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In this paper  we first p rove  a general  existence theorem for homogeneous  
Einstein metr ics  and  then we exhibi t  some compac t  s imply connected  h o m o -  
geneous spaces which car ry  no h o m o g e n e o u s  Einstein metric.  

A R iemann ian  metr ic  g is called Einstein if R i c ( g ) = c .  g for some cons tant  
c. If c > 0  most  known examples  are  homogeneous ,  see [Be]. Previous  con- 
s t ruct ions of homogeneous  Einstein metr ics  were usual ly achieved by more  or 
less explicit  ca lcula t ions  on special  families of homogeneous  spaces,  see, e.g. 
[Je 1,2], [ D Z ] ,  or  [ W Z  1]. 

On  the o ther  hand,  the Einstein metr ics  of vo lume 1 on a compac t  
manifold  are precisely the cri t ical  points  of the to ta l  scalar  curva ture  funct ional  

T (g )=  J S(g)dvolg  on the space of  R iemann ian  metr ics  of vo lume 1. This 
M 

suggests a va r ia t iona l  a p p r o a c h  to finding Einstein metrics,  which so far has 
not  been successful. 

If G/H is a compac t  homogeneous  space, we can restr ict  T to the subset  of 
G- invar iant  metr ics  of vo lume 1. The  cri t ical  points  of the res t r ic t ion of T are 
again precisely the G- invar ian t  Einstein metr ics  of vo lume 1. In this paper  we 
examine when T is b o u n d e d  from above  or be low and /o r  proper .  In  par t i cu la r  
we prove the fol lowing 

Theorem. Let G be a connected compact Lie group and H a connected closed 
subgroup such that G/H is efJective. Then the functional T on the set o f  G- 
invariant metrics with t'olume 1 is bounded .from above and proper if[" H is a 
maximal connected subgroup of  G. For such a G/H, T assumes its global 
maximum at a G-invariant metric which must be Einstein. 

By contrast ,  as we will see in w 2, it s e ldom happens  tha t  T is b o u n d e d  from 
above  but  not  p rope r  or  tha t  T is bounded  from below. 
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Combined with [Dy2] ,  Theorem A yields immediately, without explicit 
calculation, numerous new homogeneous Einstein manifolds. For example, 
apart  from a short finite list of exceptions, every irreducible representation ~z of 
a compact simple group H gives rise to a homogeneous Einstein manifold 

SO(n)/~z(H),SP(2)/~r(H),orSU(n)/~(H),dependingonwhether~isorthogo- 

hal, symplectic, or non-self-contragredient. 
Next, we exhibit some compact simply connected homogeneous spaces G/H 

which carry no G-invariant Einstein metric. These G/H have the property that 
every G-invariant metric is obtained from a fixed Riemannian submersion 
K/H--*G/H~G/K by re-scaling the metrics on the fibre and base. Hence the 
Einstein condition reduces to a quadratic equation in one variable which in 
some cases has no real roots. It is amusing to note that the trick of re-scaling 
the fibre in a Riemannian submersion has been frequently used in the past to 
produce homogeneous Einstein metrics. 

Our lowest dimensional non-existence example is the 12-dimensional ma- 
nifold SU(4)/SU(2) where S U ( 2 ) c S p ( 2 ) c S U ( 4 )  and SU(2) is the unique maxi- 
mal connected subgroup of Sp(2). We will show that no other Lie group acts 
transitively on SU(4)/SU(2). Hence it carries no homogeneous Einstein metric 
whatsoever. We do not know if any of these manifolds admit a non-homo- 
geneous Einstein metric. 

Recall that R. Hamil ton showed [Ha]  that if g is a metric of volume l on a 
compact  3-manifold M with Ric(g)>0,  then there is a smooth 1-parameter 
family of metrics g, of volume 1 with g o = g  which is a solution of the natural 
evolution equation 

/}g?t ' = - 2  Ric(g,) d imM 

Moreover, gt converges as t - ~  to a smooth Einstein metric, which must have 
constant sectional curvature since the dimension is 3. Hamilton's  equation is a 
slightly modified version of the equation for the gradient flow of T. gt is a 
solution of the gradient flow of T if 

1 sIg3g,). 
~g---t=-2?~t Ric(gt) d i m M  

If d i m M > 3 ,  short-time existence and uniqueness of solutions of Hamilton's  
evolution equation still hold. However, our non-existence examples show that 
in general a solution curve gt will not converge, even if go has positive Ricci 
curvature and non-negative sectional curvature. This is seen as follows. Since 
Hamilton's  equation is invariant under Diff(M), by uniqueness, 
Isom(go)clsom(gt) for all t > 0  for which g, exists. If G c I s o m ( g 0 )  acts tran- 
sitively on M, then gt will also be G-invariant and since S(gt)= T(gt), the flow 
of Hamilton's  equation on the set of G-invariant metrics agrees with the 
gradient flow of T. Since the set of G-invariant metrics of volume 1 on M is a 
smooth finite dimensional manifold, a solution curve gt has the property that if 
tin,: is the maximal time for which g~ exists, then as t---~tma , either g, converges 
to a G-invariant Einstein metric or g, goes off to oo on the set of G-invariant 
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metrics of volume 1. Hence any solution curve of Hamil ton ' s  equation with 
homogeneous  initial metric on one of our non-existence examples will go off to 
oQ. Moreover ,  since every compact  simply connected homogeneous  space car- 
ries a normal  homogeneous  metric with positive Ricci curvature and non- 
negative sectional curvature, we may choose such a metric as initial metric. 

the same conclusion holds for any differential equation ~ = F ( g t )  Exactly 

(necessarily invariant under Diff(M)) that satisfies short  time existence and 
uniqueness, and has the property that all s tat ionary points are Einstein metrics. 

w 1. The scalar curvature functional 

Let G be a compact  connected Lie group and H a closed subgroup such that G 
acts effectively on M=G/H, i.e. H contains no nontrivial normal  subgroup of 
G. The assumption of  effectiveness is not  necessary but is convenient. Hence in 
giving actual examples of G/H we will not  worry about  effectiveness. We will 
also assume that H is connected, which is automatical ly the case if G/H is 
simply connected. 

