is dual. 

Example 1.3. Let ~r ~ be abelian categories and let E* be a complex of  exact 
functors from ~r to ~ .  Then F = C o k e r ( E - 2 ~ E - 1 ) ,  G=Ker(E~ ~) and 
T = d - l :  F ~ G  satisfies the hypotheses of proposition 1.1. If  e: E * ~ E ' *  is a 
quasi-isomorphism of complexes of  exact functors then proposition 1.2 applies to 
give an equivalence of categories e: Cg(F, G; T )~Cg(F  ', G'; T'). 

Remark 1.4. Let ~ ~ ~ be a full abelian subcategory with ~--* ~ exact and 
stable by extensions. Assume that Ker (FA ~ GA) and Coker (FA ~ GA) are in ~.  
Let c~ (F, G; T) be the subcategory ofCg (F, G; T) consisting of pairs (A, B) such that 
the kernel and cokernel of FA ~ B are in ~ .  It follows from the long exact sequence 

0 ~ Ker (FA ~ B) ~ Ker (FA ~ GA)--. Ker ( B ~  GA) ~ Coker (FA ~ B) 

Coker (FA ~ GA) --+ Coker ( B ~  GA) ~ 0 

that it is equivalent to define ~ (F ,  G; T) as a subcategory of cs (F, G; T) such that 
Ker(B--.GA) and Coker(B--*GA) belong to ~ .  The category C~(F, G; T) is a full 
subcategory ofCg (F, G; T) such that the inclusion functor is exact and ~ (F ,  G; T) is 
stable by extensions. 

Appendix to Section 1. 

In the remainder of this section we will give an interpretation of the constructions in 
this section which was pointed out to us by Deligne. These ideas will not be 
explicitly used in this paper. 
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The constructions involving 01 and 02 have nothing to do with ~r Let ~ be an 
abelian category. Let FI(M) be the category whose objects consist of morphisms in 

and whose morphisms are the appropriate commutative squares. Let Fig (:~) be 
the category whose objects consist of  pairs of morphisms (m, n) such that n o m 
exists. There is a canonical functor FI2 (g )~FI ( :~ )  given by conposing the 
morphisms. This functor gives FI 2(~)  the structure of a fibered and cofibered 

category over FI(:~) [SGA1]. The fiber above the point F ~ > G in FI(Y3) is 
(F, G; T). (Here F and G are objects in B and T is a morphism.) Given any map 

(f ,g):  (F r G ) ~ ( F '  T' ~G') we get by definition two adjoint functors 0~: 
C~(F,G;T)~C#(F' ,G' ;T ' )  and 02: C~(F' ,G';T')--*~(F,G;T).  We have 

i) If (f, g) is quasi-isomorphism then 0 t and 02 are equivalences of categories 
(Proposition 1.2). 

ii) If H: G ~ F '  is a homotopy between (J; g) and ( f ' ,  g') then the formula 

F >B " ~ G  F ~B ~G 

F'  > B '  ~ G' F'  ~B'  -~G' 
m' 

u' = u + m' Hn, gives an isomorphism Hom(y,g)(X, Y) ~Hom<r, g,)(X, Y). This 
isomorphism is compatible with composition and therefore gives an isomorphism 
of functors 0 i (f, g) ~- 0 i ( f ' ,  g'). 

I f ~  is the category of abelian sheaves on a topological space X then the above 
considerations show that r (F, G; T) only depends on the Picard stack ~defined by 

F r ~ G [SGA4 XVIII]. As a matter of fact we can construct it as follows. The 
objects of ~ ( F ,  G; T) are morphisms S: ~-- .  ~ '  such that S maps H ~ 1 6 2  ~) onto 
H ~  where H ~  stands for the sheaf generated by the presheaf of 
isomorphism classes of objects of ~. The morphisms are maps ~ '  ~ ~ "  such that 

~,, 

~ "  

commutes. 

2. The zig-zag functor 

In this section we give a version of  the fundamental inductive step of constructing 
P (X) from P ( X - S )  for the case that Sis contractible which almost works. It allows 
us to compute in an elementary way the set of isomorphism classes of  elements of 
P (X) and, for any two elements Q" and Q" o f P  (x),  the group Horn (Q' ,  Q ' )  up to 
an extension. The methods of this section are used to study extensions of an 
arbitrary element in D b~o(X--S) in Sect. 7. The results of this section hold for any 
stratified topological space as in [GM2]. 
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Suppose that S is any closed stratum of 5 ~ of  dimension 2d. Denote by 
j: X -  S c~ X and i: S c_~ X the inclusions. We define the zig-zag category Z (X, S) 
as follows. An object in Z (X, S) is an object P" of P ( X -  S) together with an exact 
sequence of local systems on S: 

H -a- l ( i*Rj ,  P' )  ~ K ~  C ~  H-n ( i*R j ,  P ") 

A morphism in Z(X,S)  is a morphism p: P" ~ P "  together with a diagram 

H -d-~ ( i*Rj,  P ' )  ~ K ~  C ~  H-a ( i*R j ,  P ") 

1 1 
H a-,  (i* Rj,  P ' )  ~ K ~ C ~ H-a (i* Rj ,  P ' )  

(The reason for the name "zig-zag" is seen in formula 2.2.) We define the zig-zag 
functor ~ :  P (X) ~ Z (X, S) by sending an object Q" o f P  (X) to j*  Q" together with 
the exact sequence 

H -a-x ( i * R j , j * Q ' )  ~ H-a(i~Q ") ~ H-a ( i*  Q .) ~ H - a ( i * R j , j  * Q ' ) .  

The above exact sequence is a piece of the long exact sequence associated to the 
triangle 

Rj , j*  Q" 

Z 10 ) Q',.., 

i , i !Q  �9 
restricted to S. 

Note that if S is contractible (or simply connected) local systems on S are just vector 
spaces. 

Theorem 2.1. Suppose that S is contractible. Then 
i) ~e gives rise to a bijection from the isomorphism classes of  objects o fP  (X) to 

the isomorphism classes of  objects o f  Z (X, S). 
ii) For any two objects Q" and 0," o f  P (X), ~ gives rise to a surjection ~ . :  

Hom (Q' ,  Q ' )  -* Horn (~eQ.,  ~e~.) .  Furthermore there is a canonical injection 
Hom (H-  a ( i*Q') ,  H -  a ( i !~  .)) ~ Horn (Q' ,  Q ' )  whose image contains the kernel o f  

such that the composed map 

Horn (H-a ( i*Q ' ) ,  H-a( i~Q'))  ~ Hom (Q' ,  Q ' )  --~ Horn (~eQ.,  ~e~ . )  

sends the homomorphism 6) to the homomorphism which is 0 on P ( X -  S)  together 
with the diagram 

H - a -  1 (i* Rj, j * Q ' )  

0 

H -a-I  ( i * R j , j * Q ' )  

H-a( i~Q.)  ~ , H - a ( i * Q  ") , H - a ( i * R j , j * Q  ") 

oou I 1o 1o 
, H-a(i~Q ~ , , H - a ( i * Q  ") ~ H - a ( i * R j , j * Q ~  
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Remark. The results of Sect. 7 show that this theorem holds whenever 
~1 (S) = ~z2 (S) = 0. 

Suppose that we have determined two isomorphism calsses [Q'] and [Q'] of 
elements of P (X) by two elements of Z (X, S) using the first part of Theorem 2.1 : 

~ Q ' = { H - d - I ( i * R j ,  P ") , K u , C ~ H-a( i*Rj ,  P')} 

:LrQ'= ( H - d - l ( i * R j ,  P ") , F. ~ , C----~ H-'~(i*Rj,  P')} .  

Then the second part of Theorem 2.1 gives two ways to display Hom (Q', Q' )  as 
an extension (using only knowledge of P (X-S)) .  

Corollary 2.2. There is an exact sequence 

0 --* Horn (Cok u, Ker ~i) --* H om (Q', Q' )  --* Hom ( ~  Q', ~e ~ . )  ~ 0 

Corollary 2.3. There is an exact sequence 

0 ~ Hom (C, h') ~ Hom (Q', Q ' )  ~ G ~ 0 

where G ~ H o m ( P ' , P ' )  is the group o f  homomorphisms which extend to 
homomorphisms of  ~Q" to ~ Q ' .  

The proof of these corollaries using Theorem 2.1 is immediate. 
In the proof of Theorem 2.1 we need the following. 

Lemma 2.4. Let S be contractible. Then the derived category D~ (S) o f  complexes of  
sheaves with bounded and (locally) constant cohomology is equivalent to the derived 
category of  vector spaces D b (k). 

Proof. We first show that any element Q" ~ D~ (S) is isomorphic to its cohomology 
i.e. that Q" - G H k (Q') [ -  k]. We will prove this by induction on the length Nofan  
interval outside of which the cohomology groups Hk(Q ") vanish. For N---- 0 the 
statement is clearly true because then Q" has non-vanishing cohomology for one 
value ofk only. Assume now that the claim is true for Nand Q" is a complex having 
non-vanishing cohomology Hk(Q ") for k ~ [0, N +  1] only. Consider the triangle 

HN+1(Q') [ - N -  1] 

Q. \/ el(l) 

Z ~ N Q "  

N 
By the induction hypothesis z s s Q" ~ k__(~)o Hk (Q') [ -  k]. The map 

e~Ext l  ( H N §  I ], k@=oHk(Q')[-k] ) 

N 
~k(~)0 Ext2+k(ItN+I(Q'), HN-k(Q')) 

N 
~ G H2 +~(HN+I(Q') * | HN-~(Q' ) )  

k=0 

~0 
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because S is contractible. Therefore 

N+I 
Q" ~--k~oHk(Q')[--kl . 

