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w I.  Introduct ion 

In the classical theory of singular integral operators Tf=K,f ,  the starting 
point was a Fourier transform estimate: /~eL ~, from which, the inequality 
I] Tf}l 2 < Cllf]l ~ follows immediately. This fact together with mild regularity 
assumptions on the kernel yield a weak type (1, 1) (or L~~ inequality by 
a nowadays standard procedure whose basic ingredient is the so-called Cal- 
derdn-Zygmund decomposition (see [16]). By interpolation and duality, the L r- 
boundedness of T is proved for all 1 < p < ~ .  

The same scheme was tried for more singular operators, like 

dt 
Tf(x)=p.v. f(x -7(t)) •=K *f(x) 

- -  w d  

(Hilbert transform along the curve 7 in IR"). Under some hypothesis on the 
curvature of 7, the fact t h a t / s  ~ can still be proved, but the kernel K is now 
a distribution supported in the curve ,/ (a set of measure zero), which is too 
singular for the Calder6n-Zygmund machinery to be applicable. However, the 
decay of /~(~)=m(~) is such that one can worsen the multiplier m, obtaining 
certain m~_L ~ if 0 > R e ( c 0 > - a ,  while, for Re(c~) positive, m, improves, and 
one actually has m,= /~ ,  with locally integrable kernels K~ which are regular 
enough to fall under the scope of the classical theory. The L p inequalities for T 
are then obtained by analytic interpolation of the family of operators T ~, 
(T'f) ̂  =fm~. Similar ideas lead to L p inequalities for the associated maximal 
operators 

1 h 
Mf(x)=suph>o ~ _.~hLf(x--?'(t))] dr. 

In this case, the starting point is the majorization: Mf(x)<f*(x)+g(f)(x), for 
a suitable quadratic operator g('). The inequality ]lMf ]12 < C ]] f][ 2 is obtained 
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by using Plancherel's theorem and Fourier transform estimates for the singular 
measures arising from a dyadic decomposition of the kernel. L v inequalities, 
l < p < o o ,  result again from the application of analytic interpolation to a 
suitably defined family of maximal operators. See [18], where the whole 
process is described in detail, and references to earlier work may be found. 

In this paper, we present an alternative approach to obtain the L p inequali- 
ties for a wide class of maximal and singular integral operators, including the 
ones mentioned above. This approach is based on Littlewood-Paley theory, 
and its effect is that one has just to look at the decay at ~ of the Fourier 
transforms of ~k and Pk; here, ~ cr k , f  is a dyadic decomposition of the singular 

k 

integral under consideration, and sup L/~k*fl is the maximal operator. The use 
k 

of Littlewood-Paley theory is suggested by the presence in the original ap- 
proach of g-functions (which were only used to estimate the operators in L2). 
Thus, for the maximal operator, we have 

M f (x) <__f *(x) + g(f)(x). 

Plancherel's theorem gives II g(f)  l[ z --< C II f ]l 2, and then also [I M f  112 < C [I f IL 2 ; 
but now, Littlewood-Paley theory is used to show that the last inequality 
implies [Ig(/)llp< Cpllfl]p, 4 5 < p < 4 ,  and therefore, the same result holds for M, 
and so on. . .  This sort of bootstrap argument was already present in the work 
of Nagel, Stein and Wainger [13] on differentiation in lacunary directions. For 
singular integral operators, Littlewood-Paley theory is used together with cer- 
tain vector valued inequalities which follow from the boundedness of M. This 
is a satisfactory aspect of this approach: The estimates for singular integrals 
depend, as in the classical Calderdn-Zygmund theory, on similar estimates for 
an associated maximal operator. 

Our method gives no contribution to the L2-boundedness, for which, in 
each concrete application, we must either rely on known estimates for Fourier 
transforms or produce the necessary estimates by adapting known arguments 
(e.g. Van der Corput's lemma). The advantage of the method lies in the fact 
that, once these Fourier transform estimates are obtained, the L v inequalities 
are given for free, due to the neat general principles formulated in Sect. 2. The 
following sections present a variety of applications. Thus, we study in w the 
lacunary maximal spherical means and some of its variants. In w 4, it is shown 
how the results of [1] for homogeneous singular integrals with no regularity 
can be proved without using the method of rotations, and we obtain L p 
inequalities for some generalizations of this type of singular integrals, as well as 
Ap-weighted estimates when the kernel satisfies I K(x)l < CIx[-". Section 5 deals 
with maximal functions and Hilbert transforms along curves; we give simple 
proofs of the main results in [18] for these operators; we also obtain L r 
inequalities, 1 < p <  oo, for convex plane curves under hypothesis allowing flat- 
ness of infinite order, sharpening previous results of Nagel and Wainger [14]. 

We feel that these applications serve to illustrate the power and utility of 
the method. Apart from being technically and conceptually simpler than pre- 
vious approaches, it is easy to find variants of it which are well suited to other 
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related problems. In particular, the first named author has been able to extend 
the whole method to the case of multi-parameter singular integrals and maxi- 
mal functions. His results, which will be the object of a forthcoming paper, give 
as applications L p inequalities for maximal functions and Hilbert transforms 
along surfaces, etc., as well as for singular integrals of homogeneous type in 
product domains. Some challenges remain to test the flexibility of the method. 
In particular, we should like to have a theory of weighted inequalities for these 
operators (here we have barely initiated the path; see Corollary 4.2), and to be 
able to deal with operators with variable kernels, i.e., not of convolution type. 

w 2. T h e  general  t h e o r e m s  

As a rule, { ~k} ~ '= - -oo  and {O'k}k~176 ~ will denote two sequences of Borel mea- 
sures in R" such that II/~kq[=l and IlCrkll <1. However, /~k>0 (i.e., the #k'S are 
probability measures) while the ak'S satisfy some cancellation property: ~d~r k 
=0. We shall denote by ICrkl the total variation of ak, which is a positive 
measure. In all the statements below, {ak}k~_ ~ stands for a lacunary sequence 
of positive numbers: 

a k>O and inf ak + 1 = a > 1  
keZ a k 

and ~ will be a fixed constant > 0. The maximal theorem is as follows: 

T h e o r e m  A. Suppose that #k > 0 and 

I~k(~) - 11 < C lak+ , ~1" (1) 

I~k(~)[ < Clak~l ~ (13 

for all k67l. Then, the maximal operators Mf(x)=supl#k , f (x) l  is bounded in 
k 

LV(IR"), l < p < ~ .  

