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Two vector bundles associated to the moduli space of compact Riemann surfaces 
have a Hermitian metric derived from the hyperbolic geometry of  Riemann 
surfaces. Briefly our purpose is to determine the connection and curvature forms 
for these metrics. 

The first bundle is the holomorphic tangent bundle of the Teichmfiller space of 
genus g, g > 2, Riemann surfaces; the metric is the Weil-Petersson metric. Weil 
introduced a K/ihler metric for the Teichmfiller space T o based on Petersson's 
Hermitian pairing for automorphic forms. Ahlfors considered the differential 
geometry of this metric; in particular he obtained integral formulas for the 
associated Riemann curvature tensor, [1,2]. As an application he found that the 
Ricci, holomorphic sectional, and scalar curvatures are all negative. Royden latter 
showed that the holomorphic sectional curvature is bounded away from zero, [16]. 
More recently Tromba found that the sectional curvature is also negative, [32]. 
After this result Royden and then the author also found proofs of the negative 
sectional curvature, [17]. In the present work we develop a formalism for 
computing second variations of a hyperbolic structure and consider as the first 
application a formula for the Riemann tensor. Before presenting the formula recall 
that the holomorphic tangent space of  Teichmfiller space at the marked Riemann 
surface ( S )  is naturally isomorphic to ~ (S), the space of harmonic Beltrami 
differentials ( ( -  1, 1) tensors) on S. Now denoting by dA the area element of the 
hyperbolic metric on S and by D the Laplacian of  the hyperbolic metric then the 
Riemann tensor is given as 

R ~  = - 2 ~ (D - 2) - 1 (/t J~0) (/t~/~) dA (0.1) 
S 

- 2 ~ (D - 2 ) - 1  (/t j ~ )  (/t~/~0) dA 
S 

for /t,, /to, /t~, / t ~ e ~ ( S )  representing tangent vectors to Tg. Recall that the 
Laplacian D acting on L 2 functions is a self adjoint operator with non-positive 
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spectrum; the inverse (D - 2)-  1 exists and is a compact integral operator. Also note 
that given ~t, v e ~ (S) the product (/~9) defines a function on S. Now the reader may 
check that (0.1) defines a 4-tensor on T o with the appropriate symmetries. As an 
application of  the formula we find explicit bounds for the curvatures: the 

- 1  
holomorphic sectional curvature is bounded above by 2 r e ( g - I ) '  a result 

conjectured by Royden [16]. Furthermore we find that all sectional curvatures are 
indeed negative (Theorem 4.5). In fact our considerations show that the curvatures 
are governed by the spectrum of  the Laplacian: the negative curvature is a 
manifestation of the non-positivity of the Laplacian. We note that the above 
formula and bounds have also been obtained by Royden. 

In [28] we combine the negative curvature result and the observation that the 
geodesic length functions are convex along Weil-Petersson geodesics to study the 
geometry of  T 9 . The main result is that Teichmtiller space is geodesically convex. 
Each pair of  points is joined by a unique Weil-Petersson geodesic. Given the 
negative curvature i t  follows that the exponential maps are homeomorphisms of 
their domains to T o . 

The second bundle under consideration, a line bundle, is the vertical bundle of 
the fibration ~t: ~ 0 ~  T o of the Teichmiiller curve over Teichmtiller space. Briefly the 
fibre of the projection rc above a marked surface ( S )  is a compact submanifold 
isomorphic to S. The kernel of the differential drt: T 1'~ ~ ~ T~'~ defines a line 
bundle (v) on ~ ,  the vertical bundle of the fibration. The restriction of(v) to a fibre 
of  rc is isomorphic to the tangent bundle of  the fibre. Consequently the 
Uniformisation Theorem with parameters provides that the hyperbolic metrics of 
the individual fibres piece together to define a smooth metric on the line bundle (v). 
We compute the connection 1-form 0 and curvature 2-form O for this metric. As the 

i 
first application of  the formula we find that the Chern form c~ ( v ) = ~ - O  is 

negative, a differential-geometric analogue of  a result of Arakelov, [5]. Once again 
we find that the curvature is governed by the spectrum of  the Laplacian. As the 
second application we investigate the characteristic classes 

~ . (P )=  ~ c l ( v )  "+1, n~7/+, p ~ T  o, 
~-~(p) 

c 1 (v) the Chern form of (v), originally considered by the algebraic geometers, [5, 9, 
10, 13, 14]. We derive the formula for i ,  as computed from the hyperbolic metric. In 

1 
particular we find the pointwise equality of  characteristic forms ~1 = 2 ~  2 (Owp, 

where cowp is the K~hler form of  the Weil-Petersson metric. This result was 
1 

foreshadowed by our previous result: ~1 and ~2cowp represent the same 

cohomology class on ~t0, the moduli space of stable curves, [26]. 
Our approach for the calculations is formal in nature and involves the SL (2; IR) 

invariant first order differential operators L and K as well as the invariant 
Laplacian D introduced by Maass. If  ~: is the canonical bundle of the upper half 
plane H and S ( k )  the space of smooth section of 1(, k/2 (~ g-k /2 ,  k e •  then Maass 
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introduced invariant differential operators Kk : S ( k ) ~ S ( k + 1), Lk : S ( k ) --* S ( k - 1) 
and Dk : S (k) ~ S (k), [11 ]. Given f s S (k) and 7 ~ SL (2; IR) then 7 acts by pullback 
on the tensor J; f ~ , 7 * f .  The Maass operators commute with this action. 
A heuristic principle due to Selberg provides that the general  SL(2;1R) in- 
variant linear operator should be thought of  as a combination of: the L, K and D 
operators, their inverses (when defined) and projections onto the eigenspaces of  the 
Laplacians D, [18]. Furthermore the inverse of  L and K can be given in terms of 
that for the Laplacian, when appropriate. For instance to solve the equation 
Kk f = g for the tensor f first note that D k - k (k + 1) = L k + 1 Kk and hence the 
equation may be replaced by (D k -  k ( k +  1 ) ) f =  Lk+~g which admits the formal 
solution f = (D k - k (k + 1)) - ~ Lk + 1 g. This example suggests an explanation for the 
appearance of the operator (D 0 -  2)-1 in our formulas. 

A basic observation is that the fundamental operators of  Teichmtiller theory are 
SL (2; IR) invariant. The above approach yields very nice results when considering 
first variations, the case of  linear operators. On the other hand second variations 
are necessarily given by quadratic operators, a case not formally covered by the 
Selberg approach. Nevertheless we find that many of the techniques are still valid 
when applied to the specific operators of  deformation theory. For  example our 
basic concern is the variation of  the hyperbolic area element dA under pullback by a 
quasiconformal homeomorphism f " ,  p = f~/J~ of the upper half plane H, We find for 
p e.N (S), harmonic, the expansion (Theorem 3.3) 

(f~")* dA = (1 - ~2 (//fi _~ 2 (D O - 2) - 1 p/~) + 0 (e3)) dA (0.2) 

for the pullback of  the area element, where 0 (e, a) is uniform on compact  subsets of  
H, The vanishing of  the term linear in c is an earlier result of  Ahlfors [1, 2]; we note 
that Royden has also obtained an expansion similiar to the above. 

The manuscript is divided into five chapters. In the first we review Maass '  
calculus of  differential operators and use this to derive Ahlfors'  result on the first 
variation of  area. The second chapter is devoted to obtaining variational formulas 
for the operators characterizing the complex structure of  Teichmiiller space as well 
as the projection operator of  Beltrami differentials onto the harmonic differentials. 
A brief review of  Teichmiiller theory and the Weil-Petersson metric is contained in 
sections2.3, 2.4 and 2.5. In the following chapter we apply the preceeding 
techniques and derive the above formula for the second variation of  area 
(Theorem 3.3). ] 'he fourth chapter is devoted to a discussion of the Riemann tensor 
of  the Weil-Petersson metric. The main formula may be found in Theorem 4.2 and 
the estimates appear in Theorem 4.5 and Lemma 4.6. We start the final chapter with 
a review of  the Teichmtiller curve and its universal cover, the Bers fibre space, and 
then we consider the characterestic classes of the Teichmtiller curve. 

1. The Maass  calculus and the first variation of  area 

1.1. Maass introduced a calculus of  SL (2; IR) translation invariant differential 
operators. These operators are essential to the organization of  our calculations. 
With this in mind we start by reviewing Maass '  approach. As the first application 
we give a new proof  of  the Ahlfors'  result; the first variation of hyperbolic area 
vanishes for the harmonic Beltrami differentials, [1,2]. 



122 S.A. Wolpert 

1.2. Start by considering the space S (k) of smooth sections of K k/2 ~ ~ - k/2 where 
is the canonical bundle of  the upper half plane H and k is integral. Classically S (k) is 

(dz'~ k/2 
the space of  tensors f = f ( z )  \~z,] . An element 7 e SL (2; IR) acts naturally on 

dw 
S(k),  v '~ f=f (Tz)  y'(z)k/E'f(z)-k/2 where y'(z) is the complex derivative dzz for 

w = 7 (z). We shall write ~* instead of~*; the subscript will be given by the context. 
A more general smooth section g eS(2p ,  2q) of  the bundle ~:P| 2p and 2q 
integral, will be studied by considering ( z -  ~)v + q g e S (p - q). Note that 2 e S (2, 2) 

- 4  
where 2 -  (z -~)z  is the hyperbolic volume element. 