It remains to show that if Q" and Q" belong to Db(S) then H o m ( Q ' , Q "  ) 
= ( ~ H o m ( H k ( Q ' ) ,  Hk(Q')). By using the first part of  the proof  we see that 

k 
Hom (Q' ,  Q ' )  ~ ( ~ E x t i - J ( n  i (Q'),  n J ( O ' ) )  �9 

|,J 

But as above Exti-J(Hi(Q') ,  HJ(Q' ) )  = 0 for i 4=j. This proves our claim. 

Proof of Theorem 2.I i) Let Q" ~ P (X). Consider the triangle 

Rj,j* Q" 

/~ el(l) (2.1) Q" \ 

i,i!Q �9 

The object Q" is completely determined by the map e e Ext 1 (Rj,j* Q', i, i~Q "). But 

Ext 1 (Rj,j*Q', i , i~Q')  ~ Ext 1 (i*Rj,j*Q', ? Q ' )  

_ ~ H o m ( n k ( i * R j ,  j*Q'), Hk+ 1 ( i !Q'))  

by Lemma 2.4. 

By the perversity conditions and the long exact sequence associated to the 
triangle (2.1) we see that for k > - d  the above homomorphism has to be an 
isomorphism and for k < - d - 1 it is zero. Writing out this non-trivial part of  the 
long exact sequence associated to the triangel (2.1) we get 

(2.2) 

0 ~ H - e + I ( i ! Q  ") 

8-" ( i*Rj ,  p ") 

H - e ( i * Q  ") Y I t -d ( i !Q  ") 

i t - d -  t (i* Rj, p ~ 

H - d - I ( i * Q  ") (" 0 

where we have denoted P" = j * Q ' .  
We now try to understand all possible extensions of P ' ~  P ( X - S )  to P (X) 

up to isomorphism. But we see that given an extension Q" of  P" is equivalent to 
giving two groups H-e( i~Q ") and H-a+a( i , i~Q ") and homomorphisms 
H-e(i*Rj, P')--+H -a+~ ( i , i ' Q ' )  and H -d-1 (i*Rj, P')-+H-a(i,i'.Q'). On the 
other hand this is equivalent to giving the diagram (2.2) because all the cohomology 
groups are just vector spaces. Finally this is equivalent to giving an element in 
Z (X, S). 
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ii) Consider the triangle 

Rj, j*Q" 

~. /"\ l (" 
i,i!Q �9 

Apply the functor R Hom ( Q ' , - )  to this triangle to get 

R n o m  (Q', Rj, j* Q') 

- -  / ~  J(l) RHom(Q ' ,  Q ' )  \ 

R Horn (Q', i ,Q ' )  

By using the fact that f*  is a left adjoint of R f ,  we get the triangle 

RHom(j*  Q ' , j * Q ' )  

/" 1(~) R H o m ( Q ' ,  Q ' )  \ 

RHom (i* Q',  i!Q').  

Now we observe that Ext- 1 0* Q' , J*  Q')  = 0, because Q" and Q" are perverse and 
by Lemma 2.4 and using the perversity conditions we see that 

Hom(i*Q' ,  i!Q ") = Horn (H-a(i*Q') ,  H-a(i!Q'))  

Extl(i*Q',irQ ") = Hom(H-a - I ( i*Q ' ) ) ,  H-a( i 'Q ' ) )  O Hom(H-a( i*Q ' ) ,  

H - a -  1 ( i ! ~ ' ) ) .  

Putting this all together we get an exact sequence 

0 ~ Horn (H-a(i * Q'), H-a( i 'Q ' ) )  ~ Horn (Q', Q ' )  ~ Hom 0* Q' ,  j* Q ' )  

a, H o m ( H - a - l ( i * Q ' ) ,  H-a(irQ'))  @ Hom(H-a( i*Q' ) ,  H-a+I( i~Q' ) )  

We now want an explicit formula for the map 6. To this end letp:j* Q" ~ j *  Q'.  We 
have 

6: Hom (j* Q',  j* Q')  

3: Hom(Q',Rj, j*Q') 

, Ex t l ( i*Q ' , i 'Q  ") 

, Extl (Q' , i , i~Q ") 

from which it easily follows that 6 (p) can be given as a composition 

i , i*Q" , Rj, j*Q" p , Ri, J*Q" (1) i , i 'Q ' .  
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So 6 (p) = (7~ p ,  o s, ~ o p ,  o v) using the notat ion below. 

0 _ _ , H _ d _ I ( i , Q . )  s , H _ d _ I ( i , R j ,  j , Q .  ) t , H d(i,Q.) . , H - e ( i , Q . )  

H - d ( i * R j ,  j * Q  ") " ,  H - a + ~ ( i ' Q  ") , 0 

0 _ _ , H - d - l ( i , ~ - )  �9 , H - d - I ( i * R j ,  j * Q  .) ~ , H-d(i~Q ") ~ ,  H - d ( i * ~  .) 

H - d ( i * R j ,  j * Q  .) ~ , H-d+a( i~Q ") , 0 

By linear algebra we can see that if c5 (p) = 0 then p can be extended to a map in 
Z (X, S). This proves Corol lary 2.3. 

Consider now the composi t ion 

H o m ( H - a ( i , Q . ) ,  H - d ( i ! ~ ' ) )  c_~ H o m ( Q ' , Q ' )  ~r , HomG~eQ.  ' ~ e ~ . ) .  

Because Horn (i* Q ' ,  i ~ Q ' )  = H o m  ( Q ' ,  i ,  i~Q ") a map 0 : i* Q" --* i ~ Q" gets sent 
to the map Q" --, i ,  i~Q" -* Q ' .  This yields the last claim of  par t  (ii). I t  remains to 
be checked that the map ~ is surjective. I f  we have morphism a : ~eQ.  ~ ~ .  
we showed before that there exists a morphism a : Q ' - - * Q "  extending cr on 
X - S ,  Therefore e - ~ , a :  ~eQ.  ~ ~ e ~ .  whose restriction to X - S  is zero. But 
now by linear algebra there exist a 0 e H o m ( H - d ( i * Q ) ,  H-d ( i~Q ' ) )  such that  
c~ = ~ , ( a + O ) .  

Remark.  The p roo f  we gave for part  i) o f  Theorem 2.1 is due to Allen Shepard (in 
the case that S = point). The observat ion that one gets a similar theorem for the 
whole derived category is also due to him. We have carried on further ideas along 
these lines in Sect. 7. 

3. Extensions of  perverse sheaves over contractible strata 

In this section we construct  P (X) in terms o f P  ( X -  S) for the case that S is a closed, 
contractible s tratum of  dimension 2d. 

As part  o f  the structure o f  X as a Thom-Mathe r  stratified space the s t ra tum S 
has "control  da ta"  consisting o f  a tubular ne ighborhood Ts endowed with a 
fibration r~ s: Ts-* S and a distance function Ps: Ts ~ IR. I fp  is any point in S the link 
L ~ of  S is rck~- 1 (p) ~ Ps  1 (0  for small enough e, > 0. Its stratified homeomorph i sm 
type is independent o f  the choice o fp  and ~:. The strata o f  L ~ its intersection with the 
strata o f  X -  S, are odd dimensional. The link is the boundary  o f  a small "normal  
slice" ID ~ to S through p which is defined as ~-1  (p )~  p s i  ([0, ~]). 

Definition 3.1. A perverse link K ~ of  S is a closed subset o f  the link L ~ o f  S such that  
for all P" E P ( X -  S) 

i) IHk(K~  = 0 f o r k > - d ,  

ii) I H k ( L ~ 1 7 6  for k < - d .  
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Perverse links exist. One construction is given in the following lemma and 
another construction, valid for complex analytic spaces X, is given in Sect. 5. 

Lemma 3.2. Let ~ be a triangulation o f  L ~ such that each stratum is the union of  
interiors o f  simplices. Let K ~ be the union of  all closed simplicies of  ~-', the 
barycentric subdivision o f  ~-, which intersect each stratum V of  L ~ in a set o f  
dimension < ) dim V. Then K ~ is a perverse link. 

Remark. The sets Kof the  lemma arose in two other contexts. They are the R~:_ 1 of 
[GM1] w and the R of  [GM6] w 

We defer the proof  of  the lemma to the next section where we prove a more 
general version of  it. 

Now we give data for the construction of an abelian category via Proposition 1.1 
using the perverse link K ~ c L ~ as follows: ~r P ( X -  S), ~ is the category of  vector 
spaces over k, F ( P ' )  is IH-d-1 (K~ G(P ' )  is 1H-a(L~176 and T i s  the 
coboundary homomorphism in the long exact sequence for the pair (L ~ K~ It is 
obvious from the definition of a perverse link that Fis right exact and G is left exact. 