For  singular integral operators, the theorem to be applied is 

T h e o r e m  B. Suppose that II ~k [I _-< 1 and 

Idk(~)l < C lag+ 1 ~l ~ (2) 

16k(~)[ < C la k ~l-= (2') 

for all kr and suppose also that, for some q> 1, 

No*(f)ll~_- < CIIfllo (3) 

where a* is the maximal operator: o * ( f ) = s u p  [lag[ *f l .  Then, both 
k 

TJ'(x)= ~ ak*f(x) 
k = - - ~  
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and 

g(f)(x) = *f(x)l 2 
k 

1 1 1 
are bounded operators in LP(H(n) for p - ~  <~q. 

Observe that Tf  and g(f)  are always well defined and bounded in L2(IR n) 
due to (2), (2') and Plancherel's theorem. In practice, one usually has 
[trk[-<-Const. /~k, with Pk satisfying (1) and (1'), so that both theorems together 
give the boundedness of Tin  LP(N ") for all 1 < p <  o0. 

The estimates (1) and (2) are only relevant when ak+l[~[__<l, SO that it is 
enough to prove them for c~= 1, and this is, in most cases, a trivial consequence 
of the fact that #k and ~k are supported in the ball of radius ak§ 1 centered at 
the origin. Likewise, (1') and (2') need to be proved for large I~[ (namely, 
akl~l > 1), the usual tool to establish them being Van der Corput's lemma (see 
[20]). In many applications, the lacunary sequence to be chosen is simply a k 
=a k, - o c < k < o %  for some fixed a > l ;  then (2) and (2') take a more sym- 
metric form: 

]dk(~)[ < C min ([a k ~1, [ ak ~ ] -  i)~ 

and the same remark applies to (1) and (t'). However, in some cases, lacunary 
sequences, tending to 0 and + oQ faster then a k must be considered (see 5.3 
below). 

We shall first prove Theorem B. The hypothesis (3) will be used in the 
following form: 

1 1 2 1  Lemma. I f  (3) holds and 2q -~o' then, fi)r arbitrary functions gk, the 

following vector valued inequality holds: 

l[(~, [ak * gkl2)l/2H po<= C [l(~ [ g k l 2 ) l / 2 N  po �9 

k k 

Proof It suffices to consider the case po>2, so that (P~)'=q, and there exists 
ueL q of unit norm such that 

ll(Z I k, gk12)lJ211 o= I Z 
k k 

k k 

< [](E ]gk 12)1/2112 I[O'*(U)[lq ~ C I[(E Igkl2)l/2l[2po" [] pO 
k k 

Proof of Theorem B. Let { ~ j } ~  be a smooth partition of the unity in ~1.~ 
=(0, oe) adapted to the intervals [a;~,a;~].  To be precise, we require the 
following: 

Ojec ~, o<__~j<__l, ~O~(t) ~=1 
J 

supp (~k2) c {t: aj+ll __< t <aj- 11} 

C 
IO)(t)t <=T 
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( ') this can be achieved, with C ~ Z ~ _  1 . Define the multiplier operators Sj in IR" 

by (S J )  ^ (4)=f(4)~j([~[). We decompose our operator T as follows: 

T f = Z  ak * ( 2  Sj+kSj+kf)=-2 (2 Sj+k(O'k * Sj+kf))=Z TjU 
k j j k j 

(all the sums are ~ ,  and everything makes sense for Schwartz functions f ) .  
- o o  

First we estimate Tj in L p~ where Po is as in the previous lemma 

II Tjfllpo< Cpo 1](~ [O'k * Sj+kfl2)l/2Hpo 
k 

< Cpo C I1(~ ISj+kfl2)l/211po < C2o C Ilfllpo. 
k 

The first and last inequalities follow from classical Littlewood-Paley theory; 
see [16]. A more precise inequality is obtained in L 2 by means of Plancherel's 
theorem and (2), (2'): 

I ITjf l t~<~ ~ If(~)l=l~k(~_)lZd~ 
k A3+k 

where Aj = {r a j+11 < 141 < af-11 }. If j < 0 and r e A j+ k we have a k I r > a -r+ 1, and 
(2') gives 

[ITjfllz <C(a-J+x)-~l]f]12, j<O. 

If j >  1 and ~Aj+k, w e  have ak+ 114[ ~ a2-j, and (2) gives 

]]Tjfllz<C(aZ-~)~llfll2, j > l .  

For j = 0 ,  t we use the simple estimate 16k(4)1<1. All together, we have ob- 
tained 

H Tjfl[ 2 <C~ a-~lJl Hfl[2, j~7Z 

where a > l  is the lacunarity constant of the sequence {ak}~ NOW, if 

1 1 1 1 0 1 - - 0  for some 0 < 0 < 1 ,  and interpolating both p - }  <~qq, we have p=~-t- p ~  = 

estimates previously obtained we get 

H Tfl[p < ~ LI T~fHp < Const. ~ a-~ Ibfl]p = Cp IIfl[p. 
J J 

The inequality ILg(f)[Ip< CpHflLp can be proved by essentially the same argu- 
ment. Alternatively, one can observe that, for every choice of e, k = _+ 1, we have 
the same result for T~f=~ekCrk*f  (with norm independent of {ek}) and a 

k 

randomization argument yields the inequality for g(J). [] 

Proof of Theorem A. Fix a positive Schwartz function cb such that ~(0)= 1, and 
define ~b k by ~k(~)=C~(ak4). We can assume that c~<l in (1) and (1'); then, the 
same estimates are satisfied by the measures {4)k(X)dx}~ (denoted simply 
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{q~k} ~ o0)- Therefore,  the measures a k = P k -  Cbk satisfy (2) and (2') and 

/ oo \1/2 

Mf(x)  < sup I~k * f (x )  l + { ~ I~rk * f(x) l  2 j < C f*  (x) + g (f)(x) 
k \ -oo / 

where f *  is the Hardy-Li t t l ewood maximal function of f, and g ( f )  is as in 
Theorem B. Since g( . )  is bounded in L 2, so is M. But ~ r * ( f ) < M f + C f *  and 
Theorem B applies with q = 2  to the effect that  g( . )  (and therefore, also M) is 
bounded in L v for -~<p<4 .  A new applicat ion of Theorem B gives 
IiMfll; < Cp it f qtp for every p >-8 7, and the process continues, every p > 1 being 
reached in a finite number  of steps. [ ]  

In some of the applications, the Fourier  transforms of the measures under 
considerat ion decay as required by (1), (1'), (2) and (2') only in a certain 
subspace of directions. In this case, a variant  of Theorems A and B, which we 
shall now describe, can be used. We decompose  IR"=IRm x ~ , - m  with 1 < m  < n, 
and write every xcF ."  in the form x = ( x  ~ ~), x ~  ", ~ F . " - " .  Given a finite 
measure # in R", define another  measure /~o) in IR m as follows: pm)(E)=p(E 
x F . " - " )  for every Borel subset E of F.m; in terms of Four ier  transforms, this 

means (#~o))^ (4o)= fi({o 0). 