Maass introduced the differential operators 

K k = ( z -  ~) ~z + k ' S ( k ) - ~ S ( k  + 1) 

L~ = (~ - z) ~z - k" S (k) ~ S (k  - 1) 

and the Laplacians Dk : S (k) ~ S (k) 

D k = L k + , K k + k ( k + l ) = K k _ ; L k + k ( k - - 1  ),  [11]. 

The operators satisfy the identities Lk + 1Kk = Kk- 1Lk -- 2k, Dk + ~ K k = KkDk, 

DkLk+ 1 = Lk+ 1Dk+ 1 and Kk = L-k:  The SL (2; IR) invariance is as follows 

K~*/= ~* K ~ f  

LkT* f =V* L k f  

for f e S ( k )  and 7 ~ SL (2; 1R). An immediate consequence is the invariance of  the 
Laplacian, D k 7" "-~ ~* Dk. The derivative o f the product fg, f ~ S (/), g e S (k - l) also 
satisfies a simple rule 

Kk (fg) = g K t f  + fKg_z g 

L k ( f g ) = g L t f  + fLg-~g .  

We assume now and for the remainder of the manuscript that F c  SL (2; IR) is 
the uniformisation group of  a compact Riemann surface. The hypothesis 
guarantees that a square root  ~c 1/2 of  the canonical bundle is F invariant. 
Furthermore it will vastly simplify the convergence considerations for our 
variational formulas as well as the spectral theory of the Laplacian. Now given f 
and g measurable F invariant sections of 1s l~ -k/2 define their Hermitian 
product 

<f,g>k = ~ f~,dA (1.1) 
H/r 

for dA the hyperbolic area element. As above we shall write < , > in place of< , )k" 

Definition 1.1. ~ k  is the Hilbert space of  measurable F invariant sections f of 
l~k[2 ( ~ g - k / 2  with ( f ,  f )  finite. 
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Roelcke studied the Laplacian Dk acting on Jr'k; the operator is self adjoint on 
the dense subspace ~k~S(k) ,  [15]. In particular D o is the classical Laplace- 
Beltrami operator, having non-positive discrete spectrum on ~ o .  The inverse 
(D o - 2) - 1 exists and is a compact integral operator from o~ o to ~ o .  Many of  our 
formulas will involve the operator A = - 2 (D o - 2)- 1. Finally for feo,'egk + 1 ~ C1 
and g e~kc~  C a we may integrate by parts 

(f,  Kkg ) = --(Lk+lf, g ) . 

1.3. Our goal is to use the Maass calculus to obtain variational formulas for the 
hyperbolic metric as well as those operators defining the complex structure of  
TeichmiJller space. The idea of  Selberg is simple enough. A SL (2; IR) invariant 
linear operator can be thought of  as a combination of the differential operators L, K 
and D, the inverses (D - c)-  1, c a constant, and the projections onto eigenspaces of 
the Laplacians. Many of the operators of Teichmiiller theory are in fact SL (2; IR) 
invariant. 

Let f "  be a/z quasiconformal self homeomorphism of the upper half plane H 
and dA the area element of  the hyperbolic metric. The f "  induced deformation of 
the conformal structure is characterized by the Beltrami equation fe = Izf~. Recall 
that in one complex dimension a metric is determined modulo scaling by its 
conformal structure; consequently the fu  deformation of the hyperbolic metric is 
completely determined by the Beltrami differential p and by the pullback (fu)* dA 
of  the area form. Our goal is to obtain formulas valid to second order in e for 
( f ' )*  dA. The main result is Theorem 3.3. This question was considered previously 
by Ahlfors; his formulas are in terms of  iterated singular integrals, [2]. Our formula 
is given in terms of the operator  A = -- 2 (D o -  2)-  1. 

Obtaining a first order expansion for (f~U)*dA is equivalent to studying the 
action by the Lie derivative of  vector fields on the tensor dA. Starting with X a 

1 
smooth vector field on H associate the section �9 = X e S ( - 1 )  and indicate 
the X Lie derivative by L(X). (z-~) 

Lemma 1.2. L(X) dA = 2Re(K lqOdA. 

Proof For  f2 open, relatively compact  in H we may integrate X to obtain a flow P 
defined for e small. By definition of the Lie derivative 

d (U*dA) l,=o d { I f Y l a - I ~ l  2 i dzAd~) 
L(JOdA=& - &  \ ( i m U ~  2 - ~:o 

andusingthatX=deUl~=oweobtainRe 2X~ dA. Finally the reader 
2 

will check that K_ ~ q~ = X~ X. 
(z- e) 

1.4. In the study of Teichmtiller space deformations are parametrized by the 
( - 1 , 1 )  tensors X e rather than vector fields X on the upper half  plane. The 
advantage of this approach is twofold: first the hypothesis that Xbe  an infinitesimal 
deformation of  a group F c  SL(2; IR) is replaced by the elementary condition 
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/2 = X~is a F invariant tensor and secondly it is s t ra ight-  forward to characterize the 
infinitesimally trivial deformations. But this approach requires an analysis of  the 
potential equation F~ =/2. We now review the elementary theory of  this equation. 

A Beltrami differential is a bounded measurable section of ~c- 1 | ~. Given/2, a 
Beltrami differential, its absolute value I/2] is independent of  coordinates; 
consequently the L ~ norm of p is well defined. 

Definition 1.3. B is the complex Banach space of Beltrami differentials of finite L | 
norm. B (F) a B is the subspace of  F invariant differentials. 

"['he quotient H/F has finite area; the inclusion B c~ 3~ 2 is continuous. 

L e m m a  1.4. Let/2 ~ B be a Beltrami differential. 

i) I f  F~ =/2 then L_ 1 = -/2.  

ii) Solutions o f  Fe=/2 are unique modulo holomorphic functions. 

iii) There exists a unique solution F[p ], a continuous function vanishing at 0, 1 and 
0(Izl 2) at ~ satisfying 

F~.-= # in H 

F~ =/~ (e) in • - H  

in the sense of  weak L 2 derivatives. 

Proof. Remarks i) and ii) are left to the reader. Remark iii) will be found in a 
standard reference on Teichmiiller theory, [3, 4]. 

The potential F[/2] is a section of  x -  2, a vector field. 

i 
Definition 1.5. Given/2 E B, define �9 ~ ]  = ( z - ~  FLu], �9 ~ ]  ~ S( - 1). 

In the study of  Teichmiiller space the harmonic Beltrami differentials play a 
central role. A Beltrami differential/2 is harmonic provided (D_ 2 -2 ) /2  = 0. Now 
(D_ 2 - 2) = L_ ~ K_ 2 and for H/F compact  the operator L_ 1 has trivial kernel. A F 
invariant harmonic Beltrami differential is a solution of the equation K_ z/~ = 0 or 
equivalently p is harmonic if it can be written in the form/2  = ( z -  Z) z q3, ~ a 
holomorphic quadratic differential. 

Definition 1.6. ~ ~ B is the subspace of harmonic Beltrami differentials. ~ (F) ~ 
is the subspace of  F invariant differentials. 

We shall see latter that  ~ ( Y )  is naturally isomorphic to the holomorphic 
tangent space of Teichmiiller space at a point representing H/F. 

We are ready to consider the first variation of  (ff~)*dA. By Lemma 1.2 this is 
equivalent to evaluating Re K_ ~ ~ ] ;  the argument is also the prototype for our 
latter calculations. Alternate proofs of  the following appear  in [1,2]. 

L e m m a  1.7. Given/2 ~ ~ (F) then Re K_ 1 ~ ~ ]  = 0.  

Proof. The first step is to verify that Re K_ 1 ~ [ / 2 ]  is a F invariant function. For  
/2 ~ ~ (F) consider the potential F [/2]; F[~] induces an infinitesimal deformation of  
F ~ S L ( 2 ; I R ) .  The Lie algebra Se~(2;IR)  of  SL(2;IR) is represented by vector 
fields on H with coefficients quadratic polynomials having real coefficients. 
Accordingly for all 7 sF ,  F[/2] o 7 7' - 1 - -  F[/2] ---pr(z), p~, a quadratic polynomial. 
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Now the hyperbolic area element dA is SL (2; IR) hence 5 t ~  (2; IR) invariant. Thus 
forming Lie derivatives we find that L ( F o 7 ? ' - ~ ) dA = L ( F) dA or equivalently by 

1 
Lemma 1.2. we have that Re K_ 1 ~ F = Re K_ ~ 4~ is F invariant. 

Now in order to determine the function Re K_ 1 4~ we compute its Laplacian (for 
/~e~ ,  /1 and thus 4~[~] are smooth). By definition D O = K _ ~ L  o and thus 
K - 1 L o R e K - 1 ~ = R e K _ I L o K _ l c I  ) = R e K _ I ( K _ 2 L  1 + 2 ) ~  = 2 R e K _ l q  ~, 
where we have used the hypothesis /t e ~ ( F ) .  In particular K_2L_~q~[/t] = 
- K_ 2 H = 0 by Lemma 1.4 and the definition of harmonic. The Laplacian D o has 
non-positive spectrum in particular D o R e K  1 4~ = 2ReK_~ q~ guarantees that 
ReK_ 1 4~ = 0, the desired conclusion. 

