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Summary. Two symplectic diffeomorphisms q$0, q~l of a symplectic manifold 
(X,~o) are said to be homologous if there exists a smooth homotopy ~b t, 
te l0,  1] of symplectic diffeomorphisms between them such that the time- 
dependent vector field it defined by d/dt((a,)=~,ofJt is a globally hamil- 
tonian vector field for all t, i.e. there exists a smooth real-valued time- 
dependent hamiltonian function h(x,t) on X •  [0,1] such that ~tAo~=dh,, 
where h t = h(x,t). 

V.I. Arnold [At] conjectured that any symplectic diffeomorphism 4) of a 
compact symplectic manifold X, homologous to the identity, has as many 
fixed-points as a function on X has critical points. 

We prove Arnold's conjecture for complex projective spaces, with their 
standard symplectic structures, i.e. we prove that any symplectic diffeomor- 
phism of CIP n homologous to the identity has at least n + 1 fixed-points. 

Introduction 

This paper consists of my Ph.D. thesis at the University of California at 
Berkeley, with Alan Weinstein as my advisor. A joint announcement of these 
results appears in [FW]. 

A time-dependent hamiltonian h(x, t) on a symplectic manifold (X, o)  gen- 
erates a time-dependent hamiltonian vector field it, defined by ~t_Aco=dht, 
where ht(x ) is the function on X obtained from h(x, t) by fixing t. it in turn 
generates a "flow" q$, on X. For  fixed t, qSt is a symptectic diffeomorphism of X 
(homologous to the identity) obtained by following solution curves of dx/dt 
= it(x) (Hamilton's equations) for time t. 

It follows from Liusternik-Schnirelman theory that a real-valued function f 
on a compact manifold X has at least CL(X)+I  critical points; CL(X), the 
cup-length of X, is the largest integer k for which there is a non-zero cup- 
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product cq w.. .  ~c~ k of classes cqEH*(X) having non-zero degree. Furthermore 
from Morse theory it follows that if all the critical points are non-degenerate, 
then there are at least SB(X) of them, SB(X) being the sum of the Betti 
numbers of X. 

Let CR(X) be the minimum number of critical points that a function on X 
must have, and CRN(X) the minimum number if all are non-degenerate. 
Clearly 

CR(X)>= CL(X)+ 1 
and 

CRN(X)>=SB(X). 

During the 1960's V.I. Arnold (JAr] p. 419) conjectured that for a compact 
symplectic manifold (X,o)  the symplectic diffeomorphism ~1 induced from a 
time-dependent hamiltonian has at least as many fixed-points as a function on 
X has critical points, i.e. at least CR(X) fixed-points in general and at least 
CRN(X) if all are non-degenerate, x is a non-degenerate fixed-point of ~1 if 
Txq~ 1 does not have 1 as an eigenvalue. 

No substantial progress was made in proving this conjecture until 1983 
when Conley and Zehnder [CZ] proved the conjecture for the case when X is 
the even-dimensional torus, T 2", with the usual symplectic structure induced 
from ~2, .  

Shortly after that Alan Weinstein [W 1] extended the result to include all 
compact symplectic manifolds, provided that h(x, t) is sufficiently Cl-small in x, 
uniformly for tel-0, 1]. CR(X) and CRN(X) were replaced by the weaker 
estimates CL(X)+ 1 and SB(X) respectively. (For the torus X = T  2n there is no 
loss: CRN(X)= CL(X)+ 1 = 2 n +  1 and CRN(X)=SB(X)=22".) 

We prove Arnold's conjecture for complex projective spaces X = KIP", with 
their standard symplectic structure: 

Theorem. Let h: 112IP" x I -,  ~ be a C ~ time-dependent hamiltonian on GIP". Then 
the time one map c~i of the hamiltonian vector field Xh, has at least n+ 1 fixed- 
points. 

For n=  1 (i.e. S 2) the result holds for every volume element (N. Nikoshin 
and C.P. Simon). For  I~IP", once again CRN(X)=SB(X)  and CRN(X) 
= CL(X)+ 1, but here, unlike the torus all four invariants are equal, to n + 1. 

Actually a fifth invariant, the Euler characteristic )~(X), also plays a role. A 
continuous map, homotopic to the identity, from a compact manifold to itself 
has, by the Lefshetz fixed-point theorem, at least z(X) fixed-points, counted 
with multiplicities. The Lefshetz fixed-point theorem yields no information for 
the torus since z(T2")=0, so Arnold's conjecture is a lot stronger in that case. 
For  t i p "  the Euler characteristic is also n+  1 so that the non-degenerate part 
of Arnold's conjecture reduces to the Lefshetz fixed-point theorem. 

There are other characterizations of the symplectic diffeomorphisms occur- 
ring in Arnold's conjecture. Firstly these are those symplectic diffeomorphisms 
which are homologous to the identity (see the summary for the definition of 
homologous). Another is that they belong to the commutator subgroup of the 
identity component of the group Diff(X, co) [Ba]. Another is that they are 
precisely those for which the Calabi invariant vanishes [Ca, Ba]. 
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The proof of the conjecture for the torus in [CZ] identified the fixed points 
of ~b~ with the critical points of a function on the space of contractible loops of 
the torus, tI?IP" is more complicated since the loop space of IEIP" is not simply- 
connected and the resultant function is no longer single-valued. Our proof uses 
the fact that ~lP" is the reduced symplectic manifold [-AM] of 112 "+1 under the 
Hopf  Sl-action, in order to identify fixed-points of qSa with critical orbits of a 
function J; invariant under a natural Sl-action on a submanifold of the loop 
space of C "+1. 