Theorem C. Let {/~k}~'=- oo be probability measures in F." such that 

I~k(~ ~ ~) -f ik(r  ~ 0)l < Clak+~ ~-1= (4) 

[fik(~ ~ ~-)l < C[ak~] -~. (4') 

Suppose that M ~ g(x ~ = s u p  [p~o). g(xO)l is a bounded operator in LP(IR m) for all 
k 

p > 1. Then, M f ( x ) =  sup I& *f(x)l  is also bounded in LV(~. ") for all p > 1. 
k 

Theorem D. Suppose that Ittrkl [ N 1 and that the m e a s u r e s  {Ok}k~=-m satisfy the 
same estimates (4), (4') required for {Pk}ff=-~ above, and also 

o _ ~o1~ I k ( ~ , O ) l ~ f l b k +  1 (5)  

I~k(r ~ 0)1 < C [b k ~~ (5') 

where {bk}moo is another lacunary sequence of positive numbers. I f  a*(f)  
= s u p [ l a k l * f t  and a~m(g)=suplla~~ *g[ are bounded in Lq(IR ") and Lq(IR m) re- 

k k 
spectively, then Tf  and g( f )  (defined as in Theorem B) are bounded in LV(IR ") for 

Sometimes,  we have the extra cancellation ^ o ak(~ , 0 ) = 0  (for all k~Z  and 
r which makes things a bit easier. We shall name Theorem D' the 
part icular  case of Theorem D in which this extra cancellation is assumed, i.e., 
we have instead of (4) and (4') 

[~k(~ ~ ~)[ =< C min (]ak+ 1 ~[, lak~l-1)~. (6) 



Maximal and singular integral operators 547 

Proof of Theorems C and D. We begin with Theorem D', whose proof is but a 
repetition of that of Theorem B. The only difference is that we use now the 
decomposition f = ~ S j S j f  with (Sjj')^({)=f({)~9j(l~l)(i.e., we apply Lit- 

J 

tlewood-Paley theory in the Z-variable). For Theorem C, we rely upon 
Theorem D'; we take a p ositi_ve Schwartz function (b in IR" m with ~(0)= 1, 
and define q~k by q)k({)='l)(ak~), and 

Then, 8k({ ~ ~-)=fik(~ ~ ()--fik(~ ~ O)cb(ak( ) satisfy (6) and we are ready to apply 
Theorem D'. We only need the boundedness of a*, since a~0)g =0. Now 

Mf(x) < sup ](p(k~ @ q~k) *f(x)l + g(f)(x) 
k 

and the maximal operator in the right hand side is dominated by the com- 
position of M ~ acting on the x~ and the Hardy-Littlewood operator 
acting on the R-variable; thus, it is bounded in LV(~ ") for all p > 1. The rest of 
the argument is as in Theorem A. 

Finally, to prove Theorem D in the general case, consider 

a~x~= ~o~| q'k 

with q~keS~(IR"-") as above. Because of (5) and (5'), (a~l)^(~~ 
_ ^ 0 --ak({, O)~(ak( ) satisfy (6) with the roles of ~0 and ~ interchanged and with 
{bk} instead of {ak}. The fact that a~o ) is bounded in Lq(IR ") implies the same 
result (in IR") for sup [a(k ~ *f]- Therefore, by Theorem D' 

k 

T~l)f=~ a~')*f and g")(f)=(~[a~'),f]2) '/2 
k k 

1 1 1 
are bounded in LP(~"), p - ~  <~qq. On the other hand, the measures a~2)=ak 

--a~ 1) satisfy (6), because a k satisfy (4) and (4'). Therefore, the operators T ~2) 
and g(2) defined as above with a(k 2) in place of a~ a) are also bounded in LP([t. ") 
for the same range of p's, and this ends the proof. [] 

The existence of the singular integrals to be studied below as the pointwise 
limit almost everywhere of the truncated integrals will be a consequence of the 
following theorem, where we write T ' f  (x)= sup ITk f(x)l with 

k 

cx) 

Tkf(X ) = ~ aj *f(x). 
j = k  

Theorem E. Let ak be Borel measures supported in {xe~":lx[<ak+l} (resp. 
{ xelR~: Ixl <ak. 1}) verifying the hypotheses of Theorem B (resp. Theorem D) for 
all q > l .  Then, T* is bounded in L p, l < p < o o .  

Proof. We prove only the part corresponding to Theorem B because the other 
is essentially similar. 
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oo 
We know from Theorem B that Tf= ~ a j * f i s  bounded in L p, l < p < o o .  

Take qoe5 P such that ~o(~)=1 when 141<1; write ~Ok(~)=~O(ak~ ) and ~k(~) 
= q)(a k ~). Decompose T k as 

Tkf=~k* ( T f -  E aj*f)+(cS--q~k)* aj* f  
j= --oo j=k 

We have 
I~ k �9 Tf(x)l <= C(Tf)*(x) 

q~k* k~l aj*f(x) < Cf*(x) 
j= -oo 

the last inequality being a consequence of 

~k k~_loGj(X)~-~ �9 C a ; " ( 1  + la k 1 x[.+ 1)- 1 

j= 

Therefore, the first two terms in the decomposition of T k are bounded by 
operators independent of k. We must see that 

c o  

SUpg (3--~k)*j~=kaj* f 

is bounded in L p, 1 < p <  or. We have 

oo  c o  

SUPk (a--CI)k)*j~=oaJ+k *f  <j~O sup[(fi-~k)*aj+k *f[" 

Each one of the terms of the sum is bounded in L p because of the boundedness 
of a*. Moreover, the j-th term has an L2-norm of the order af ~ (by Plancherel's 
theorem). By interpolating the L2-norm with an LP~ Po > P, we get a factor 
aT~ in the LV-norm which makes the above sum convergent. This ends the 
proof  of the theorem. []  

The preceding theorems can be extended to the case where, instead of the 
ordinary (isotropic) dilations 6,x=tx, we have a homogeneous structure in IR" 
defined by the group of dilations {6,},>0, a,x=tAx, where A is a real n x n  
matrix, whose eigenvalues have positive real part. The homogeneous dimension 
of R" under these dilations is d--  trace of A. Associated with this homogeneous 
structure, a C ~ norm function kl" [I can be defined in IR" satisfying 

Itx + yll < C(llxll + llybl), 116,xll = t  llxtl. 