Theorem 3.3. Suppose that S is contractible. Then P (X) is equivalent to the category 
c~ ( F, G: T) constructed by using the above data. The equivalence is realized by the 
functor <g: P(X)-4C~(F, G: T) which sends Q" to Q" I X -  S together with 

iH_a_l (KO;Q.) r , IH_a(LO, KO;Q.) 

IH-a(ID~ K~ Q ' )  

Remark. It follows from the results of Sect. 7 that this theorem holds as long as 
7~ 1 (S)  = n 2 ( S  ) = 0. 

Our strategy of  proving Theorem 3.3 will be to use the results of the previous 
section. To this end we want to define a functor ~ :  ~ (F ,  G: T) -4 Z (X, S) such that 
we have the following commuting diagram of  functors 

C~(F, G; T) 

z(x,s) .  

Consider an element of  (~ (F, G; T): P" ~ P ( X - S )  together with the diagram 

(3.1) lH_a_X(Ko;p.)  r ,  iH_a(LO, Ko ;p . )  

B. 

We define ~r of this object as P" ~ P ( X -  S) together with the exact sequence 

H-a-1  ( i*Rj ,  P ' )  -4 Kern  -4 Coker m -4 H - a ( i * R j ,  P ' ) .  
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The above sequence arises as the sequence of  kernels and cokernels o f  the diagram 
(3.1) 

O ~ i H - d - ~ (  . . . .  X(Ko;p.)~IH-d(LO, KO;p.)~IH-a(Lo,  p . ) ~  0 

Ker n ~ Coker  m 

/ \ 
0 0 

by observing that Hk(i*Rj, P ") ~-IHk(L~ The fact that  ~ = ~ o  ~f follows 
because Hk(i*Q')~-lHk(ID~ and itk(i~Q.) ~=iHc(l D k  . . . .  - / 2  , Q  ) 
= kern.  For  these last two facts we refer to [GM2],  [Ba] and [Bo]. 

Proposition 3.4. I f  S is contractible then 

i) The functor ~/~gives rise to a bijection from the isomorphism classes of objects 
of Cg (F, G; 7) to the isomorphism classes of objects in Z(X,S) .  

ii) For any two objects ( P ' ,  B), ( P ' ,  B) of Cg ( F, G; T) we have an exact sequence 

0 ~ Horn (Coker m, Ker a) --* Horn ( (P ' ,  B), (P ' ,  B)) ~ G ~ 0 

where G c H o m  ( P ' , P ' )  is the subgroup of homomorphisms that can be extended 
to r  B) --, ~/" ( P ' ,  B). 

Proof. i) Fix P" and consider the following object o f  ~ ( F ,  G; 7)  

FP"  r ~ GP"  

B 

We write FP"  = Ker T@ Coim T, GP"  = Coker  T O  Im T a n d  B = (Im mocKer  n) 
@ (Im m ~ Coim n) �9 (Cok m c~ Cok n) G (Cok m c~ Coim n). The only non-trivial 
maps in these coordinates are the isomorphisms 

Coim T r ~ Im T 

Im m ~ Coim n 

defined by T, a surjection K e r T ~ I m m c ~ K e r n  and an injection 
Cokmc~Coimnc-~CokT.  Therefore specifying an object in ~g(F,G;7) is 
equivalent to giving P" and the surjection and the injection above. 

On  the other  hand  we can specify an exact sequence 

K e r T  t ~ K " ~ C ~ ~ C o k T  
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by specifying C o i m u - I m u  and a surjection K e r T ~  Keru  and an injection 
Coker u ~ Coker T. 

Therefore up to isomorphism the data for an object of  ~ (F, G; T) is equivalent 
to the data for an object of  Z (X, S). 

ii) We consider two objects (P ' ,B) ,  (P ' ,B )  of ~ ( F , G ; T )  and we fix a 
morphism p: P ' - ~ P ' .  Assume now that we have extended the pair p , :  
C o k T ( P ' ) ~ C o k T ( P ' ) ,  p , :  K e r T ( P ' )  ~ K e r T ( P ' )  by compatible maps 
K e r n ~ K e r f i ,  Cokm--~Cokt~ to a morphism in Z(X,S) .  By using the 
decomposition introduced in i) we see that we can extend p to a morphism in 
cg (F, G; 7). It is clear that all such extensions are parametrized by the affine space 
Hom (Cok m, Ker  fi). 

R e m a r k .  If 9~ is abelian then for any C ~ ( F , G ; T )  there exists a functor ~ :  
cg (F, G; T) ~ Z (F, G; 7) constructed as above. The above proposition holds in this 
generality given that the category ~ has no non-trivial extensions. 

Lemma 3.5. The f unc to r  cg: p (X )  --~ cg (F, G; T)  is exact .  

Proof .  It is enough to show that the functor Q" ~--~IH-d(ID ~ K~  ") is exact. 
Consider the long exact sequences 

. . . ~ I H k ( I D ~ 1 7 6 1 7 6  lI-Ik(K~ Q ' )  -~ . . .  

. . . -~ IHk ( ID~ L~ ; Q" ) -~ IHR ( ID~ K~ ; Q " ) -~ IHk ( L~ K~ ; Q" ) -~ . . . 

We have II-I k (ID ~ Q ' )  ~ 0 for k > - d because Q" is perverse and IF/k (K ~ Q ' )  - 0 
for k < - d  by definition 3.1. Therefore IHk(ID ~ K~ Q ' )  ~ 0 for k > - d .  

Now IHk(ID~ L~ Q ' )  - IHc~ ( ID~  L~ Q ") - H k ( i ~ Q  ") 2 0  for k <  - d because 
Q" is perverse and k o o ~ 0  IH (/2, K ; Q ' )  for k < -  d by definition 3.1. Therefore 
IHk (ID ~ K~ Q ' )  ---0 for k < - d .  

This shows that Q" ~-dH-d(ID ~ K~ Q ' )  is exact and therefore c~ is exact. 

P r o o f  o f  T h e o r e m 3 . 3 .  Because C g ( Q ' ) = 0 ~ Q ' = 0  and cg is exact (by 
Lemma 3.5), ~ is faithful. By Theorem 2.1 and Proposition 3.1 dim Horn (Q' ,  Q ' )  
= dim Hom((g(Q ' ) ,  Cg(Q.)) which implies that cg is also full. Theorem 2.1 and 
Proposition 3.4 imply further that cg is bijective on the isomorphism classes of  
objects. Therefore the functor cg is an equivalence of categories (by [ML] p. 91). 

E x a m p l e .  Let X be the complex line q2 and let the stratification 5 e be given by 
S = {0} and ~ - {0}. We can choose for L the unit circle and for K the set { 1 }. Every 
element P ' e  P ( ~ -  {0}) is a local system placed in degree - 1 .  We can identify 
F ( P ' )  with the stalk of P" [ -  1] at 1 and by choosing an orientation for (r we can 
also identify G (P~ with the stalk of  P" [ -  1] at 1. Under this identification the map 
Tbecomes Ft - 1 where/z is the monodromy. So a factorization F ( P ' )  ~ B ~ G (P ' )  
of Tdetermines ~t and hence also determines P ' .  Therefore Theorem 3.3 implies that 
P (~)  is equivalent to the category of  pairs of vector spaces (F(P ' ) ,  B) with maps q: 
F ( P ' )  ~ B and r: B ~  F ( P ' )  such that r o q + 1 is invertible. This is the original 
result of Deligne [D 1]. 
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4. Extensions of  perverse sheaves: the topological case 

As in the last section we consider a Thom-Mather  stratified space Xwith  only even 
dimensional strata and we focus attention on a closed stratum S of dimension 2d. 
We give a construction of P (X) in terms of P ( X -  S). This extends (and makes use 
of) the result for contractible S of the last section. 

Definition4.1. The link bundle ~: L ~ S  and the normal slice bundle ~': ID-~S are 
defined as follows: For a small enough positive valued function e: S--*IR, 

L = {xETsl  pax)  = ~ ( ~ A x ) ) }  

ID = {x ~Tsl ps(x) < ~ (ns(x))}. 

The maps ~ and g' are restrictions of  ~ .  (See w for the meaning of Ts, ns and Ps). 
The normal slice bundle is a closed neighborhood of  S and the link bundle is its 

topological boundary. Both are topologically locally trivial stratified fibre bundles 
[Ma] and are independent of  the choice of e. 

Definition 4.2. Let K be a closed subset of  L and let •: K ~* L and 7: L - K ~ L be 
the inclusions. We call K a perverse link bundle if 

i) Rk~,~C,K*P" = 0 for k >  - d a n d  for all P" ~ P ( X - S )  

ii) Rk~,y~y*P" = 0 for k <  - d a n d  for all P" e P ( X - S )  

Remark. The space K is not necessarily a topological fibre bundle on S. 
Perverse link bundles exist. A construction is given in the following lemma. 

Lemma 4.3. Let J -be  a triangulation of  L such that ~: L ~ S is simplicial and the 
strata o f  L are unions o f  open simpleces. Let ,Y--' be the barycentric subdivision o f  J -  
constructed with respect to barycenters whose projections to S are in general position. 