2. Second variations and the harmonic projection 

2.1. The space B ( F )  of Beltrami differentials endowed with the L ~ norm is a 
complex Banach space. By definition of  the complex structure of  the Teichmfiller 
space T ( F )  the map taking # s B ( F ) ,  II~ll~ < 1, to the equivalence class of the 
marked Riemann surface H/ f"  F ( f " ) -  1 is holomorphic. That  the complex structure 
of  T ( F )  is independent of  F depends on analyzing the diagram 

.[p ) 

where f " ,  f p  and .f~ are quasiconformal. In fact the diagram characterizes the 
manifold structure of  T ( F )  and is the focus of  this chapter. Observe that the 
Beltrami differential p will satisfy 

p ( / ~ , 2 ) _ ( f ~ ~  ( H - 2  f: ~)  
(] c#~ (J ' J ) - l )z  _ i - ~  f ~  o ( f a ) - i  

Our first result is that for H, v ~ 

d d 
dg,~ dg2 P (e' v + e'2/a' ~'l V) l ~" =~e=~ /a K -  l qO [vl - L -  ' ( l ~  [v] ) " 

With this calculation as a foundation we proceed to analyze the variation of the 
harmonic projection operator  P:  B--+~. The operator P plays a central role in 
defining the Weil-Petersson metric. The first result for the metric is due to Ahlfors 
and will be stated in terms of the projection P. 

2.2. Of course the starting point of the discussion is the solution of the Beltrami 
equation. 

Definition 2.1. Given/x ~ B, ]] H ]l ~ < 1, denote by f u  the unique homeomorphismJ=. 
q7 ~ r fixing 0, 1 and m and satisfying 

{ f~ = HZ in H 

f= = # (Z) fz in r - H .  
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The reader can consult [3, 4] for the following standard facts. By uniqueness f u : 
H ~ H  and provided that # is real analytic, f~u will be real analytic for r small and 
z e H. In particular we shall use for # real analytic that the ~ and z derivatives o f f  ~u 
commute and converge in C~ (H), the smooth compact-open topology for H. 
Furthermore, the solution has an expansion f~" = z + ~ F[v] + 0 (e,), where F is the 
linear operator of  Lemma 1.4 and for v ~ ~ ,  0 (~) refers to the topology of C~ (H). 

An immediate consequence of  the hypothesis #, v ~ ~ is that 

is real analytic for el ,  82 small and zcH. Now set 

d ( # f V ~ o ( f g - '  (2.1) R(#,v)=~eP(V+e#,v)]~=o= i --[v[2 f j /  

the result of  one differentiation; in fact the reader can check that the derivative 
converges in L% 
Lemma 2.2. For #, v ~ :~ then 

d d 
deW]- de-~ P (e 'v+e2# '~ 'v ) I~ I :~ :~  L_ ,  (#@[v]). 

Proof. Proceeding with the above calculation we have that 

d d d 
de--~ de~ Pl~=~=~ F[vL) + ~ (llz(f~v)-i + # ~ ( f ~ ) - ' ) [ ~ = 0 .  

The inverse map ( f f~) - '  is characterized by ( f ~ ) - '  o f ~ =  z; differentiating in ~, 

yields ~ ( ( f ~ ) -  1 + f ~ )  1~ = o = 0, where we have used the expansion J~ = z + e F[v] 

+ 0 (e). The resulting formula is 

d d 
dQ de 2 P]~'=~:~ Iz(F[v]~- F [ v ] ~ ) - / u ~ F [ v ] - # ~ F [ v ] .  

Now the reader can check that (# F[v] )~ = L_ ~ (# cb [v]) and that for # harmonic, 
2 

#z (z -5) /~ '  thus 

( 2 F[v]) =#K-~q)[v]" # F[v]~ - Iz~F[v] = p F[v]~ (z-Z) 

The calculation is complete. 

2.3. Now we discuss the natural projection operator P: B ~ ~ .  We shall see that the 
first variation of P can be determined from its formal properties. P : B ~  ~ is the 
bounded linear operator defined by integration 

P I/t] - - 3 ( z -  2) 2 # (() ~ ~ d~ (~) 
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for/x e B and da the Euclidean area element. We shall only use the following 
properties of  the operator [2, 3] 

i) for IL ~ N', P [/~] =/~ 

ii) PT* = ? * P  for all ~ S L ( 2 : t R )  

iii) P extends to o~r 2 and is self adjoint 

iv) on oY('_z~C 2, D _ z P = P D _  z . 

That  P is actually a projection follows from the observation P:  B ~  and 
property i). An immediate consequence of property ii) is that P: B ( F ) ~  ~ (F). By 
an argument of  Selberg property iv) follows from property ii) and the regularity of  
the operator, [18]. Alternatively as an exercise we now derive property iv) from 
properties i) and iii). 

Recall that D_ 2 = L_ 1 K_ 2 ~t_ 2 and K_ 2 N = 0 thus D_ 2 P = 2P. Now using the 
self adjointness of  P and D _ 2 we find <#, PD_ 2 v) = <P [/1], D_ 2 v) = <D _ 2 P [/t], v) 
= < 2 P ~ ] , v )  = < # , 2 P [ v ] )  =(l&D_zP[v])  , for # ~ J g _  z and vE~ut~_a~C2. In as 
much as ovg 2 is a Hilbert space the conclusion follows. 

2.4. As background for the first result on the variation of P we introduce the Weil- 
Petersson metric for Teichmiiller space. Accordingly we start with a brief sketch of 
Teichmfiller theory. The reader should check the references [1-4, 6] for a more 
complete description of the complex structure of  T(F)  and the Weil-Petersson 
metric. 

The m a p / 7  from the open unit ball in B(F)  to T(F)  given by assigning to/~ the 
equivalence class of  the marked Riemann surface H/F", F U = f " F ( f " )  -1, 
is fundamental to the study of  Teichmfiller theory. / /  is a differentiable map 
from the Banach space B (F) to the manifold T(F). In order to better understand 
the map / /  consider QD(F), the space of F invariant holomorphic quadratic 

differentials, and the pairing B(F)  x QD(F) ~') ~ ~ :  for/~ e B ( F ) ,  4) eQD(F)  

define (/~,qS)= ~ /~4). Let N ( F ) = Q D ( F ) ' c B ( F )  be the null space of  the 
H/r 

quadratic differentials relative to the pairing. The basic fact is that the kernel at 
the origin of  the differential dH is the subspace N(F)  or equivalently the following 
theorem. 

Theorem 2.3, [1,3]. In the above notation, at the point of  Teichmiiller space 
representing F there are the natural isomorphisms 

B ( F ) / N  (F) ~ T',~ T(F) 

QD (F) ~ (T 1"~ T(F) 

and the pairing 

B(V)/N(V) • QD(F) - (") , (F 

represents the natural pairing T " ~  • (T1 .0) .~  I12. 
0 

Definition 2.4. Given/~ 6 B (F) denote by ~ E T 1'~ T(F)  the image of/~ by the 
map dfI. 
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In order to study tensors on Teichmfiller space it will be far simpler if the coset 
space B (F) /N(F)  is replaced by a suitable space oftensors on HIE. As we shall now 
explain ~ (F) is naturally isomorphic to the quotient B(F) /N(F)  and thus it will 
suffice jor all of  our considerations to derive formulas valid for the harmonic 
Beltrami differentials. 

The basic observation is the diagram 

B ( r )  ~ , ~ ( r )  

,m (2.2) 

T 1 ,o T(F) 

for the differential dH and the harmonic projection P. To see this start by noting 
that the kernel K e r P  of  P acting B(F) coincides with the subspace N(F).  In 

( z -  e) 2 
particular for q, e QD (F) set v = _ ~  @ e ~ (F) and for/ t  e B (F) the reader will 

confirm by properties i) and iii) of the projection that (#, q/) = </~, v> = </l, P [v]> 
= <P ~],  v>. Consequently ~ e N (P) is equivalent to P ~ ]  e ~ (F) • c~r 2 but 
P ~ ]  e ~ (F) and thus ;t e N(F)  is equivalent to P [/~] = 0. Finally to establish the 
commutativity of  the diagram (2.2) note that P L u - P [ ~ ] ] = 0  and thus given 
/.z e B ( F ), dIl (I.t) = dn  ( P Lu ] + ( u - P [M)) = dlI ( P Lu]). 

Now a change of  local coordinates on Teichmiiller space may be understood in 
terms of  the diagram fp 

d 
of  quasiconformal maps. Informally the tangent vector -dT(V+~iz)l~=oeB(F) 

considered as a deformation of F corresponds to the tangent vector 
d 

p(v+el2, v)[~=oeB(F ~) considered as a deformation of F v. Since B(Y") is 

naturally isomorphic to the tangent space of Teichm[iller space at F ~ the harmonic 
d 

projection o f ~ -  c p I~ = o = R 0t, v) (see formula (2.1)) is the canonical representative 

for the tangent vector. Accordingly, in order to better understand a change of 
coordinates on Teichmiiller space we derive the variational formula for P [R (#, ~v)]. 
We prefer to consider the pullback to H/F of the tensor P [R (/z, v)]. 