For  a Riemannian metric g on M we denote by S(g) its scalar curvature 
and by T(g) its total scalar curvature ~ S(g)dvolg. Then, on the set JCL of 

M 
Riemannian metrics on M with volume 1, the critical points of T are precisely 
the Einstein metrics on M, as follows from the first variation formula ( [Hi]  or  
[Bg] p. 289) 

where h is any symmetr ic  2-tensor on M such that 5 ( t r g h ) d v o l g = 0  and 
n = dim M. M 

Let oggG be the set of G-invariant metrics of volume 1 on M. Note  that on 
,./t~, T(g)=S(g) .  The set of  critical points of  TI,/r are precisely the G- 
invariant Einstein metrics of volume l on M since at a critical point g of 

S 
TI.-/Ya we can choose h to be the G-invariant symmetric  2-tensor - g - R i c ( g ) .  

n 
Let B be the negative of the Killing form of g. Then B(X,X)>O with 

equality iff X e  ~(g). We fix once and for all a biinvariant metric Q on g such 
that the induced normal  homogeneous  metric ge on G/H has volume 1. 

Next we consider the Ad(H)-invariant  decomposi t ion g = b @ m  with 
Q(b, m ) = 0 .  Then the set of  G-invariant metrics on G/H can be identified with 
the set of Ad(H)- invar iant  inner products  on m. 

Let ( , ) be an Ad(H)-invariant  inner product  on m and {e~} be a basis of 
m or thonormal  with respect to ( , ). Then one has the following formula for 
the scalar curvature  of ( , ) (see e.g. [Be], (7.39) or [Je2] ,  p. 1130): 

1 (1.1) S=�89 ~ B(e~, %)--~ 2 ( [e , ,  ei~ ] .... [e~, e~],,) 

where [ , ],1 denotes the m-component .  
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We now examine this formula more closely. Let m = m  1 |  |  o be 
a Q-orthogonal Ad(H)-invariant decomposition such that Ad(H) lm o = i d  and 
Ad(H)lmi is irreducible for i=1  . . . . .  r. Such a decomposition is not unique if 
some of the representations of Ad(H) on n h are equivalent to each other. But 
the subspace m 0 and the numbers d~=dimm~ are independent of the chosen 
decomposition. 

The structure of ~#a can be described in terms of a fixed decomposition. By 
Schur's lemma, X{ G is diffeomorphic to the positive definite elements in 

R" x [ F[ HOmAdn(m i, mj)] x S2(mo) 
l<i<j<=r 

with volume 1. The volume condition is equivalent to requiring the matrix of 
an element of JC/'G (with respect to a Q-orthonormal basis of m) to have 
determinant 1. Thus Jga is diffeomorphic to a smooth hypersurface lying in an 
open cone in some Euclidean space. 

This description of JCa with respect to a fixed decomposition of m is, 
however, rather complicated to work with. Instead, we shall vary the decom- 
position of m and study ~/'a and T this way. 

First we decompose m 0 further into Q-orthogonal 1-dimensional subspaces 
t oo=m,+  ~ @ ... @m~. For  the rest of this paper  we will refer to a Q-orthogonal 
Ad(H)-invariant decomposition m = m 1 @.. .  @ m~ | m~+ 1 |  @ m~ as above 
simply as a decomposition of m. For each decomposition there is the family of 
Ad (H)-invariant "diagonal" metrics: namely, those given by 

(1.2) ( , )=XlQlmld- . . . •  xi>O. 

Every Ad(H)-invariant inner product on m belongs to the family of Ad (H)- 
invariant diagonal metrics of some decomposition of m. This is seen as follows. 
For a given Ad(H)-invariant inner product ( , > on m, we first diagonalize 
( , > with respect to Q to obtain a decomposition of nt into eigenspaces of 
( , ), which are orthogonal with respect to both (2 and ( , ). These eigen- 
spaces are Ad(H)-invariant,  and so can be further decomposed into irreduc- 
ible summands which are orthogonal with respect to Q and ( , ). Then ( , ) 
has the form (1.2) with respect to this decomposition, where the xi's are the 
eigenvalues of ( , > with respect to Q. Note that it can happen that the same 
Ad(H)-invariant inner product can be diagonal with respect to many different 
decompositions of m. 

For a fixed Q-orthogonal Ad(H)-invariant decomposition of m, the scalar 
curvature of the metrics of the form (1.2) has a nice expression. Let {e~} be a 
Q-orthonormal basis adapted to the decomposition of m, i.e., e ~ m  i for some i, 

7 - -  ? and e < f i  if i<j.  Next set A,t~-Q([e ~, e~], e,~), so that [ %  et~],,=~A,ee,,, and 
), 

r l /k i=~(A~p)2,  where the sum in taken over all indices 0~,fl, v with e~enl i, set L j i j  

k]  is of the bases epemj, and e~em k. Note that ij independent Q-orthonormal 

chosen for m~, m j, and rag, but it definitely depends on the choice of the 

k]  is continuous function the of all decomposition of m. ij a o n  space Q- 
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orthogonal ordered decompositions of m into Ad(H)-irreducible summands. 

k]  is in all 3 indices since is Notice also that ij symmetric A~ skew-symmetric 
in all 3 indices. 

Let ( , ) be an Ad(H)-invariant metric having the form (1.2) with respect 

to a fixed decomposition of m. Then {ejl/~//le~emi} is an orthonormal basis 
of m with respect to ( , ). By (1.1) the scalar curvature of ( , ) is given by 

2 x i 4 ~ ij xix J' i = 1  i , j , k  

with where Blmi=biQIm i. We have bi>O with bi=O iff m/c~(g), and ij 

[k ]=-O iff Q([mi, mj], mk)=O. 
ij 

(t.4) Remark. If for a fixed decomposition of 111 we have Ricg(mi, my)=0 
whenever i@j for all metrics g of the form (1.2) with respect to the decom- 
position, then the first variation formula for T implies that the critical points 

for S in (1.3) on the set I:I x~d' = 1 are Einstein metrics on G/H. But in general if 
i = l  

m~ and m~ are equivalent Ad(H)-representations, then Ric(m~, tit j) may be non- 
zero, and hence the critical points of (1.3) will not necessarily be Einstein 
metrics. Nevertheless (1.3) will be sufficient for us to examine the global 
behavior of S on Jgc,- 

[ k ]  and the In Sect. 3 we will need the following relationship between ij 

Casimir operator C.,,,el ~ = - ~  ad z~ o adz  i, where z; is an orthonormal basis of 
i 

b with respect to QIb- Since m i is Ad(H)-irreducible C.,,,Qib=c i. Id with c i>0  
and ci=O iff m i c r o  0. 