The "unit  sphere" 27={ueP,,": HuH--l} is an ellipsoid, each point xelR"\{0} 
has a unique representation in the form x=6tu with u~27, t =  llxll >0, and then, 
Lebesgue measure can be written as dx=ta-lda(u)dt  for a certain Borel 
measure da in 27. We denote by II'lt, the norm function associated to the 
homogeneous structure defined by A*=ad jo in t  of A. In view of the appli- 
cations we give only a simplified version of the analogues of Theorems A, B 
and E in this context. 
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Theorem F. Let {],~k}k x~_ _ zc and {O'k}k~176 oo be Borel measures in 11" such that, for  
a certain constant ~ > O, 

I/~k(~)-~k(O)l__<C(2kl[~ll,) ~, k~ZZ (7) 

[/~k(~)l < C( 2k II ~11,)-~, keTZ (7') 

and the same conditions are satisfied by {aa}. We assume that ]akl <l~a, ffk(0)=0 
and sup I]/~kl[ < oe. Then, the operators m f ( x )  = sup I/~k *f(x)[, g ( f )  

k k 

= ( ~  Io" k*f(x)[z) 1/z and T f ( x ) =  ~ a k , f ( x )  are bounded in LV(~"), 1 < p < o o .  
k k 

Moreover, if supp Ck ~ {X : IIX H < 2k + 1 }, T* is also bounded in L p, 1 < p < oe. 

The proof consists in a repetition of previous proofs, taking into account 
that the analogues of the Hardy-Littlewood maximal operator and Littlewood- 
Paley theory are still available in this context (see [5] and [15]). 

w Lacunary maximal functions 

We shall present here some immediate applications of Theorem A based on 
known estimates for Fourier transforms of singular measures. 

Corollary 3.1. Let F denote a C ~176 compact, (n-1)-dimensional  manifold without 
boundary in Nn such that, at each point o f  F, at least one of  the principal 
curvatures is 4=0. Let  f2 be a function > 0  in F belonging to the Sobolev space 
Ll~(F) for some c~>0. I f  da denotes Lebesgue measure in F, then 

M f (x) = sup I S f (x - 2 k y) f2(y) d cr 0,)l 
k 

is a bounded operator in LV(IR"), 1 < p <  oo. 

Proof Consider the Borel measure in ]R" (supported in F) d#(y )=f2(y )da(y ) .  
Then m f ( x ) =  sup ]/~k , f ( x ) [  where/~k is the 2k-dilate of p, so that /~k(~)=ilk( 2k 3)- 

k 

Without loss of generality we can assume that /~(F)=I and then [fi(~) 
- l [ < C l ~ l  because /~ is C5 By TheoremA it suffices to show that 
[fi(~)l < Clef -~ for some fl>0,  but this follows by interpolating the inequalities 

[(~2(y)d~(y))^(~)l<Cllf2llL~r) if s (F), 

1(~2(y)da(y))^(~)l<CIIf211tk.~nl~l -~/" if f2eL~(F).  

The second one holds for N large enough by the Sobolev embedding theorem 
L~(F)~--~C"(F) ( m < N - n + l )  and the results of Littman [12]. [] 

This result was essentially known. When F = S"-1 and f2-=-1, it was proved 
by C. Calder6n [2] and Coifman-Weiss [6]. Their methods can be modified to 
yield the more general statement given above. It is noteworthy that results of 
the same type hold for certain singular measures in ~ .  In fact, if 0 < ~ <  1/2, 
there are singular measures # in ~ which are compactly supported and satisfy 
fi(~)=O([~] -~) (see [20], Chap. XII, 10.12). Therefore, we have 
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Corollary 3.2. There are compactly supported singular measures kt > 0 in F,, with 
I[#][ = 1,for which we have 

lira ~ f (x  --2-ky)d#(y)=f(x) a.e. 
k ~  o~ 

for every feL]o~(lR), p> 1. 

w Singular integral operators 

Even though more general results will be proved later, we begin by showing 
how simply the LP-estimates for homogeneous singular integral operators can 
be obtained, without using the method of rotations (see [1]). Let 

Tf(x) = lim ~ f (x  -y)  f2(y)[YI-" dy = lim T~ f(x) 
~ 0  lyI>E ~ 0  

where ~ is homogeneous of degree 0, with mean value zero over the unit 

sphere S"-1, and [2~Lq(S "- 1) for some q > 1. Then Tf= ~ a k , f ,  where dak(X ) 

=(2(x)lx[-"Xt2~,z~+@x[)dx, and we have 6k(~)=$o(2k4). Thus, in order to 
apply Theorem B, it suffices to prove that 

1~o(4)1_-< Cl~l, 1~o(4)1< cI4[  -~ 

The first one is obvious, because cr o has compact  support and ~o(0)=0. For the 
second one, we have 

2 

The integral in curly brackets is dominated by 10.41-1 and also by log2. Thus, 
it is also majorized by C l 0 . ~ l  -~ for any 0< c~ < l ,  and we take c~ so that 
eq' < 1. Then 

1~o(4)1_-<141 -~ IlaHgq(so ,)I110" 4'1 ~llg~'(s- , ) 5  C 141 -~ 

and we have proved that T is bounded in L ' (~")  for l < p < ~ .  The fact, 
needed in Theorem B, that supllakl*gl is bounded in L p for all p > l  is a 

k 

consequence of Theorem A, since we also have I(laol)~(~)l_-_% C I4l -~ (it suffices 
to substitute E2 by [(21 in the above argument). 