Whe then use a recently refined minimax theory based on the notation of a 
relative index [BLMR]  to prove the existence of countably many critical 
values of f However it turns out that each fixed-point of ~b 1 gives rise to a 
sequence { b l b - b o ( m o d 2 7 r ) }  of critical values of f, so that the existence of 
countably many critical values is not sufficient for our purposes. To overcome 
this obstacle we compare the function f with the function that arises from a 
constant hamiltonian function and show that the critical values of the two 
functions are close. A combinatorial argument then shows that either two 
critical values are the same, in which case ~ba has uncountably many fixed- 
points or else the critical values belong to at least n + l  different sequences, 
which proves Arnold's conjecture. 

We denote the unit interval [0, 1] by I. 

Sect ion 1. Lif t ing to C n+ 

We begin with ~.+1 with its natural symplectic structure given by co(v ,w)= 
- I r a ( v ,  w) where ( , )  is the canonical hermitian product on C "§ The Hopf  S 1 
= ~ , . / 2 n Z  action on I1] "+1 is given by 

S , ( z  1 . . . . .  z.+ 1) = exp ( i #)( z 1 . . . .  , z.+ 1). (1.1) 

This is a Poisson action in the sense of JAr], generated by the hamiltonian 

K ( z  1 . . . .  , z,+ 1) =�89 2 + . . .  + Iz,+ 112). (1.2) 

The reduced manifold [Ar] is K -  1 (�89 1 = $2,+ 1/$1 which is isomorphic to 
CIP" with a multiple of its standard symplectic structure. Denote the pro- 
jection from S 2"+a to Sz"+I /S  1 =IEIP" by n. 

Any Sl-invariant hamiltonian H on 112 "+a induces an invariant hamiltonian 
vector field on ~"+~, which restricts to an invariant vector field on S 2"+1 (an 
invariant manifold) which in turn projects to a vector field on I~IP" called the 
reduced vector field. By the theory of reduction, the reduced vector field is also 
a hamiltonian vector field for the hamiltonian h on IISIP", which is uniquely 
defined by h o l t = H i s 2  . . . .  If H is time-dependent then h will be time-dependent 
as well. We shall use this procedure in reverse. 

We are given a smooth time-dependent hamiltonian h(x, t) on CIP", x being 
the local co-ordinates on ~;IP". Without loss we may assume that h is always 
positive since the hamiltonian vector field is unchanged when a constant is 
added to h. Define H ( z , t )  to be the unique time-dependent hamiltonian on 
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I~ n+l which for fixed t is positive homogeneous of degree two and whose 
restriction to S 2"+1 is hton. Clearly H is also positive. H t is then invariant 
under the Hopf  action generated by X K hence by Noether 's theorem K is a 
constant of the motion of Xn, so that K-I(1)=S 2n+1 is an invariant manifold 
for XH, and furthermore from the remarks above we know that the orbits of 
X m restricted to S 2"+~ project to orbits of Xh, on KIP". All orbits of Xh~ are 
obtained in this way. If a* is an orbit of Xh, on KIP", then a t = ~ o a  for some 
orbit a on S 2"+1. Then a* (0) = a* (1) if and only if a(0)=Sua(1) for some 

Consider now the time-dependent vector field X n + 2 X K = X ( m + ~ :  ) for a 
suitable 2eR .  The reduced vector field for (Xu + 2 X r )  is also Xh, since X K 
projects to the zero vector field on KIP". Since Ht is invariant under the S 1- 
action induced by Xr ,  the Poisson bracket {Ht, K} is zero. Thus [Xn,,XK] 
=Xm,,K~=0; i.e. X r  and Xn~ commute so we can insure that cr(0)=a(1) if we 
replace H t by H t + 2 K  where )l_--/~(mod2n). 

Thus to each closed integral curve a* of Xh, on KIP" there corresponds a 
family of pairs (a, 2) where 2--#(mod2~z) and a is a closed integral curve of 
X n + 2 X  K. If (a, 2) belongs to the family then so does (S, ocr, 2) for any 
/~eR/2r~TZ., so that the family is diffeomorphic to S a x (2rcTZ). 

To prove the main result we need to show that there are always at least 
(n + 1) distinct such families. 

Section 2. Application of Hamilton's variational principle 

The proof  of our result is based on a variant of Hamilton's  principle. The 
function space we work in, denoted by H% is the Hilbert space of loops of 
Sobolev class H ~ in 112 "+1. We begin with the space P of C ~ loops in K "+1, 
consisting of C ~ maps u: I ~ K  "+1 with u(0)=u(1). Such loops can be expand- 
ed as Fourier series: 

u(t) = ~ u k exp (2nikt), where Nk~l~n+ l. 
keZ  

Let v(t) be another loop with Fourier coefficients v k. The L 2 inner product 
is given by 

(u, v)= ~ (Uk, Vk) (2.1) 
kEZ 

where (Uk, Vk) is the hermitian inner product in C "+1. 
The L 2 norm is denoted by I.I. The H ~ inner product is given by 

(u, v )=  ~" Ik[(uk, vk)+(Uo, Vo). (2.2) 
keZ  

The corresponding H ~ norm will be denoted by /I. H. The space H ~ is the 
completion of P under the H �89 norm. Similarly for L 2. Gradients V will always 
be taken with respect to ( , )  on H ~. There is a natural splitting of H + as 

H�89 + O H ~  - (2.3) 
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where H + is the direct sum of ~2 "+1 exp(2rdkt) ,  k > 0  

H -  is the direct sum of 112 "+1 exp(2nik t ) ,  k < 0  

and H ~ is IE "+t. 
This is an orthogonal decomposition of H ~. Any u e H  ~t splits uniquely as 

u = u  + +u~ +u - .  (2.4) 