[ k ] =di(bi - 2ci). (1.5) Lemma. ~, ij 
j , k  

P,.ooj: Z ij = y' 2 Q([e~, e~], e f  
j , k  , e = e m ,  ll, y 

= ~ ~ Q([e~, ets].,, [e~, eel,,) 

= ~ - t r . , (Pr . ,~  2 
e~em, 

= ~ (- t r . . (ade=)2+2 tr~,(pr~ade.opr,.ade~)) 

= y' (B(e=, eD+2y 'Q([e~,  [ %  zi]], zi) 
ec~ ~ l rl t i 

= ~ (B(e=, e.)-2Q(C,.,.ol~(e~), e~) 
ememl 

=di(b i -2c i ) .  q.e.d. 
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Notice that one can use (1.5) to collect terms in (1.3). The coefficient of l /x i 
in (1.3) is equal to 

1 (d i b 1 1 1 k 

which is > 0  and = 0  iff m i c r o  o and [m i ,m j ]cmj  for all j. 
We also need a formula  for the scalar curvature of a Riemannian sub- 

mersion. Let ~: M---,B be a Riemannian  submersion with totally geodesic fibres 
F. Let g denote the metric on M normalized so that vo l (g)=  1. Let S(B) and 
S(F) respectively be the scalar curvature  of the base and fibre. On M there is a 
natural  family of metrics: gt=tglvZgJ~, where V and H are respectively the 
vertical and horizontal  distributions. Then 

1 
S(g,) = t  S(F) + S(B) - t  I hA 1] 2 

where IIAH is the norm of the O'Neill  tensor computed  with respect to g = g l .  
(See e.g. [BB], L e m m a  14.) If  we let f = d i m F  and n = d i m M ,  then vol(g,) 
=t f/2' SO that ~,=t-f /"g,  has volume 1 and 

(1.6) S(g"):tf/" ( i  S(F)+ S ( B ) - t  ]1AH2). 

Hence if S ( F ) > 0  then S(~,)~ + ~ as t ~ 0 .  
In applications we will consider compact  connected intermediate Lie 

groups K with H c K c G. Let 9 = i | m b and f = [3 | m I be Q-or thogonal  de- 
compositions.  For  any Ad(H)- invar iant  metric ( , ) on m such that  (my,  rob) 
= 0  and such that ( , ) I r a  b is Ad(K)-invariant ,  the natural  projection 
G / H ~ G / K  becomes a Riemannian submersion with totally geodesic fibres if 
the metric on base and fibre are given respectively by ( , ) I ra  b and ( , ) l m  I. 
(See [BB], Prop. 2.) The induced family of metrics gt clearly lies in J ~ .  

w 2. S bounded on d/~ 

(2.1) Theorem. S is bounded from below on d/[ G iff the universal cover of G/H 
is a product of several isotropy irreducible homogeneous spaces and a euclidean 
space R k, k>O. S is in addition proper iJf k = 0 .  IJ" k = 0 ,  S has a unique critical 
point, which is a product of the unique Einstein metric on each Jactor, and S is 
bounded from below by a positive constant. I f  k> 1, S has a critical point iff 
G/H is a torus. 

Proof. Assume that S is bounded  from below on dg G. Fix a decomposi t ion  of 

m. If ij "I=0 for some i,j, k with k ~ i  and k=t=j, then (1.3) implies that S-+ - o c  

if x i ~ 0 ,  x j ~ 0  and Xk~ + oC at suitable rates preserving the volume. Hence. 
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k ] = 0  whenever using the symmetry of [ ] in all 3 indices, it follows that ij 

there are two distinct indices. Thus [m i, m~] =0  if i#:j and [mi, mi] < b �9 mi. 
If we let b i=[nh ,  mi]b, then the biinvariance of Q implies that g~=b~| 

are pairwise Q-orthogonal ideals of .q. The Q-orthogonal complement of �9 gi in 
g is thus an ideal contained in b, which is 0 by effectiveness. So g=  | and 

the universal cover of G/H is the product tzI GJHi- Note that m o <~(g) and if 
i=1 

tnlcnt0,  then b~=0. It follows that b = @I)~ and b~ acts irreducibly on m> 
i=1 

l<i<_r. Thus, GjH~ is isotropy irreducible if 1 <i<r,  and by effectiveness ~(g) 
= m 0 = R  k for some k>0.  The decomposition m = m  1 O . . . Q t n ,  O m  o is unique 
since the Ad(H)-representations m> i>0,  are pairwise inequivalent. Hence by 
(1.3) S on JgG has the form 

1 r S= ~. dibi>o, 
2 i=1 xi 

which is independent of the metric on m o = a(g). 
This completes the proof of the first assertion in (2.1). The next two 

assertions are immediate consequences of the first assertion and the form of S in 
the preceding paragraph. Finally, if k>  1, S has a critical point iff G/H is a 
torus since Ric is 0 on m 0 and positive on n h, i>0.  q.e.d. 

Remark. The homogeneous spaces occurring in (2.1) are precisely the compact 
homogeneous spaces of normal type, i.e., every G-invariant metric on G/H is 
normal homogeneous, see [BB], Lemma 12. Note that Lemma 13 in [BB] is an 
immediate consequence of (1.3). 

(2.2) Theorem. S is bounded J?om above and proper on ~I~ iff H is a maximal 
connected subgroup of G, or, equivalently, b is a maximal subalgebra of 9. In this 
case S has a global maximum, which must be a G-invariant Einstein metric on 
G/H. 

Proof. Let us first assume that b is maximal in .q, Maximality has the following 
consequence: there is a constant a>O depending only on G/H such that for 
any non-empty proper subset l c  {l . . . . .  s} and for any decomposition of m 

[ k ] > a .  To see this, note first that for any there exist i , j e I  and k(~I with ij 

fixed decomposition of m and for any non-empty proper I c {1 . . . . .  s} there 

[ k ] > 0 s i n c e o t h e r w i s e  b Q ~ n h w o u l d  be a exists an i , j~I ,  k(~l such that ij i~r 

proper subalgebra of g properly containing b. Now for each non-empty subset 

k]  where the infimum is taken all decom- / c { l  . . . .  ,s} let a , = i n f ~  ij over 

positions of m and the sum is taken over all i , j ,k  with i, j s I  and kr  By the 

compactness of the set of decompositions of m and the continuity of the ij  ' 
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k]  a I 
we see that a1>0,  and hence for some i, j e I ,  kr  - -  Since there are 
only finitely many I's, the existence of a follows, ij >=s 3" 

By the compactness of the set of decompositions of m, we can also find a 
constant b > 0  such that for every decomposition bi~b, where bi is given by 
Blmi=b~Q[m i. Next we fix constants c~i s.t. 0=0~l<~2< . . .<~s= l  and 
~+1 >(1 + cq)/2. Let 

~=min{2~i+l--C~i--1,  l _< i _< s --1} > 0. 