Then the set K which is the union o f  all closed simpleces A o f  J-'  such that 
d i m ( A ~ V ~ - l ( s ) ) < � 8 9  for all strata V o f  L and all s ~ S  is a 
perverse link bundle. 

Proof. By applying the lemma in the appendix together with the long exact 
sequence associated to the triangle 

RT~,~,~*IC x 

/" [(1) 
R ~ , IC x l  L \ 

R~,  ~,!7*ICx 

we see that the statement holds for P ' - - I C x  where we take the intersection 
homology with any coefficient system on the generic part  of  X. 

I f  Y~  X is a stratified subvariety of  X containing S then L r =  Y ~ L  and Ky 
-- Yc~ K where Lv is the link bundle of Y over S and Ky is the K of  the lemma 
associated to Ly. This implies that the lemma holds for P" = IC~ for any stratified 
subvariety Y of  X, The general case now follows by induction because an arbitrary 
P" ~ P ( X -  S) has a composition series whose quotients are intersection homology 
complexes. 
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We fix a perverse link bundle K. We assume that  there is a stratification 5 ~' 
subordinate to 5~such that  the m a p  re: K ~ S  is stratified with respect to ~ ' .  Such 
perverse link bundles exist by the previous lemma. We now give data for the 
construct ion of  an abelian category by Proposi t ion 1.1 as follows: ~ ' =  P ( X - S ) ,  

= sheaves  o f  k vector spaces on S, F is the functor  which sends P" to 
R - a - l n , ~ , x * P  ", G is the functor  which sends P" to R-dn,7~7*P" and T is 
induced by the canonical  map (5: ~c,~c*P" ~V~7*P" [1], in the triangle 

~ ,K*P"  

P" \ o) 

7 ! y * P ' .  

Lemma 4.4. i) The functor F is right exact and the functor G is left exact. 

ii) For every P" ~ P ( X -  S) we have the following exact sequence of  sheaves on S 

0 --* R - a -  x zE, P" --* FP"  -* GP" 1-+ R - d ~ , p .  ~ 0 

where the first and last terms are local systems on S. 

Proof i) Immedia te  f rom Definition 4.2. 
ii) By applying Rrc, to the triangle 

~,K*P* 

P" \"" 1(1) 
Y!y*P" 

and using Definition 4.2 we get the exact sequence. The first and last terms are local 
systems because re: L ~ S is a stratified fibre bundle. 

Theorem 4.5. The category P (X) is equivalent to the full  subcategory ~ of  the 
category ~ (F ,  G; T) whose objects satisfy the condition that in the factorization 

F ( p . )  m , B " ~ G ( P ' )  kern and coker m are local systems on S. The equivalence 
o f  categories is explicitly given by sending Q" to Q" [ X - S together with 

F ( Q ' )  > G ( Q ' )  

R-aTz, tp!tp* Q �9 

where q~: ID - K c~ ID is the inclusion. 

Example 4.6. For  P" e P ( X - S )  there are three functorial  ways "j~ P ' ,  Pj~, P" and 
Pj, P" to extend P" to an object in P (X) [BBD]. In our  language these functors 
correspond to the following factorizations of  T: FP"  -~ GP" : 

vj!p" F ( P ' )  id , F ( P ' )  T , G ( P ' )  

"j~,P" F ( P ' )  ,, I m T ~  G ( P ' )  

Pj, P" F ( P ' )  r id , G(P') , G(P'). 
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If E is a local system on S then E [d] is a perverse object on X and it is represented by 

E [d] F(0) -- 0 + E--.  0 = G (0) 

via Theorem 4.5. 
We want to reduce the proof of Theorem 4.5 to Theorem 3.3. To do so we need 

to use the theory of stacks. For the convenience of the reader we recal the definition. 
Let X be a topological space. Consider a transformation P which to each open 

set U of X associates an abelian category P(U) and to each inclusion of open sets 
V~ U associates a functor Pvv: P(U) ~ P(V).  

Definition 4.7. The transformation P is called a stack ofabelian categories if 

i) The association U ~ M o r P ( U )  is a sheaf. 

ii) Given an open cover {Ui},~l of U, Ai~P(Ui)  and gji: Ai[Ui~Uj  ~ 

Aj [ U i ~ Uj for any pair i, j such that gu --- id and such that for any triple i, j, k we 
have gkjogji = gki on UimUjmUk, then there exists a unique A ~P(U) and gi: 

A I U~ ~ ) Ai such that gj-~ gj~gi for all i and j. 

Lemma 4.8. Let P and P' be two stacks of  abelian categories and N: P ~ P' a natural 
transformation. I f  {Ui} is an open cover of  X such that Nv: P (Ui) ~ P' (Ui) and 
Nv, ~ v~: P ( Ui m Uj) ~ P' (U i ~ Uj) are equivalences of  categories for all i andj  then Nx : 
P (X) ~ P' (X) is an equivalence of categories. 

Proof. By the condition i) in Definition 4.6 we get that N x is fully faithful because 
all the Nv's are. It remains to be shown that for any A' in P '  (X) there exists an 
A 6 P (X) such that NxA ~- A'. But now for any i there exists an A i ~ P (Ui) such that 
g~: NxAi ~ ~ A' l Ui . The maps gji = g7 ~ ~ gi now satisfy the gluing condition in 

ii) as do the maps fji: AilUimU ~)  Ajl UimUj which are defined uniquely by 
the condition that Nv,~v~(f~i) = gji. Therefore there exists an object A ~ P ( X )  s.t. 
NxA ~- A'. 

Lemma 4.9. The category P(X)  and the Cg(F, G; T) and c~ o f  Theorem 4.5 form 
stacks. 

Proof. For the proof  that P(X)  is a stack we refer to [BBD]. The category 
~ = P ( X - S )  is a stack. So ~ ( F , G ; T )  is a stack on X - S .  It is a stack along S 
because ~ is. The category ~ is a stack because cg is and the condition of  belonging 
to ~ is local. 

Proof o f  Theorem 4.5. Observe first that the sheaf B is constructible with respect to 
ow' because F (P ' ) ,  ker m and coker m are. Choose a triangulation Y-subordinate to 
5 P' and consider the cover q / =  {St (A)} ~ ~,~ of S. This cover has the property that if 
U and U' belong to q/then U m U'  belongs to q/. For every A e J-choose a point x in 
the interior of A and denote the open set St (A) by U~. For a sheaf ~ constructible 
with respect to ~ have ~ = F(U~, ~.~). Therefore we get a canonical maps:  

Denote by K~ and L~ the fibres of Kand L over x. Let F~ be the functor sending 
P ' ~ P ( X - S )  to IH-d-~(K~,P ' ) ,  G~ the functor sending P ' ~ P ( X - S )  to 
IH d (L~, K~; P ' )  and T~ P" the coboundary map 6: F~ P" ~ G~ P ' .  The canonical map 
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s induces natural transformations J: F ~ F  and g: Gx-* G. The induced maps 
KerTx=H-a- l (Lx ,P .) ~R-a - l z r ,  P']Ux=Ker(T)lU~ and C o k T x = I H  a 
(L~ ,P ' )  -~R-a~z,P'IU~ = Cok (T) IU x are isomorphisms because ~zl(Ux)=0. 
Therefore Lemma 1.2 implies that ~(F x, G~; T~) ~- Cg(F, G; T) I X -  ( S -  Ux). 
Because Ux is contractible Theorem3.3 implies that P(X) I X - ( S - U x )  

Cg(F~, Gx ;T~). Thus applying lemmas 4.8 and 4.9 concludes the proof. 

4.10. Construction of an inverse 

We will conclude this section by constructing an explicit inverse to the functor 
P ( X ) ~  of Theorem4.5.  Given an element in C~(F,G:T), i.e. P ' e P ( X - S )  
together with a factorisation 

FP"  ~ GP"  

,,,,~ , ~ ,  

B 

we construct explicitly a complex of  sheaves Q~ in P (x)  corresponding to the 
element in ~r (F, G: T). The complex Q" will be a complex of cellular sheaves, given 
that P~ is cellular. By a cellular sheaf, we mean a sheaf which is constant on open 
cells, and which has finite dimensional stalks. For a detailed treatment of cellular 
sheaves see [S]. Notice that this will allow us in principle to iterate the construction 
of Theorem 4.5 since all the sheaf theoretic functors involved in the definition of  F 
and G (Rk~.,  ~c., ~c*, ,~ ~, and 7*) have combinatorial constructions in the category 
of cellular sheaves [S]. 

Let K c  L be a perverse link bundle. Choose a regular CW complex structure C 
on X subordinate to the stratification such that K and L are subcomplexes of  X and 

: L ~ S is a cellular map. Give X the following cellular structure. Outside of  D take 
the original cellulation of X. On L and S take the barycentric subdivision of  the 
original induced cellulation and cellulate the rest of  D by mapping cylinders of  rc 
with respect to the barycentric subdivision cellulation of L and S. It is important to 
note that we do not require the closures of  our cells to be compact so that we can 
give an open subset the induced cellulation. 

We will give some constructions in the cellular category of  sheaves in the context 
that we need them. 

I f  ~ is a cell we denote by [a] the sheaf that takes the constant value k on ft. These 
sheaves [~] are injective in the category of cellular sheaves and all injectives are 
direct sums of  these. To any complex of sheaves we can in a functorial manner 
construct an injective complex of cellular sheaves called its injectivization IS]. 