Definition 2.5. Given lz, v e B(F)  set 

O (/z, v) = P [R (/z, v)] o f~ f~ .  (2.3) 
f~ 

2.5. Now we are ready to introduce local coordinates and give the formulas for the 
Weil-Petersson metric. We start by considering Ahlfors' result: the harmonic 
Beltrami differentials give geodesic coordinates, [1 ]. Finally we close the chapter by 
deriving the variational formula for Q (/~, e,v). 
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Given a basis ~ . . . . .  x, for  ~3 (F) we wish to consider the associated local 
coordinates  for T(F). Specifically for t = (t~ . . . .  , t,) ~ ~ sufficiently small define 

~c (t) = ~ t~rc~ and consider the marked  surface St = H/F ~), F ~t) = f ~ ( ' F  ( f~m)- 1 
J 

The assignment  of  t e r  to the equivalence class o f S  t is a local coordinate  char t  for 

T(F), [1, 2]. Recalling the nota t ion  R (/z, v) = d yr. p (v+c/z, v)I~=0 we have for/z = G ,  

c~ = 1 . . . .  , n that  the ass ignment  t--* P o R (/z, K (t)) e M (S,) represents the coordinate  

vector  field ~ for the above choice of  local coordinates.  

Definition 2.6. In the above  notat ion,  the Weil-Petersson metric ds 2 = 2 ~, g~r ~ 
is defined by 

g ~  (t) = ( P  o R (tG, ~), P o R (K~, ~)) (2.4) 

where x = x ( t )  and the Hermi t ian  produc t  is on St. 
The opera to r  P is self adjoint  and thus (2.4) can also be given as 

g~(t) = (P o R ( ~ ,  x), R (K~, to)). 

A change of  variables gives the following formulas  (the integrat ion is now on 
S O = H / F )  for the metric  with p = G a n d  v = ~:~ 

g~(t)  = ~ Q(IJ, ~)Q(v ,  ~r (f~)*dA 
H/r (2.5) 

v 
go~(t) = ~ Q(/~, ~:) (f~)*dA 

H/r ~ " 

Before proceeding recall that  the derivatives of  Q (p, K) and (f~)* dA, p, K e ~ (F), 
co mmut e  and converge in C{' (H).  

L e m m a  2.7, [1 ]. In the above notation, the derivatives Og,~ ?g~p at t = O. ~ (t) and Ot~- (t) vanish 

Proof First  note that  the derivatives of  Q and (f~)* dA converge uni formly  on a 
fundamenta l  domain  for F. N o w  referring to L e m m a  1.7 we recall that  the first 
derivatives of  (f~)* dA are trivial. Using the formulas  (2.5) we have that  

dt>, ~q Q(It'~c)'v + P" Ot>, Q(v'~c) 

and 

0t~. ~ Q (/.t, ~c), v . 

Equat ing  the two gives #, 8t~ Q (v, •) = 0 and the conclusion follows since/t  and v 

are arbi t rary.  The  ana logous  a rgument  applies for the ider ivat ives .  
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Corollary 2.8. For It, v, tr ~ ~r (F )  then 

< d Q ( p , ~ ) l s = 0 , v ) = 0 .  

An  immedia te  consequence o f  the l emma  is tha t  the Wei l -Pe te r sson  metr ic  is 
K/ ih ler  and  that  its Chris toffel  symbols  vanish at  the origin for  the above  local 
coord ina te s  [1,2]. 

Theorem 2.9. For p, v e ~ (F)  

d 
~ -  Q (/z, ev) Is = o = - L _  1 Lo (Do - 2) - 1 (r 

Proof .  The p r o o f  has  two steps: F i r s t  we check tha t  bo th  o f  the above  expressions 
lie in the o r t hogona l  comp lemen t  o f  Ker  (/9_ 2 - 2 ) c J g  2, and then we compute  
(D_ z - 2) o f  bo th  expressions.  

F i rs t  observe that  the ope ra to r s  (D_ z - 2) = L_ 1 K_ 2 and K 2 have the same 
kernel.  The  inclusion K e r  K_2 ~ K e r  ( D _ z - 2 )  is immedia te .  F o r  the reverse 
cons ider  g E Ker  (D_ z - 2) then L_  1 K_ 2 g = 0 o r  equivalent ly  ( ( z -  2) K_ z g)~ = 0. 
N o w  the tensor  X = ( z -  2) K_ 2 g is a F invar ian t  vector  field and  Xz = 0 provides  
tha t  Xis  a h o l o m o r p h i c  vec tor  field. By R i e m a n n  Roch  X is trivial  and  K_ 2 g = 0 or  
g e K e r K _  2 . 

Next  we observe tha t  bo th  express ions  in the fo rmulas  are in the o r thogona l  
com p l e m en t  o f ~  (F )  = K e r  (D_ e - 2 ) .  Tha t  the der ivat ive  satisfies this p rope r ty  is 
the  content  o f  Coro l l a ry  2.8. F o r  the  right hand  side cons ider  in tegra t ion  by  par t s  o f  
g e ~ _  1 ~ C 1 a rb i t r a ry  a n d  v e ~ (F ) :  (v,  L_ 1 g} = - ( K -  2 v, g} and  v e ~ implies  
K_ 2 v = 0. The c la im is es tabl ished.  

A t  this po in t  it  will suffice to es tabl ish that  

d 
(D_ 2 - -  2) ~ -  O (/z, ev)[~ = o = - (D_ 2 - 2) L_ 1 Lo (Do - 2) - 1 (/z9) 

= - L_ 1 Lo (/z~). 

S ta r t  by di f ferent ia t ing the  left h a n d  side to ob t a in  (recall  the fo rmulae  (2.1) and  
(2.3)) 

d d 
Q (/z, ev) l ~ = o = ~ P [R (/~, ev)] [~ = o +/-L-F [v] +/z~ F [v] 

+/1 ( F [ v l z -  F[V]z) 

where/~ e ~  implies P [/z] =/1.  As  with L e m m a  2.2 this can  be wr i t ten  as 

d d 
Q (r ev) Is = o = ~ P [R (/z, ev)] Is = o - / z  K_ 1 ~ [v] + L _ I  (/z 4) [v]). 

N o w  we are  ready  to compu te  (D_ 2 - 2) = L_ 1 K_  z- The  derivat ives converge  in 
C ~  (H)  a n d  thus 

L _ I K _  2 ~ P [ R ] =  L _ I K _ 2 P [ R ]  
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where the latter vanishes since P [ R ] e ~ .  The final step is to evaluate 

L_ ~ K_ 2 ( - / 2 K  ~ 4~ [v] + L_ 1 (/2q~ [v])). Substituting K_ ~ ~b [v] = - K_ ~ 4~ Iv], the 
result o f  Lemma 1.7, the desired expression - L _  ~L 0 (/29) is easily obtained. 

3. The second variation of  area 

3.1. Our goal is to use the techniques developed in the preceeding chapters to 
obtain the formula  

d d 
de~ de~ (f~'~ + ~ ~')* dA [~, = ~, =0 = - 2 Re (/2~ + 2 (D O - 2) -~ (/29)) dA 

valid for/2, v e N' (F). Ahlfors derived an integral formula for the second variation 
o f  area, [2]. The integral is over the product  H x H and the kernel is a combinat ion  
o f  singular Hilbert kernels for one variable. Recently Royden  has also obtained a 
formula for the second variat ion o f  area, [7]. Apparent ly  his formula is similar to 
the above. 

Our  considerations begin with showing how the hypothesis /2, v e ~ ( F )  in 
d 

particular the earlier result ~ (.if")* dAl~ = o = 0 greatly simplifies the calculation. 

Then as with the p roo f  o f  Lemma 1.7 and Theorem 2.9 we find it easier to evaluate 
the Laplacian o f  the desired expression. 

3.2. Again  consider the diagram 
] o 

1 ~ + ~  

p =  p (v + e/2, v) for a triple o f  quasiconformal  maps. N o w  by definition o f  the 
pullback 

f *  de (f"+~U)* dAl~=o = (f~)* ~ (fP)* dAl~=o 

and by Lemma 1.2. we then obtain 

(f~)* (2Re (K_ 1 q~ [R (/2, v)]) dA) = 2Re (K_I  ~b [R (/2, v)]) o f "  (f~)* dA. 

Now we replace v by ev and proceed to evaluate the c-derivative at e = 0. By 
Lemma 1.7 the e-derivative of  (f':~)* dA vanishes and it only remains to consider 
d 

2Re (K_ l ~b [R (/2, ev)]) o f~l~ = o dA. Recall the C~ (H) convergence; we proceed 

and obtain 

d 2Re K-1 qJ [R(It, ev)] I~ =o + 2 (Re K-1 ~b [/2])~ F[v] + 2 ( R e K ,  el:, [/2])~F[v])dA. 
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N o w  we app ly  L e m m a  1.7. one last time in par t icular  Re K 1 q~ [/t] = 0 and we have 
that  the second var ia t ion o f  area is given by 

d 
2 R e K _  i q~ [R (r cv)] I~=0 dA. 

