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Introduction 

Let K be a field, and let C be a smooth, geometrically connected, projective 
curve defined over K. A classical theorem of de Franchis [5] of 1913, stated in 
modern language, is the following. 

Theorem of de Franchis. There are only Ji'nitely many isomorphism classes of 
separable, non-constant morphisms f: C--* C', where C' runs over all curves of 
genus > 2. 

The basic idea in all the proofs of this theorem (cf. de Franchis [5], Severi 
[18] and [19], p. 271, Zi2cenko [24], Samuel [17], Tamme [20]) is to associate 
to a given morphism f :  C-~ C' the invariant 

.,-. ,,, f. f* 
3'7 = J  ~ : Jc---~ Jc" ----~ Jc 

which is the composition of the direct image map J,  with the inverse image map 
f *  both viewed as acting on the respective Jacobian varieties. (Alternately, one 
could study 7~ as a divisor (class) on Cx  C or as an endomorphism on the 
Tare module 7~(,Ic), etc.) It is immediate that ?,~EndK(Jc) depends only on the 
isomorphism class o f f ,  i.e. on the subfield E = f *  K(C') of F/K; we thus write 

,~E -- t.f" 
The de Franchis theorem is thus equivalent to the following two state- 

m e n t s :  

l) The number of possible invariants )'~cEndK(Jc) is .finite (E as above). 
2) There are at most jlnitely man)" subJields E of F/K with the same invariant 

~E" 

Of these, the first statement can be deduced without much trouble from 
standard finiteness results in algebraic geometry such as Severi's Theorem of 
the Base or the theory of Chow coordinates; this had already been pointed out 
by Severi [18]. The second statement, on the other hand, is (a special case of) 
an old theorem of Humbert  [8] and Castelnuovo [2] proved in 1893 by 
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t ranscendental  methods.  An algebraic p roof  of this fact was given by 
de Franchis  1-4] in 1903; it is reproduced in Severi [19], p. 284-5 and Samuel  
[17], p. 68ff. 

The purpose  of this paper  is to present  the following angle theorem from 
which, by a "pack ing  a rgument" ,  1 a new and e[fective proof  of the de Franchis  
theorem (and related theorems)  may  be obtained.  

Theorem 1 ("Angle  Theo rem") .  Let E 1 and E 2 be subJi'ehts of F / K  of  genus 
g l > 1 and g2 >= 1, respectively, and let g lz denote the genus o f  the .field E I �9 E 2 
generated by E 1 and E 2. Then, if  m i = [ E  t -E2: Ell denotes the degree of  E 1 �9 E 2 
over E i ( i=1 ,  2), we have: 

,, 1 _  1 -m m 2 m 1 m l m 2 / '  cos(~,~,,~E2)_<l/L~ 1 -  �9 1 + g ' ~  (1) 

where we view End~:(Jc)@lR as a Euclidean space whose norm is given by the 
canonical trace Jorm (associated to the theta-divisor ) on EndK(Jc). 

Actually,  the above theorem is only a special case (Corollary 1) of a more  
precise theorem (Theorem 1') proved below in w which gives the exact value 
of cos(~,* l, ~'*2)- 

A first consequence of the angle theorem is the following rigidity theorem 
which may  be viewed as a sharpening of the a forement ioned  theorem of 
Cas te lnuovo and Humber t .  Fo r  ease of language, let us call a subfield E of 
F / K  essential if 1) its genus is positive and 2) it is not  proper ly  contained in a 
subfield of  F / K  on the same genus. 

Theorem 2 ("Rigidi ty  Theo rem") .  I f  E 1 and E 2 are distinct essential subJ~elds ()[" 
F /K ,  then their invariants ?,~ and ?,~ are Z-linearly independent. 

Remark  1. Strictly speaking, the rigidity theorem does not  fully contain the 
C a s t e l n u o v o - H u m b e r t  t heorem since its s ta tement  does not extend to all 
subfields of F / K  of genus > 1. However ,  it is quite easy to deduce the general  
case f rom the above  theorem.  Explicitly, one obtains  (cf. w 4): 

1) Each subfield E o f  F / K  oJ' genus gE> 1 is contained in a unique essential 
subfield E ~  of  the same genus, and one has 

7 * - n - , *  where n=[E~ss:  El. (2) E - -  I E c s s '  

2) I f  gE>=2, then Er is purely inseparable over E, and E is the only subfield 
o f  F / K  with invariant 7*. 

3) I f  g r =  1, then, putting n =  1-E~s: El ,  there are at most or(n)--- ~ d subJields 
din 

(all o f  genus 1) of F / K  with the same invariant as E. Moreover,  if K is 
algebraically closed and char (K)Xn, then there are exactly  c~(n) ,such subfields. 