For  ease of exposition let 

E - - H - O H  o 
E + = H  +. (2.5) 

Let PE-, PE+ be the corresponding orthogonal projections. Now define the 
action function d "  P--* ~t. by 

1 

d (u )  =�89 Im S (u(t), du/dt)dt  (2.6) 
0 

where ( , )  is the canonical hermitian inner-product on •,+1. This is just the 
usual action integral ~ pdq. 

r 

A simple calculation gives 

d(u)= - ~ g l l u  + II 2 -  Ilu-112]. (2.7) 
If we define 

Lu  = - 2 n ( u  + - u - )  (2.8) 
then 

d ( u )  =�89 (Lu ,  u). (2.9) 

Given a time-dependent Hamiltonian Jt on C "+1 define the function J : P - - *  
by 1 

J ( u )  = ~ J,(u(t))dt. (2.10) 
0 

The functions d ,  j extend by continuity to H �89 Let f = ~ - j :  H�89 R. Then 
Hamilton's principle can be stated as follows. 

Proposition 2.1. The closed integral curves u: I ~ I1~ "+1 of Xst are in a one-to-one 
correspondence with critical points of  f 

The proof of this proposition is standard: the Euler-Lagrange equations for 
f are just Hamilton's equations; regularity of the critical loops is proved in 
[BR]. The same principle holds in other function spaces for example in H a but 
we use H ~ so that the Palais-Smale compactness condition holds. 

There is also a natural orthogonal Sl-representation T. on H ~ preserving 
this orthogonal splitting, which is induced from the Hopf  Sl-action S. on 112 "+1. 
This is defined first on the space of C ~ loops by Tu(cr)=SuoG and the extended 
to H �89 by continuity. 

The action function d is invariant with respect to T. and so is J provided 
that J is invariant with respect to S.. In this case the critical points of f will 
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also be invariant under the action and will therefore consist of a union of S 1- 
orbits. For our situation d t = H t + 2 K .  We denote the corresponding function 
by f~. 

L = d  - ( g f  + 2of'). (2.11) 

Let S,L 2 denote the sphere of radius r in L 2. Treating 2 as a Lagrange 
multiplier, the critical points of f z = d - ( o ~ f + 2 ~ )  are in a one-to-one corre- 
spondence with critical points of 

/ = f o = ~  - g f '  (2.12) 

constrained to the manifold 

S=3f f - I (1 )=S , I~c~H ~, for r = 2  i. (2.13) 

It is easy to check that f is a cl-function. Since K is continuous, S is 
closed and therefore complete. S is also invariant with respect to T w In this 
context the Lagrange multiplier 2 is called the non-linear eigenvalue. Since d ,  

and ~ are all quadratic these non-linear eigenvalues are equal to the 
critical values of f l s .  In fact, using <,  > for the inner product of H i and V for 
the gradient with respect to this inner product we have: 

O= 17f~(u) = V d ( u ) -  V ~ ( u ) - ) ,  V~{'(u), 

o = ( v d  (u), u )  - ( v ~  (u), u> - ~. ( v . g ( u ) ,  u>,  

0 = 2 ~ (u )  - 2 ~,~ (u) - 2 2 ~ (u), 

0 = ar  (u) - ~ (u) - 2. 

So 2 = ~ ( u ) - ~ ( u )  

2 =critical value corresponding to u. (2.14) 

For  later use we need: 

Proposition 2.2. Let H(x , t )>O be a hamiltonian on ffj,+l, which is positively 
homogeneous of degree 2. Then for u~S 

0 < o ~ ( u ) < M = 2  max H(x, t). (2.15) 
( x , t ) ~ S z n  - 1 x I 

The proof is clear. [] 

Proposition 2.3. Let H(x , t )>O be a hamiltonian on ~,+1, which is positively 
homogeneous of  degree 2. Then the map VoVt~ H~--* H �89 is compact. I f  H is S ~- 
invariant then V ~  is equivariant. 

Proof By Lemma (3.10) and Proposition (3.12) of [BR] ~ is both weakly 
continuous and uniformly differentiable. (In reading that proof one should 
substitute 1 for 2, H for H r and ~ for b.) Standard theorems [K p. 73] then 
imply that VJ/f takes weakly convergent sequences to strongly convergent 
sequences and is therefore compact. 
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If H is invariant then oaf(T,u)=H(u), for all # e S  a 

( VW (Tuu), v} = (d/d2)[o ~,Vf(T.u + 2v) 

=(d/d2)[oA'~(u + 2 T_uv ) 
= (va~(u), r _ . ,  v) 

=(TuVaf(u), v). 

Therefore V~(Tuu)= T u V~t~(u) so that V~Vt a is equivariant. [ ]  

We then see that f(u) is just a compact  per turbat ion of  ag(u). 
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Section 3. The minimax theory 

A minimax theory is used to prove existence of critical orbits. The minimax 
theory consists of  various components .  Firstly one needs classes of sets over 
which to minimax. Under  suitable hypotheses one ends up with at least one 
critical orbit for each class of sets. 

One way to construct  these classes is via an index. We use the relative 
index theory developed in [ B L M R ] .  This is a refinement over various other 
index theories appearing in the literature [Bel, C1, A m R ,  BR].  The reason that 
these other index theories do not  work for our situation is that  d ( u )  is a 
quadrat ic  function on H ~ with infinite index and co-index. The relative index 
will help to overcome the topological difficulties caused by the infinite co-index 
and the existence of  multiple critical values will be assured. 