For  each fixed decomposition of m, we consider the family of metrics given 

by (1.2). If the metric is +Q, we write x~=e '~' with ~ v/Z=l, t>0 ,  and ~ div i 
i=1  i=1 

= 0  since the volume is assumed to be 1. For a fixed (v~ . . . . .  v~) let vmi n 
= m i n  {vi}. Then there exists a constant c > 0  which depends only on s and {di} 

i 
(and hence not on the decomposition) such that Vm~n<--C<0 for every 

(v 1 . . . .  ,vs) satisfying ~ v/2=l and ~ divi=O. 
i=1  i = l  

Given (v~ . . . .  , v.~) as above, we sub-divide the interval (Vmln, 0 ] into s--1 
intervals (Cq+lVmi ., e~vmi,], i = 1  . . . . .  s - - l .  Since at least one v~ is positive, at 
least one of these intervals does not contain any v~'s, say (C~o+tVmi ., ~ioVmi.]. 
Let I={ilv~<c%+~Vmi.}. By construction I is a non-empty proper subset of 

[ k ] > a .  Since {1 . . . . .  s}. Hence there exist i , j ,k  with i , j~ l ,  kr  and i j 

Vk>eioVmi n, V i, Vj<C~io+lVm~ ., and Vmin< --C, we have, using (1.3), 

S<�89 exp( - t  Vmin) --�88 exp(teioVmi.) e x p ( -  2 t c%+ 1 Vml,) 

=�88 - 1))] 

<�88 exp( - tVmi . ) [2bn  - a  exp(t c c0]. 

wo hav  l "b+4 t w e  c .o  thus Hence given 
CC~ \ a ] 

find constants ill(A), fl2(A) which depend only on A and G/H but not on the 
chosen decomposition such that S > - A  implies that/31 ( A ) < x i <  fl2(A) for all i. 

We claim that this uniform estimate implies that S-~ I - A ,  + oo)no/r is 
compact. Indeed, the above inequality says that for a metric ( , ) in JC/G with 
S >  - A  the eigenvalues of ( , ) with respect to Q lie be tween/~(A)  and /32(A ). 
But the set of symmetric matrices with bounded eigenvalues is compact. Hence 
S is bounded from above and proper on ,//g~. 

Conversely, let G/H be such that S is bounded from above and proper on 
Jg~. If H is not a maximal connected subgroup, then there exists a connected 
subgroup K with H ~ K = G .  If  K is closed, then by (1.6) and boundedness from 
above, the metric induced by Q on K/H has zero scalar curvature. The same 
formula shows that S -  ~ I-0, + oe) is then non-compact, which is a contradiction 
to properness. If K is not closed, then e i t h e r / ( ~  G or /s  We have already 
treated the first case. If /~--G,  then 9 has a non-zero center. Let L be the 
connected subgroup corresponding to b | 3(g). Then L is closed and L/H is a 
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torus. If L4=G, then we get a contradiction as before by (1.6). If L=G, then 
G/H is a torus and S is not proper, q.e.d. 

(2.3) Corollary. Let H be any closed subgroup of a compact connected Lie 
group G. If b is maximal in 9, then S is bounded from above and proper on Jga. 
Therefore, G/H has a G-invariant Einstein metric which is a maximum point for 
S. 

Proof Let H ~ be the identity component  of H. The Ad(H)-invariant inner products 
on 111 form a closed subset of the Ad(H~ inner products on m. 
On the latter set S is bounded from above and proper by (2.2). Hence the 
scalar curvature function remains bounded from above and proper when 
restricted to this closed subset, q.e.d. 

Examples. To apply (2.2) to concrete examples, we first describe briefly 
Dynkin's classification of the maximal connected subgroups of the simple Lie 
groups (see [Dy 1,21 and [WZ 2]). 

If G/H is isotropy irreducible, then b is certainly maximal in g. But in this 
case Jh~ is a point and (2.2) becomes trivial. 

It is easy to see that if b is maximal in g, G/H is effective, and if G is not 
simple, then G=H x H, where H is embedded diagonally and H is simple. In 
this case G/H is an irreducible symmetric space. Hence we will assume that G 
is simple. 

If rank b =  rank g, then the Borel-deSiebenthal classification ([BS] and 
[Wo, p. 282a, bl) of maximal subalgebras of maximal rank implies that G/H is 
either isotropy irreducible or G/H=Es/SU(5).SU(5 ). In the latter case the 
biinvariant metric on G already induces an Einstein metric on G/H (see 
[WZ 11). 

If G is a simple exceptional Lie group and rank b < rank g, then b is a 
maximal S-subalgebra in Dynkin 's  terminology (p. 158 I D y l l ) .  [Dy  1], Theo- 
rem 14.1 and Tables 14, 15, 24, 35, contain a list of all the maximal S- 
subalgebras of the exceptional simple Lie algebras together with their isotropy 
representations. There are 21 maximal S-subalgebras, l l  of which are isotropy 
irreducible. To the remaining 10 we can apply (2.2), and only in one case does 
the biinvariant metric on G induce an Einstein metric on G/H (see [WZ 1]). 