1 The idea of using a "packing argument" to obtain finiteness assertions in diophantine geome- 
try is due to Mumford [12]. Recently, his idea was also taken up by Parshin in connection with 
Faltings' proof of the Mordell Conjecture. (Cf. L. Szpiro, Seminaire sur les pinceaux arithm6tiques: 
La conjecture de Mordell. Ast6risque 127 (1985), Expos6 IX) 



The number  of non-rational subfields of a function field 187 

F o r  the second appl ica t ion ,  we combine  (h la Mumford )  the angle theorem 
with an e lementary  packing  l emma (cf. w 3) to ob ta in  an explici t  version of the 
de Franchis  theorem.  To state the result, let g = g v  denote  the genus of F 
= K ( C ) ,  and let r = r a n k  EndK(.lc). It is known  that  r < r ( g ) ,  where  r ( g ) = 2 g  2 if 
c h a r ( K ) =  0, and r ( g ) = 4 g  2, if char  ( K ) + 0 .  

Theorem 3 . / f  g>g '>  2, then the number Nv(g' ) of separable subfields of F/K of 
genus g' satisfies 

Nv(g')<(c , +1) '  ~ - ( c '  I - 1 )  ' - ~  (3) 

] ~ g - g ' ) g '  
2 In particular, Nv(g ) = 0  if r =  1 and  ith., = I/  Sfg 

N ( g ' ) < 2  ~ ( 2  ~ 1 - 1 ) ,  if r > l .  (4) 

Corol lary .  A fimction field 2 F/K has at most 

(g-1)2~(~) 2(2r~g) 1_1)  

separable sub/~elds of genus > 2. 

Remark 2. F o r  g > 3 fixed, let 

M (g)= max N v, 
F 

(5) 

where the m a x i m u m  extends over all function fields F/K (as above) of genus g, 
and N v denotes  the number  of separable  subfields of F/K of genus >2 .  By the 
corol lary ,  M ( g ) <  oc (this had  been conjec tured  by M o h  [1 1]) and satisfies 

m (g) =< cC (53 

for some cons tant  c > l. It is an in t r iguing p rob lem to de te rmine  the exact  rate 
of growth  of M(g). One easily sees (cf. w that  

sup m (g') > c (1"~ (~))2 (6) 

(provided  that  K is a lgebra ica l ly  closed);  in par t icular ,  it follows that  M(g) 
cannot  be b o u n d e d  by any po lynomia l  in g. 

Note. After submitt ing this paper for publication 3. I became aware of the paper of A. Howard and 
A. Sommese, On the theorem of de Franchis, Ann. Scu. Norm. Sup. Pisa 10, 429 436 (1983). In 
that paper the authors  show that the proof given in Samuel [17] (i.e. deFranchis '  proof) can be 
modified so as to yield effective bounds. Explicitly, they obtain 4 (for K = ~ )  

N 1 < ( 2 1 / 6 ( g - 1 ) + l ) 2 * e ~ g 2 ( g  - I ) ( I / 2 F  ~r '~+1, 

z Throughout ,  "F/K is a function field" means that F=K(C) is the function field of a smooth, 
geometrically connected, projective curve defined over K 
3 The main results of this paper (in slightly weaker form) were announced in Mathematisches 
Forschungsinstitut Oberwol/ach-Tagungsberieht 35181 (1981 ), p. 11 

It should be pointed out, however, that this is not the result they state. In fact, there is a minor 
error in their Lemma 2 since they disregard the fact that if if: X ~ Y, (i= 1,21 are two morphisms 
which are isomorphic, then the associated divisors S:, (=Eft A x in the notation of w below) are 
equal. Explicitly, the statement on line 12 ff. of p. 432 of their article is not correct, but has to be 

maps) 
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which is not as good as (5). Their proof differs from the one presented here in several aspects. 
Firstly, they prove only a weak form of the rigidity theorem (and by a different method). Secondly, 
to prove that the number of ?,*'s is finite, they use (what amounts to) the fact that the length [t';*ll 
is bounded and that the y*'s lie in a lattice; this is not used here. Finally, the angle theorem 
presented here accomplishes both steps with one stroke. 

A s  a f inal  a p p l i c a t i o n  of  the ang le  t h e o r e m ,  we give b o u n d s  for the 
" n u m b e r "  of subf ie lds  of F / K  of genus  1" 

T h e o r e m  4. The number NF(n)es S oJ essential subfields of  F / K  of  genus 1 of index 
< n satisfies 

N~(n)es,~<=(c 2 n+ 1) r -  1 __(C2 n - -  1) r l  (7) 

~ 2 ( g g  1) 
where c 2 = " in particular, we have 

,~ <23r/2-1 nr-2 N;.(,,j . . . .  (8) 

Remark 3. It  has  been  k n o w n  for a l ong  t ime  t ha t  the re  exist  func t ion  fields 
(e.g. the  func t ion  f ie ld of  the  m o d u l a r  cu rve  X ( l l ) )  wi th  inf in i te ly  m a n y  
essent ia l  subf ie lds  of  genus  1. Po inca r6  [14]  (cf. L a n g e  [10]  for  a m o d e r n  
p roof )  gave  the fo l l owing  c h a r a c t e r i z a t i o n  of  this  p h e n o m e n o n :  

A function field F / K  has infinitely man), essential subfields (of  genus 1) if and 
only if it has two isomorphic subfields of  genus 1 n o t  contained in a common 
subfield of  genus 1. 