Since suppak~{x : lx l<2k+~} ,  we can also apply Theorem E and, taking 
into account that 

[T~f(x)l < j~=k~* f(x) + a ' f  (x) 

(if 2 k- 1 __< ~ < 2 k) we obtain that T ' f  (x) = sup [ T~ f(x)] is also bounded in L" for 
e ~ O  

all 1 < p <  oQ. This implies that Tf(x)=lim T~f(x) a.e. for all f e L  p. 
~ 0 
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Singular integral operators defined by kernels which are products of a 
homogeneous function ~2(x') (with some regularity) and a bounded radial 
function h(r) were first considered by R. Fefferman [7]. His results can be 
extended in the following way: 

Corollary 4.1. Consider the kernel K(x)=h(,x,)f2(~x~) IM " in IR", n> l, where 

a) ~ f2(x')dx'=O and f2cLq(S "-1) for some q> 1 
S " -  1 

R 
b) ~]h(t)12dt<CR forall R>0.  

0 

Then, Tf(x)=p.v. ~K(y ) f ( x - y )dy  exists a.e. and both Tf  and T*f(x) 
= sup [ T~ f(x)[ are bounded operators in LP(IR"), 1 < p < oo. 

~ > 0  

Proof We write S instead of S" - ' .  As before, we have Tf= ~ a k * f  where 

2 k + I dr 
G(O = ~ h( , ' ) l~ (O)e-~"~<~ - .  

2 k S r 

Denote by Ir(~) the integral in curly brackets. Then 

,Sk(~)12 <= (2il t lh(r),2 d~f ) (2)i ' ,I~(~)[2 d~f ) 

2~+~ d y  

__<2c j IL~)I 2 . 
2 t, r 

But 

and 

IIr(~)[ 2= iI O(0) Q(co)e-Z~ir~'(~176 
SxS 

2k+ l  

l e2nirr <=Cmin(l'12k~'(O--c~ 
2 k 

<cI2k~l-~l~ ' . (0-~o)l  -~ 

where ~'=~/l~l, and 0<c~<l .  We choose c~ so that c~q'<l, and, collecting 
everything, we obtain 

I~k(OI < Const. 12 ~ ~1-~/2 { ~.I I~(0) Q(co)l ]~'. (0-co) l -~ dO do)}'/2 
SxS 

--<-- C~ ~l-~/2 llQllq {J~ s ]oldO &~ ] ~q' J;x/Zq' . 

The last integral is finite because c~q'< 1. Thus, we have 

IG(~)I ~ C 12 k ~1-=/2. 
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2 k + 1  dr 
Also, since Ilatll=[IQIkl ~ Ih(r ) l - -<Const . ,  a k is supported in the ball 

2 k r 

{x: Ixl < 2  k+ '} and St(0)=0, 
I~k(~)l < c 12 ~ ~1. 

Finally, if/*k = [ak[, the same arguments apply to yield 

[fik({)l < C 12 k r Ifik({) --fik(0)[ < C [2 k {I 

(and ilk(0)= [lakl[ is a bounded sequence). By Theorem A, 

Mf(x)=sup I& *f(x)l ~ sup R-"I  5 f ( x - y )  fa(y') h(lYl) dyl 
k R > O  lYl < R  

is a bounded operator in LP(P,f) if p >  1. By Theorems B and E, the same result 
holds for Tf and T*f. [] 

Results of this type have also been obtained by L.K. Chen [3]. In the 
particular case where both f2 and h are bounded functions without any regular- 
ity, weighted estimates can also been obtained: 

Corollary 4.2. Let K(rx')=r-" h(r) I2(x') be a kernel in IR", n> 1 (where r > 0  and 
[x ' l=l) ,  and assume that h~L~176 f2eL~176 "-a) and 5 s Then, the 
operator Tf(x)=p.v. K , f  (x) is bounded in LP(w) fi~r every weight WeAp and 
1 < p <  oo and the same holds for T*. 

Proof. By the extrapolation theorem for A v weights (see I-8]) it suffices to prove 
that T and T* are bounded in LZ(w) for every weA 2. From the preceding 
proof, we know that 

Tf= ~ ak* f with 18k(g)l<= C min([2kgL, 12kgl-l) ~ 
- o o  

with c~ > 0. We decompose T as in the proof of Theorem B 

Tf= ~" T~f with T j f = E  Sj+k(%*S~+kf ) 
j =  - oo k 

for a suitable Littlewood-Paley decomposition. If w~A2, we have (see [11]) 

�9 S 2 [ITjf[122(w) < Cx Y~ l[ok j+kl[L2(w) 
k 

2 <C1C2~lIS~+kfllL2~w~<C~C2C3 .2  IlJ llL2~w~. 
k 

The second inequality follows from: lag *f(x)l < Cf*(x) ( f*  = Hardy-Littlewood 
maximal function) which holds due to the size of the kernel: [g(x)l<Clx[-". 
By the reverse H61der's inequality, we also have 

][Tjf[lL2(w,..) <=C[tf[IL2(wl+~), j e Z  
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for some e > 0  (see [8]). From the proof of Theorem B we recall that 

[]TjfHLz <= C2-aljl [If IlL2, j E Z  

and interpolating with change of measure we obtain 

II T~flle2(w) < C2-'~ Ilflhe2(w), j e Z  

0= E > 0 t .  This the result for T. the of proves By adapting proof 
1+~ ! 

Theorem E and using the same arguments as above we obtain the correspond- 
ing result for T*. [] 

This result was unknown even in the case of a homogeneous kernel K(x) 

=[xl -" f2( l~[  ) with (2eE ~. The same arguments can be applied (with slight 

modifications) to deal with more general kernels. For  instance, Corollaries 4.1 
and 4.2 are still true if K(rx')=r-"h(r)12r(x' ) provided that f2~ satisfies the 
required conditions uniformly in r and Qr(x') has, as a function of r, uniformly 
bounded variation over each dyadic interval [2 k, 2k+1]. Rather than pursuing 
this kind of generalizations, we shall try to clarify the role of the unit sphere in 
the proof of Corollary 4.1. We observe that, the only thing necessary for the 
whole proof to carry over with a more general (compact) manifold F instead of 
S"- ~ is that 

FxF 

for some e > 0  and for all unit vectors u, where da denotes Lebesgue measure 
on E A sufficient condition for this is 

rr({0~F: O.ud})<=CIII ~, ~5>E 

for every interval I c ~ ,  i.e., the part of F lying between two close parallel 
hyperplanes has an "area" of the order of the distance between the hyper- 
planes raised to somme fixed positive power. This is certainly the case if F has 

a c o n t a c t o f o r d e r  < k w i t h e v e r y h y p e r p l a n e  ( w e c a n t h e n t a k e c S = k l + l ) . W e  

are in position to formulate the following extension of Corollary 4.1 : 
Let F be a compact, C ~, m-dimensional manifold in IR", l < m < n - 1 .  