If G is a classical simple Lie group and H is not simple, Theorems 1.1-1.4 
of [Dy2]  imply that G/H is either a Grassmannian (and hence an irreducible 
symmetric space) or (G, H) is one of the following: 

I (Sp(pq), Sp(p) SO(q)), 

II (SO(4pq), Sp(p) Sp(q)), 

llI (SO(pq), SO(p) SO(q)), 

IV (SU(pq), SU(p)SU(q)), 

p > l ,  q__>3, q4:4; or p = l ,  q = 4  

p>=q>=l, (p,q)4=(l, 1) 

p>q>3, (p, q) 4= (4, 4) 

p>=q>2, (p, q) 4=(2, 2) 

where the inclusions are given by the obvious tensor product representations. 
G/H is isotropy irreducible iff p =  1 in case I, q=  1 in case If, or we are in IV. 
In all other cases the biinvariant metric on G induces an Einstein metric 
on G/H iff p=q in case II or p=q in case I i I  (see [WZ 11). In the remaining 
cases (2.2) yields a new Einstein metric on each G/H. 
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If G is a classical simple Lie group and H is a simple maximal connected 
subgroup, then Dynkin showed that the representation of H induced by the 
lowest dimensional representation of G must be irreducible except when G/H 
=SO(n+I)/SO(n). Moreover, he proved (see [-Dy2], Theorem 1.5) that the 
converse is essentially true. To be more precise, let H be a simple compact Lie 
group and ~ an irreducible representation of H of complex dimension N. 
Except for a short list of (H, g) (see Table 1, p. 364, [Dy 2]), ~(H) is a maximal 
connected subgroup of G=SO(N) ,  Sp(�89 or SU(N) according to whether ~ is 
orthogonal, symplectic, or non-self-contragredient. Moreover, it was observed 
in [WZ2]  that these exceptions have a uniform description in terms of the 
isotropy representations of symmetric spaces. Hence, apart from these excep- 
tions, every irreducible representation ~: H ~ G  of a simple compact Lie group 
H gives rise to a homogeneous Einstein manifold G/~z(H) by (2.2). Of  course, 
some isotropy irreducible spaces are repeated in this list, but all other exam- 
ples are new. Moreover, in these new examples, the bi-invariant metric of G 
never induces an Einstein metric on G/~(H) (see [WZ 1]). 

(2.4) Theorem. S is bounded from above on ./g~ but not proper !ff S 1. H is a 
subgroup of G and G/H. S 1 is a compact irreducible hermitian symmetric space 
other than the hyperquadrics SO (n + 2)/SO (n)' SO (2), n > 2. 

Proof. Assume that S is bounded from above but not proper. Then H is not a 
maximal connected subgroup of G by (2.2). 

First let H ~ K ~ G  be any closed connected subgroup. By (1.6) and bound- 
edness from above it follows that Q induces a normal homogeneous metric on 
K/H whose scalar curvature is 0. But the lormula for the sectional curvature of 
a normal homogeneous metric (see [KN]  Theorem X.3.5) implies that Q has 0 
scalar curvature on K/H iff ~ = b |  Q(b, p )=0 ,  and [ p , p ] = 0 .  The bi-in- 
variance of Q implies that [b, p] =0 ,  so p c m  o, and hence m o is a non-zero 
sub-algebra of g. If every K with H E K ~ G is not closed, then K = G. In this 
case, 3(f)4:0 and since Z(K)cZ(G)  we also have ,3(tE)c3(9 ). Since K is not 
closed, 3(f)4:3(g), and if we let X s 3 ( g  ), Xqi~(0, then the projection Y of X into 
m lies in m 0 and Y4:0 by effectiveness. Hence again m o 4:0. 

Therefore, let K be the closed connected subgroup with Lie algebra [ =  
b |  o. (K is the identity component  of the normalizer of H in G.) We have 
H . ~ K ~ G  (the last inequality by the effectiveness of G). Thus by the above 
argument, m o is a non-zero abelian ideal of [. 

Let 0 4 : X ~ m  0 and c x be the centralizer of X in 9. Note that CxD[ and c x is 
of maximal rank in 9. If c x 4= 9, then since the connected Lie group correspond- 
ing to c x is closed, it follows that Cx=[. We first claim that there exists some 
X ~ m  o with Cx# 9. Indeed if Cx= 9 for every X~mo, then mock(g)  and the 
effectiveness of G/H implies m o =,3(9). Hence G/H is finitely covered by (G'/H') 
• T k, k >  1, with G' semisimple. But then ~/~ contains the metrics which are 

products of a normal metric gl on G'/H' and an arbitrary flat metric g2 on T k 
such that vo l (gx) .vo l (g2)=l .  Since S(g)=S(gl), it follows that S is not 
bounded from above. Now let X ~ m o such that ~ = c x 4= ~q. We claim that c x is a 
maximal subalgebra in 9. Indeed, if c - . c I ~ 9 ,  then by the previous arguments, 
it follows that L=G. As before this implies 04:,~(1)~3(9) and 3(l)4:3(~) which is 
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impossible since 3(g)c  c x. Hence  K is a closed maximal  connected subgroup  of 
G of maximal  rank. G/K need not be effective, but since G/H is effective this 
can only happen  if some subspace a c r e  o is an ideal in .q. But then a finite 
cover of G/H is again a product  (G'/H') x T k, k >  1, which we already saw, is 
impossible. 

Hence  G/K is effective and Theorems  8.10.1 and 8.10.9 of [Wo]  show that  g 
is simple, ~ = b | R, and (g, b | R) is an irreducible hermit ian symmetr ic  pair. 

Conversely,  assume that  G/H" S 1 is an irreducible hermit ian  symmetr ic  
space. The isotropy representat ion of G/H. S 1 is [q~| R where 4) is an 
irreducible complex representa t ion of H and ~b 0 is the one-dimensional  repre- 
sentat ion of S 1. If q5 is not  self-contragredient,  the restriction of [4) | ~b0] R to H 
is [qS]R, which is again irreducible. Hence,  in this case the isotropy representa-  
t ion of G/H is m = m  0 | [q~]R where dim m 0 = 1. Hence  any G-invariant  metric 
on G/H is a submers ion  metr ic  of G/H~G/H" S ~, and J/la is 1-dimensional. By 

n+l  
(!.6), S on Jg~ has the form S=tl/"S(B)--t~-llA]] 2, where S ( B ) > 0  and J]AIL :t:0 
since G/H is irreducible as a Riemannian  manifold (with metric induced by Q) 
by Corol lary  X.5.4 in [ K N ] .  Thus  S is bounded  f rom above but  is not proper.  

If 4) is self-contragredient,  then by the classification of irreducible hermit ian 
symmetr ic  spaces (see [Wo] ,  p. 283-284) G/H.SI=SO(n+2)/SO(n)SO(2). 
However,  in this case we also have inclusions SO(n)cSO(n+l)cSO(n+2) .  
Hence,  by (1.6), there exists a family of metrics g, in ~g~ on SO(n+2)/SO(n) 
with S(g , )~  + ~ as t--*0, q.e.d. 

