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Introduction

Let K be a field, and let C be a smooth, geometrically connected, projective
curve defined over K. A classical theorem of de Franchis [5] of 1913, stated in
modern language, is the following.

Theorem of de Franchis. There are only finitely many isomorphism classes of
separable, non-constant morphisms f: C - C', where C' runs over all curves of
genus 2.

The basic idea in all the proofs of this theorem (cf. de Franchis [5], Severi
[18] and [19], p. 271, Zizcenko [247], Samuel {17], Tamme [20]) is to associate
to a given morphism f: C — C’ the invariant

. S f*
«,v}‘ :f* of*: J(,—-> J(,, —— J(‘

which is the composition of the direct image map f, with the inverse image map
f* both viewed as acting on the respective Jacobian varieties. (Alternately, one
could study 7% as a divisor (class) on Cx C or as an endomorphism on the
Tate module Ty(J¢), etc) It is immediate that yFeEndy (J.) depends only on the
isomorphism class of f] i.e. on the subfield E=f* K(C') of F/K; we thus write
i1=1"

Thfe de Franchis theorem is thus equivalent to the following two state-
ments:

1) The number of possible invariants yieEnd(J) is finite (E as above).

2) There are at most finitely many subfields E of F/K with the same invariant
VE-

Of these, the first statement can be deduced without much trouble from
standard finiteness results in algebraic geometry such as Severi’s Theorem of
the Base or the theory of Chow coordinates; this had already been pointed out
by Severi [18]. The second statement, on the other hand, is (a special case of)
an old theorem of Humbert 8] and Castelnuovo [2] proved in 1893 by
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transcendental methods. An algebraic proof of this fact was given by
de Franchis [4] in 1903; it is reproduced in Severi [19], p. 284-5 and Samuel
[17], p. 681t
The purpose of this paper is to present the following angle theorem from
» 1

which, by a “packing argument”,’ a new and effective proof of the de Franchis
theorem (and related theorems) may be obtained.

Theorem 1 (““Angle Theorem™). Let E, and E, be subfields of F/K of genus
g.21 and g, =1, respectively, and let g,, denote the genus of the field E, -E,
generated by E, and E,. Then, if m;=[E, -E,: E;] denotes the degree of E,-E,
over E, (i=1,2), we have:

1 1 1
cos 1, IS = ((1mo) - (1= )+ B BB g

m, m; m;m,

where we view Endg(Jo)®R as a Euclidean space whose norm is given by the
canonical trace form (associated to the theta-divisor ) on End(J).

Actually, the above theorem is only a special case (Corollary 1) of a more
precise theorem (Theorem 1) proved below in §2 which gives the exact value
of cos(yf . vE)-

A first consequence of the angle theorem is the following rigidity theorem
which may be viewed as a sharpening of the aforementioned theorem of
Castelnuovo and Humbert. For ease of language, let us call a subfield E of
F/K essential if 1) its genus is positive and 2) it is not properly contained in a
subfield of F/K on the same genus.

Theorem 2 (““Rigidity Theorem™). If E, and E, are distinct essential subfields of
F/K, then their invariants vy} and v§, are Z-linearly independent.

Remark 1. Strictly speaking, the rigidity theorem does not fully contain the
Castelnuovo-Humbert theorem since its statement does not extend to all
subfields of F/K of genus =1. However, it is quite easy to deduce the general
case from the above theorem. Explicitly, one obtains (cf. §4):

1) Each subfield E of F/K of genus gp=1 is contained in a unique essential
subfield E,  of the same genus, and one has

€s8

yE=nyf.., where n=[E_:E] (2)

ess

2) If gp=2, then E_,
of F/K with invariant y§.
3) If gz=1, then, putting n=[E,: E], there are at most a(n)= Y d subfields

din

(all of genus 1) of F/K with the same invariant as E. Moreover, if K s
algebraically closed and char (K)kn, then there are exactly o(n) such subfields.