The  fact  t ha t  the re  are  on ly  f in i te ly  m a n y  (essent ia l )  subf ie lds  of b o u n d e d  
index  seems  to have  been  first  s t a t ed  exp l i c i ty  by T a m m e  [20] .  

Co r o l l a r y .  The number N~(n) of  all subfields of  F / K  of  genus 1 and index <n 
satisfies : 

N)(n)<=23,/2 l sr(n)nr 2, (9) 

where s t ( n ) =  ~" rr(k), k2- r .  5 
k = l  

The  p a p e r  is a r r a n g e d  as fol lows.  F o r  t echn ica l  r e a s o n s  we first def ine  in w 1 
the  i n v a r i a n t  F y * e D i v ( C x  C) a n d  p r o v e  in w the " a n g l e  t h e o r e m "  for  these  
i nva r i an t s .  In  w we exp l a in  the  c o n n e c t i o n  b e t w e e n  these  i n v a r i a n t s  and  the  
i n v a r i a n t s  ?,y de f ined  above ,  a n d  p r o v e  the m a i n  t h e o r e m s ,  us ing  a p a c k i n g  
l e m m a  p r e s e n t e d  in w 3. 

s The constant sr(n ) is easily estimated in terms of values of the Riemann ~-function. By e.g. 
Hardy and Wright [7], p. 266 and Polya and Szeg6 [15], p. 127, one has: 

, , r n2q_n 
s "2~n) < 2 -  (log(n)+ l) 

s 3 (n) < ff (2) n 

s 4 (n) < ~ (2){log (n) + 1) 

s,(n)<~(r-2)~(r-3), if r>5  
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w 1. The basic invariant 

Let K be an arbitrary field, and C a smooth,  geometrically connected, pro- 
jective curve defined over K. Its function field F=K(C)  is then a finitely 
generated, regular extension of K of transcendence degree one with the proper-  
ty that its genus g is invariant under constant  field extensions. Conversely, any 
field extension F/K with these properties is the function field of a smooth,  
geometrically connected, projective curve defined over K. 

Suppose f :  C-~ C' is a non-constant  morphism to a normal  curve C', where 
both C' and F are defined over K. Then C' is also a smooth,  geometrically 
connected, projective curve 6, and f is surjective and hence induces an embedding 
f * :  F'~--~F of the function field U=K(C' )  of C' into that  of C. Conversely, 
every subfield E c F  (with E ~ K )  arises in this fashion: given E, there exists 
a (smooth) curve C', unique up to isomorphism, such that K(C ' ) -~E  and a 
surjective morphism f :  C--+ C' such that the induced map f * :  K(C')~--~K(C)=F 
coincides with the inclusion E~--,F. Note  that once we have fixed the curve C' 
and an identification K(C')~-E,  the morphism f :  C-~ C' is uniquely determined 
by the inclusion E ~ F ;  in particular, we see that two morphisms .~: C--,C' i 
( i=  1,2) determine the same subfield if and only if they are isomorphic, i.e. 
f2 = (P ~ for some isomorphism q~: C'l ~,  C~. 

Following Castelnuovo [1 ], p. 11, and Samuel [17], p. 64, we attach to each 
surjective morphism f :  C ~  C' the divisor 

Fj* = ( f  x f)*(Ac,)eDiv(C x C) (1) 

on the product  surface C x  C; here, Ac, eDiv (C 'xC '  ) denotes the diagonal 
divisor on C' x C'. Note  that we have 

~* = (id • f)* (Fj.), (1') 

where F, e D i v ( C  x C') denotes the graph of the morphism J;  this motivates the 
notat ion "~*". We observe that the divisor Fj* depends only on the subfield E 
= f *  K(C')cF,  for if ~ e A u t ( C ' )  is an au tomorph i sm of C', then F ~ = F t *  and 
so we may write 

F~=[)*, if E=f*  K(C'). (2) 

Remark 4. One can show, conversely, that the divisor FL* determines E (cf. 
Samuel [17], p. 72) but we do not need this fact. Classically, the divisors F* (or 
its associated algebraic family {f*(J,(P))}e~c) were called involutions. 

w 2. The angle theorem 

If C t and C 2 a r e  two (smooth etc.) curves defined over a field K, then the 
divisor group D i v ( C  1 x C2) of the produc t  surface C I x C 2 is endowed with a 

6 To see that C' is smooth, note that [ is flat and apply EGA IV. 17.7.7. (Alternately, one can 
easily see that the genus of C' is invariant under base change) 
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canonical bilinear form cr=ac,• 2, called the Severi-Weil Metric, which is 
defined by 

a(D1, D2) =- n(Oa), v(D2) + n(O2) �9 v(D 1) - ( D I  "O2), (1) 

where, as usual, (-) denotes the intersection number  of two divisors and for i 
= 1 , 2  

n(Di)=(Di. A 1 • C2)/deg(A1), 

for any divisor A16Div(C1)  with deg(A~)=l=0 

v(Di)=(O i �9 C 1 x Az)/deg(A2), 

for any divisor A2~Div(C2) with deg(A2)=l=0. 