Let /~ = [c~la eL and ff c~ K + 0}, where c denotes the mapping cylinder of 
re: a ~ re(or) and denote by ~: X - ( K w S ) ~  X - S  the inclusion. Assume that the 
complex P" has already been injectivized. We can now construct a subcomplex 
'7. Y~P" c~ p .  which is still injective. The complex Q" can now be constructed as 
follows. 
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Qk = 

$ 

Q - d - 2  = 

$ 
Q - d - 1  = 

Q - d  

Q - d + 1  : 

0 

j ,  pk 
+ 

j , p -a -2  

$ 

6-1 ( J ' ,~ ,~ !P-e ) ,  where 3 : j , P  - a - I  ~ j , p - e  

i , B |  kerg ,  where g : j , ~ , ~ p - a ~ j , ~ , ~ ! p - a + l  

i ,  G (P ' ) .  

Note that j , ,  ~ , ,  ~c, and ~:* take injective complexes to injective complexes. The 
same is true for a ~ if we choose the following model for it: 

0 otherwise. 

To define the cycle maps c and ~ we proceed as follows. Move the link L towards 
S so that it intersects the cellulation of  Xalong the mapping cylinders. Then for any 
cellular sheaf A we have i ' j ,  A = r~, (A[L). The cycle map c can now be defined by 
the following formula: 

c: Q - a -  1 ~ i , ~ , ( Q - a -  1 [L) --* i , ~ ,  ~c,tr Q - a -  1 ~ Ker6 -~ i ,R -a- 1 ~,tc,~c* P" -* B, 
where 3: i, rc,~c,~c*P-a-1--* i,~,~c,~c*P -a and the first map exists by what was said 
above and the last map is the quotient map in computing F ( P ' )  from a resolution. The 
map ~ is defined similarly as the composition 

~: Ker 6"--* i ,~ , (ker  (~)[L) ~ i,R-arc,(~,~!P" [L) ~ i , G(P ' )  

where the first two maps exist for the same reason as above and the last 
isomorphism can be easily verified. It is important to note that the map 6 is a 
surjection. 

5. Extensions of perverse sheaves: the complex analytic case 

In this section, we consider a complex manifold X with an analytic Whitney 
stratification ~ For  any stratum S E ~ let 

As = Ts*Xand/T s = T ' X -  U T * X  where T* J[ is the closure of T* X in T*X. We 
R ~ 5 ~ 

R , ~ S  
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say 5Psatisfies condition C if for all S ~ SPAs is a topological fiber bundle over S by 
the natural projection�9 (Every Whitney stratification of  a complex manifold can be 
refined to one satisfying condition C. This is proved by adding condition C to the 
inductive step of the usual p roof  of  the existence of Whitney stratification [GM 3].) 
Many natural stratifications, for example, that of  a flag manifold by Shubert cells, 
satisfy condition C. 

We assume that our stratification 5g satisfies condition C. 
We consider a closed stratum S of  complex dimension d. We give a construction 

of P (X) in terms of P (X - S) which does not involve a choice of  a perverse link 
bundle K, but instead uses conormal geometry of X near S. We will define functors 
~u and ~vc: P ( X - S ) ~  {local systems on As} (called the "nearby cycles" and the 

nearby cycles with compact  support  ), a functor q~: P (X) {local systems on/~s} 
(called the "vanishing cycles"), and a natural transformation var: ~u ~ ~uc (called the 
"variation")�9 We give a topological construction of  these. 

There is a fiber bundle n: D ~ / I s ,  a subbundle L c D, a further subbundle 
~e : L, and a map r: L - -  X - S with the following property: I f  4 is a covector in As 
over a point s in S, the r identifies the fiber D e with a normal disk to S at s, the fiber Lr 
with the link 8D~ of S at s, and ~r  with the complex link [GM3] in the direction 4. 
To construct these, we use "control  data"  T s, ns, and Ps as in section 0. T s identifies 
with a neighborhood of the zero section in the normal bundle to S in X by an 
identification which is complex analytic on the fibers, rc s identifies with the 
projection of the normal bundle to S, and Ps identifies with the square of  a fiberwise 
hermitiam norm in the normal bundle�9 For each 4 in / I s  projecting to s in S, since 
7rs i (s) identifies with a set of  normal vectors to S at s, 4 gives a complex valued 
function of 7rsl(S). Then there is a set Jr of  pairs of  real numbers (6, e) with 0 
< 6 ~ e ~ 1 so that for all 8' < 8 there is a 6 o (8') > 0 so that 1) for all x E 7:- 1 (s) with 
p (x) = 8' and 0 < [~ (x) [ < 6 o (eS, d(Re 4)(x) and dp (x) are linearly independent in 
cotangent space of the stratum containing x, and 2) 6 < 6 o (e) (see [GM3]). It is 
shown, in [GM 3], that  there are smooth functions 6 (r and e (3) on -4s so that for all 
4, (6(r 8(3)) is in J~. Finally, D is the subspace of the fiber product As x sT s 
consisting of  pairs such that  inf (! ~ (x) [ - 6 (r p (x) - 8 (~)) < 0, L is defined 
similarly with < replaced by = ,  and ~ is the subspace consisting of  pairs such that 

(x) = 6(4) and p(x )<  8(3). (See [GM3] for more details.) 
Now let x: s c~ L and y: L - ~ c_~ L and q~: D - ~ C~D be the inclusions�9 Then 

~ p "  = R-d-1  rc,/c, tc*p" 

~ucP" = R-%r.y~7* P" 

T is induced by the canonical map 6: ~c, to* P" ~ 7~7" P" [1 ] and 

q~(p') = R-azr. q~!q~*p" 

Remark. 1) Let ~ GAs and x = p ( ~ ) .  Then we have q J (P ' ) :=  (R-d-I~uP-)~ and 
~(p . )~  = (R-a-  1 ~ p , ) ~  where the functors R ~  and R ~  defined by Deligne in [D2] 
are taken with respect to a function f :  U-~ ~ defined in a neighborhood U o f x  such 
that (df)~ = ~ and f )  S r~ U = 0. 

2) The local system ~b (Q~ can also be defined using ~-modules.  Take ~r a 
holonomic, regular singularities ~ -module  such that  R Hom~(Jg ,  ~x)[n] = Q ' .  

Then �9 ( Q ' )  = R H om~x (8  x (~  p - ~ / t ,  ~qx~s), where p: As ~ S is the projection 
P ~ X  

and Cgx~ s is the sheaf of  microfunctions on A~ [K], [KK], [BMV], [LM]. 
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3) For  a ~ e A  s we have ~uc(P')~= IH~ -d-  ~(~0r p . )  where ~o  is the interior 
of  s [GM4]. 

Proposition 5.1. The complex link ~ is a perverse link. TheJunctor qJ is right exact, 
and ~c is leJt exact. 

Proo f  That  IHk(&a, I C ' ) = 0  for k < - d  and I H k ( L , ~ ~  for k < - d  is 
proved in [GM4], wher IC" is an intersection chain complex of a stratum. The 
general case follows by induction because an arbitrary perverse sheaf has a 
composition series whose quotients are intersection chain complexes of strata. 
From this it follows that R k ~, x ,  ~:* r * P" = 0 for k < - d and R k re, 7 ~7" r * P" = 0 for 
k < - d for all P" in P ( X -  S) which shows that ~u is right exact and q~c is left exact. 

We now want to give data for the construction of an abelian category 
OK(F, G; T) via Lemma 1.1. Let sO= P ( X - S ) ,  N = l o c a l  systems on As, F =  ~u, 
G -- ~u~ and T =  var. Let p: As--*S be the projection. The following proposition 
which is due to Gabber  and Malgrange [M] is used to define a subcategory 
c ~  ~(F ,  G; T). 

Proposition 5.2. I f  S is contractible then there are unique natural transformations 
I~: ~ - - ,  N for  any c~ ~ 7z 1 (,ds) such that for  any Q" ~ P ( X )  the local system structure on 
q) (Q ' )  is given by I t s -  1 = m o I~o n, where kt, is the monodromy o f  c~ on (b (Q ' ) .  

Proo f  Let P" e P ( X - S ) .  By Theorem 3.3 we can construct Q ' e P ( X )  via the 
commutative diagram 

v a t  

~ (P ' ) ,  , ~,. (e ' )r  

\ /  
B 

Where B is minimal such that m is injective and n is surjective and ~ ~ / i  s. Using the 
descriptions of  PimP" and Pj, P" in example 4.6 we obtain the diagram 

pj,p- ~ , Pj .p" 

Q- 

in P(X).  Also 4~ (pjrQ ") = ~ ( P ' ) ,  ~ (pj, P ' )  = = ~c(P ' )  and 4~(c) = var. By taking 
kernels and cokernels in diagram (5.1) and by applying the functor ~, we get 

~ (ke rc )  , ~ ( P ' )  ~"~., ~ ( P ' )  ------* q~(Coke) 

~ (ker h) ~ 4~ (Cok rh) 
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Because Ker c, Cok c, Ker  fi, Cok rh are supported on S the functor q~ applied 
to them gives a trivial local system. Let x e qJc(P'). Choose z e ~  (Q~ such that 
n (z) = x and consider/&(z) - z. Because the monodromy is trivial on q~ (Cok rh) 
/ & ( z ) -  z gets mapped to zero in 4~(Cok rh) and therefore there is an element 
y E ~u (P ' )  such that m (y) = /G(z )  - z. We define I~(x) -= y. It  is now easy to verify 
that I ,  is well-defined and has the desired properties. 