is purely inseparable over E, and E is the only subfield

! The idea of using a “packing argument” to obtain finiteness assertions in diophantine geome-

try is due to Mumford [12]. Recently, his idea was also taken up by Parshin in connection with
Faltings’ proof of the Mordell Conjecture. (Cf. L. Szpiro, Seminaire sur les pinceaux arithmétiques:
La conjecture de Mordell. Astérisque 127 (1985), Expose [X)
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For the second application, we combine (4 la Mumford) the angle theorem
with an elementary packing lemma (cf. §3) to obtain an explicit version of the
de Franchis theorem. To state the result, let g=g, denote the genus of F
=K(C), and let r=rank Endg(J). It is known that r <r(g), where r(g)=2g> if
char(K)=0, and r(g)=4g>, if char (K)=*0.

Theorem 3. If g>g' =2, then the number N.(g') of separable subfields of F/K of
genus g' satisfies

Ne(@) (e, +1) = (e, =1y~ (3)
with ¢, :2V€’j§)§' In particular, Ny(g')=0 if r=1 and
g-Dg
N(g)<2-'2='=1), if r>1. (4)

Corollary. A function field* F/K has at most
(g— 2@ 22e-1-1) (5)
separable subfields of genus = 2.
Remark 2. For g =3 fixed, let
M (g)=max Ny.

where the maximum extends over all function fields F/K (as above) of genus g,
and N denotes the number of separable subfields of F/K of genus 22. By the
corollary, M(g)< o (this had been conjectured by Moh [11]) and satisfies

M(g)=c, (59

for some constant ¢>1. It is an intriguing problem to determine the exact rate
of growth of M(g). One easily sees (cf. §4) that

sup M (g)= (et (6)

g =g

(provided that K is algebraically closed); in particular, it follows that M(g)
cannot be bounded by any polynomial in g.

Note. After submitting this paper for publication®. I became aware of the paper of A. Howard and
A. Sommese, On the theorem of de Franchis, Ann. Scu. Norm. Sup. Pisa 10, 429-436 (1983). In
that paper the authors show that the proof given in Samuel [17] (ie. de Franchis’ proof) can be
modified so as o yield effective bounds. Explicitly. they obtain* (for K =)

Ny S@QY6(g— D+ 1727 g2 (g = N/ 2r% V41,
2 Throughout, “F/K is a function field” means that F=K(C) is the function field of a smooth,
geometrically connected, projective curve defined over K
¥ The main results of this paper (in slightly weaker form) were announced in Mathematisches
Forschungsinstitut Oberwolfach-Tagungsbericht 35[81 (1981), p. 11
* It should be pointed out, however, that this is not the result they state. In fact, there is a minor
error in their Lemma 2 since they disregard the fact that if f: X - Y, (i=1,2) are two morphisms
which are isomorphic, then the associated divisors S, (=I*—4y in the notation of §1 below) are
equal. Explicitly, the statement on line 12~ ff. of p. 432 of their article is not correct, but has to be

—1 . .
multiplied by # Aut(Y, )<84( ) (The authors count maps rather than isomorphism classes of
maps) 2
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which is not as good as (5). Their proof differs from the one presented here in several aspects.
Firstly, they prove only a weak form of the rigidity theorem (and by a different method). Secondly,
to prove that the number of y¥’s is finite, they use (what amounts to) the fact that the length |ly}|
is bounded and that the y¥'s lie in a lattice; this is not used here. Finally, the angle theorem
presented here accomplishes both steps with one stroke.

As a final application of the angle theorem, we give bounds for the
“number” of subfields of F/K of genus 1:

Theorem 4. The number Ni(n), of essential subfields of F/K of genus 1 of index
<n satisfies
Np(n)e S(ean+ 1)1 —(cyn=1y~" (N

€8s =

2(g~1
where cZ=1/~(—g——) ; in particular, we have
g

NI/’(n)ess.—<_23r/271 nr_z. (8)

Remark 3. It has been known for a long time that there exist function fields
{e.g. the function field of the modular curve X(11)) with infinitely many
essential subfields of genus 1. Poincaré [14] (cf. Lange [10] for a modern
proof) gave the following characterization of this phenomenon:

A function field F/K has infinitely many essential subfields (of genus 1) if and
only if it has two isomorphic subfields of genus 1 not contained in a common
subfield of genus 1.