In case that D 1 = D z = D  is effective, we can re-write Eq. (1) as 

a ( D , D ) = 2 ( ( n ( D ) - l ) . ( v ( D ) - l ) + n ( D ) g i + v ( D ) g z - p , ( D ) ) ,  (2) 

if gl resp. g2 denotes the genus of C1 resp. C 2 and pa(D) the arithmetic genus of 
D (cf. Har t shorne  [6], p. 366); this follows immediately from the adjunction 
formula (cf. Har t shorne  [6], p. 366) and the fact that e)c, x C 2 + C1 x U3c2 is a 
canonical  divisor on C1 x C2, if (Oc, is a canonical divisor on C i. 

In particular,  if C ~ = C 2 =  C, and D=A c is the diagonal divisor, then (2) 

gives a(A c, Ac) = 2g c (3) 

because n(Ac)=V(Ac)= 1 and po(Ac)=g c. Fur thermore ,  if Ji: Ci--' C'i ( i=  1, 2) 
are two surjective morphisms,  then we have the projection Jbrmula 

Oct• c~((.f, • D'I, D2)= ac;• %(D',, (fl • D2) (4) 

for divisors D'~ ~Div (C'~ • C~) and D26Div (C  a • C2); in particular,  we have 

ac, • • (.f~ • 

= (deg f 0 ( d e g f 2  ) ac, ' • %(D'~, Oh) (43 

for divisors D'1, D ~ D i v ( C '  1 x C'2). 
Let us now return to the situation of w and suppose that we have a 

surjective morphism f :  C--+ C' of degree n to a curve C' of genus g'. We then 
obtain by (3) and (4'), and by (3) and (4), respectively: 

ac• Fj*) = 2n2 g ', (5) 

ac• F,r*) = 2ng'. (6) 

Next, suppose that we have two surjective morphisms f.: C--,C~, where 
deg(f~)=n~ and g c = g ,  ( i=1 ,  2); we are interested in comput ing Oc• p ,  Fj,*). 
For  this, let J]z=.J i  x f2o  Ac: C ~  C~ x C 2 denote  the composi t ion of./~ x j2 :  C 
x C-+C 1 x C 2 with the diagonal morphism. Moreover ,  let C12=J'12(C)cCl 
x C 2 denote  the image scheme on C~ x C 2 which is an (irreducible) projective 

curve (but which may have singularities), and let p,=p~(C12 ) denote  its arith- 
metic genus. Finally, let n l z=deg ( f~2 )  denote  the degree of the (finite) mor-  
phism f l z :  C--+ C12. 
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T h e o r e m  1' ("Angle Theorem"). With the above notations we have: 

~c• ~*)=n~2 ac,  • c~(C,2, C~2), (7) 
and hence 

-nl2)(n2-nl2)-}-n ' n12g1-kn2n1292-n2~2Pa. (g) 

Note that since n(C~2)=nJn12  and v ( C 1 2 ) = - n 2 / n l 2 ,  formula (8) is an im- 
mediate consequence of (7) and (2). 

Before presenting the proof of the angle theorem, let us deduce the follow- 
ing corollaries. Anticipating language that will be justified in w 4, let us put, for 
subfields E 1 and E 2 of F/K:  

~(r~, r~*) (9) cos(r~, * -  

which, by (5), is defined whenever E, and E 2 have positive genus. 

Corollary 1. I f  E 1 and E 2 are two subfields o f  F / K  of positive genus gl and g2, 
respectively, and if the compositum E,  �9 E z C F  has genus g12 and degree m i over 
E i (i= 1, 2) then 

0~COS ( ~ ,  ~ , )  < (1 q_gl -- I q_g2-- I g / 2 - - ~ ) ~  
_ = m2 ml rnl ~ gx g2.  (i0) 

Proof  Put E~=JI*K(C~); then K ( C I e ) ~ - E I . E  2 and so we have po(C~2)>g~2 
(cf. Hartshorne [6], p. 272), from which, together with (5) and (8), the second 
inequality in (10) follows. (Note that ni=n12rni, i=1,2) .  For the other in- 
equality we combine (7) with Castelnuovo's inequality a(C~2, C~2)>0 (cf. 
Hartshorne [6], p. 368, Castelnuovo [3], Weft [21] or [9]) to obtain the result. 