Definition 3.1. o~ ={B[B ~_H~\{0}. B closed and invariant.} 

Let R o be an Sl-representat ion on C k. Then we obtain an Sl-representat ion 
(T, R) on E - G  II? k by letting S ~ act on E -  via the T-representation and on t1~ k 
via the R-representation. 

Definition 3.2. For  Beo~, 7(B) is defined as the min imum k e n  for which there 
is an Sl-representat ion R on t17 k, with 0 as the only fixed point, and an 
equivariant  cont inuous map  l: B ~ ( E - O I E k ) \ { 0 , 0 ) } ,  with respect to the S l- 
representations T on B and (T, R) on E -  G I12 k which satisfies 

PE_oI=PE_ + K (3.1) 

for some K:  B ~ E - ,  which is compact,  i.e. maps bounded  sets into relatively 
compact  sets in E - .  If  no such k exists we define 7(B) to be c~. 7: ~ N  is 
called the relative index (relative to E+). Also we define the relative index of  
the empty set to be 0. 

One other index that we use is Benci's index F :  ~ N  in [Be 1]. This is 
also defined for closed invariant subsets of  a Hilbert  space with a S ~- 
representation but  it is not  relative to a subspace. 

Proposition3.1. Properties of the relative index. For  proofs see [ B L M R ]  and 
[Be 1]. 
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1. I f  7(B)>=k and E + splits into the orthogonal sumE + = F  1 + F 2 where Fi, i 
= 1, 2 are invariant and dim (F1)< 2k then B c~F 2 is not empty. 

2. Let G~_E + be a 2k-dimensional invariant subspace. Let S k(r) 
= {ueE-  @GI tlull =r) .  Then 7(ff, k(r))=k. 

3. Let A, BEo~. Suppose that there exists a continuous bounded map l from 
A onto B such that P E - l = P e - + K ,  for a compact map K: A - * E - .  Then 

(.4) <= ? (B). 

4. Let .4, Beo~. Then 7(A w B) <= y(.4) + F (B). 

5. Let .4, Beo~ with 7(B)<oe. Then cl( .4\B)eJ~ and 7(cl(A\B))>y(A) 
-F(B) .  

6. Let K ~  be compact. Then F ( K ) < ~  and for small enough 3>0,  N~K 
= {u ~H �89 [ dist (u, K) < 3} has the same F-index. 

7. I f  B is the union of a finite number of orbits then F(B)< 1. 

8. Let M be an equivariant isomorphism of H A which leaves E -  invariant. 
Then for AE~ M A e o ~  and 7(MA)= 7(A). 

Definition 3.3. fa  = {xeS[ f (x) <=a}. 

Definition 3.4. K c = {xeS[ f (x) =c, ( f  ]s)' (x) =0}. 

We can now define the classes of sets over which we will minimax. They 
are given by: 

Definition 3.5. F k (S) = {B ~ o~ [ B ~_ S, ~ (B) >= k}. 

Now let 
bk= inf sup f(u). (3.2) 

BEFk(S) u~B 

These are the minimax values. Fk(S ) is non-empty by Proposition 3.1(2) and 
bk<Oe by Proposition 3.1(2) and Proposition 2.2. Clearly, for k~>k 2, 
Fkl (S) ~ Fk2(S) so that bk~ > bk2. 

We will show that the b k > 0 are critical values of f and furthermore that if 
bk=bk+ 1 . . . . .  bk+,_l=b then F(Kb)>=r. In particular if r > 2  then there are 
infinitely many critical orbits. 

To prove these facts we need the second major ingredient of a minimax 
theory - the deformation. In order to realize this we need some compactness 
condition; in this case the Palais-Smale condition holds. 

Let S he a Banach manifold (a Finsler manifold). Then there is a norm II-II 
on every tangent space T~S, and by duality a norm, also denoted by II. }1, on 
each co-tangent space T~*S. If f :  S--, R is a C ~ function then the Frechet 
derivative df  (u) = f ' (u)e  T,* S. 

Definition3.6. A differentiable function f: S ~ R  satisfies the Palais-Smale 
condition if every sequence {uk} in S for which {f(uk) } is bounded and 
I[f'(uk)[I---, 0 as k ~oo ,  has a convergent subsequence. 

It then follows that the limit of that subsequence is a critical point for f. 

Proposition 3.2. f (u)= ~r (u) - ~ (u) satisfies the Palais-Smale condition when re- 
stricted to S = H �89 c~ 9~-  1 (1). 
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Proof Let u k be a sequence in S for which 

I f (uk) ] is bounded.  
and 

II(f ls)' (Uk)ll --, O. 

(3.3) 

(3.4) 

We must  show that  u k has a convergent  subsequence. We first show that  
u k is bounded.  Recall that  J f (u )= �89  2. In this case S is a Hi lber t  manifold and 
(3.4) is equivalent  to 

V(fls)(uk) ~ 0 in H ~. (3.5) 

Since S = H ~ c a : , ~ - I ( 1 ) ,  for ueS, the normal  space to T,S in T , H ~ = H  ~ is 
spanned by VJug(u), which we denote by C(u). Since K(u) is quadrat ic  C is a 
linear opera tor  f rom H ~ to itself. It  is easily seen that  C respects the splitting 
of H ~ = H  + @ H ~  -.  

For  ueS, V(fls)(U ) is the or thogona l  project ion P, of Vf(u)eH ~ onto T,S. It 
is given by the formula  

V ( f  ls)(U) = P~(Vf (u)) 

= Vf(u) - (Vf(u),  d(u)) d(u) 

d(u)  
= F f ( u ) - ( V f ( u ) ,  Cu)  NCuI~' where d(u)=Cu/lICu]l. 