The fact that there are only finitely many (essential) subfields of bounded
index seems to have been first stated explicity by Tamme [20].

Corollary. The number Np(n) of all subfields of F/K of genus 1 and index Zn
satisfies:
Np(myg2*?2-1s (myn 2, (9)
where s,(n)= ) a(k)-k>~"°
k=1

The paper is arranged as follows. For technical reasons we first define in § 1
the invariant [*eDiv(C x C) and prove in §2 the “angle theorem” for these
invariants. In §4 we explain the connection between these invariants and the
invariants y} defined above, and prove the main theorems, using a packing
lemma presented in § 3.

5 The constant s,(n) is easily estimated in terms of values of the Riemann {-function. By e.g.

Hardy and Wright [7], p. 266 and Polya and Szego {15], p. 127, one has:

sz(n)<¥ n2+g (log(m)+ 1)

53 <L@)n
sa(m<{@)(tog(m +1)
s W<Cr-2Cr=3). if rz5
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§ 1. The basic invariant

Let K be an arbitrary field, and C a smooth, geometrically connected, pro-
jective curve defined over K. Its function field F=K(C) is then a finitely
generated, regular extension of K of transcendence degree one with the proper-
ty that its genus g is invariant under constant field extensions. Conversely, any
field extension F/K with these properties is the function field of a smooth,
geometrically connected, projective curve defined over K.

Suppose f: C— (' is a non-constant morphism to a normal curve C’, where
both (" and F are defined over K. Then C' is also a smooth, geometrically
connected, projective curve®, and f is surjective and hence induces an embedding
[*:F'—F of the function field F'=K(C’) of (' into that of C. Conversely,
every subfield Ec F (with E2K) arises in this fashion: given E, there exists
a (smooth) curve (', unique up to isomorphism, such that K(C')~E and a
surjective morphism f: C— C’ such that the induced map f*: K(C)—>K(C)=F
coincides with the inclusion E—F. Note that once we have fixed the curve C’
and an identification K(C')~E, the morphism f: C— C' is uniquely determined
by the inclusion EcF; in particular, we see that two morphisms f;: C— C;
(i=1,2) determine the same subfield if and only if they are isomorphic, i.e.
fo=wof, for some isomorphism ¢: C;— ().

Following Castelnuovo [1], p. 11, and Samuel [17], p. 64, we attach to each
surjective morphism f: C — C’ the divisor

IF=(f xf)*(4.)eDiv(C x C) 8]

on the product surface Cx C; here, A.eDiv(C' x (') denotes the diagonal
divisor on " x C". Note that we have

I =(id x (). (1)

where e Div(C x (') denotes the graph of the morphism f; this motivates the
notation “I'*" We observe that the divisor I* depends only on the subfield E
=f*K(C)=F, for if aeAut(C’) is an automorphism of (', then [% =I* and
SO we may write

IF=Iry, if E=f*K(C). (2)

Remark 4. One can show, conversely, that the divisor [} determines E (cf.
Samuel [17], p. 72) but we do not need this fact. Classically, the divisors I;* (or
its associated algebraic family {f*(f, (P))}p.) were called involutions.

§ 2. The angle theorem

If C,; and C, are two (smooth etc.) curves defined over a field K, then the
divisor group Div(C, x C,) of the product surface C, x C, is endowed with a

®  To see that €’ is smooth, note that f is flat and apply EGA IV. 17.7.7. (Alternately, one can

easily see that the genus of €’ is invariant under base change)
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canonical bilinear form o=o., ,.,. called the Severi-Weil Metric, which is
defined by
a(D,,D,)=n(D)-v(D,)+nD,)-v(D)—(D,-D,), (0

where, as usual, (+) denotes the intersection number of two divisors and for i
=1,2
n(Dy=(D;- A, x C,)/deg(A,),

for any divisor A,€Div(C,) with deg(4,)+0
v(D)=(D,;- C, x A,)/deg(4,).
for any divisor A,eDiv(C,) with deg(A4,)=+0.