Corollary 2. I.Ji in addition, gj <g2 and E 1 . E 2 is not purely inseparable over E 2, 
then 

g~+ l  (11) cos (F~, r~)__< 21/g ' g: 

Proof  Assume first that E~. E 2 is separable over E 2 (and E 1 �9 E2:4=E2). Then by 
Riemann-Hurwitz, g12-1  >m2(g2-1 )  and so from (10) we obtain cos(FE*, FE* ) 

< = ( l + g l - - 1 ) / ] / ~ l g  2. Since m2 => e, (l l) follows. 
1T/2 

If E ~ . E  2 is not separable over E 2, say [ E ~ . E 2 : E 2 ] i . , =  f f  (where p 
=char(K)=t=0), put E'~=E{~.K.  Then F~*=ff~* and so cos(FE*,&* ) 
=cos(Fe*,F~). Since E'~.E 2 is separable over E2 and E1.E2=t=E 2 by hy- 
pothesis, (l 1) follows as before. 

Corollary 3. lJ E 1 and E 2 a r e  subfields o f  F / K  of  genus gl =g2 = 1 and index n I 
and n2, respectively, which are not contained in a common subfield o f  genus 1, 

then 1 
cos (F~, F~)=< 1 . . . .  . (12) 

n I n 2 
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Proof By hypothesis, g12>2  and so we obtain by (8) 

1 1 
cos (El*, ~*) < 1 - - - -  < 1 . . . .  . 

mi m2 nl //12 

The  key point  in the proof  of the angle theorem is the following fact. 

Proposition 1. With the above notation, we have 

(id c xfz),(Fj*)=n12(J; • i dc )* (C ,  2 ). (13) 

Before proving this proposit ion,  let us first see how the angle theorem 
follows from it. 

Proof of Theorem 1'. As already remarked,  it is enough to prove (7). For  this 
we observe that  

( f l  • i d c ) , ( ~ = ) =  nl2 C12 (14) 

(because (idc Xfg),(Ac)= g2 and hence (f ,  x idc2),(Fy2)= (fl • 
=n12 C12), and so by the project ion formula and Proposi t ion 1 we obtain 

n22 O-c, • Ct2)=r t l2  ac• c2((fl • idc)*(C12), ~ )  

= a,'• ((idc •  a), (E~), ~ : ) =  ac• c(g*,  g*). 

Proof of Proposition I. For  brevity write f = f ~  and g =f2-  Then : 

A (a) r (6), (idc • g ) , ( c )  = tg = tg • idc )*(Ac) .  (15) 

Moreover ,  if ~ : c C ,  x C  denotes the "dual  graph"  of f (i.e. supp(~:)  
= {(f(x), x): x c  C}), then (cf. (14)) 

(idc, x g),(Fj)=n12 C12 , (16) 

i f  • idc)* (Fj) = FP. (17) 

If Y~,..., L are curves over K, we let 

P ry'•215215 Y1 x 172 x 113 x I/4--+I///• Yj 
-~J 

denote  the projection on the (i,j)-th factor�9 Then 

- - l ' ~ r f x C l x C x C [ ( I ~  X A c  ) n r  C x C I x C  �9 ( ~ ' - ~  3 ~ c )* (U) )  F/ '# - -  v ~  1 4  ,~,~, f 

(by (17) and Har t shorne  [6], p. 426) and hence 

(id c x g). (Fj*) 
C x C I x C  = p r l  4 •  , x i d c x g ) , ( ( F f x a c )  , c•215 . (pr23 • c)* (Fj))) 

(1 5a )  C x Cj = pr~ 4 • c• c~ ((F~. x I~)-(prC~ c,• c• c 0 .  (Fj)) 
C x C I •  " �9 =pr~a c2 • c.((idc x ldc~ x g x i d c ) .  ((G. x Fg) �9 (prC~ c' • c • c0*{Fj))) 

( 1 5 b )  C x C t  • C z x  C 2 / / ~  z C x C I  •  * " = pr~,~ *~ fxAc~).  • tPr23 ) (0dc, x g),(~'.))) 
(161  C x C I X C 2 •  z C • CI • g..'2 • = pr,4 c~((FI x Ac2)-tpr23 C2)*(n12 C12)) 

=n12( fx  idc2)* (C12), 



The  n u m b e r  of non- ra t iona l  subfields of a funct ion field 193 

as claimed. (Note that above we have made repeated use of the projection 
formula; cf. Hartshorne [6], p. 426.) 