Before proceeding fur ther  we discuss convergence.  The  C~  (H)  convergence 
guarantees that  the t -derivat ive and  K_ 1 commute .  N o w  for all e small R(/~, ~v) is 
bounded  in L ~176 norm;  the integral for  the potent ial  4~ JR] converges. On the other 
hand  the convergence of  the c-derivative o f  R (/~, ev) in L ~176 is a delicate question 
which we wish to avoid. Consequent ly  we shall not use that  the c-derivative 
commutes  with ~. The following result will serve as a substitute. 

Lemma 3.1. Given iz, v ~ (F) 

d d 
L - 1  dc q>[R(/ t 'ev)][~:~ de R( /z 'cv) [~=~ -/2K-1 q)[v]+L-l(Jzq)[v])" 

d 
Proof. By definit ion 4>[R(zt, cv)]=d~,: ' fPl~,=o, P=P(eV+Cl/2, cv) where all 

x 

expressions are real analytic in z and  r,. Consequent ly  L_ 1 commutes  with the e- 
d d d 

derivative: L_  1 ~-e ~b = d e  L_ 1~ = - d e  R by L e m m a  1.4. The second formula  is 

the result o f  L e m m a  2.2. 

3.3. The discussion of  the previous  sections is summar ized  in the following result. 

Lemma 3.2. Suppose G, G ~ S ( -  1) satisfies 

i) L _ I G =  - /zK_~ 4~[v] + L_~ (/zq~[v]) 
and 

ii) ReK_ 1G is F &variant. 
Then 2 R e K _  1GdA is the second variation 03" the area element. 

Proof. First observe that  by L e m m a  3.1 L_  1 ~ q5 [R] [~=o - G = 0. Fu r the rmore  

by (3.1) and hypothesis  we have that  g = R e K _ l  ~ 4 ~ [ R ] I ~ = o - G  is a F 

invariant  function. N o w  as with L e m m a  1.7 applying D o = K_ ~ L o we find that  
D o g = 2g and  g is F invar iant :  consequently g vanishes identically. In  par t icular  we 

d 
have that  2Re  K_ 1GdA = 2 R e K _  1 ~ .  �9 [R] I~=o dA, the desired conclusion.  

Theorem 3.3. Given/1, v e ~ ( F )  then 

d d 
de~ de~ (f='~ + ~")* dAl~, = ~ :  o = - 2Re  (/~9 + 2 (D O - 2)-1 (/tg)) dA. 

Proof. The plan is to identify t ha t  funct ion G satisfying the hypothesis  o f  

L e m m a  3.2. Certa inly we should s tar t  by setting G = (~ +/~q~ [v]. C o m p u t i n g  the 
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variat ion of  area  for the second term we find that  2 R e K  ~ (//4) [v]) = 2Re/iK~ q, [v] 
= - 2 R e c t g ,  an invar iant  function. In part icular  we observe that  it will 
suffice to find (~ satisfying i) L_ ~G = - / ~ K  14)[v] and ii) R e K  10  is invariant.  
Fol lowing this line of  reasoning the quant i ty  F =  ( D _ ~ - 2 ) 0  will satisfy i) 
L _ I F = - ( D _ 2 - 2 )  ( # K _ l ~ [ v ] )  and ii) R e K _ ~ F  = ( D 0 - 2 ) R e K _ a G  is F 
invariant,  since the Laplacians  commute  with the Maass  operators .  Before 
proceeding further recall f rom Chapte r  1 that  (D o - 2) is an invertible opera to r  and 
thus in order  to determine the area  variat ion 2 R e K  1(~ it will suffice to first 
calculate 2(D o - 2 ) R e  K 1(~ and then apply the inverse (D O - 2 ) - ~ .  

With  this in mind  the obvious  candidate for F is - K _ 2  (/~K_~ 4'Iv]). In 
part icular  ( D _ 2 - 2 ) = L _ I K _  2 and thus L _ ~ F = - ( D _ 2 - 2  ) ( / t K _ ~ [ v ] ) ;  our  

choice of  F satisfies i). We now compute  K_ 1F recall that - K i q) [v] = K 1 4) [v] = 

LlcI)[v], thus F = K  2(llLlCI)[v]) and K _ ~ F  = K_~K_2(ItL~cb[v])  = 

K_ 1 (/iK0 L 1 4) [v]). Substi tut ing KoL ~ = L2K~ + 2 we find KoL 1 eb [v] 

=(LgK~+2)eb[v]  = (K 2 L _ l + 2 ) 4 ) [ v ]  = 2q)[v] and  therefore in br ief  

K-1 F =  K_12(/~q)[v]) = 2 / IL_lq) [v]  = - 2 # ~ .  Indeed R e K ~ F  is an invar iant  
function. Therefore  our  choice of  F satisfies the required hypothesis.  In summary  
we have  that  2 (D o - 2) Re K_ ~ 0 = 2Re K_ ~ F = - 4Re~t~7; the final formula  follows 
f rom this result. 

4. The  Riemann  tensor of  the WeiI-Petersson metric 

4.1. Fixing a basis/1~ e ~ (F)  for the harmonic  Beltrami differentials consider the 
associated local coordinates  (see Section 2.5) t e (4 . . . . .  t,) e qT, for T(F) .  Ahlfors '  
result L e m m a  2.7 provides  that  for these coordinates the first derivatives of  the 
metric tensor vanish at the origin. In this case, following Bochner ' s  conventions,  the 
Riemann curvature  tensor  at the origin is then 

R~r - ~?t~. (?t ~ ' 

The main  result o f  this chapter  is the formula  

for the R iemann  

[8]. 

R,r = - 2 ~ (D O - 2) 1 (#J~B) (/~/~) dA 
H/r 

- 2 ~ (D O - 2 ) -1  (r ( /~/~) dA 
H/r 

tensor  o f  the Weil-Petersson metric. As the reader shall 
see the e lementary fact that  - 2 ( D o - 2 ) - 1  is a non-negat ive opera to r  governs 
the sign of  the curvatures.  In part icular  we find that  the ho lomorphic  sectional 
curvature,  the Ricci curvature,  the scalar curvature  and the general sectional 
curvature are all negative; in fact we obtain  upper  bounds  for the first three. 
For example  the curvature  of  the ho lomorph ic  section spanned b y / t , ,  Ql , , /~ , )  = 1 

- 1  
is R~ = 4 ~ (D o - 2 ) -  1 ]/l~l 2 ]~t~ ]2 dA and we find that  R~ < 2 r~ ( g -  1) '  T r o m b a  was 

~4/r 
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the first to show that the sectional curvature is indeed negative, [32]. Royden has 
obtained similar formulas and estimates for the curvatures. In fact Royden was the 
first to show that the holomorphic curvatures are bounded away from zero and 
he actually conjectured the above bound for the holomorphic sectional 
curvature, [16]. Now proceeding in a slightly different vein we consider the 
first chern form of the cotangent bundle (Ta'~ * T(F).  Given a unitary frame 
/2~EC$(F), ~ = 1 . . . . .  n and v, ~c ~ ( F )  arbitrary then by definition 

i 
c I = ~ -  ~ trace (g~/~) 

thus 

c~ 0t(v)'  •t (-~c) = ~ - 2 ~ (D O - 2 ) - '  (#~/~) (v~) dA 
H/F 

- 2 ~ (D O - 2 ) -1  ( / q ~ )  (#~v) d A )  

x 

H/F / 

from which it follows immediately that cl is positive. 

4.2. We refer the reader to Bochner's paper for a review of Hermitian geometry, 
[8]. Introduce local coordinates t = (tl . . . .  , t,) for a neighborhood of F in T ( F )  by 
choosing a basis/2~ ~ (F), ~ = 1, . . . ,  n (see Section 2.5). By convention Greek 

indices will run from I to n. By Lemma 2.7 the derivatives (0) and (0) 

~?2g~p 
vanish and hence the curvature tensor is given by R~B~(0 ) -- ~ (0), [8]. 

We start with the following formulas of Section 2.5 for the metric tensor 

g~t~ = f O (/2, ~c) Q (v, ~c) (f~)* dA 
H/F 

mr 1 - [tc [~ ( i f )*  dA 

where ~c = ~c(t)= ~ t,.~c~, for t 6 I~" small and Q(/2, ~c) is defined by (2.3). In order 
y 

to obtain a more general formula we consider the second real derivative 
d 2 
de 2 g~(eG)J~= o for g~ restricted to the line t =  ~e~, e~, the 7th basis vector of  ~F ", 

equivalently tr = ~:~c~. As already discussed the above quantities vary smoothly in 
C~ ~ (H) and F has a compact fundamental domain: we may differentiate under the 
integral. At this point the calculation is formal; we denote an e, derivative evaluated 
at the origin by placing a dot above the corresponding expression. 