In case that D, =D, =D is effective, we can re-write Eq. (1) as
o(D, D)=2((n(D)—1)- (»(D) = 1) +n(D) g, +v(D) g, — p,(D)), 2)

if g, resp. g, denotes the genus of C, resp. C, and p, (D) the arithmetic genus of
D (cf. Hartshorne [6], p.366); this follows immediately from the adjunction
Jormula (cf. Hartshorne [6], p. 366) and the fact that w. x C,+C  xw, is a
canonical divisor on C, x C,, if @, is a canonical divisor on C,.
In particular, if C,=C,=C, and D=4 is the diagonal divisor, then (2)
gives
o(d¢, 40)=2g¢ (3)

because n(d)=v(4-)=1 and p,(4;)=g,. Furthermore, if f;: C;— C} (i=1,2)
are two surjective morphisms, then we have the projection formula

Oc, x cz((f1 xfy* Dy, D,)= O, x C'Z(D’N (f1 sz)* D,) 4)

for divisors D, eDiv(C] x C}) and D,eDiv(C, x C,); in particular, we have

Oc, xCZ((fl x [)*(DY), (fy X f,)*(D)))
—(deg £,)(deg f3) ac, . (D) D) @)

for divisors D, D,eDiv(C| x C)).

Let us now return to the situation of §1 and suppose that we have a
surjective morphism f: C— C' of degree n to a curve C' of genus g'. We then
obtain by (3) and (4'), and by (3) and (4), respectively:

UCXC(I}*? G*):znzg” (5)
Oexclde, IF)=2ng.. (6)

Next, suppose that we have two surjective morphisms f;: C— C,;, where
deg(f)=n; and g, =g; (i=1,2); we are interested in computing o, (I, I}%).
For this, let f,=f, x f,0 4,1 C— C, x C, denote the composition of f; x f;: C
x C— C,; x C, with the diagonal morphism. Morcover, let C,,=f,,(C)= C,
x C, denote the image scheme on C, x C, which is an (irreducible} projective
curve (but which may have singularities), and let p,=p, (C,,) denote its arith-
metic genus. Finally, let n,,=deg(f,,) denote the degree of the (finite) mor-
phism f;,: C— C,,.
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Theorem 1 (‘“‘Angle Theorem™). With the above notations we have :

Ocwcllf 1 /2) "12 Te,x0,(Cras Cia)s (7)
and hence

%'G(I}fa I@)=(m,—n)ny—n)+n n, g +Ry 158, =N, Py (8)

Note that since n(C,,)=n,/ny, and v(C,,)=n,/n,,, formula (8) is an im-
mediate consequence of (7) and (2).

Before presenting the proof of the angle theorem, let us deduce the follow-
ing corollaries. Anticipating language that will be justified in §4, let us put, for
subfields E, and E, of F/K:

a(Igh, 15)
o L oL T

cos (I, %)= )

which, by (5), is defined whenever E, and E, have positive genus.

Corollary 1. If E, and E, are two subfields of F/K of positive genus g, and g,,

respectively, and if the compositum E, - E,cF has genus g, and degree m; over
E, (i=1,2) then

g —1 g1 8127 )

0< I ISl +=—4== 0

<cos( £y El)_( + n, + m, m,m, /1/g1g2 (10)

Proof. Put E,=f*K(C}; then K(C,)~E, -E, and so we have p,(C,,)=g,,

{cf. Hartshorne [6], p. 272), from which, together with (5) and (8}, the second

inequality in (10} follows. (Note that #,=n,,m,, i=1,2). For the other in-

equality we combine (7) with Castelnuovo’s inequality o{C,,, C,,)=0 (cf.

Hartshorne [6], p. 368, Castelnuovo [37], Weil [21] or [9]) to obtain the result.