Remark  5. Note that the formula (13) of Proposition 1 is equivalent to the 
formula 

n l 2 (J] x J~)* (C 12) : (idc x J~)* (id c x J~), (Fj*) (t 8) 

which may also be written in the form 

n~2( L x L ) * ( C , 9 =  r~  o r~ ,  (18') 

where the symbol o on the right denotes composition of correspondences (i.e. the 
divisor defined by the subscheme Ff* x cFt* of C x C, where the fibre product is 
taken with respect to the morphisms pr2: Fj*~ C and prl:  Fj*--+ C). Now for- 
mula (18) may also be verified directly (by viewing both sides as correspon- 
dences); this therefore gives another proof of Proposition 1. v 

w 3. A packing lemma 

Let V be a real vector space of dimension d with norm [I [I (i.e. (V, I[ H) is a 
euclidean space). The "packing lemma" in question is the following simple fact. 

Lemma. Suppose v I . . . . .  v N is a f in i te  sequence o f  vectors o f  V which are all o f  
the same length R > 0 and which satisJ}' 

Hvi-viH >2r ,  for i=r (1) 

for  some r with 0 < r < R. Then 

N < (R/r + l) a - (R/r - 1) a. (2) 

Proo f  Let Br(vi)= {re V: IIv-t'ill < r} denote the open ball of radius r centered 
at v i. By the triangle inequality we obviously have 

B,.(vi) ~ BR +r(O)\BR ~(0) 
and by (1), 

B r ( v i ) ~ B r ( V j ) = O  , i f  i:t:j. 

Thus 
N 

U Br(Vi) c BR+ r(O)\B R_ r(O), 
i=1  

and so, taking volumes, we obtain 

N.  (c. r e )__<c-(R+r) a - c .  ( R - r )  a 

where c = vol (Bj (0)). 
For  our purposes the following variant of the packing lemma will be useful. 

7 In the case that  n 12= 1 and  f l  is separable  (which suffices for the proof  of (7)), still ano the r  
p roof  can be given by showing  tha t  supp(( id  c x 12),(I)*))= supp  ((11 x idc2)*(Cl2 ) and not ic ing tha t  
both  divisors are reduced 
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Corol lary .  Suppose a and b are real numbers with b < l  and 2(1 - a 2 ) >  1 - b ,  and 
let Vo, v 1 . . . . .  v N be a Ji'nite sequence of  non-zero vectors of  V satisJying s 

a) cos (Vo, vi) = a, for  l <_ i <_ N 

b) cos(r i ,  vj)<=b, for  l < = i < j < S .  (3) 

1 2(/5 -a 2 ) 
Then, putting c =  ~ i ~ ~ , we have 

N_<_(c+l)d l _ ( c _ l ) d  1 (4) 

Proof  By replac ing  each v i by vi/[lvil], we may  (without  loss of general i ty)  
assume that  ]lvil[ =1 ,  for O<i<_N. Put  v ' i = v i - a v  o. Then (v'i, Vo)=0 for 1 < i N N  

, . .  " all lie in the hyperp lane  W = ( v 0 )  • Moreover ,  by (3a) and  and so v' 1 . , v  N 

(3b), we ob ta in  IIv'il[--l/1-a 2 for l < i < _ N  and [ / v l - v } l l > l / ~ - b  ), for 
l < i < j < N ,  and  so, app ly ing  the pack ing  l emma to W, v' 1 . . . . .  v~. with R 

= ] / 1 - a  2 and r = l / ( 1 - b ) / 2 ,  we ob ta in  the desired result.  

Remark 6. Note  that  

M ( c , d ) % t ( c + l ) d  l _ ( c _ l ) d  1 

] �9 

thus, for c > l  fixed (resp. for d > l  fixed), M(c ,d )  is an increasing function of  
d > 1 (resp. of c > 0). 

We  also observe  that  we have the bound  

M ( c , d ) < 2 d - l c  d-2, if c > l ,  (6) 

w 4. Proof of the main theorems 

As before,  let F = K ( C )  be the funct ion field of a smooth ,  project ive,  geometr i -  
cally connec ted  curve C of genus g defined over  a field K, and  let a = a  c•  
denote  the Sever i -Weil  met r ic  on D i v ( C  x C). By a theorem of Cas te lnuovo  [3]  
(cf. also Weil  [21] or  [9]), a is posi t ive  - definite and  non-degenera te  9 on M 
= D i v ( C  x C ) / V ( C x  C), where V ( C x  C) denotes  the subg roup  of divisors  "o f  

8 Here, as usual, cos (v,, v j) is defined by 

(v,, v? 
cos(v,,vj) Ikv, ll' Ilvi[l' 

where ( ,)  denotes the inner product associated to the norm II II 
9 Whereas the positive definiteness of ~ is an easy consequence of the Hodge index theorem (cf. 
Hartshorne [6], p. 368), its non-degeneracy (on M) requires more careful analysis (cf. [9] for a 
discussion) 
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valence 0" (i.e. divisors D ~ D i v ( C x  C) linearly equivalent to divisors of the 
form A x C +  C x B, with A, BcDiv(C)) .  By Severi's Theorem of the Base, M is 
a (free) Z-module  of finite rank; in fact, we have 

def 
r =  rank M = p - 2 ,  (1) 

where p=rankNS(Cx C) is the Picard number of the surface C x  C. Thus, if 
we put V=M| then o extends to a positive - definite, non-degenerate  
bilinear form on V and so V is a euclidean space (of dimension r), whose norm 
we denote by II H. 