Remark 1. If we have a space G/H as in (2.4), then the proof  of (2.4) shows that  
a l though S is not proper,  S l [a ,  oo] c~Jg G is compac t  for any a > 0 .  Hence  S 
still has a max imum.  Indeed, S has a unique critical point  on ~ G  at t 

S(B) 
Note  that  G/H is the canonical  circle bundle over the hermit ian 

(n+  1)ILALI z" 
symmetr ic  space G/H �9 S ~. The unique G-invariant  Einstein metr ic  on G/H was 
discovered by Kobayash i  (see [-Kob]). 

Remark 2. The results in this section clearly have the following consequence.  If 
S is a proper  function on 0-gG, then either G/H is one of the spaces studied in 
(2.1) and (2.2), or m has two inequivalent  irreducible copies, too- -0 ,  and b is 
not maximal  in g. In the latter case we will see that  S may  fail to have a 
critical point. 

w 3. Nonexistence 

There are many  examples  of non -compac t  homogeneous  spaces G/H which 
carry no G-invariant  Einstein metric, e.g., if G is nilpotent,  see [Mi] .  If G is 
compac t  and ~I(G/H) is infinite, then G/H cannot  carry an Einstein metric  
with positive Einstein constant  since by Bonnet -Myers  there is not even a 
metric with positive Ricci curvature.  If  R i c < 0 ,  Bochner 's  theorem implies that  
every Killing vector  field is parallel and hence G/H is flat. Therefore,  if G is 
compact ,  ~rl(G/H ) is infinite, and if G/H is not flat, then G/H carries no G- 
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invariant Einstein metric. But if G is compact and G/H is simply connected, 
there is always a metric with R i c > 0  and no further obstruction to the exis- 
tence of an Einstein metric is known. In fact, since Einstein metrics have 
always been found on the many examples that have been studied, the question 
was raised whether or not every compact simply connected homogeneous 
space carries a homogeneous Einstein metric. To settle this question, we 
examine (in view of (2.2)) the case where there is a unique closed connected 
subgroup K with H . c K ~  G, and find numerous examples that have no G- 
invariant Einstein metrics. We do not know whether there are non-homo- 
geneous Einstein metric on these examples. At the end of this section we will 
also give an example of non-existence where H ~ K 1 .c Kz ~ G. 

Let G/H be a homogeneous space and for simplicity we will assume that G 
is a compact  simple Lie group. We choose for the fixed biinvariant metric Q 
the negative of the Killing form, denoted by B. Then bi= 1 in (1.3). We will 
examine the situation in which m has only two irreducible summands m~ and 
m z. Since we are interested in non-existence, we will assume that m 1 and m 2 

are inequivalent representations, since otherwise B Lm is an Einstein metric on 
G/H by [-WZ 1], (1.1.7). By (2.2) we can assume that H is not maximal in G. 
Without loss of generality, let t~= b Q ml ,  be a subalgebra of g with correspond- 
ing closed connected subgroup K. Then every G-invariant metric on G/H is 
given by (xtBIml)..L(xzB[m2), and can be viewed as a submersion metric for 
the fibration G/H-+G/K. The homogeneous space K/H need not be effective in 
general. So let K'  be the quotient of K acting effectively on K/H. For sim- 
plicity we also assume that K' is semisimple and Bv=o~Bl{' for some e > 0 ,  
where B v is the negative of the Killing form of f'. Note that if f' is simple, this 

last condition is automatically satisfied. [ 2 ]  [ 2 ]  [ 1 ]  =0" We can 
Now since f is a subalgebra, we have 11 = 1 = 12 

assume that 12 4=0 since otherwise we are in the situation of (2.1). By (1.5), 

d~- - =2d~q. We can also apply (1.5) to G/K to obtain d 2 - 22 

=2d2c*,  where c* is the Casimir constant of the f representation m 2 with 
respect to BIf. Notice that the f representation 11t 2 and the b representation m z 
have different Casimir constants. If c* is the Casimir constant of m 1 with 

respect to BvIb (instead of BIb'), we have c~=c~'c~. We also observe that [ 22] 
=dl(1 -c~) since 

[22]= 
e z E m l  

= ~ (-t%(adei)Z+tr~(adel) 2) 
e ~ m l  

= ~, (B(el, ei)-Br(ei, ei))=dl(l -o:). 
e l  E i l l  1 

Combining the above with (1.3), we get 

1 x  l 
S :  ~x~xl dl O~ 2~2x2 d2 - - d , ( 1  - ~ ) .  
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The critical points of S subject to x~'x~2=v, where v-I  is the volume of the 
metric gB on G/H, are given by the solutions of the quadratic equation 

, 1 _ ( c , + 1 2 )  t _ ~ ( l _ ~ )  d2 / = 0 ,  

where t=x2/x 1. Note that c* =�89 iff the corresponding space is (locally) sym- 
metric (see Corollary 1.1.6 in [WZ 1]). Therefore, we have 

(3.1) Theorem. Assume that G is a compact simple Lie group, m decomposes 
into two inequivalent irreducible summands, and that f = b @ m  1 is a subalgebra 
with Bv=~Blv, c~>0. Then there exists no G-invariant Einstein metric on G/H 

d2-] ~(1 --~)(2c~' + 1)<0, 

where c*, c'~ are the Casimir constants of K'/H' and G/K with respect to B rIb' 
and B[~. If G/K and K'/H' are both symmetric, then 

D = I  -2~(1-c~)  (1 + 2d l ]  

/ f  D > 0  (resp. D=O) there exist precisely 2 (resp. 1) G-invariant Einstein metric 
on G/H. 

We now give a number of examples without G-invariant Einstein metrics. 
Observe first that under the conditions in (3.1) both base G/K and fibre K'/H' 
are isotropy irreducible homogeneous spaces. Conversely, if in G/H~G/K the 
base and fibre are isotropy irreducible and if the irreducible f representation 
I112 restricts to an irreducible representation of b, then G/H is a candidate for 
(3.1), where we only have to verify the additional conditions that m I and m 2 
are inequivalent and that Bv=~BLv. Now, if f is simple, then the requirement 
that there exists some subalgebra b for which the f-representation m 2 remains 
irreducible, is a very strong one. In fact, Dynkin ([-Dyl], Table40, [-Dy2], 
Table 5) classified those irreducible representations of simple Lie groups which 
restrict to an irreducible representation of some subgroup. Using this classifi- 
cation, one can easily compile a complete list of all homogeneous spaces G/H 
for which m has only two irreducible summands. However, we will not do this 
here. Instead, we will give a number of simple examples which show that D < 0  
occurs quite frequently. For the computation of the constants ~ and for other 
notation we refer the reader to [WZ 1]. 