Corollary 2. If, in addition, g, <g, and E, - E, is not purely inseparable over E,.
then

1
cos(I}’f,fp";)<*gl+

"2V 8,

Proof. Assume first that E| - E, is separable over E, (and E, - E,+E,). Then by
Riemann-Hurwitz, g,, — 1 =m,(g, —1) and so from (10) we obtain cos (I, I})

(1+g )/1/'g2 Since m, =2, (11) follows.
n

If E, E2 1s not separable over E,, say [E, -E,:E,],.=p" (where p
-char(K)zl:O) put E,=EY.K. Then @L}=p [} dnd SO cos(I‘E*;,I“E";
=cos (I*, I'%). Since E’1~E2 is separable over E, and E,-E,+E, by hy-
pothesis, (11) follows as before.

Corollary 3. If E, and E, are subfields of F/K of genus g, =g,=1 and index n,
and n,, respectively, which are not contained in a common subfield of genus 1,
then

1

* ILH<l ——o,
cos (I, I;¥) < — (12)

(11)
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Proof. By hypothesis, g,,=2 and so we obtain by (8)

1 1
cos{(IF, I¥)s1— s
mym, nyhn,

The key point in the proof of the angle theorem is the following fact.

Proposition 1. With the above notation, we have

(idCXfZ)*(I}T):nIZ(fI Xidcz)*(c12)~ (13)

Before proving this proposition, let us first see how the angle theorem
follows from it.

Proof of Theorem 1'. As already remarked, it is enough to prove (7). For this
we observe that
(fy x1ide,), ([},)=n,, Cy, (14)

(because  (idc xf5),(4)=I,, and hence (f; xide),(I;,)=(f, xf5),(4¢)
=n,, C,,), and so by the projection formula and Proposition 1 we obtain

n%z Fe,ve,{Crzs Ci)=n0 00,0, ((f; xide )*(C ), I}z)
Tcxe, (id¢ fo)*(FT)’ 1}2): O¢x ('(Ff’\f’ [}t)
Proof of Proposition 1. For brevity write f=f, and g=f,. Then:

(idex 2),(40) 2 L P g xide)*(4c,). (15)

Moreover, if I}=C,xC denotes the “dual graph” of f (ie. supp (I})
={(f(x), x): xe C}), then (cf. (14))

(id¢, x 8) (I{)=ny, Cy,, (16)

(f xide)*UIp) =17 (17)
If Y,, ..., Y, are curves over K, we let
prip Y Y Y, x Yy x Yo Y ) Y,
denote the projection on the (i, j)-th factor. Then
I“f*:prf‘;fc‘x(}x:((l}x AC) (pr ;CGCx() (Ff,))
(by (17) and Hartshorne [6], p. 426) and hence
(ide < g), (I7%)
=pris O Qlde xide, xidex g) (T x A0) - (prg; XTI

(152) Cx CyxCxCy xCyxCx (3
2D OO x I) - (pr§ © * CX ()
=prig 2 Qde xide, x g xid,) (T x L) - (pri3 @ X(I7)

(15b) XCxCzxCy xCyxCaxCy 1
= pris T GUT X ) (prg; T YR (d, x 8), (1)
(16) "X CyxCyxCa xCyxCyxCa

:pri4c ¢ C*((I}XA ) (prc Goxc C) (n12 Clz))

=ny,(f x idcz)*(CIZ)a
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as claimed. (Note that above we have made repeated use of the projection
formula; cf. Hartshorne [6], p. 426.)

Remark 5. Note that the formula {13) of Proposition 1 is equivalent to the

formula _ ' o ‘
ny o (fy X )€ o) =(d e x f5)*(id - x f5) (T (18)
which may also be written in the form
ny,(f; Xf;,_)*(Clz):I}’iOI}":, (189

where the symbol o on the right denotes composition of correspondences (i.e. the
divisor defined by the subscheme I'* x -I'* of C x C, where the fibre product is
taken with respect to the morphlsms pry: [ — C and pr;: [} — C). Now for-
mula (18) may also be verified directly (by v1ew1ng both sides as correspon-
dences); this therefore gives another proof of Proposition 1.7

§ 3. A packing lemma

Let V be a real vector space of dimension d with norm || || (ie. (V] ]]) is a
euclidean space). The “packing lemma” in question is the following simple fact.