Remark 7. Note  that the r defined above differs slightly from the one defined in 
the introduction. To establish the connection, recall that any divisor 
D~Div(CxC) defines a correspondence on C and hence a K-rat ional  en- 
domorph i sm %~End~(Jc) .  Since by the "see-saw lemma",  ~D=0c:>D~V(C 
x C), we obtain an injection 10 c~' M --+ End K Jc and so r < rank End K (Jc) < r(g), 

the latter inequality by Mumford  [13], p. 178 (and p. 182, for cha r (K)=0) .  
In particular, this shows that  r (or p) is finite 11. Moreover ,  it is known that the 
trace form on End(Jc)  coincides, via 0~, with a on M;  cf. Weil [22]. 

Suppose now that  E 1 and Ez are subfields of F/K. If we denote by 7*. the 
image of the divisor E* in M (or in End,v(Jc) ) then, by definition, the quanti ty E~ 
cos (Y~, Fv~* ) defined by (9) of w 2 is nothing but  the cosine of the angle between 
~,* and '* �9 Jr~, 3~2, this therefore justifies the earlier notation. Moreover ,  we see that 
Theorem 1 of the introduct ion ( = w  is nothing but a re-statement of Corol-  
lary 1 of Theorem l'. 

Prool" of Theorem 2. It is enough to show that ,'* ~,* c o s ( ~ , ,  ~ ) < 1 .  Let g~ denote 
the genus of E~, and assume g~=<g2. Since E 2 is essential, gE,.E >g2  and so 
E l - E  2 is not  purely inseparable over E 2. Thus, by Corol lary 2 of the angle 

theorem we have c 0 s ( 7 " , 7 " ) <  g ~ , + ~ < l  unless g ~ = g 2 = l .  In that case, 
21/gl  g2 

however, we can apply Coro l l a ry3  of the angle theorem to obtain 
1 

cos (~,~,, ~,*) < 1 - < 1. 
n 1 n 2 

Proof of Remark I. Let E be a subfield of F/K of genus g' > 1, and let E' ~ E be 
a subfield of F/K with the same genus g'. 

a) If g ' > 2 ,  then by Riemann-Hurwi tz ,  E' is purely inseparable over E and 
so E ~  is the maximal subfield of F which is purely inseparable over E (which 
is unique). Moreover ,  ,* = [E ' :  E] '* 3~" 3E, so (2) o f w  holds. 

b) If g ' =  l, then the separable closure E's of E in E' is unramified over E 
and so Ees ~ is the subfield of  F generated by all subfields of genus 1 containing 
E (which is unique and of  genus l). To prove (2) of w note that  by formulae 
(5) and (6) of w 2 (applied to Ee~ in place of F) we obtain 

cos (: 'L,, ,  r~) = ~ g ~  = [, 

H~ If K is algebraically closed, then a is known to be a bijection (Weil [22] or [9]) 
~ For other proofs, cf. discussion in Zariski [23], p. 122 
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i.e. ,* - ,* 7Eos - r ) E  for some re]R, r # 0 .  On the other  hand, from (6) of 92 it follows 
that  r =  [Eess: E],  and so (2) of w holds. 

We have thus verified s ta tement  1) of R e m a r k  1. To  verify s ta tements  2) 
and 3), let E 1 = E ,  E N be subfields with invariant  ,* .... 7E. Then by the rigidity 
theorem and (2) of 90 we have that  (E~)es~=E~ ~ and [ E ~ : E ~ ] = n ,  1-<i-<N. 
Thus, if g'_>_2 then N =  1 since each E,s~/E~ is purely inseparable,  and if g ' =  1 
then N <= a(n) by Proposi t ion 2 below. 

Proof of Theorem 3 and its Corollary. Fix g ' > 2 ,  and let E~ . . . . .  E N be distinct 
separable  subfields of F/K, each of genus g'. (We may  assume that  there exists 
at least one subfield of genus g', for else the inequalities (3) and (4) of 
Th e o re m 3 hold trivially.) Put  

a = l / g~g ,  b = ( g ' +  1)/(2g') 
and 

c = [(2(1 -- a2))/(1 -- b)] 1/2 = 2 [-((g - g') g')/(g (g' - 1))] 2/2. 