Examplel. G=SO(2n) ,  K=U(n), H=SO(n ) -U(1 ) ,  /~=SU(n),  and n>3 .  The 
base and fibre are symmetric spaces and m a = ( S Z p , - I d ) |  The 1~ represen- 
tation m 2 is [AZlAn]R, which restricts to [A2p,| So all the conditions in 

(3.1) are satisfied. We get d 1 = �89 + 2 ) ( n -  1), d 2 = n(n-  1), e = - -  Hence D 
=(3-n) / (n-1)  2, and so D < 0  if n__>4, D = 0  if n=3 .  2 ( n - l ) "  

Example 2. G =SU(n+m) ,  K=S(U(n)U(m)), H=S(SO(n) U(1) U(m)), K = S U ( n )  
and n>3,  m> 1. The base and fibre are again symmetric spaces and m l = ( S 2 p ,  
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- I d ) | 1 7 4  The ~ representation m 2 is [/~,| which restricts to 
n 

[p, |  /~,,]H. W e o b t a i n d t = � 8 9  e and henceD 
m+n 

=(m2-n+2) / (m+n)  2. Thus D < 0  if n > m 2 + 2 ,  D = 0  if n = m 2 + 2 ,  and D > 0  if 
n < m 2 + 2 .  

Example 3. A straightforward but lengthy computation shows that the only 
other examples for which both fibre and base are symmetric spaces and D < 0  
are: 

G K H 

E 0 Spin(10) - SO(2) Spin(3) Spin(7) SO(2) 
E 6 Spin(10). SO(2) Spin (5) Spin (5) SO(2) 
E 7 E6 �9 SO(2 ) Sp(4) �9 SO(2) 
E. Spin(12) �9 Sp(l) Spin(5) Spin(7) Sp(1) 

Example 4. We now describe some large families of examples of non-existence 
where the base is symmetric and the fibre is isotropy irreducible but non- 
symmetric. Since the ~ representation m z must restrict to an irreducible repre- 
sentation of b, this mostly occurs when G/K is a Grassmannian. First, let G/K 
=SO(n+m)/SO(n)" SO(m), n>_m> l, and H = L .  SO(m) such that SO(n)/L is 
isotropy irreducible but not symmetric. Then K ' = S O ( n )  with n > 5  and m 1 
=(isotropy representation of SO(n)/L)|  The ~ representation m 2 is p , |  pro, 
which restricts to ~ |  where 7r is the inclusion L-*SO(n). The quotients 
SO(n)/L can be uniformly described in terms of symmetric spaces, see [WZ 23. 
One knows that ~ is irreducible, A2~z=adL |  and if L is simple and L 

2 dim L 
#G z, then c * -  (see [WZ 13, Table 5). Note that here we have to adjust 

n(n - 2 )  
for the fact that in [WZ1]  the Casimir constant was defined with respect to 
the normalized Killing form and hence the constants in Table 5 have to be 

n - 2  
divided by ~so~,~=2(n-2). Since e =  - 2 '  we get 

n+m 

D= 1 - ( m n  + n(n - 1 ) -  2 dim L)(4 dim L + n ( n -  2))/nZ(m + n - 2) 2. 

4 dim L 
If m =  1, one easily shows that D < 0  by using the inequalities < 1 and 

n(n - 2 )  
n 

- -  c 1<~  and from the fact that 2 d i m L  <1, which follows respectively from * 1 

SO(n)/L is constructed from a symmetric space and the quotient of the Killing 
forms in the symmetric space must be positive (see [WZ 13, II.3(C)). Similarly 
one checks that if L is not simple, i.e., L = S p ( 1 ) .  Sp(k) with k > 2 ,  and if m =  1 
we have D < 0 .  Hence we conclude that SO(n+  1)/L has no SO(n+  1)-invariant 
Einstein metric if SO(n)/L is isotropy irreducible but not symmetric and L #-G 2. 
Explicit calculations for each L show that for some values of m >  1, one still 
has D < 0, even for infinite families. 
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Similarly, if G/K=SU(n+I)/S(U(n)U(1)) and H=S(L. U(1). U(1)) where 
SU(n)/L is isotropy irreducible but not symmetric, then G/H has no G-in- 
variant Einstein metric. Finally, if G/K = S p ( n +  1)/Sp(n) Sp(1) and H =L" Sp(1) 
where Sp(n)/L is isotropy irreducible but not symmetric, then G/H has no G- 
invariant Einstein metric unless either Sp(n)/L=Sp(n)/Sp(1)SO(n) with 
3<n_<6 or Sp(n)/L=Sp(2)/SU(2). 

Example 5. The lowest-dimensional example that we obtain from (3.1) is the 
following 12-dimensional manifold. Let G/K=SU(4)/Sp(2), which is a sym- 
metric space isometric to S 5, and let H = S U ( 2 )  where Sp(2)/SU(2) is isotropy 

6 1 
irreducible (Sp(2)/SU(2) is a rational 7-sphere). Then m~ = C) and tu 2 = O = �9  

4 
so that ntzlb= �9 One easily obtains "*-1  2 c 2 - 5 ,  c * = >  e = 3  and hence D<0.  Thus 
M12=SU(4)/SU(2), which is an Sp(2)/SU(2) bundle over S s, carries no SU(4)- 
invariant Einstein metric. 

For this particular example we will show that SU(4) is the only compact 
connected Lie group acting transitively on M 12. Thus, M 12 carries no G- 
invariant Einstein metric for any Lie group G acting transitively on it. (Although 
this will most likely be true in most of the above examples, it is usually quite 
difficult to verify that no other Lie group acts transitively on a given homo- 
geneous space.) 

We give only an outline of the proof here since the arguments needed for 
the first half of the proof can be essentially found in [On]. Assume that G' acts 
transitively on M lz. If G' is simple, then it follows from [On], Theorem 7, that 
G '=SU(4)  and H'=SU(2) .  If G'=G~ x G2, then it follows easily from [On], 
Theorem 11, Lemma 10, and Lemma 11 that this is only possible if M 1 2 =  G'/H' 
=G1/H 1 x Gz/H 2. 