Lemma. Suppose v, ..., vy is a finite sequence of vectors of V which are all of
the same length R >0 and which satisfy

lv;—v;ll22r,  for i=j, (1)
for some r with 0<r<R. Then
N<(R/r+ 1) —(R/r—1), (2)

Proof. Let B (v)={veV: |v—uv] <r} denote the open ball of radius r centered
at v;. By the triangle inequality we obviously have

Br(vi)CBR+r(0)\BR—r(O)
and by (1),
B.(v)nB,(v)=0, if i%j

Thus

B,(v;)= Bg ,(0)\Bg _,(0),

'CZ

i=1

and so, taking volumes, we obtain
N-(c-r)Sc-(R+r)'—c-(R=r)

where c=vol (B, (0)).
For our purposes the following variant of the packing lemma will be useful.

7 In the case that n,,=1 and f, is separable (which suffices for the proof of (7)), still another

proof can be given by showing that supp ((id. x f5), (I7)=supp((f, x id,)*(C,,) and noticing that
both divisors are reduced



194 E. Kani

Corollary. Suppose a and b are real numbers with b<1 and 2(1 —a*)=1—b, and
let vy, vy, ..., vy be a finite sequence of non-zero vectors of V satisfving®

a) cos(vgy, v;)=a, for 1Si<N

3
b) cos(v;, v)=b, for ISi<j<N. )
2(1—a?
Then, putting c= -(1—_—2—), we have
N<(c+ 1) —(c—1)y1 4)

Proof. By replacing each v; by v/|v,|, we may (without loss of generality)
assume that |v,|| =1, for 0SiS N. Put vi=v,—av,. Then (v}, vy)=0 for 1<i<N
and so v}, ...,y all lie in the hyperplane W={v,>*. Moreover, by (3a) and
(3b), we obtain Hvﬂk:]/l—a2 for 1<i<N and Hv}—v}llg]/ﬂl—b), for
1Li<j=N, and so, applying the packing lemma to W, v}, ..., vy with R
=]/1 —a? and r=1/(1 —b)/2, we obtain the desired result.

Remark 6. Note that

M(e, d)E (c+ 1) " —(c— 1)~

A e e

thus, for ¢=1 fixed (resp. for d=1 fixed), M(c, d) is an increasing function of
dz1 (resp. of c=0).
We also observe that we have the bound

M(ce,d)s241cd-2 if =1, (6)

—1

—1 d
because M(c,d)§2[(d1 )cd‘2+( 3

) cd*2+...]=2d*‘cd*2.

§ 4. Proof of the main theorems

As before, let F=K(C) be the function field of a smooth, projective, geometri-
cally connected curve C of genus g defined over a field K, and let o6=0,,,
denote the Severi-Weil metric on Div(C x C). By a theorem of Castelnuovo [3]
(cf. also Weil [21] or [9]), ¢ is positive - definite and non-degenerate® on M
=Div(C x C)/V(C x C), where V(C x C) denotes the subgroup of divisors “of

8 Here, as usual, cos(v,, v)) is defined by

N CLr
cos(v,, v} DRk

where (, ) denotes the inner product associated to the norm | |

®  Whereas the positive definiteness of ¢ is an easy consequence of the Hodge index theorem (cf.
Hartshorne [6], p. 368), its non-degeneracy (on M) requires more careful analysis (cf. [9] for a
discussion)
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valence 0” (i.e. divisors DeDiv(C x C) linearly equivalent to divisors of the
form Ax C+ Cx B, with A, BeDiv(C)). By Severi’s Theorem of the Base, M is
a (free) Z-module of finite rank; in fact, we have

r<rank M=p—2, (1)

where p=rank NS(C x C) is the Picard number of the surface Cx C. Thus, if
we put V=M®,R, then ¢ extends to a positive - definite, non-degenerate
bilinear form on V and so V is a euclidean space (of dimension r), whose norm
we denote by | |.