F r o m  (2.12) and (2.9) we get 

V ( f  Is)(u) = a u  - V ~ (u) - ,Z(u) C u (3.6) 
where 

(_( Vf (u), Cu)  '~ 
2(u)=  I ~ u  b ~ ].  (3.7) 

Then (3.5) is equivalent  to 

z k - L u k - [7~,~ (Uk) _2k Cu k _.. O, in H ~ (3.8) 

where 2 k = 2(Uk). 
NOW take the inner p roduc t  with u~. 

( Zk, Uk) = ( L Uk, Uk) --(V~Ut~(UR), U k) -- 2k ( C Uk, Uk) 

=2f(Uk)--22k~r(Uk), by homogenei ty  

= 2f(Uk) -- 22 k. 

Hence  12k] = 11 (Zk, Uk ) _f(Uk)] 

<=�89 IlZkll IlUkll +lf(Ua)l. 

IIz~rl and I/(uu)l are bounded  by (3.3), (3.8). Thus  there exist posit ive constants  
c t and c 2 such that  

12kl < c x + c 2 IlUkl I. (3.9) 
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Using 2.8 take the inner product  of (3.8) with u + to obtain 

- 2 ~  Ilu; [I 2 = (Lug, u f  ) 

= (z~, u ; )  + (vo~(u~), u [ )  + &(  Cu~, u[ ). 
Hence 

N ow 

2~ ]]uff ][2 ~ IlzgH Hull[-+[2g[l<Cug, U:) l+l<V~(ug) ,u : ) [ .  (3.10) 

< C ug, uf  > = ( c u;, u;  ) 

= 25C(u/) ,  by homogenei ty  

/r 12 k 

<lug?. 
Since ugeS 

(Cug, u [ )  <2.  (3.11) 

Also [(VJf(ug),u[)[=lffd~ff(Uk),U[))l, where the Frechet  derivative d~(Uk) 
= ~ ' ( u g )  belongs to the cotangent  space of H 4 at ug, which can be identified 
with ( H ~ ) * = H  -~ via the U-pair ing ( ( , ) )  between H -}  and H }. Then 

l(V~(ug), u[) l  _-< IId~(u~)ll~ ~ Ibu; kl~ 
<=ld~(ug)[L2 Ilu[ [lu~. (3.12) 

((d~(u) ,  v)) = ~ d,H(u(t), t) v(t)dt, 

It is easy to check that  

so that 
1 

]d~(uk)[2~ : ~ [d~H(Uk(t), t)[ 2 dt. 
0 

Let ~k = {telluk(t)4=O}. d~H(z, t) is positive homogeneous  of degree 1 in z. 
Hence 

Id,)~F (Uk)l 2 : ~ ]dH (Uk(t), t)l 2 
~k  

= ~ [Uk[ 2 [dH(u~(t), t)[2dt 
-Qk 

for u*(t)=(Uk(t)/]Uk(t)])eS 2"- ' 

]d~tg(Uk)]Z2<N 2 ~ [uk(t)]Zdt, where N =  max [dH(x,t)] 
f~k (x, t)eS2n 1 x l  

< NZIuk[Z = 2 N  2. (3.13) 

F r o m  (3.10), IlZkl I being bounded,  (3.11), (3.9), (3.12) and (3.13) it follows that  
there are positive constants c 3 and c 4 such that 

Hu[ 11 ~ <c3 + c, II ukll 
<c 3 +c, ( l lu f  I] + I[u~ + Iluf II). (3.14) 
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On the other  hand (2.12), (2.7), (2.15) and (3.3) then imply that  

tlu; tl 2 _ Ilu~-II 2 

is bounded.  It  follows that  

Ilu~-II -]lug-II is b o u n d e d  (3.15) 
Since Uk e S 

Hu~ u ~  k 2<IU= kl2=2" (3.16) 

(3.14) to (3.16) then show that  

Ilu[ II 2 < c 5  "~-c 6 Ilu[ II, 

+ is bounded.  where c 5 and c 6 are positive constants.  This proves  that  u k 
Then (3.15) and (3.16) prove  u k to be bounded.  By (3.9) I~1 is bounded  so 

that  we can find a convergent  subsequence. 
Let  E u = L u + u  ~ 

where I u + 
I n  

and /no 

2 7~ I H _ -1 
I 
I E • I I Iuo I 

I _2rein+ ~ l 

is the identity t ransformat ion  on H +, 
is the identity t ransformat ion  on H - ,  
is the identity t ransformat ion  on H ~ 

Clearly E is an isomorphism.  F r o m  (3.8) 

E u k = z k + V ~  (uk) + 2~ C u k + u ~ 

0 is bounded  in if;,+1. By propos i t ion  2.3 both V ~  z k converges zo 0 by (3.8). u k 
and C are compac t  operators .  Thus there exists a subsequence of u k for which 
u ~ V~q~(Uk) and C(uk) all converge. 

Consequent ly  Eu  k has a convergent  subsequence, and since E is an isomor-  
phism, u k also has a convergent  subsequence. []  

The next 3 l emmas  are needed for the proof  of the deformat ion  theorem. 

L e m m a  3.1. Let  ~: H ~ ~ H ~ be bounded (i.e. takes bounded  sets to bounded  
sets) and homogeneous o f  degree 1. Then N~(u)[[ <M/hull, for some m > 0 .  (We 
apply this to q~ = V~y.) 

L e m m a  3.2. (approx imat ion  lemma) [Be2].  Let  ~: H ~ H  ~ be a compact opera- 
tor. Then given p > 0 ,  there exists an operator dp: H~--+H ~ which is compact, 
locally Lipschitz continuous, and satisfies 

I14~(u)- r _-<p. 

Moreover if q) is equivariant, then dp can also be chosen to be equivariant. 