The index of SU(2) in  Sp(2) is 10, hence rt3(SU{2))~rt3(Sp(2)) is multiplica- 
tion by 10, and so 7t3(Sp(2)/SU(2))=rt3(Mlz)=Z/lO. It follows that 
Hk(Sp(2)/SU(2),Z)=Z if k = 0  or 7, Z/10 if k=4,  and 0 otherwise. The Serre 
spectral sequence for Sp (2)/S U (2) ~ M x 2 ~ 85 then implies 

H*(M '2, Z)=H*(Sp(2)/SU(2), Z) | H*(S 5, Z) 

= H* (Sp (2)/SU (2) x S s, Z) 

with Poincar6 polynomial (1 +tT)(1 +ts). Hence if M x2 is a product, it follows 
from [On], Table2 that this is possible only if M12=(Sp(2)/SU(2))xS 5. Now 
let Y3 be the generator in H3(M 12, Z/2). Then the Steenrod square Sq2(y3)=O 
if M 12 is equal to this product. On the other hand, by considering the Gysin 
sequence of the fibration p: SU(4)~SU(4) /SU(2)=M ~2 with fibre SU(2)~S  3, 
it follows that p*(y3)=u3 is the unique generator of H3(SU(4), Z/2). Finally, 
since it is well-known t h a t  Sq2(u3):~O, (see e.g. [Wh], p. 410), it follows that 
Sq2(y3)~O, showing that M x2 +(Sp(2)/SU(2)) x S 5. 

Example 6. (3.1) can also be used to produce many new examples of homo- 
geneous Einstein metrics on G/H's not covered by the theorems in w One 
interesting one is obtained as follows. One easily sees that on the symmetric 
space SO(2n)/U(n) the subgroup S O ( 2 n - l ) c S O ( 2 n )  acts transitively with 
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isotropy group U(n-1).  We can then apply (3.1) to the groups G = S O ( 2 n -  l), 
K = S O ( 2 n - 2 ) ,  and H = U ( n - 1 ) .  Notice that K/H~G/H~G/K is a fibration 
whose base and fibre are symmetric spaces and G/H is diffeomorphic to 
SO(2n)/U(n). We have 1Tl2=PZn_ 2 and so nlzlb=[//n_l]l l l .  Furthermore, da= 

2 n - 4  
(n -1)  (n - 2), d2=2(n-1), c~=2n_3,  and hence D=l/(2n-3)2>O. By (3.1) we 

obtain two Einstein metrics on SO(2n-1)/U(n-1) one of which is isometric 
to the symmetric metric. The other one is a new Einstein metric on G/H. 

Example 7. We finally construct some examples of G/H which have no G- 
invariant Einstein metrics and which have 3 irreducible summands in m. Let 
H c K x ~ K z ~ G  be connected closed subgroups and write g = b @ m l O m  2 
|  3, where f t = b @ n h ,  [ 2 = b | 1 7 4  . We assume that n h are mutually 
inequivalent irreducible H-representations. Therefore, 

[1~]=[,~,]=[)~]--[3~]--0 
By (1.3), a G-invariant metric of volume 1 has scalar curvature 

1 (AI+Az+A3] 1 / [ 2 I x ,  33]x I [331x2) S = ~  - -  
\xl Xz x s l - 4  \L12] x~+ [1 - ~ +  Xs x~ 

with ,,a, ,,a2 ,,a3 ~ 1  ~ 2  ~ 3  ~ V  and 

1 

1 [ ~ ]  [ 3 ]  ~ d  ~ 3 ~ 3  ~[~] 
Az=dz-2 2 2 -  23 ' - 2  33 " 

~et us assume ~urther that [ ~ ] : 0 ,  which i~ the case ~f ,~--., ~,,~ 
HlcL1, H z c L 2 ,  KI=LI• K 2 = L  1 x L  2. Suppose that G is semisimple 
and that Bl i=alBl l ' l ,  BI~=~2Bll~, ai>0,  where EI/H' ~ is the effective homo- 
geneous space corresponding to LI/H v By (1.5) we get 

A3=(c3+~)d3+[33]+[33] �9 

As in the discussion before ,3 1,. we have [ ~ ] : d l ( 1 - .  [ 3 ] = ~ 2 ( 1 - .  

Let c* be the Casimir constant of the fz representation m 3 with respect to 
BIfz and c~ be the Casimir constant of the I1 representation 1|t 2 with respect to 
Bi~lb z. Clearly, we have 

c2=~2c* and 1 -2C3=d~( [331+[233]  ) 1 =d3 (dl (1 -~1)+d2(1 - a2))- 
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2r X 2  
Let t l = - - ,  t2=-- .  Then a routine computation shows that t l > 0 ,  

X 3 X 3 
"dl ~ "d2 Y d3 - -  I! corresponds to a critical point of S on ~.a ~-2 ~-3 - ~  iff 

( 1 )  2 A 3 A  l + y~ ,  
d3d2 (1 --O~2) t t t 2  = - d l ( 1  -o~1) d~ 3 t 1 + d ~  3 tl dr1 

( 1  1 ) 2 A 3 A 2 
d'(l-~l)t't2=-d2(1-~2)d~ d33+~2 t 2 + d  3 -  t 2 - - ' d  2 

t 2 > 0  

Since the left hand side must be positive, a necessary condition for the exis- 
tence of a G-invariant Einstein metric is 

1 1 ( A 3 ~ 2 - 4 A 2 ( I - c % )  ( - - + - - ]  >0. 
\d3 ! \d 3 2d 2 ] = 

( + 2 d 2 ]  c~2(1 +2 , ,* )>0 .  Comparing In other words, (r 1 d3 ] this 

with the expression for D in (3.1), we see that if G/H has a G-invariant Einstein 
metric, then so does G/(L 1 x H2). So whenever G/(L 1 x H2) does not have a G- 
invariant Einstein metric and L1/H 1 is isotropy irreducible, we obtain a new 
example of non-existence. 

As a concrete example, let G=SU(m+n),  K2=S(U(m) x U(n)), K 1 =S(U(m) 
xSO(n)  xU( l ) )  as in example2.  Let H = S ( R x U ( 1 ) x S O ( n ) x U ( 1 ) )  where 
SU(m)/R is isotropy irreducible (possibly symmetric). Now m 3 = [/~* | as a 
[z-representation. Upon restriction to b, 1113=[~* | 1 7 4 1 7 4  where 
~: U(1)~U(m), ~: U(1)---,U(n) are the inclusions of the centers, and 
z: R ~ S U ( m )  is the embedding of R into SU(m). By the above argument, G/H 
has no G-invariant Einstein metric and m consists of three irreducible repre- 
sentations of H. 
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