Given the above formulas (4.1) and the inner product ( , ) one,  ~ 2 we have that 

~ = (O (/2, ~), v) + 2 (O (/t, ~c), O (v, ~c)) + (/2, Q_, (v, ~c)) + ~/2~ (f~)* dA 
(4.2) 

g~ = ( Q  (/~, to), v) + 2 (/2, v [tc [2) + ~/29 ( i f )*  dA 

where we have used Lemma 1.7, (f~)* dA = 0 and that Q (p, tc (0)) = p, for p e ~ (F). 
Equating the two expressions we obtain the following formula 

~ =  4(/2, v [to [2) _ _  2 (Q (#, ~c), Q(v, K)) + ~129(f~)*dA. (4.3) 
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We are essentially done. The second term is given by Theorem 2.9; the resulting 
expression will be simplified by integration by parts. The third term is given by 
Theorem 3.3. In particular Q (p, ~r = - L ~ Lo(D o -  2)-l(pt~) and therefore 
intergrating by parts (Q(/z,•), Q(v,~c)) = ( K _ ~ K _ 2 L _ ~ L o ( D o - 2 ) - I ( p ~ ) ,  
( D  O - 2)- ~ (v~)); recalling that K_ 1 K_ 2 L 1Lo = (Do - 2) 2 + 2 ( D o -  2) and that 
( D  o -  2) is self adjoint we find that ( 0 ,  Q) = (p~, v~) + 2(/z~, (D o -  2)-  a (v~)). 
Now combining this result with the formula (4.3) and Theorem 3.3 we have that 

f f~=  - 4 ( p ~ r ,  ( O o - 2 ) - l ( v ~ ) )  - 4 ( p 9 ,  ( O o - 2 ) - ~ l G I 2 ) .  (4.4) 

We observe that the Hermitian product is now for ~ o ;  in particular given p, 
v �9 @ (F) then f19 e ~ o -  To simplify our further considerations we introduce the 
following notation. 

Definition 4.1. A = - 2 ( D  o - 2 ) -  1 is an operator on J~,~ o . 
Recall that A is a self adjoint compact integral operator with a positive kernel. 

Furthermore we note that A is the identity on constant functions. 

Theorem 4.2. Given a basis IG ~ M ( F ) ,  let t =  ( / 1  . . . . .  t,) be the associated local 
coordinates Jor Teichmiiller space and ds 2 = 2 y' ,g~dGdi~ the Weil-Petersson metric, 
then 

i) 82g~/3 8Zg~ 
(o) = 0, (o) = o 

and 

ii) the Riemann tensor is given as 

O2 g~l~ 

d 2 
Proof. First note that by polarization the real derivative ~ g~p(0) is obtained 

from the above formula (4.4). Property i) is an immediate consequence of the 
observation that (4.4) is unchanged if ~%. is replaced by ix).. And finally the formula 
for the Riemann tensor is an immediate consequence of formula (4.4) and the 
definition of complex derivatives. The proof  is complete. 

Before proceeding we wish to remark on the assumption p , � 9  i.e. 
that the Beltrami differentials are harmonic. We are also interested in evaluating 
tensors for the general Beltrami differential p 6 ~ ( F ) .  In fact we see that 

R (p~, tSa, p~, fi~) = R (P [p~], P [p~], P [p~.], P [p~]) for the projection operator P. This 
follows from two basic observations: R is a tensor i.e. depends only on a choice of 

8 8 
vectors in T ~'~ T(F)  and 8t (p) - 8t (Iz) for p = P[p], p �9 ~ (F) (see diagram 2.2)). 

4.3. Now we shall derive estimates for the sectional, Ricci and scalar curvature of 
the Weil-Petersson metric. The following inequality is required to show that the 
sectional curvature is negative. 

Lemma 4.3. Given f ,  g �9 o then 

IA (re)I < IAfZl  1/2 IAgZ[ ~/2. 
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Proof The operator A = - 2 (D O - 2)- ~ is integral with kernel G (z, w) defined on 
the complement of the diagonal in H/F x H/F, [15]. The Green's function G is 

1 
strictly positive and in a neighborhood of the diagonal G (z, w) + ~ log I z -  w[ is 

continuous, [15]. Given f,  geoUf0, A(Jg) is defined, the integral converges. G 
possesses a positive square root and so we may write G Ifgl = GI/2 If] G1/2 [g] and 
apply the H61der inequality: 

[ ~ GfgdA [ <= ~ G[fgldA <= (~ GJ~ dA)I/Z(~ Gg2 dA) ~/2 . 

This is the desired inequality. 
We introduce one last bit of notation in order to simplify the discussion. 

Definition 4.4. Given / / ,  e ~ ( F )  set 

(~, ~,a) = (A ( / / j ~ ) ,  (~//~)). 

Theorem 4.5. The Weil-Petersson metric has negative sectional curvature. 

0 
Proof Given holomorphic tangent vectors - -  - -  ~_ T 1"~ T(F) associate the real 

~t 1 ' ~t 2 

tangent vectors v~ =~7[ + ~77' vz = ~t--~ + ~t7 e T~T(I').  Bochner shows that the 

curvature of  the section spanned by v~ and v 2 is R/g where [8, formulas 24 and 25] 

and 
R---~ RI~ Q -- Rl~2i- R2iliq- R2i2~ 

g = 4gllg2~ -- 21gl~l 2 -- 2Re (gl~) 2 

for R~ara the curvature tensor and g=~ the metric tensor. It is an immediate 
application of  the Cauchy-Schwarz inequality that g is positive provided that v 1 and 
v 2 are linearly independent. Now we write out the denominator R in terms of  the 
notation of Definition 4.4 R = 4Re(12, 12) - 2(12, 21) - 2(11, 22). Starting with 
Lemma 4.3 we have that [A (Pl fi2)[ < (A [//1 12)1/2( A 1/12 12)1/2 and thus 

1(12,12)1 < 5 IA//lf~zll//,f~21dA < 5(A I//112) '/z (A I//2 IZ) '/2 It~lP21dA 

and applying the H61der inequality we obtain <=(SAll, ql21//zi2dA) 1/2 
(SA [//2[ 2 [//1 [2dA) ~/2. The operator A is self adjoint and so we finally have that 
1(12,12)[<(1i,22).  Now for the remaining terms let us write l q f t 2 = f + i g ,  
l a n d  g real valued functions. Then certainly Re (12,12) = (AJ;J') - (Ag, g) and 
(12, 21) = (Af, f )  + (Ag, g) in particular Re (12, 12) < (12, 21), recall that A is 
positive. Combining the inequalities [(12., 12) I < (11,22) and Re (12, 12) < (12, 21) 
we have that R < 0; the reader can check that equality is not a possibility. 

In the conventions of Bochner we have the following additional bounds for the 
curvatures of  the Weil-Petersson metric. 

L e m m a  4 . 6 .  

i) The holomorphic sectional curvature and Ricci curvature are bounded above by 
- 1  

2rt ( g -  1)" 
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3 (3 g -  2) 
ii) The scalar curvature is bounded above by 4n 

ProoJi Bochner shows that the curvature of the holomorphic section spanned by 
~ e M ( F ) ,  (/l~,/z~)= 1 is -R~e~a=-2(Al~t= l  2, IFt=12). To estimate the integral 

consider the orthogonal expansion I/t~l 2 = ~ q~j of  I/t~l 2 in terms of  eigenfunctions 

J ~ ( ~ ' ~ J )  with the of the Laplacian D o. Indeed we have that - R ~ =  45_. 2 j - 2  ' 

eigenvalues 2j, D0~uj=)cj~u j, non-positive. If  ~o is the constant function then 
certainly the sum is bounded by its first term, - R~e~ < - 2 ( ~ ,  o , qJo) and equality is 
ruled out since I/~12 has zeros. Now ~u 0 is determined by 5~odA = 51/l~]2dA 

1 
= ( / ~ , / ~ )  = 1; ~O--Area  and the estimate follows. The Ricci and scalar 

curvatures are treated in a similar fashion. 

4.4. Recall that associated to a Hermitian metric on a holomorphic vector bundle 
there is a unique connection compatible with the holomorphic structure, [19]. The 
Chern forms of the bundle may then be computed from the curvature of  this 
connection. We are interested in QD the bundle of  quadratic differentials over T ( F )  
endowed with the Weil-Petersson metric. 

Corollary 4.7. Let  Iz~ be a unitary bas i s jor  ~ ( F )  and tt, v ~ ( F )  arbitrary. Then 

i 
c~ (~t, v) = 2n  ~ ((A (/~B~),/~v) + (A (/t~,7), (/z~/~))) 

c( 

where c 1 (It, v) is the fi'rst Chern Jorm o f  QD evaluated on the holomorphic tangent 
c3 c ~ 

vectors Ot (iz)' ~.t (v) ~ TL'~ T(F) .  

Proo f  First recall that for a suitable choice of local holomorphic frame for V, a 
Hermitian vector bundle, the metric can be written as h ( t ) =  I +  0(It12), t a local 
coordinate varies in a neighborhood of the origin. Given this normalization the 

i 
curvature matrix is O ( 0 ) =  eTCh(0) and the first Chern form c1(0 ) = ~ -  trace 
(~ah(0)). 