Suppose that OCF and that no halfline from the origin intersects F in more 
than one point. Define the "cone"  C(F)= {rO: r>0 ,  O~F}, which is an (m+ 1)- 
dimensional manifold with Lebesgue measure ds(rO)=r m dr da(O). We consider 
a locally integrable function in C(F) of the form 

K(rO)=r-m- a h(r) f2(O). 

Corollary 4.3. With the preceding conditions and notation, we assume that 

a) ~ f2(O) da(O)=O, f2~U(F, da) fi)r some q > l  
I" 
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R 

b) 5[h( t )12dt<CRfor  all R > O 
o 

c) F has a contact of finite order with every hyperplane. Then, the maximal 
operator 

M f ( x )  = sup ~ If(x - y )  K(y)I ds(y) 
R>O y e t ( F )  

R < I Y I < = 2 R  

and the singular integral operator 

Tf(x)=p.v .  ~ K ( y ) f ( x - y ) d s ( y )  
C ( r )  

=l im ~ K ( y ) f ( x - y ) d s ( y )  
e ~  0 y e C ( F )  

Irl>~ 

(both defined a priori for Schwartz functions) have bounded extensions to LP(Ht"), 
1 < p <  ~ .  Moreover, the principal value integral defining Tf(x)  exists a.e. 

If F is symmetric with respect to the origin and K(rO)=r -m-~ f2(0) with f2 
odd, then the condition 12mLl(F, da) is sufficient. This can be proved by the 
method of rotations, but the usual argument to deal with even kernels in no 
longer available. Singular integrals of the type considered in the last corollary, 
with "variable kernels", are partially studied in [4]. 

Another result for singular integrals of the type considered in [7] is 

Corollary 4.4. Let K(rx ')=r-"f2,(x ' ) ,  r>0 ,  x'~S "- l ,  be a kernel in ~". Assume 
that, for some c~>0, each f2, belongs to the Sobolev space LI~(S "- 1), and 

a) S I I f2~(x')dx'l 
dr 
- - < 0 0  

0 S " - 1  r 

R 

b) ~llf2~[}L~dr<CR for all R>0 .  
0 

Then, Tf(x)=p.v.  ~ K ( y ) f ( x - y ) d y  is a bounded operator in LP(~"), l < p < o o  
gl." 

and the principal value integral exists a.e. 

1 
Proof. Let g(r)=[S._l l  ~ f2~(x')dx' and G(y)=g([y[)[yl-", ye~.". Then, a) 

S"-  l 

means that GeL~(IR"), and 

Tf(x)  = G *f(x)  + ~ a k *f(x)  
- o o  

where 
zk+, dr ad~)= S { ~ e-~'x"<[a,(x')-g(r)] dx ' } - .  

2 k S " -  I r 

The term G , f  is obviously bounded. Since ~k(0)=0, we have I~k(r < C I2k~l. 
On the other hand, from the proof of Corollary 3.1 (see estimate for fi in that 
proof) we know that the inner integral in the above expression for 6k is 
majorized by C(14 arll L' [r~[ -~ + Ig(r)[ Ir~l-~"- W2). Thus, the hypothesis a) and b) 
together imply: I~k(01<Const. 12kr -a, and Theorem B applies (observe that 
sup Icrkl,f was proved to be bounded in L p in Corollary 3.1). [] 

k 
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When comparing this corollary with the first one in this section, we observe 
that the kernels considered in 4.1 are products of radial and angular functions, 
while the form K(rx ' )=r-" f2~(x ' )  is satisfied by any function in IR". However, 
the hypothesis in 4.4, ~ e L ~ ,  is more restrictive than ~?eL q for some q > l .  
Thus, no corollary implies the other. A variant of Corollary 4.4 is the follow- 
ing: Suppose that Y2eL1~(S "-  1) for some c(> 0, and ~ ~2(x')dx'= O. Then 

T f ( x ) = ~  ~ f ( x - -2ky ' ) f~ ( y ' ) dy  ' 
k S n I 

is a bounded operator in Lr(l/"), l < p <  oo (n>2). This is a discrete analogue of 
a homogeneous singular integral operator, and it is clear that the discrete 
version implies the continuous one: 

o drr s,- ~ ~ f ( x - r y ' ) f 2 ( y ' l d y '  p<Cpl l f l lp  

but not conversely. It must be noticed that no such result for discrete anal- 
ogues of the Hilbert transform holds in LP(~). 

Non-isotropic analogues of the preceding results can be obtained by using 
Theorem F. We limit ourselves to state the result corresponding to Corollary 
4,1 in this more general setting, The notation is as in w 

Corollary 4.5. Consider a kernel K(~ ,u )= t  -a h(t) (2(u), ueZ,  t>0 ,  such that 

a) ~ f2(u) da(u)=O and ff2~Lq(w~, da) for some q > l  

R 

b) ~ I h ( t ) [ 2 d t < C R f o r  all R > O  
0 

then, T f (x )=p.v .  ~ K ( y ) f ( x - y ) d y  exists a.e. for every feLt (JR ") and defines a 
bounded operator in L p, 1 < p < o0. 

w 5. Operators with kernels supported in curves 

Given a continuous curve in N" 7(0=(71(0, 72(t) . . . . .  7,(t)), t eN,  such that 7(0) 
=0, the maximal function and the Hilbert transform along 7 are defined, at 
least for Schwartz functions f, as follows 

1 i dt M7 f ( x )  = sup f ( x  - 7 (t)) 
h>O ~ - h  

H ~ f ( x ) = p . v .  i ~ f ( x - y ( t ) )  
dt 
t 

Let Pk}k2- and kJk=-oo { ~' ~ {a ~ '  be given by 

~ g d p k = 2  -k I ~ g(7(t)) dt 
2k<l t [<2  k+l 

dt 
g = gITi t ) )  - - .  