Theorem 5.3. The category P (X) is equivalent to the subcategory ~ o f  the category 
Cg(F,G;T) whose objects satisfy the condition that in the factorization 
FP" ~ B ~ GP" the monodromy I~, on B for any ~ ~ nl (p-  X x), x 6 S is given by 
p ~ - I  = m o I ~ o n .  

Proof. We want to reduce the proof  using stacks to the case where S is contractible. 
We know by [BBD] that P (X)  forms a stack. It is also immediate that both 
(r G; T) and ~ f o r m  a stack. By Theorem 3.3 and Proposition 5.1 the theorem is 
true for contractible S. The result now follows by Lemma 4.7 because any manifold 
S can be covered by contractible open sets whose intersections are contractible. (We 
could take for examples stars of simplices in some triangulation.) 

6. Examples and Applications 

In this section we give some examples and applications both of the analytic and the 
topological versions of  our results. 

Suppose P" ~ P ( X - S ) .  An extension Q" ~ P (x)  of  P" is called indecomposable 
with respect to P" if Q~ does not have a direct summand concentrated on S. An 
extension Q" of P" is called maximal indecomposable if every extension of it is 
decomposable. 

Proposition 6.1. Assume that n 1 (S) = n2(S ) = 0. Then every P" ~ P ( X - S )  has a 
maximal indeeomposable extension Q" which is unique up to a (non-canonical) 
isomorphism. I f  U c  X is open such that n 1 (U) = 0 then Q~ ] U is the maximal 
indecomposable extension o f  P" ] U - S ~ U. 

Proof. We assume first that X is a complex manifold. We claim that cg (F, G: T) is 
equivalent to the category of triangles of  vector spaces 

v a r  ~, (P')~ , w(P')~ 
\ / 

Be 

for some ~ in /T s. This follows from Theorem5.4 by observing that 
~1 ( S )  = 7['2 ( S )  = 0 implies that n 1 (/Is) ~ nl (P-  1 (x)) for x ~ S and therefore the 
nl (/~s) action is completely determined by the maps I~. Then, the maximal 
indecomposable extension is given by choosing B minimally such that 

(61) 

var 
V (P')~ ' ~'~(P')~ 

\ / 
B~ 
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I f  X is not complex analytic then the techniques o f  Sect. 7 show tha t  we can extend 
Theorem 3.3 to the case when ~ (S) = nz (S) = 0. We can now define the maximal  
indecomposable  extension via d iagram (6.1) just  as above.  

Next  we present the following two examples.  The first one shows that  if 
~1 (S) + 0 then the maximal  indecomposable  extension o f  Proposi t ion  6.1 does not  
need to be unique and the functor  ~ :  P (X) ~ Z (X, S) need not be injective on the 
i somorph ism classes of  objects. The second example shows that  if  ~2 (S) 4= 0 then a 
global extension which localizes to maximal  extensions on all U open in S does not  
necessarily exist and that  the functor  Lr: p (X) ~ Z (X, S) need not  be surjective on 
the i somorphism classes o f  objects. 

Example 6.2. Let X =  ~ 2  __ ({0} X ~ )  stratified by S =  ~ x { 0 } -  {(0,0)} and its 
complement .  We claim tha t  P (X) is equivalent to the category o f  pairs o f  finite 
dimensional  vector  spaces (V, W) together  with the d iagram 

W 

7 

where a and fi are au tomorph i sms  o f  V, Y is an a u t o m o r p h i s m  of  W a n d  fl o a = ~ o fi, 
mfl = 7m and n? = fin. To see this by Theorem 4.5 choose L = {(x, y) e I~ 2 [ l yl = 1, 
x e S }  and K =  {(x, 1) e ~21 x ~S} c L. Choose  the generators  a: t ~ (1, e 2~t) and 
b: t ~ (e 2"it, 1) for 7r 1 ( X - S ) ~ Z  G 2~ (with base point (1, 1)) and  c: t ~  (e2~it, 0) 
for nx (S) ---2[ (with base point  (1,0)). 

An element P" ~ P ( X -  S) is just  a local system and it can be interpreted as a 
vector  space V with commut ing  au tomorph i sm a and fl induced by a and  b. A 
calculation yields tha t  F ( P ' )  = V with e acting via fi, G ( P ' )  = V with c acting via fl 
and  T = a - 1 : V-+ V. Theorem 4.5 now implies that  the data o f  d iagram (6.2) is 
equivalent  to P(X). The act ion ? on W is given by e. 

I f  we take V = k , a = f l = i d ,  W = k " a n d  

[0il  
0 0 

we see that  this object  is indecomposable .  This shows that  no maximal  inde- 
composab le  extension can exist. Also the functor  ~ is not injective on the 
i somorph ism classes of  objects because the choice 7 = id leads to the same Zig-Zag 
diagram. 

Example 6.3. Let X = ~ p 2  stratified by S = ~ p 1  and its complemen t  X -  S = (~2 .  

We claim tha t  P (X) is equivalent  to the category of  pairs o f  vector  spaces (V, W) 
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n 
together with maps  m and n V ~ ~ W such that  m o n = 0 and n o m = 0. To verify 

m 

this claim we want  to apply Theorem 5.4. Because rt t ( r  0 an element in 
P ( X - S )  is just a vector space V. Because As ~ r  {0,0} we have rc I (As) = 0. 
However  for x ~ S we have p - 1  (s) = r  As and for the canonical generator  ~ o f  
r q ( p - i ( s ) )  the Gabber -Malgrange  map I r = i d .  We also see that  the variat ion 
map  vat  = 0. Therefore by Theorem 5.4 the category P (X) is equivalent to fixing 
two vector space V and W together with a commutat ive  diagram 

V ~  

W 

such that  m o I~ o n = 0, i.e., m o n = 0. This proves our  claim. 
Observe that  maximal indecomposable  extensions do exist but  they are 

not  unique. For  example V =  k has two maximal indecomposable  extensions 

k ~ 0 ,  k and k , ~a, k. No te  further that the diagram 
id 0 

k ~ , k  

k 2 

is not  allowed. This example also shows that the functor  ~e o f  Sect. 2 is not  onto  on 
isomorphism classes o f  objects if ~ 2 ( S ) 4 : 0  because the Zig-Zag diagram 
corresponding to the diagram (6.3) is not  in the image of  ~ .  

Next  we consider the following practical example. 

Example 6.4. Let f :  r r be given by f ( z  o . . . .  , z , )=  z~ + . . .  + z~ and let 
X = f -  ~ (0). We can now fo rm the sheaf  R ~  tI~ on A" which comes with a canonical  
au tomorph ism M:  R~II~--,R~II~ given by m o n o d r o m y  in r  The sheaf 
R ~  I1~ [n] is perverse [GM4].  We want  to use Theorem 3.3 to describe this sheaf and 
the map  M. 

Clearly R~v ~ M I X -  {0} = ~x-{0} [n]. It  is well known that  L = {unit tangent  
vectors o f  S"} (see e.g. [L]). We can take K =  {one fibre o f  L ~ S " ) .  A calculation 
shows that  the diagram 

is for n even 

H " - '  (K; l~) r , H"  (L, K; ~)  

\ /  
1H~( B, K; RqJlI)) 

( ~  T=id  ) ( ~  

\ /  
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and.['0 

and  [:', 1 
So we see that 

o7 
- 1 ] "  For  n odd we get 

for n even Rqlll~[n] splits as a direct sum R~uff)[n] 
= II)x[n]O Q~0). For  nodd we get that RqJQ[n] is the maximal indecomposable 
extension of  Proposition 6.1. It is also interesting to observe that the map M, :  
H q (R~u I1))--* H q (RqJ ~)  is identity for all q but M + Id in P(X).  

Next we want to give a topological proof  of the following theorem of  Kashiwara 
and Kawai [KK] established initially by micro-local techniques. 

Proposition 6.5. Let X be a complex manifold and S a closed stratum in the 
stratification 5"such that 

T:X~ 0 T*X 
R + S  

is of  complex codimension at least two in T*X.  Then q / ( P ' ) =  ~,c(P ' )= 0 for all 
P" e P ( X -  S) and so P (X) ~- P ( X -  S) | P (S). 

The proof  will use the following. 

Proposition 6.6. In the situation of  Proposition 6.5 the complex link 5r of  S is 
homeomorphic to St '  x D in a stratum preserving way, where ~,~' is a complex link of  
one lower dimension and D is a disk. 

Proof of  Proposition6.5. Let P ' e P ( X - S ) .  The stalk of  ~ ( P ' )  at 4e /T  s is 
isomorphic to IH -e -  1 (s p . ) ,  where s is a complex link to the direction 4. By the 
Kiinneth theorem and Proposition 6.6 we have IH-e -  1 (L,~, P ' )  --- lH-n-  1 (c#,, p.) .  
Because 5r is a complex link lH-d-  1 (5r P ' )  = 0 ([GM4]). Therefore ~u (P ' )  = 0. 
A similar argument shows that ~uc(P')= 0. 