L e m m a  3.3. [Be2] .  Let  X ( u ) =  - L u + O ( u )  be a vector f ield on H�89 where L 
is linear and fro(u) is compact. Assume that a f low qt(u) exists for this vector f ield 
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such that t h maps bounded sets to bounded sets, for all t. Then ~/t(u) has the form: 

t/t(u) = exp ( - t  L )u + K (u, t) 

with K compact for every fixed t. 

Theorem 3.1. (The deformation theorem.) Let f:  H ~--+ ]R be defined by 

f(u) =~(Lu, u) -~(u). 

Given fi>0, c ~ .  Then there exists an e > 0  and t/: H}\{0}--*H}\{0} with the 
following properties: 

a) t/ is an equivariant homeomorphism, which restricts to an equivariant 
homeomorphism on S. 

b) tl IS c~ fc + ~\N~ Kc] ~ [S ~ f c -  ~], 

c) rl(u)=Mu+ K(u) 

where M: H ~ ~ H ~ is an equivariant linear isomorphism of the form e x p ( - t L ) ,  
for some t > 0  and K: H~\{0} --*N is compact. 

Proof. r 1 will be constructed as the flow at a fixed time t of an approximate 
gradient vector field X(u) on H ~. We cannot take an extension of - V ( f l s )  as 
this vector field since it may not even be locally Lipschitz. 

Step I. By Proposition 2.3 Vo~ is a compact equivariant nonlinear operator on 
H ~. Hence by Lemma 3.2, for any p, to be chosen later, there exists an 
operator ~b: H �89 --* H ~ which is compact, equivariant, locally Lipschitz conti- 
nuous, and such that 

limb(u)- V~(u)ll =<p, for all ueH ~. (3.17) 

Let d(u)= Cu/ll Cull. So 

- V(f ls)= -Pu(Vf(u)) 
= - L u  + V~f~(u) + ( L u  - VJ~(u), d(u))d(u). 

We replace this by the vector field, X, on S given by 

S(u) =P,(  - L u  + q5 (u)). (3.18) 

Extend X(u) to a vector field on H+\{0} given by the same formula. X(u) is 
a continuous equivariant vector field on H~\{0} tangent to the homothetic 
images 2S, 2>0 ,  of S. We show that X(u) is locally Lipschitz, so that an 
equivariant local flow exists. A global flow will be established in step 2. Since 
X is tangent to 2S, 2>0 ,  the flow will restrict to 2S, 2>0.  

q l X ( u )  - X ( v ) [ I  = IlPu( - L u  + 49(u)) -Pv( - L v  + 4~(v) 11 

< I tP , [ ( -Lu+4) (u ) ) - - ( -Lv+ ~b(v))] II + II(P,-Pv)(-Lv+4)(v))I[ 

<ilP, It [lltll Ilu-vll + II 4~(u)-4~(v)ll] + II(P, -P~)(-Lv+~)(v))[I. 
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Since IIP.II = 1, IILII = 2 n  and ~b is locally Lipschitz, the first term is bounded  by 
a constant times Ilu-vll,  whenever v is sufficiently close to u. 

So 

(P. - P ~ ) ( -  Lv + ~ (v)) = - Lv + O (v) - ( - Lv  + O(v), d(u) > d(u) 

-- [ - L v  + O(v) - ( - - L v  + 0 (v), d(v)) d(v) 

d(v) 
=(,-Lv+c/o(v) ,  Cv)  - ( , - L v + ( o ( v ) ,  Cu)  - -  

II Cvll 

d(u) 

II Cull 

d(v) 
II(P. - PO(-  Lv + q~(v))ll =< l<-  Lv + 4)(v), C v - C u > l  - 

lICvil 

cu>l [ d( l y(u) ] 
+ I < - L v + O ( v ) ,  tl] Cv/I II Cul lJ l l  

]lCII 
< I1 -Lv+ C(v ) l l  ~ qiv-u[I 

_~ II - L v + ~ ( v ) l l  II Cull ~ II 
iICvll211Cull~ liECvlICull - C u l l C v l l  z] �9 

IICII 
C is bounded  and if v is sufficiently close to u then I I - L v + d p ( v ) l l ~ - ~  is 

bounded,  so that the first term on the right hand has been taken care of. If v is 
II - L v  + O(v)ll II Cull . 

sufficiently close to u then ii Cull 2 ilCvll z 1S bounded. 
Also 

IIE C v II Cull 2 _ II Cvll = Cu]lL 

= 1 1 E ( c v -  Cu)II Cull2 + Cu(l] C u l l 2 - I I  c vii 2)311 

_-< II cII II Cull 2 II v - u l l  + II Cull (11 Cull + II Cvtl)II cii II v - u l l  

__< constant [I v -u l l ,  

provided that v is sufficiently close to u. We have therefore shown that X ( u )  is 
locally Lipschitz. 

Step  2. Global  flow. 

[LX(u)[I = liP.( - L u  + q~(u))ll 

<= ]1 - L u  + O(u)ll 

--< II - L u +  VW(u)n + H V J r ( u )  -c~(u)ll 

_-< HEll ]lull + I] V~(u)l] +p .  

By Lemma 3.1 ]1VJf(u)l] __<constant HuH. Hence 

NX(u)l[ <=p+cllu[I, for a constant  c>0 .  (3.19) 

Also since X(u )  is tangent to 2S for every 2 > 0 ,  the integral curves never 
leave H�89 Therefore the flow th(u ) of X is globally defined, equivariant  and 
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takes bounded  sets to bounded  sets. Since X is tangent  to S it restricts to such 
a flow on S. By L e m m a  3.3, t /wil l  be of the form: 

~/(t, u) = exp ( - t L ) u + K ( u ,  t), 

where K(u, t) is compac t  for each fixed t, provided we can show that  X(u) is of 
the form" 

X ( u ) =  - L u + K ' ( u ) ,  

with K '  compact .  This is shown in step 3. 