2k<l t [<2~+ a t 
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They are all finite Borel measures. Moreover, #k>0, ~d/~k=l, ~dak=O and 
lag[ <2#k. It is also obvious that 

Mrf(x)<2sup# k . f (x)  (f>O) 
kJs  

H~,f(x)= ~ a k *f(x). 
- -  c t D  

Thus, this is the sort of operators considered in w In some cases, when the 
conditions on 7 only control its behaviour near the origin, local versions of M r 
and H~ must be considered, namely 

)~y f (x )=  sup 1 h O<h<a ~ ~ f (x-7(O) dt ~supl#k*f(x)l 
- h  f k < O  

i dt -1 
/4~f(x)=p.v.  f(x--7(t)) t = ~ ak*f(x ). 

Corollary 5.1 (Stein and Wainger [18]). Let 

~(Pl tb' - tb2 ,v2 , . . . , p , t  b") if t>O 
7(t)=((ql[t[b',qz[tlb2, .... q,[t[ b") if t<=O 

for some positive numbers 0 < b  1 < b 2 <  . . .  < b  n and points p=7(1) and q=;~( -1 )  
in N"\{0}. Then, M,~ and H~ are bounded in LP(N"), 1 <p<oQ and the principal 
value integral defining H~ exists a.e. 

Proof. We shall prove the maximal theorem by induction on n (the dimension 
of the underlying space). For n = 1, M r is controlled by the Hardy-Littlewood 
maximal operator. We assume the result to be true for curves in I ("-1 of the 
type considered, and decompose the space in the form 1R"= N"-1  ) (  ~_~, SO that ( 
= 3 ,  and ~~  The crucial estimate for fio(~), which is ob- 
tained by means of Van der Corpurs  lemma is 

Ifio(~)[=] j e-Z=ir -1/" 
x__<M<2 

(this is elementary with exponent - 1 / b .  if b 1 . . . . .  b. are natural numbers and if 
they are rational a change of variables reduces this case to that of bj6IN; for 
the general case, see [18]). 

Since fik(~)=fio(2 kb' ~ ,  2 kb2 ~2 . . . . .  2 kb" ~.), we have in particular 

Ifidg)l < C 12 ub" g,I- ~/" 
and also 

Ifik(~~ ~,)--fik(~O 0)1 ~ ~ ]exp(2rci~,y,(2kt)--lldt~cI2kb"r 
l < l t [ < 2  

These are the estimates (4) and (4') needed to apply Theorem C with c~=-; a k 
n 

=2kb"). Since M ~ is bounded in LP(IR "-1) for all p > l  by the induction 

hypothesis, the boundedness of M r is completely proved. 
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In order to estimate H r f = ~ a k . f ,  we decompose the operator into n 
k 

essentially one-dimensional operators. For each O<=j<=n, let f,~(J~t~ be t ~ k  / k =  -- 

defined in terms of Fourier transforms as 

cr~J~({) = ffk({1, ~2 . . . . .  {2, 0 . . . . .  01 ~(2 ~'+~ {~+ 1/..- q3( 2~b" ~,,) 

where ~ ( R )  and 4~(0)= 1; in particular, c~"l=ak and e~m=0, because 8k(0) 
= 0, SO that 

O ' k =  ~ u~kr'~O) - -  rr(J--~k 1)] 
j = l  

and 

H~f= ~ H~ with H~ ~ (a~J'-er~J-a)),f 
j = l  k = - o o  

Now, it is also known (and this is a simple consequence of the corresponding 
estimate for #o) that 

I~o(~)1= 1< d~ < e -2~i~'~'m C[~I-,I, 
=ltl=<2 

Therefore, I6k(~)l < C ]2kb'~jl--ll". Since 6k and ~ are uniformly bounded, and 
C 

~fi(t)<~, we have 

[[~j) __ ~j-1)]  ^ (~)1 < CI2 kb' ~jl- 11.. 
Also 

l[cr~J~ - cr~J- 1)] ̂  (~)l < C 12 kb~ ~jI 

and both estimates together are equivalent to (6) for an appropriate decom- 
position of F,.". If {#~j)}~o= _ ~ is defined as a~ j) above, the maximal theorem for 
the curve (yl(t), 72(t), ..., 7j(t)) in IW implies that sup l/t~J).f(x)l is a bounded 

k 
operator in LP(IR ") for all p > l .  Since la~J)l<2"~J),= ,~k Theorem D (actually, the 
weaker version, Theorem D') can be applied to yield NH(J)flbp<Cpl]fNp, 
1 < p <  c~, and this finishes the proof for H~. The a.e. convergence follows from 
Theorem E if we take s u p p l e [ - 1 ,  1]. [] 

The preceding proof has been given in order to illustrate the applicability 
of Theorems C and D. Observe that no use was made of the non-isotropic 
dilations naturally attached to the curve ~;. However, by using these dilations 
and Theorem F, a more direct proof can be given for a more general class of 
curves: y(t) is a two-sided homogeneous curve if 

y(t)=btp i f t > 0 ,  7(t)=fi_tq if t<0 ,  7(0)=0 

for certain p ,q~R"\{0}  and for some group of generalized dilations {6t}t> o 
and if {y(t)},>o, {y(t)},< o span the same linear space. Then, we have the 
following result, which is also proved in [18] by more complicated methods: 

Corollary 5.2. Let y(t) be a two-sided homogeneous curve. Then, M~, H~ and H* 
(the maximal Hilbert transform along ~) are bounded in LP(~,"), 1 < p <  c~. 

The estimates Ifid~)l + I~k(r --< C( 2k N r needed in the proof of Corol- 
lary 5.2 are also known to hold (for k<ko) if the curve 7 is approximately 
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On the other hand 

homogeneous (see [19_] for the definition and the estimates). Therefore, for this 
class of curves, My, H~ and H* are bounded in L p, 1 <p  < ~ .  In [19] this result 
is only obtained for p=2 .  A particular case of approximately homogeneous 
curves for which the whole range 1 < p < ~  was known (see [18]) consists of 
the C ~ curves 7(0 such that 7(0)=0 and the derivatives {7(~)(0)}j~a~ span ~". 
We shall now give a positive result for a class of curves in ]R 2 which may have 
a contact of infinite order with their tangent at the origin (after a rotation, this 
means that 7(t)=(t, ~o(t)) with ~o~J)(0)=0 for all j, so that {7~;~(0)} ={(1, 0)} does 
not span R2). 