Proof of  Proposition 6.6. This is proved in detail in [GM3]. The following is 
a sketch. By cutting through x with a normal slice to S we can assume that 
X =  B6c tr" is a tS-disk x = 0 and S = {0}. Using the hypothesis, we choose linearly 

independent vectors 41, 42 e T/*/X such that span (41,42) c~ U T* X = {0}. Let 
R~eS 

f:  I12"~ 1122 be the projection such that df0 = (41, ~z). Then by choosing fi smaller 
if necessary the map f :  B ~ / ~ c  tU 2 is a stratified submersion outside of  the 
exceptional fibre f -  1 (0). 

Now consider a projection p:/~--* r  and denote the composition p o f  by g. 
If we now choose appropriate 0 < e ~ r /~  6 ~ 1 using the technique of moving 
the wall [GM3], we can establish a homeomorphism between s and 
g-  ~ (~) r~ B~ r~f -  1 (D~) where D, is the r/-disk. Now, projection by f of s to D, is 
a stratified fibration and the lemma follows since D, is contractible. 

Next we will give a generalization of  Proposition 6.5 which answers a question 
of W. Borho. Let X be a complex manifold and let Q" s P (X). We can associate 
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to Q" its characteristic variety Char (Q')  ~ T* X consisting of  unions of  closures of 

conormal bundles T* X such that {b (Q' )  ~: 0 generically on T* X. (If ~#is a regular 
singularities holonomic ~x-module such that DR(J I ) [d imX]=Q"  then 
Char (J [ )  = Char (Q ").) 

Let A = U T* X c T* X be a conical Lagrangian variety such that 5 e' c 55. 
S~Se' 

We define PA(X) c P(X)  tO be the full subcategory of Q" ~P(X)  such that 
Char (Q')  c A. Define the following relation on the components of A" 

T*X ~ T*X if there exist S~ . . . . .  Sh ~ 5P' such that S~ = S, S h = R 

and T*jX ~ * T~ ,+, X is of codimension I in T* X.  
This equivalence relation splits A into equivalence classes A 1 . . . . .  Ak such that 

k 

A = U A i .  
i=1  

k 

Theorem 6.7. We have a direct sum decomposition of categories PA(X) = (~  PA,(X). 
i = t  

Proof We prove this by induction on the number of  components of A (which we 
assume to be finite). If  we have only one component the theorem obviously holds. 

Let Q" e PA (X), let S ~ 5 e' be of  minimal dimension and assume that Ts* X c At. By 
k 

induction Q" i X -  ,~= (~  P7 where P,." ~PA,(X). 
i = t  

Using theorem 5.3 Q ' I X - ( f f - S )  corresponds in C#(F,G:T) to Q ' I X - S -  
together with 

~ (Q" I x -  S-) , ~%(Q" I x -  s-) 
(6.2) '~ .-" 

q0 (Q')  

But Q" I x -  s-= P~ |  | Pk and by Proposition 6.5 ~ (Q" I X -  S-) = ~ (P~') and 
~c (Q" I X -  S-) = ~ (a~). If we now define 0 ~ to be P; together with (6.2) and I)k for 
k 4: r to be PR together with 

0 , 0  

0 

we get that Q" I x -  (S-- S) = O] 0 . . .  | Ok. But for all the strata of  6ein S - -  S 
we have ~ ( Q ' ) = 0  and so all the {)7 have a unique extension Q~ to all o f  X 
such that for these strata in S--  S we have ~(QT) = 0. It now follows easily that 

Q ' = Q ~  0 ) . . . O Q k .  

Open Problems. 

1. Given a stratified space X, find a procedure to construct a "quiver" of linear 
spaces and maps satisfying commutation relations, in the spirit o f  examples 6.2, 6.3, 
and 6.4. such that P (X) is equivalent to the category o f  realizations o f  the quiver. 
This problem is particularly important for the following special case: For  a 
reductive complex algebraic Lie group G, the space X should be the variety of Borel 
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subgroups of G stratified by the orbits of  some subgroup K of  G. In this case, the 
category of K-equivariant objects of  P (X) is equivalent to the category of  (g, K) 
Harish-Chandra modules where ~ is the Lie algebra of  G (see [BB]). To give a 
"quiver" description of the category of (g ,K)  Harish-Chandra modules is a 
problem of Gelfand [G]. 

2. In Sect. 5 we give a construction of P (X) as a category of objects which 
consist of  local systems on the As for each of the strata held together by some 
"glue". It is an open problem of Beitinson to do this with "glue" which is local on 
T* X. This is important because a solution should give a topological description of 
the microlocal category of d~-modules. 

3. Given our data for an object of  P (X), construct in an explicit way the 9 -  
module which corresponds to it by the Riemann-Hilbert correspondence. This is 
probably difficult because even for the irreducible perverse sheaves of  intersection 
homology chains, the corresponding Y-module has only been constructed explicitly 
for strata whose closures are divisors with isolated singularities [Vi]. 

7. Extensions of Sheaves in the derived category 

In this section we study the problem of extending objects of D ~ ( X -  S) to D b~(x). 
The results obtained in this section are a generalization of  the results in Sect. 2. In 
particular we see that Theorem2.1 is valid under the assumption that rq(S)  
= 7r z (S) = 0, which implies that Theorem 3.3 is true under the same hypothesis. 

Let S be a closed stratum of dimension 2d of stratification 5P of a stratified 
topological pseudo-manifold X [GM 2]. We fix an element P" ~ D % ( X - S )  and we 
want to describe all extensions Q" of  P ' ,  i.e. all elements Q" e D%(X) such that 
Q" [ X -  S = P ' .  Let i: S ~ X and j: X -  S ~ X denote the inclusions. 

Def in i t i on .  A complex of sheaves Q" e D~(X) belongs to D~(X, S, r) if 

i) H k ( i * Q ' ) = 0  for k>= - d + r  

ii) H k ( i ~ Q ' ) = 0  f o r k < - d - r .  

R e m a r k .  If  r = 1 and Q~ [ X -  S is perverse then i) and ii) are the conditions for Q" 
to be perverse. I f r  = 0 and Q" [ x -  S is an intersection homology sheaf then i) and 
ii) are the condition for Q" to be an intersection homology sheaf ([GM2]). 

We define a category Z ( X , S )  as follows: An object of  Z (X , S )  is an object 
P" ~ D b~(x--s)  together with a long exact sequence of local systems on S 

. . .  ~ Hq(i * Rj, P ' )  --* K q+l --* C q+a ~ U q+~ (i* Rj, P ' )  ---~... 

A morphism in Z (X, S) is a morphism p: P ~  P~ together with a commutative 
diagram 

. . .  ~ H q ( i *  R j ,  P ") ~ K q+ ~ ~ C q+ ~ --* H q+l ( i*  R j ,  P ' )  ---~ . . . 

. . .  ~ Hq(i * R j ,  P ' )  ~ g q +  a --+ C q+ ~ --+ H q+ ' (i* R j ,  P ' )  - - * . . .  
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We denote by Z(X,S , r )  the full subcategory of Z(X,S) ,  where C q= 0 for 
q > - d + r  and K q = 0  for q <  - d - r .  

We define a functor ~f: D~(X)--* Z (X, S) by sending an object Q" of Db~o(X) 
to j*Q"  together with the long exact sequence associated to the triangle 

i* R j . j * Q "  

i ' Q "  \ 

i~Q �9 

By definition ~e: D~(X, S, r) --* Z (X, S, r). 

Theorem 7.1. I f  ~ 1 (S) . . . . .  ~2r(S) = 0 then the functor ~ is a bijection on the 
isomorphism classes of  objects. 

Remark. If r = 0 this theorem gives the existence and uniqueness of the intersection 
homology extension of  [GM2]. If  r =  1 we are in the situation of perverse 
objects and this theorem gives a generalization of Theorem 2.1 i) to the case that 
~1 (S )=  ~z2(S ) = 0. Theorem 2.1 ii) can also be generalized to the situation 
of  Theorem 7.1. The proof  of  this theorem is essentially the same as the proof  of 
Theorem 2.1. 

We will first prove a sequence of  lemmas. 

Lemma 7.2. /f~z 1 (S) = 7~ 2 (S) . . . . .  7I~ k (S) = 0 and A" is a complex o f  sheaves on S 
such that HI(A ") is (locally) constant and Hi(A ") = 0  for i < 0  and i>= k then 
A" ~ H i ( A ' ) [ - i ]  in D(S). 

Proof The same as the proof  of Lemma 2.4. 

Lemma 7.3. Let A" and B" e D b ( x )  and assume that Hk(A ") -- 0 for k > 0 and 
Hk(B ") = 0 for k < 0 then ExtP(A ", B ' )  = 0 for p 5 0 .  

Proof We have ExtP(A ' ,B ' )=Homx~x) (A ' , I ' [p] )  where I" is an injective 
resolution of B" s.t. I k = 0 for k < 0 and K (X) is the homotopy category of  chain 
complexes. Clearly HomK~x)(A', I" Lo]) = 0 for p 5 0. 