Step 3. 
K'(u) = X(u)  + Lu  

= dp (u) + ( L  u - dp (u), d (u)) d (u). 

C: H ~ ~ H �89 is a compac t  linear opera to r  by Proposi t ion 2.3. Hence  u ~ d(u) is 
a non-l inear  compac t  opera to r  on H+\{0} .  If u is bounded  then so is 

KLu- (a (u ) ,d (u ) ) [  

so that  K'(u) is a compac t  non-l inear  opera tor  on H ~. 

Step 4. (This follows Benci [Be2].)  Let  r/(u)=~/(T, u) for an appropr ia te  T to be 
chosen later. ~/is an equivar iant  h o m e o m o r p h i s m  which restricts to S, proving 
(a). K '  is compac t  so (c) is also proved.  

Since f satisfies the Palais-Smale condit ion K c is a compac t  set, so that  
N~(Kc) is bounded.  Let  R > 0  be a constant  such that  KcgBR(O). F r o m  P - S  
one also deduces the existence of an e >0 ,  such that  

[I V(fls)ll > (4e /T )  ~, for u ~  (3.20) 
where 

G = S c~ I f  - 1 [c - e, c + 53 \N6/2 (Kc) ]. (3.21) 

Otherwise there exists a sequence u, eJ~l/, with qIv(fls)(u,)ll <(4e /T)L  Then 
f (u , ) - -*c  and V(fls)(U,)--*O. By P - S  there is a convergent  subsequence u,k 
with u,k--* u e K  c But u, is bounded  away  from Kc, which gives a contradict ion,  
so the existence of ~ satisfying (3.20) is proved. I f  we make  6 smaller  (b) be- 
comes stronger,  so wi thout  loss of generali ty we may  assume that  

N,V 2 (K~) c~ f - x (c - 5) = 0. (3.22) 

We now show that  at  a point  u ~ ,  f is decreasing sufficiently rapidly along 
the flow of X(u). 

(d/dt)[ o f (tl,(U)) = (Vf(u) ,  X (u) ) 

= ( V ( f  [s)(U), X (u ) )  

= - - (  Vf  [s)(U), V ( f  [s)(U) -~b(u) + V~f~(u)) 

= - ]] V(T [s)(u)]] 2 _ ( V(T ]s)(U), - q~ (u) + V~ff (u)) 

< - I I  V(fls)(u)ll 2 .~_ II V(fls)(U)llP, by (3.17). 
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Let y =  II V(fls)(u)ll. The function y ~ - y 2 + p y  is decreasing for y>p/2. We 
still have f reedom to choose p; choose p = (e/4 T ) t  p depends upon  T, which is 
still to be chosen. 

By (3.20) y > (4~/T) �89 = 4p > p/2. 
Therefore 

_y2 + p y <= _(4p)2 + p(4p) 

= - 1 2 p  2 

= -3~/T.  
I.e. 

(d/dt)]o f Olt(u)) <= - 3 e/T <= - 2c/T, 

Therefore if t/(t, u)~3-~ for te [0 ,  T]  we have 

T 

f ( t l ( r  , u))= f(u)+ ~ (d/dt)f(tl(t , u))dt 
0 

< f(u) -2~. 

In par t icular  if u e f f  +~ and t/(t, u)eJ~ for t e l0 ,  1] then 

f 0/(u)) = f ( t / (T ,  u)) =< c - e. 

for u ~ J~. (3.23) 

(3.24) 

(3.25) 

We now prove  that  for T small enough 

ueSc~f- l [c-e ,c+e]\N~(Kc)~t l ( t ,u)r  for t e l0 ,  T].  (3.26) 

Assume to the contrary.  Then there exist t o, t x with 0 < t o < t 1 <  T such that  

tl(to, u)eO No(Kc), 
tl(tl, u)ec? N6/2(K~) 

and 

Then 
r/(t, u)ecl [N~(K~)\N~/2(K~)], for t e [ to ,  q ] .  

6/2__ II~t(q, u)-rt(to, u)ll 

= f! (d/dt)tt(t, u)dt 

= i! X(tl(t, u)dt 

t l  

<= S ILx(~(t, u))l[ dt 
~0 
t l  

<__ ~ (p+cqlq(t, u)[I)dt, by 4.19. 
tO 

<(t l - to) (p+cR) ,  since q(t,u)eN6(Kc)c_BR. 

<= T(p + cR). 

For  T small enough we get a contradiction.  N o w  fix T for which (3.26) does 
hold. The flow tl(t,u ) for u e f  c-~ cannot  enter the region f - l ( c - ~ ,  c + ~ ]  since 
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by (3.21), (3.22) it would then have entered the region ~ which is impossible 
since by (3.23) f is decreasing along the flow in ~-~. 

Now let ueSc~[fc+~\NaKc]. To complete the proof of the theorem we 
must show that ~I(T, u)e f  c-`. From the last paragraph we know that if u e f  c-` 
then tl(T,u) also belongs to fc - , .  If uCf c-~ then u~-~,, f(q(t,u)) is then de- 
creasing by (3.23) so that t/(t, u) remains in j ~ \ f c - ~ ,  enters N6/2Kc, or enters 
fc-~. The first two possibilities are not possible by (3.25) and (3.26). Therefore 
it must enter fe-~ and by the previous paragraph it will remain there. This 
proves (b) and completes the proof  of the deformation theorem. [] 

Proposition 3.3. The map ~1: S ~ S  takes Fk(S ) to Fk(S ). 