Remark 7. Note that the r defined above differs slightly from the one defined in
the introduction. To establish the connection, recall that any divisor
DeDiv(C x C) defines a correspondence on C and hence a K-rational en-
domorphism apeEndg(J.). Since by the “see-saw lemma”, o,=0<DeV(C
x C), we obtain an injection’® o: M > Endy J- and so r<rank Endg(J) <r(g),
the latter inequality by Mumford [13], p. 178 (and p. 182, for char(K)=0).
In particular, this shows that r (or p) is finite!!. Moreover, it is known that the
trace form on End (J,) coincides, via o, with ¢ on M; cf. Weil [22].

Suppose now that E, and E, are subfields of F/K. If we denote by 3} the
image of the divisor I* in M (or in Endg(J.)) then, by definition, the quantity
cos (I, I'Y) defined by (9) of §2 is nothing but the cosine of the angle between
7, and yf ; this therefore justifies the earlier notation. Moreover, we see that
Theoreml of the introduction (=§0) is nothing but a re-statement of Corol-
lary 1 of Theorem 1".

Proof of Theorem 2. It is enough to show that cos(y% ,7§,)<I. Let g; denote
the genus of E;, and assume g, <g,. Since E, is essential, g; ., >g, and so
E,-E, is not purely inseparable over E Thus, by Corollary 2 of the angle

theorem we have cos(yg ., vE)< ﬁﬁ<1 unless g,=g,=1. In that case,

)<
2V¢1 2,
however, we can apply Corollary3 of the angle theorem to obtain

-< 1.
nyn,

cos (v, VE)S1—

Proof of Remark 1. Let E be a subfield of F/K of genus g'=1, and let E'2E be
a subfield of F/K with the same genus g'.

a) If g¢'=2, then by Riemann-Hurwitz, E’ is purely inseparable over E and
so E,., is the maximal subfield of F which is purely inseparable over E (which
is unique). Moreover, y% =[E": E] v¥, so (2) of §0 holds.

b) If g'=1, then the separable closure E’s of E in E’ is unramified over E
and so E_ is the subfield of F generated by all subfields of genus 1 containing
E (which is unique and of genus 1). To prove (2) of §0, note that by formulae
(5) and (6) of §2 (applied to E, in place of F) we obtain

8k
cos (k... m=]ﬂ~-—- L
8Feus

If K is algebraically closed. then « is known to be a bijection (Weil [22] or [9])
For other proofs, cf. discussion in Zariski [23], p. 122

10
11
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Le. y§ _ =ry§ for some relR, r+0. On the other hand, from (6) of §2 it follows
that r= [E.: E], and so (2) of §0 holds.

We have thus verified statement 1) of Remark 1. To verify statements 2)
and 3), let E, =E, ..., Ey be subfields with invariant y¥. Then by the rigidity
theorem and (2) of §0 we have that (E).=E,, and [E, :E]=n 1<iZ<N.
Thus, if g'=2 then N=1 since each E__/E,; is purely inseparable, and if g'=1
then N <a(n) by Proposition 2 below.

€SS,

Proof of Theorem 3 and its Corollary. Fix g'=2, and let E,, ..., E, be distinct
separable subfields of F/K, each of genus g’. (We may assume that there exists
at least one subfield of genus g, for else the inequalities (3) and (4) of
Theorem 3 hold trivially.) Put

a=Vg/g, b=(g+1A2g)

and
=[2(1—a®)/(1-b)]"*=2[(g~g) &) e(g — I
We observe:
V2ge=2Y2<3. )
(The upper bound is clear, for ((_g—_——g%ggég g 1§2. For the/ lo/wer b(?und, note
that by Riemann-Hurwitz we have g=2g' —1 and so (e-g)8 > & >1 as