Remark. The validity of the previous lemma does not depend on the existence of 
injectives. As easy a proof  could be given by using spectral sequences. 

Lemma 7.4. Assume that ~1 (S) . . . . .  7~k(S ) = 0 and let A', B" ~ D('~(S) be such 
k - 1  

that Hq(A ' )=O for q>=k and H q ( B ' ) = 0  for q < 0 .  Then H o m ( A ' , B ' ) =  (~) 
Horn (H~(A'), H~(B')). = 4=0 

Proof Consider the triangle 
z~oA" 

A" \ /  1 (~) 

~<oA* 

By applying R Hom  ( - ,  B')  to this triangle we get the long exact sequence 

Ext - 1 (z < 0 A', B') ~ Hom (z ~ 0 A', B ' )  -~ Horn (A', B')  -~ Horn (~ < 0 A', B')  --* . . . .  
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By Lemma 7.3 Ext -  i (v<0A. ' B ' )  = H o m  (z <0 A' ,  B ' )  = 0 and therefore 
H o m ( A ' ,  B ' )  ~ H o m  (z=>0A', B') .  By a similar argument we get that 

Horn (z z0A', B ' )  - Horn (z>0A', z<k_lB" ) . 

k-1 k-1 
By Lemma 7.2 z>= 0 A. -~ i=@o H i (A') [ -  i] and z=< k-~B" ~ i@ ~ H i ( B ' ) [ -  i]. Therefore 
we have = 

k-1 k-1 - j  
H ~  ~ i_@)o Exff(Hi+J(A'),  H i (B ' ) ) ,  

But for 0 < j < k Ext j (H i + j (A'), H i (B')) ~ H j (H i + j (A')* | H i (B'))  = 0 and the 
conclusion of  the lemma follows. 

Lemma 7.5. There is a unique functor j ,  " Db~(X-- S) ~ Db(X, S, r) such that for any 
Q" ~ Db~(X, S, r) there is a unique morphism Q" -* j , j*  Q" restricting to the identity 
map on X - S .  

Proof. The uniqueness of  this functor is clear because it satisfies a universal 
property. To prove the existence take 

j ,  Q" = z*<_d+rRj, Q" . 

Applying the functor R Horn (Q',  - )  to the triangle 

i, z >=r_di* Rj,  j* Q" 

Rj,  j*Q" \ / [(1) 

j , j * Q "  

and applying the adjunction formulas we get the following long exact sequence 
...  --, Ext-  1 (i*Q ", r>=r_di*Rj, j*Q ") ~ Horn (Q' ,  j , j * Q ' )  ~ Hom ( j*Q' ,  j * Q ' )  --, 

H o m ( i * Q ' ,  z>=r_ui*Rj, j * Q ' )  ~ . . . .  

By Lemma 7.3 the first and the fourth terms vanish and we get that 

H o m  (Q ' ,  j , j *  Q ' )  ~ Horn ( j * Q ' ,  j * Q ' )  

which proves the existence and the uniqueness of  a morphism Q ' - ~ j , j * Q "  
extending the identity on X - S .  

Proof of Theorem 7.1. Let's fix P" ~ D ~ ( X - S )  and let Q" ~ Db~( X, S, r) such 
that j*Q" = P' .  Consider the triangle 

j , P "  

/'~ 1(1) Q" \ 

i ,  N* 

where N ~ is a complex supported on S satisfying Hk(N ") = 0 for k < - d - r  and 
k > - d +  r. The first vanishing result follows because z~r_uN" --- Z~r_Ut Q'' " and 
the second one is obvious from the long exact sequence of the above triangle. 
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Because the morphism Q " - , j ,  P" is canonical the isomorphic classes of  the 
extensions of P" correspond to a choice of N" and an element in Ext I ( j ,  P ' ,  i ,  N')  

r - - d  

= E x t a ( i * r j ,  P ' , N ' ) .  By Lemma7.2 N ' ~  (~  H k ( N ' ) [ - k ]  and by 
Lemma 7.5 k= -d-r+ 1 

r - d  

Extl( i*J* P . , N ' )  k=_d~_r+l H ~  , Hk(N')) .  

The above data corresponds up to an isomorphism to a unique element in 
Z(X,X,r ) .  

Appendix 

Simplicial Intersection Homology 
(Mark Goresky and Robert MacPherson) 

Let X be a stratified pseudomanifold with a fixed triangulation T, let X k denote the 
union of its strata of codimension k, and let ,~= (Pl, P2 . . . .  ) be a perversity. We 
assume that the triangulation and the stratification are compatible, i.e. that the 
closures of the X k are subcomplexes of  T. If i is an integer, a subspace Y ~ X is called 
(/5,/)-allowable if dim (Yr~ Xk) < i -  k -bpk for all k >-_ 2. An/-chain ~ in Xis called p- 
allowable if[~l  is (/5,/)-allowable and I~ [  is (p, i -  l)-allowable. (Here I [ denotes 
the support of  a chain.) The intersection homology groups IHP, (X) were originally 
defined to be the homology groups of  the complex ICP, (X) ofF-allowable piecewise 
linear geometric chains in X. 

Proposition. The intersection homology groups IHP, (X) are the homology groups oJ 
the chain complex ISP, (X) of  p-allowable chains on X that are simplicial with respect 
to T', the barycentric subdivision o f  T. In fact the inclusion of  chain complexes 

i: IS~, (X) ~ IC~, (X) 

induces an isomorphism on homology groups. 

Remark t. Suppose that Xis n dimensional and that L is a local system on X - X z . 
Then the result holds for intersection homology with coefficients in L. Note that the 
chain complex ISP, (X) makes sense in this case because by the p-allowability 
conditions, all simplices with nonzero coefficients have their interiors in Y -  X 2 . 

Remark 2. The result is not true without taking the barycentric subdivision of  T. 
(A counterexample is provided by an n-manifold stratified by its skeleta of 
dimension n, n - 2 ,  n - 3  . . . . .  1,0.) The minimal condition needed on a 
triangulation T' for the proposition to work is that it should be flaglike with respect 
to the stratification: for any simplex A, the intersection of A with the closure of an 
Xk is a single face of A. 

Remark 3. Let Rf be the set of all i-simplices of  T' which are (/5,/)-allowable. It 
follows from the above proposition that the R,~ are basic sets, i.e. that 
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IH~(X) = Image (H~(R~) ~ Hi(RPi+ 1)) 

This was stated without  p roo f  in [GM 1], Sect. 3.4. 

Proof. We shall construct  a homomorph ism 

% :  IC,~(S) ~ IS,~(X) 

such that 

~ , i =  I 

(where / i s  the identity) and for every P. L. geometric/-cycle ~, we shall construct  an 
i + 1 chain fi so that  

a/~ = ( -  1 ) ' (% i~  - ~) 

The proposit ion then follows directly. 
For  any P. L. geometric chain ~ ~ IC,~ (X), choose a tr iangulation of  l ~ r such that 

each simplex of  [ r I is contained in a unique simplex of  T'. Triangulate I ~ I x [0, 1 ] as 
in [Gr] p. 46 with exactly two vertices (v, 0) and (v, 1) for  each vertex v in I~ I. 

Now every vertex v in I d. I lies in the interior of  a unique simplex a e T'. Say r is 
spanned by the barycentres ?o, "~ . . . . .  ~,, where z 0 < % < . . .  < z,, are simplices of  
T. Define c~ (v) = i,, and extend e linearly over the simplices of  1~. t- The chain % (~) 
is simplicial with respect to T', is (/7,/)-allowable, and is independent  o f  the 
triangulation of  I~1 which was chosen. Clearly e . i  = L 

Similarly, define f:  I~1 x [0, l ] - - , x  by setting f ( v ,O)  = v, f ( v ,  1) = c~(v) for 
each vertex v ~ I ~ I and extending linearly over the simplices of  l ~ I x [0, 1 ]. Orienting 
I ~ ] x [0, 1 ] with the product  orientat ion defines the chain 

f ,  (~ • [o, 1 ]) = fl e I c L ~  ( x ) .  

Clearly 

•fl = f , ( -  1)'(~ x {1} - ~ • {0})) = ( -  1)'(~(~) - ~) 

as desired. 

Lemma.  In the notation o f  L e m m a  4.3, we have R;~ ,K,K*ICL = O for  i >= - d  and 
the map R I ~ , I C ' L ~ R i ~ z , K ,  tc*IC'L is an isomorphism for  i < = - d - 2  and an 
inclusion Jbr i = - d -  1. 

Proof. Let s be the dimension of  S (so that dim L =  s + 2 d -  1). Using intersection 
homology-intersect ion cohomology  duality and taking account  of  shifts in 
numbering, the lemma is equivalent to the statement that for  all open U c S ,  
IH~ (n -  t U) K = 0 for i > s + d and IH~'0z-  ~ U)K is the homology  o f  the complex 
of  geometric intersection chains supported in ~ z - l U m K .  But K is just R r s + d -  1 
where [ is the logarithmic perversity l ( 2 k ) =  k. The vanishing statement is t rue 
becaue d i m K = s + d - 1 .  The other  statements result from the p roo f  of  the 
proposi t ion since Rf is monotonic  in i and p. 
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