For the Weil-Petersson metric Lemma2.7 provides that a unitary basis 
Iz~ ~ ~ (F) gives the desired local frame of T ~'~ T(F) .  The formula now follows from 
Theorem 4.2 and the observation that QD is the dual of  the tangent bundle and thus 
c~ (QD) = - c~ (T  ~'~ T(F))  for the dual metric. 

5. Characteristic classes of the Teichmiiller curve 

5.1. Consider the Teichmfiller curve ~0, the natural fibre space over the genus g, g 
> 2, Teichmfiller space with projection ~: ~ T o. The fibre above p ~ T o is a 
compact Riemann surface, a representative of  the conformal equivalence class p. 
Forming the universal cover of Yo one obtains the Bers fibre space ~ 0 .  The 
mapping class group M 0 has an extension by the fundamental group of  a genus g 
surface to a group M o acting holomorphically and discontinuously on ~ .  
Forming quotients the induced projection ~ ~,~o/2Qo---, Tg/Mo defines a fibration 
of V-manifolds, the universal curve over the moduli space ~t' 0 ~ T o/Mg. 
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We shall study the vertical bundle of the fibration n: ~ ~ T o . The differential 
dn:T3-o--* T T g ( T =  T ~'~ has everywhere 1 dimensional kernel, the tangent to the 
fibre. In particular Ker dn c T ~  defines a line bundle (v) over ~0; informally (v) is 
the linearization of  the fibration. Obviously the restriction of (v) to a fibre is 
isomorphic to the tangent bundle of  the fibre. Consequently the Uniformisation 
Theorem with parameters provides that the hyperbolic metrics for the fibres piece 
together to define a smooth Hermitian metric on the line bundle (v), [4]. Now 
following a general construction for fibre spaces ifc 1 (v) is the Chern class of(v) then 
classes are defined on T o by setting t~, = S Cl (v)" + 1. The classes ~c, = ( - 1)" + 1 ~, are 

fibre 
M o invariant and have been studied in the work of Mumford, Harris as well as 
others [5, 9, 10, 13, 14]. 

Our' goal is to calculate the Chern form c~ (v) starting with the hyperbohc metric 
on (v). We present the result in Theorem 5.5. An immediate consequence is that the 
line bundle has negative curvature form, a differential geometric analogue of 
Arakelov's result [5]. Then we compute the forms ~, defined by integration over the 

1 
fibre. An immediate result is that ~c I = 2n- ~ cowp, where cowp is the Weil-Petersson 

Kfihler form. Previously we showed that the cohomology classes of  the extensions 

~c~, o~we to the moduli space ~ 0  of  stable curves satisfy the relation K[~] 
1 

= ~ [G~we ], [26]. By contrast the present result is for the pointwise equality of  the 

characteristic forms. 

5.2. The universal cover of ,~g is the Bers fibre space ~ o ,  [7]. Our calculations are 
local and hence it will suffice to consider 9 ~ -  0 . Bers showed that the Teichmiiller 
space T o may be embedded as a bounded domain in It" and that the fibre space ~ g o  
embeds in ~ " x  ~' as follows 

for p the projection onto the first factor. In the study of  one complex variable 
variational calculations are generally in the context of maps between domains. We 
shall follow this approach. Consequently we require the existence of a map between 
a fixed and the general fibre of J0 .  Formally this is a local trivialization of the 
bundle ~ .  One knows at the outset that the fibres of n : ~0 ~ To are not complex 
isomorphic. Consequently a trivialization of  Tg is (at best) given by quasiconformal 
maps between fibres. We shall now describe a trivialization of  this type. 

Definit ion 5.1. Given kt eB,  [[PI[~ < 1, denote by w" the unique homeomorphism 
w : II; ~ Ir fixing 0,1 and oo and satisfying 

{ w ~ = / ~ w  z i n H  

we=0 in �9 -- H 

d 
Denote by ~)Lu] the derivative &-e w~u 1~ =o; / t  e B. 
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The image w"(H)  is a quasi-halfplane and the map w" conjugates F into a 
quasifuchsian group F " =  w"F(w")-~ acting on wU(H). 

Fix p~ e N' (F) a basis and U a neighborhood of the origin in II?" such that for 
t = (h . . . .  , t,) e U then I[p(t) l[o~ < 1 where p (t) = ~ t jpj.  Consider the map 
~P: U x H ~ , ~  o defined b'y (t, z) ~ , (t, wU")(z)). J 

Theorem 5.2, [7]. In the above notation, the map 7 J : U x H ~ o ~  o is a F - F "  
equivariant local trivialization oJ'the fibre space M ~g.  (P ( t, z) is holomorphic in t and 
quasiconformal in z. 

Throughout the following discussion we shall use z as the coordinate for the 0- 
fibre of M~0 and w as the coordinate for the general fibre. A few remaining 
preliminary remarks are in order before we proceed with the calculation. We begin 
with the diagram 

where p is the projection onto the first factor. We observe that ~ provides a 

holomorphic section of  the pushforward of the line bundle (v). Let ~ be the 

length of ~ in the hyperbolic metric, the associated connection 1-form is 0 = 0 log 
O W 2 the associated curvature 2-form is O = ~(3 log and then the Chern 

2 1 &~log 7 -  , [19]. In the following paragraphs we shall derive form is cl = 2 ~ i  

explicit formulas for these quantities. 

5.3. The first point is to obtain a suitable expression for the norm - -  ~ 2 The 

typical fibre of ~ c ~ ? " x t r  is a quasi-halfplane. Perhaps it is easiest to 
understand the hyperbolic metric for a fibre by considering its uniformisation by 
the halfplane H. To find this consider f "  the first solution of the Beltrami equation 
(see Definition 2.1) and w" the second solution of the Beltrami equation (see 
Definition 5.1). It is immediate that there is a diagram of maps 

H ~ ,  wU(H)~O? 

H 

where g is conformal. Writing 2(w) l dw[ for the hyperbolic metric in wU(H) 
and A(()Id(I  for the hyperbolic metric in H then by conformal invariance 
A(g)  l g ' l = 2 ( w )  and from the above J 'U= gow"  thus J2"=g'(wU)w2. By 

definition ~ = 2(w) and therefore from the above 2(w")= A (g(w")) If? I/I Wz~l. 
UW 
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Equivalently we have that 2 2 (w) = A 2 (g(wU)) I f  ~ 12 ( l  --  [I112)/1 w212 (1 - I/~ 12). Since 
i 

J'~ =g(w") it is immediate that A2(f  ") I fill 2 (1 -I/~12) ~ dz ^ d~ = (f.~)*dA, dA the 

hyperbolic area element. As a matter of notation let us write [(fU)*dA] for the 
coefficient of the tensor (fu),  dA. The above considerations are summarized in the 

following result. This represents the formula that we shall use for ~w 2. 

Lemma 5.3. In the above notation 

~ 2 = [(fU). dA]/[w~12 (1 -Ikt[2). 

Now for h (t, w) a function on the fibre space Mffo~ (17" • r we wish to evaluate 
the differentials Oh or 6~h in terms of derivatives of the composition h (t, w(t,z)) 
where w (t, z) = wU"l(z) is holomorphic in t and quasiconformal in z. It is immediate 

that (h (t, w (t, z))), = h, + hww, 

(h (t, w(t, z)));= h i+  h ~  
or equivalently 

h, = (h(t, w( t , z ) ) ) , -  h.,w, 
(5.1) 

hi= (h(t, w(t ,z)))~- h ~ '  7. 

5.4. For the remainder of  the discussion we shall use the local coordinates on ~ 
given by the trivialization ~ introduced above. Again note that we indicate the 
coordinate of the 0-fibre by z and the general fibre by w. Before stating the first 

0 
result recall that fo r / t  r  (F) we denote by ~ the associated holomorphic 

tangent vector of Tgcr  and also of ~ 0 ~ r  "+1 (we are using that the 
trivialization given by 7 ~ (t, z) is holomorphic in t). 

Lemma 5.4. In the above notation, the connection l-f.orm 0 = c~ log g 2 evaluated 
at (t, w) = (0, z) ~ o  is U W  

0 3 

Proof. We start with the expression from Lemma 5.3. In particular at t = 0 ,  

log = log and immediately log ( z -  Z) 2 - ( z -  5)' the first result. 

For the second result again start with log ~ 2 = log [(f")*dA]/Iw212 (1 - 1/~12). 
8 

Lemma 1.7 applied in the present situation provides that ~ [(f")* dA] = 0 and 

thus ~ l o g  = -w[l~]~,at t=Osincew"~~ w ~  

and [/1 (t)12 is quadratic in t. Applying the formulas (5.1) the desired result follows. 
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Before proceeding further with the calculation we wish to consider the second 
order  analogue of  the formulas (5.1). The reader will verify that for h = h (t, w(t, z)), 
w holomorphic  in t, 

hti(t, w) = (h (t, w (t, z))), i - hw~.w,~, - h,,w, - h,~,w~. (5.2) 

We are now ready to consider the following. 

Theorem $.S. With the above notation, the curvature 2-form O = J~? log ~ 2 
G14' evaluated at (t, w) = (0, z) e N ~  o is 

- 2  

o ~t(~5 at (~)  - (z - e)2 ~' L.I ~' Iv] + A (~f) 

for/~, v E ~ ( F ) .  