(g—-1)g 2¢'—17
claimed.) Then, by (5) and (6) of §2 we have cos(y§, y§)=a and, by Corol-

lary 1 of the angle theorem, cos (7%, yﬁ})gb for i#j. Thus, since b<1 and ¢>1,
we can apply the (variant of the) packing lemma to V and v,=7¥, v,
=9%,, .., Uy="7F, With the above values of a, b and ¢ to obtain the desired
inequality (3) of §0, from which (4) of §0 follows by (2) above. Finally, the
Corollary of Theorem 3 is an immediate consequence of (4) of §0 and the fact

1
that (by Riemann-Hurwitz) we have 2<g’'< <g+

Proof of Remark 2. To prove (6) of §0 it is enough to find a sequence

F\,F,,....,F, ... of function fields over K of genus g, <gp <...<gp, <...,
such that
Ng,Zexp(c(log(gg,))) 3)
for some constant ¢ >0 (independent of n).
To construct such a sequence, choose first a sequence E,, E,, ..., E,, ... of

function fields /K with genus g, =n. Next, choose a prime p = char(K) and let
F, be the maximal unramified extension of E, which is abelian of exponent p.
Then Gal(F,/E,)~(Z/pZ)*" and hence

gp, =0 "(n—1)+1<p. 4
By Redei [16], p. 367 the number of subgroups of order p" of (Z/pZ)*" is

[21’1] =(p2n_1)(p2n41 ____1).”(pn+1 _1) p2n41“.pn:p"(n“1)
n (p—Dp*=1)...(p"—1) p..p" :

v
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Thus, by galois theory we have for n=2:
S 2(4) —
Ne,>p""~ Dz p*" >exp((18log(p)) ' (log(gy,)).

Proof of Theorem 4. Fix n=2, and let E,. ..., Ey be distinct essential subfields
of I'//K of genus 1 with index n,=[F: E;J<n, for L i< N. Then by Corollary 3
of the angle theorem we have

1 1
COS(?’;J‘E)él—Uél—F, if i+

— 1 ]/2 —1
Thus, if we put a=]/l/g, b=1—-—, then b<1 and c=n —(g—)>1, SO we
n 4

can apply the packing lemma to v,=7v§, vy =75, ..., vy=7f, with these values
of a and b to obtain the inequalities (7) and (8) of §0, the latter in view of
inequality (6) of §3.

The proof of the Corollary to Theorem 4 depends on the following well-
known fact:!?

Proposition 2. Let F/K be a function field of genus 1 over an algebraically closed
field K, and let nZ22 be an integer.

a) If char(K)fn, then F/K has exactly o(n)=Y d (separable) subfields of
genus 1 and index n. din

b) If char(K)=p=+0, and p"||n with r>0, then F/K has

either: (1) (r+1)a(n/p") subfields of genus | and index n, of which o(n/p") are
separable (F/K is “ordinary”)

or: (ii} a(n/p") subfields of genus 1 and index n, all of which are inseparable
(F/K is “supersingular”™).

Proof of the corollary to Theorem 4. Since each subfield of genus 1 is contained
in a unique essential subfield (and since distinct subfields of F/K stay distinct
after constant field extension) we obtain by Proposition 2:

Nim= Y o) N (E])

k=1

(with equality holding if K is algebraically closed and char(K)yn). From this
and formula (8) of Theorem 4 the Corollary follows immediately.
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improved the exposition of this paper. Similarly, 1 would also like to thank the referee for his
careful reading of the manuscript, for his valuable comments which improved the contents of the
paper and for pointing out a minor error in an earlier version of the proof of the Corollary to
Theorem 4.

'2 There does not seem to exist a convenient reference. However, the number of cyclic subfields

of F/K of genus 1 and index n can be found in any book on modular functions (since it equals the
degree of the covering j: X,(n)— X(1)=IP'), and the general case can be proven similarly (using
the fact that if m|n and (m, n/m)=1 then Z/n x Z/m has exactly g(m) subgroups of order n)
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