Proof Suppose that B6Fk(S), i.e. B ~ S  and y(B)>=k. Since ~/ is an equivariant 
homeomorphism q(B) is also closed and invariant subset of S. We need to 
show that 7(q(B))>k. By Theorem 3.1 ~l(u)=Mu+K(u), where M is an equi- 
variant isomorphism of H ~ which leaves E -  invariant and K is compact. 
Hence i/ is a composition of the maps M and I + K  and the result follows di- 
rectly from Proposition 3.1(3) and 3.1(8). []  

Theorem 3.2. The minimax values b k defined by (4.2) are critical values of f 
Furthermore if bk=bk+ 1 . . . .  =bk+r_ 1 =b, then F(Kb)>r. 

Proof This is standard minimax theory. If F(Kb)<r-1,  then there exists a 
6 > 0  such that 7(NoKb)<P-1. Let N=int(NoKb); then cI(N)=N~K b. Hence 
there exists an e such that tl(fb+~\N)--Q~--fb-'. Since b = b  k+r_l 
=in f{ae l l l y ( fa )>k+r-1} ,  y(fb+~)>k+r-1. Hence by Proposition 3.1(5) 

7(fb+~\U) = 7(cl(f  b+ ~\cl (N)))> 7 ( f  b+") - F(cl (N)) > (k + r - 1) - (r - 1) = k, 

by Proposition 3.1 (16). 
Thus by the previous proposition 7(Q)>k;  i.e. QeFk(S ). Therefore 

bk= inf sup f(u)<sup f(u)<b--u=bk--E. 
AEFk(S) ueA ueQ 

This gives the contradiction. [] 

Note. In particular we see that if r > 1, there are an infinite number of distinct 
periodic orbits. The follows from Proposition 3.1(7). The crucial factor here is 
that the S ~ action is free. 

We now have a minimax theory that yields a countable number of distinct 
critical orbits for the function f on S. This is not sufficient to prove the exis- 
tence of multiple fixed points for qS~, however, since we know that a single 
fixed point of ~bt corresponds to an arithmetic sequence of critical values of f 

The way to proceed is to examine the special case in which H is constant. 
For that case the non-linear spectrum is degenerate. 

2 a=22 ... 2,+ 1 =2~ :  K2~=I~ n+l 

J~n+ 2 = )].n+ 3 . . . . .  ~.2n+ 2 = 4 7 ~ :  K4~=IE "+1 exp(2~ikt) 

and so on, as will be seen in the next proposition. 
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Note. By (2.14) the critical values are equal to the non-linear eigenvalues. 
Also only the positive spectrum appears here, because we are using the 

relative index to minimax. 

Proposition 3.4 [BLMR].  When H-constant,  the minimax values b k are just the 
positive eigenvalues, with multiplicity, of the linear eigenvalue problem Lu 
=Vf(u)=2Cu.  [] 

These eigenvalues are easily calculated. One obtains the positive multiples 
of 2n, each one with multiplicity n + 1. 

We know from Proposition 2.2 that r  assumes values in the interval 
[0, M], where 

M = 2  max H(u, t). 
(u,t)ES2n - 1 X I 

From this it follows that 

Proposition 3.5. Let fo=�89 u) = f ( u ) + ~ ( u ) .  Let ak= 

Let bk= inf sup f o. 
A~Fk(S)  ueA  

Then b k - M  <=ak <b k. 

Proof. Let A be an arbitrary element of Fk(S ). Then 

ak= inf sup f (u)  
BeFk(S)  uEB 

< sup f (u) 
uEA 

=< sup (f(u) + ~(u)). 
uEA 

This is true for all A in Fk(S ). 
Hence 

ak< inf s u p ( f ( u ) + ~ ( u ) ) = b  k 
A~Fk(S)  u~A 

For any e > 0  there exists an A s in Fk(S ) such that 

Now 

sup f (u) < a k + e. 
ltEA~ 

bk= inf sup(f(u)+o~f(u)) 
A e F k ( S )  ueA  

< sup (f(u) + 9r 
u~A~ 

< sup f (u)+ sup ~ ( u )  
u~A~ ueA~ 

<=ak+e+M. 

inf sup f 
A~Fk(S)  ueA 

This is true for all e, so that bk<=ak+M , which proves the proposition. 

Finally we have the following combinatorial result. 

Proposition 3.6. Either 1) The a k are not all distinct, 

[] 

or 2) W =  4~(ak(mOd2n)[k~N)>n+l.  
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Proof Let t > l  be an integer such that M<2trc. Let s>t  be an integer. 
We count  how many  of the ak's must  lie in the interval I~=(2zr, 2src]. If 
bkE[2~(l +t),2slr] then ak <bk <2sTr and ak>bk-M>bk-2tTr> 2(l +t)~ 
-2 t r~=2rc ,  so that bk~I ~. There are (s- t ) (n+l)  such bk's; hence there are at 
least (s-t)(n + 1) ak's in I s. Assume that  all are distinct. 

Let W~= 4t= [{ak]keN} c~Is] (mod27r). 
Then the number  of  ak's in I s is less than W~(s-1), so that 

(s - t )(n+ 1) < W~(s - 1), 

W~ > (s - t)(n + 1)/(s - 1) = (n + 1) - ( t  - l)(n + 1)/(s - 1). 

Take s large enough such that ( t - 1 ) ( n +  1 ) / ( s - i ) <  1. W s is an integer so that  
W>W~>n+I.  [] 

This concludes the proof  that q51 has at least n + 1 fixed points. 
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