We observe:  

1/2 < c_< 2 1 / 2 <  3. (2) 

The upper  bound  is clear, for (g - g ' )  g ' <  g ' - - < 2 .  For  the lower bound,  note  
( g ' - l ) g - g ' - l -  ( g - g ' ) g ' >  g' >!_ as 

that  by \Riemann-Hurwitz  we have g > 2 g ' -  1 and so (g ,_  1) g = 2g' - 1 = 2'  

c la imed.)  Then, by (5) and (6) of w we have cos(7.~, ?,*,)=a and, by Corol-  
/ 

lary 1 of the angle theorem, cos(7* ,, ? , * )<b  for i# j .  Thus, since b <  1 and c >  l, 
we can apply the (variant  of the) packing l emma  to V and v0=7* ,  v~ 
-?El, . . - ,  vu=7~N with the above  values of a, b and c to obta in  the desired 
inequali ty (3) of 90, f rom which (4) of 90 follows by (2) above. Finally, the 
Corol la ry  of T h e o r e m  3 is an immedia te  consequence of (4) of  90 and the fact 

that  (by Riemann-Hurwi tz )  we have 2 < g' < g + 1 
2 

Proof of Remark 2. To prove  (6) of  w it is enough to find a sequence 
F 1, F 2 . . . . .  F,, ... of function fields over  K of genus gv, <gv2 < . . .  < g v .  < . . . .  
such that  

Nv, > exp (c(log (gF,)) 2) (3) 

for some constant  c > 0  ( independent  of  n). 
To  construct  such a sequence, choose first a sequence E a, g 2 ,  . . . ,  E . . . . .  of 

function f i e l d s / K  with genus g ~ = n .  Next,  choose a pr ime p # c h a r ( K )  and let 
F, be the maximal  unramified extension of E,  which is abel ian of exponent  p. 
Then Ga l  (F,/E,) ~- (7//pZ) 2" and hence 

gv =p2"(n  - 1)+ 1 <p3 , .  (4) 

By Redei [16], p. 367 the number  of subgroups  of order  p" of  (Z/pZ)  2" is 

[] 2n ( p 2 " - l ) ( p Z " - ~ - - l ) . . . ( p n + l - - 1 ) > p  2" 'P" p,(,-1). 
n (p--1)(pa--1).. .(pn--1) p.. 
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Thus ,  by galois  theory  we have for n > 2 :  

2(4) 
Nt >P,(, 1)>p~, >exp((181og(p))  l(log(gv,))2). 

Proof of Theorem 4. Fix  n > 2 ,  a n d  let E 1 . . . . .  EN be d i s t inc t  essent ia l  subfields  
of  F/K of genus  1 wi th  index  n~= I F  : Eli <= n, for 1 _< i <_ N. T h e n  by C o r o l l a r y  3 
of  the ang le  t h e o r e m  we have  

1 1 
cos(~E,, 7~,j)< 1 - < 1 - - -  if i=t=j. 

n i n j  ~ n 2 

Thus ,  if we pu t  a = ] / 1 / g ,  b = l - - - 1  then  b < l  and  c=n > 1 ,  so we 
n 2'  1/ g 

can  apply  the pack ing  l e m m a  to v 0 = 7 * ,  v 1 -~F~,, .... VN=7~N with these va lues  
of a and  b to o b t a i n  the  inequa l i t i e s  (7) an d  (8) of w the la t ter  in view of 
i nequa l i t y  (6) of w 3. 

The  p roo f  of the Co ro l l a ry  to T h e o r e m  4 d ep en ds  on  the fo l lowing well-  
k n o w n  fact:  ~ 2 

Propos i t ion  2. Let F/K be a function field of genus 1 over an algebraically closed 
field K, and let n >=2 be an integer. 

a) f f  char (K)Xn,  then F/K has exactly c r ( n ) = ~ d  (separable) subfields of 
genus 1 and index n. ~t, 

b) I f  char  (K) = p + O, and p~ II n with r > O, then F/K has 

either" (i) (r + l) a(n/p ~) subfields of genus 1 and index n, of which 6(n/p ~) are 
separable (F/K is " o r d i n a r y " )  

or: (ii) a(n/p ~) subfields of genus 1 and index n, all of which are inseparable 
(F/K is " supe r s ingu la r " ) .  

Proof of the corollary to Theorem 4. Since each subfield of genus  1 is c o n t a i n e d  
in a unique essent ia l  subfield (and  since d is t inc t  subfields of F/K stay d is t inc t  
after c o n s t a n t  field ex tens ion)  we o b t a i n  by P r o p o s i t i o n  2: 

, n 

(with equa l i ty  ho ld ing  if K is a lgebra ica l ly  c losed and  char(K)Xn) .  F r o m  this 
a n d  f o r m u l a  (8) of T h e o r e m  4 the  Co ro l l a ry  follows immedia te ly .  

Acknowledgements. It is a pleasure to thank Barry Mazur for his helpful suggestions which greatly 
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12 There does not seem to exist a convenient reference. However, the number of cyclic subfields 
of F/K of genus 1 and index n can be found in any book on modular functions tsince it equals the 
degree of the covering j: Xo(n)-~X(1)=IPI), and the general case can be proven similarly (using 
the fact that if m In and (m, n/m)= 1 then 7l/n x 7~/m has exactly a(m) subgroups of order n) 
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