Corollary 5.3. Let 7(t)=(t, ~o(t)) be a C 1 curve in ]R 2 such that ~p(0)=~p'(0)=0. 
Suppose that ~p is either even or odd and that ~p'(t) is a convex increasing 
function for t>0 .  Then, M~, H~ and H* are bounded in LP(~2), 1 < p <  ~ .  

The Fourier transform estimates needed for the proof are contained in the 
following 

Lemma. Let hk(t)=2kt41+q~(2kt) ~2, with q~ as above and 4=(~1, ~2)E~.  2, keZ. 
Then, for 1 < R < 2, we have 

i dt I - l / 2  e 2nihk(t) = < c I 2 k g l  

where C is a constant independent of 4, k and R. 

Proof of Corollary 5.3. We take momentarily the lemma for granted. By the 
symmetry of 7(t), we have 

2nihk(t) d t +  ie-2nihk(-t) dt <C12k~1] 1/2. e 
-1 

2 
[/~k(41, 42) --/~k( 0, 42)[ < ~ [exp( -2~ i2k  t~l) - -  1] d t  ~ C 12 k ~11- 

1 

We are now in position to apply Theo remC (with the order of 4 ~ and 
reversed: o =42,  (=4 , ) -  It only remains to check the boundedness in LP(IR) 
for all p > 1 of the maximal operator sup I#~ ~ * g(x)l, which is equivalent to 

k 

sup 1 i g(x-q~( t ) )d t .  
h>O ~ -h  

But this is controlled by the Hardy-Littlewood operator, since, for g => 0 

1 i ~o(h) du 1 
g(x-q~( t ) )d t= h ~ g ( x - u )  -<g*(x)  

h o o ~0' (~0- ~ ( u ) )  = 

1 
because hqr is decreasing and its integral over [0, (0(h)] is equal to l. 

This completes the proof of the result for M r . 
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The LP-boundedness of H~ a_nd H* will be a consequence of Theorems D 
and E (again, with 4o=42 and 4=41). By the previous lemma and integration 
by parts: 

2 
!e--2~ihk(t) d~ ~c,2k~l ' 1/2 

and the same is true for hk(--t ). Therefore, I~k(4)l<c[2k411-1/2, and also 
[~k(4X,42)--~k(O, 42)L<cL2k41] (the proof is as for the Pk'S). We have the 
control of a* and ~o), because ]ak[<2#k, [a(k0)]<2P(k ~ NOW, if ~o(t) is even, 
~k(0, 42)=0 and the result is proved as a consequence of Theorem D' (the 
weaker version of Theorem D). If ~o(t) is odd, we only have to prove the 
estimates (5), (5') for ~k(0, 42). This we shall do with the following choice of the 
lacunary sequence {bk}k~__ov: bk=(p(2k). Since (p is convex and increasing in 

~o(t) 
(0, ~),  is also increasing for t>0,  and this proves the lacunarity: 

t 
bk+ 1/bk>2 for all k~7Z. Let us prove (5): 

dt 
lak(0' ~2)]< ~ lexp(--2~i(p(2kt)~2)--l] [t~ 

lGlt[~2 

< C ko(2 k+ 1) ~2[ = C Ibt+ 1 ~21. 

On the other hand, 

J t  ((p(2kt)~2)=' 2k (P'(2kt)~2[-- >- ~(~2tk!-)42 ~-~; [bk 42[ 

if 1 < It[ < 2, and Van der Corput's lemma gives: [ak(0, 42)[ < C I b k 42[- 1, finish- 
ing the proof. [] 

Proof of the lemma. We shall only use the fact that ~o'(t) is increasing for t>0,  
t 

and the constant C will be independent of the particular function (p. Thus, we 
can substitute 2 k ~1 by 41 and (p(2kt) by q)(t), which amounts to assuming k=0.  
We can also assume that 42>0. If 41 >0, we have 

h'(t)=41+~o'(t) 42~141] 

and Van der Corput's lemma gives the result. If 41 
such that 

We take t 1 = min (t o, 2), 6 = 

< 0 ,  there is a unique t o > 0 

h'(to) = 41 +qY(to) 42 =0. 

]411 1/2, and decompose 

R 
I e-2=ih(t) dt= I q- ~ q- 
1 l l  I2 J3 

where 11 = [1, R] c~ It 1 - (5, t I + 6], 12 = [1, t 1 - 6] and 13 = I t  1 + 6, R]. Then, triv- 

_ >a 4 ' ially, 1~1<26=21411 1/2. We shall prove that [h'(t)l=21 I[=~IGI 1/2 if 
I1 

t~12wI3; since h'(t) is monotone, this will prove the lemma by a new appeal to 
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Van der  Corpu t ' s  result.  Firs t ,  if t e l  2 

h'(t)<__~+~o'(tO t l ~ 2 <  1 t - 

On the o ther  hand,  1 3 = 0  unless t I = t o ~ 2 ,  and  in this case, if t~ I  3 

h,(t)>=~l +q),(to ) t - ~ ) = 2  1311 to  ~2__r t >6_ 

and the p roo f  is ended.  [ ]  

If  a>O, the  funct ion ~o(t) defined by ~o(t)=e -1/Itl~ for 0_<t<_e (e small  
enough)  and su i tab ly  con t inua ted  for t >~ satisfies the hypothes is  of Coro l l a ry  
5.3, and  the curve (t, q~(t)) has a contac t  of infinite o rde r  with the line (t, 0) at 
the po in t  (0,0). We  r e m a r k  that,  for M r to be bounded ,  there  is no need of 
having any re la t ion  be tween q~(t) and  q~(- t) .  However ,  for Hr  to be bounded ,  
even in L 2, some cance l la t ion  be tween 7+ ={(t ,  (p(t))},>0 and  7 - = { ( t ,  q~(t)}t< o 
must  exist. The  preceding  p r o o f  can be carr ied  over  under  the assumpt ion  
q~( - t )  ~ q~(t) or  ( o ( - t ) ~  -~0(t)  ( instead or  evenness or oddness).  U n d e r  a sl ightly 
more  restr ict ive hypothes is  (y was assumed to be C 2) the  boundedness  of My in 
L 2 was es tabl ished in [18], and  the fact that  Hv is b o u n d e d  in L p, - ~ < p < ~ ,  was 
p roved  in [14]. W e  have also been in formed tha t  M. Chr is t  has recent ly 
ob t a ined  a resul t  qui te  s imi lar  to our  Coro l l a ry  5.3. 
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