( 0  0 ) ( 0 ( 0 ) )  and the result Proof  We start with the first term. Certainly O ~ ,  ~zz = ~ 

[/~]-)z and follows. Similarly O ( ~ ,  ~ 2 ) )  is (O ( ~ T ( ~ ) )  = ( ~  fv [l~] - ~, _ we 

recall that  ~i, [/~le = / t .  Differentiating we obtain ~ ~;, [~] + ~ / ~  - r . 

Now/ t  is harmonic  and thus g - / l :  - (z--~) K 2/l = 0; the result follows. 

We are ready to consider the third term O ~Hv) Ot(~)J' this term is a Hermit ian 

form in ~ and thus it will suffice to consider the case r = v. Referring to formula 

(5.2) we shall consider separately the four terms of  the right hand side. Now for 
the first term h=log[ ( fU)*dA] / Iw212( l - I i~ l  2) and we start by observing 
(log [(fU)*dA]),z = [(fU)*dA],/[dA] as an immediate application of  Lemma 1.7. 
Now by Theorem 3.3 we have that  [ ( f")* dA ],i = ( - l~ft + A (/~ft)) [dA ]. Fur thermore  
w "(') is holomorphic  in t and thus - (log Iwf ]2 {1 - 1/~ 12)),i =/~/~. In summary the 
first term is simply A qufi). The  second term for (5.2) has been considered in the 

2 
preceeding discussion. The result is -hw~w,F'~ - ( z - 5 )  2 ~ [g] ~;' [/~]" The third and 

fourth terms are obviously conjugates; it will suffice to consider the fourth.  Indeed 

h,~, = ~t which was also evaluated above; we have that  h , w -  (z-z~) 2 ~ [/t] 
- 2  

and certainly - h , ~ ,  - ( z _ 2 ) 2  w [#] ~' [#]. Collecting terms the calculation and 

p roo f  are now complete. 
i 

5.4. Now we wish to consider the formal properties of  the Chern form c~ = ~ O. 

In order  to better unders tand the form we introduce a new basis for  the tangent  
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space T ~ o ~  9 along a fibre of  the projection to T o . In particular the basis will project 
to a basis for T ~  0 and relative to this basis it will be immediate that cl is negative. 
We start by defining vector fields along the fibres of  ~ - g .  Our calculations will be 
pointwise; it will suffice to consider vector fields defined only on the t = 0 fibre of  

8 
Definition 5.6. Given p ~ N (F) define r ,  = ~;, [~] 8z + 8 t ~ '  a vector field along 
the t = 0 fibre of  ~ ~-0' 

We wish to show that z,  is invariant under the action of  the group F on ~-9" 
Equivalently z, is the lift of  a vector field defined along the fibre of  ~o '  The action of  
F on,~,~0 is holomorphic in particular ~ o / f i  and ~o are complex isomorphic, [7]. 
Briefly in order to describe the action, consider p e ,~ (F) ,  J[/~[[~ < 1 and let w be 
given by Definition 5.1. Now by the F invariance of/~, w" and w u (7), 7 e F satisfy the 
same differential equation (but with different normalizations); in particular 
Y" e P S L  (2; ~ )  exists such that w"(7) = ?"w". Now by definition given a point (t, w) 
~ o ~ o ~  ~"+~ and 7 ~F its action is defined by ~(t, w") = (t, yU(w")). 

Lemma 5.7. In the above notation, the vector field ru is/* invariant. 

Proof We recall the description of  the trivialization of N o~,: 7 ~. U x H--* ~ f f0  by 

the rule (t, z) --* (t, w" ~t~ (z)). Now F acts on U x H by: (t, z ) - 2 ~  (t, 7 (z)), ? e F and as 

/~ on N ~ 0  by: (t, w)--J-* (t, 7 "(t) (w)), 7 ~ E F". As already mentioned the trivialization 
is F - / ~  equivariant: ~ o  ~ = ~o ~ for all ~ ~F. In particular we have that 7t, o y ,  
= ~, o ~ ,  for the action on tangent vectors. The proof  is now the consequence of 

two observations: r u =  , ~ , and for the action of r on U •  7, \ ~ ]  

7 e r .  In brief we have that r , = 7 ~ , o 7 ,  =o~, o t P , \ s t ( l O ]  
~ ~ t  ~ ~ 

= ~, (~,), the desired conclusion. 
We note in passing that the a s s i g n m e n t / ~ % , / ~  e ~ (F) defines a canonical 

lifting of TT o to T ~  0 . The results of  Theorem 5.5 can now be reformulated as 

- ( z - ~ y  

o ( ~ ,  ~.)=0 (5.3) 

o (~, ~.) = A (~) 
where A = - 2 (D o - 2) - ~. Recall that A is an integral operator with positive kernel, 

i 
A (/~fi) is everywhere positive. The Chern form of (v) is given as c~ (v) = ~ -  O and 
the following is an immediate consequence. 

Lemma 5.8. The vertical bundle of  the fibration ~: ~-o~ T o is a negative line bundle. 

It was known previously that the dual line bundle, the relative dualizing sheqs is 
numerically effective, on the compactification of the universal curve, [14]. 
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5.5. Finally we wish to consider the characteristic classes ~ . =  ~ c7 +~. The 
fibre 

characteristic forms i ,  are of type (n, n) and invariant under the action of the 
mapping class group M o . We shall derive the formula for ~, starting with the above 

1 
expression for c~ (v). As an immediate application we have that ~1 = ~ ~Owp where 

~Owp is the Kfihler form of  the Weil-Petersson metric. The exterior power c7 + ~ is a (n 
+ 1, n +  1) form. We wish to emphasize the type decomposition; accordingly we 
shall evaluate forms on T 1'~ , ~ .  

Lemma 5.9. In the above notation, given #j ~ ~ ( F ) , j  = 1 . . . . .  n set z,,  = zj and then 

o n + l (  (~' 8 ) 
c?z 

= ( n + l ) !  O ~ ~ ~ c(a) O(h , r~(1)  ) . . .  O(z, ,z~l~) ) 
tr e 5P~ 

where ,9~ is the permutat ion group on n letters and ~ is the sign character. 

P r o o f  The exterior power O "§ is evaluated by summing over all permutations. 

Now the vanishing O ~ ,  rj = 0 (see (5.3)) immediately reduces the expression to 

O "+ ~ = (n+  1) O \~zz ~ ]  | O" where | is the symmetric tensor. Since O is of type 

(1,1) the quantities O (rj, rk), O (rj, rk) will also vanish. We are left to consider 

0 " + 1 = ( n + 1 )  0 ~ ~ ~ g(cTp) O(Zo(l),roO)) . . .  O(Z~(n), zp(,)). 
(m p)e.9~. • ~. 

Transferring the action of permutations to the second index we find the desired 
formula 

O n+l =(n~-1)!  O ~z'  ~ E ~:(6) O(271, < D )  . . .  O(Tn, "go'(n))" 
o-e~ 

In order to relate our results to those of  other authors we now shift our attention 
to the dual of the vertical line bundle, often referred to as the relative dualizing shea f  
Specifically we consider the classes 

( 1 " ]  "+1 

~c, = \2~i/ fib~ O "+' (5.4) 

By polarization it will suffice to obtain a formula for ~, (Pl,  #~ . . . .  , P, ,  7 , )  where 
8 

we have abbreviated ~ ,  # e ~ ,  by simply writing #. 

Lemma 5.10. In the above notation 

K . ( # 1 , ~  . . . .  , #.,~) 
( i  ) "§ 

=(n+l)! k ~ ]  (-i) S E ~(~) A(#,#~,))... A(#.~2)dA. 
H/F ae~. 
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Proof  T o  s t a r t  t h e  c o n s i d e r a t i o n s  reca l l  t he  f o r m u l a s  (5.3) a n d  L e m m a  5.9. A n d  

n o t e  t h a t  i f  dA is t he  h y p e r b o l i c  a r e a  e l e m e n t  o n  H,  a n  e x t e r i o r  2 - f o r m ,  t h e n  

i d z A d 2  
dA - a n d  t h u s  

2 ( I m z )  2 

0 ~--z,'~z - ( z - y ) 2 - 2 ( I m z )  2 - i d A  ~zz ~ " 

C o m b i n i n g  these  r e m a r k s  w i th  t h e  d e f i n i t i o n  (5.4) t he  f o r m u l a  fo l lows.  

C o r o l l a r y  f i . l l .  In the above notation, ~c 1 = o)we, where cowp is" the Weil-Petersson 
Kiihler form.  

i ~A (~ )  aA, ~, Proof. S t a r t i n g  f r o m  the  a b o v e  r e s u l t  we f i nd  t h a t  ~:1 (/z, 9) = 2 - ~  

v e M ( F ) .  N o w  fo r  a n  a r b i t r a r y  f u n c t i o n  f ~  0 we  h a v e  t h a t  ~ AfdA = ~ fdA  
H/r HjF 

a n d  the  r e su l t  f o l l ows  s ince  co = i ~ p fdA  is t he  K / i h l e r  f o r m  g i v e n  o n  T 1 '~  
H/r 
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