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Introduction 

Around 1970, Griffiths introduced the notion of a variation of Hodge structure 
on a complex manifold S (see [17, w 2]). It constitutes the axiomatization of the 
features possessed by the local systems of cohomology associated to a family of 
compact K~ihler manifolds (esp., smooth projective varieties) parametrized by 
S. These are, for a variation of Hodge structure u of weight m: 

(0) a locally constant sheaf u  of Q-vector spaces [or u  of real vector 
spaces], 

(1) (Hodge filtration; horizontality) a decreasing filtration {o ~r} of 
#=(gs| ~ by holomorphic subbundles, such that the evident connection 
V on ~ takes o~p into Q~| 

(2) (Hodge decompositions) if gs denotes the sheaf of ~ functions on S, 
and if 

where the bar denotes complex conjugation with respect to YR, then 

(G| |  p,q; 
p + q - - m  

and, easiest (and most foolish!) to omit: 
(3) (polarizability) there exists a fiat pairing 

[or 

such that, when it is extended linearly over gs, the formula fl(Cv, ~) defines a 
positive definite Hermitian form. (Here, C is the so-called Weil operator of the 
variation; see, e.g., our (3.2)). 

In case YQ=Rmf,~ for some smooth projective [or proper K~ihler] mor- 
phism f :  X-*S, ~P is the bundle with fibers 

* Supported in part by the National Science Foundation, through grant MCS-8101650 
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FPHm(Xs, r  |  . . . . .  (Xs), 
r >=p 

where we are writing X s for f - l ( s ) ,  and F denotes the Hodge filtration of its 
cohomology; horizontality is a direct consequence of relative de Rham theory; 
and a polarization can be constructed from cup-product, using the whole 
K~ihlerian story: Poincar6 duality, hard Lefschetz theorem, primitive decom- 
position, and Hodge signature theorem. The preceding situation will be re- 
ferred to as the geometric case. 

Suppose now that S is a Zariski-open subset of S, a compact complex man- 
ifold. According to Hironaka,  we may choose S in such a way that Z = S - S  
becomes a divisor with normal crossings. During the course of the t970's, there 
were three main developments concerning the behavior of a variation of Hodge 
structure along Z and its consequences, almost entirely for the case where S is 
a curve. In order to state these properly, we find it convenient to first in- 
troduce Deligne's notion of the "canonical extension" ~ of r to S [2]. At any 
point of S, one has local coordinates in which j: S~--*S is given as the inclusion 
of the punctured disc in the disc. Then ~/9 c j .~U is characterized by the growth 
of the coefficients of sections with respect to a (multivalued) frame for V (see 
our (3.7)). We interpret the Hodge filtration as giving a filtration of ~ l s .  

We can now give a summary of the three developments mentioned above. 

(A) Singularities of the period mapping (Schmid [9]). As can be seen on each 
punctured disc separately, {.~P} extends to a filtration {~P} of ~ on S. While 
this is not so hard to see by other means in the geometric case over a curve, 
Schmid's proof shows that the filtration of Y/" that has constant value {.@P(0)} 
with respect to a standard flame for ~/? is itself a variation of Hodge structure 
on some deleted neighborhood of 0; moreover, it carries over to the case of 
more variables, i.e., to the general local situation of the normalized problem. In 
the case of one variable again, the general variation of Hodge structure is 
asymptotic (in a specified way) to a special (locally homogeneous) one as- 
sociated to a representation of SL 2. This gives rise to asymptotic formulas for 
the Hodge norms: ][vH2=fl(Cv,~). In addition, one obtains a clear picture of 
the interaction between the filtration {~-P(0)} of ~ (0 )  and the weight filtration 
M, centered at m, (see our (2.1) and (2.4)) of the logarithm N O of the unipotent 
Jordan factor of the local monodromy transformation (which acts naturally on 
~7(0)). This is the so-called limit mixed Hodge structure, and N O acts as a mor- 
phism of type ( -  1, - 1). 

(B) De Rham theoretic realization of the limit mixed Hodge structure in the geo- 
metric case (Steenbrink [10], Clemens [14]; see also [12]). One considers the 
local geometric situation 

X ~ ) X 

A *~ ~A 
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with X K/ihler, f proper, f '  proper and smooth, and X* = f -  I(A*); as usual, A 
denotes the unit disc and A*=A-{0}. Put Y = f - l ( 0 ) ,  a divisor with normal 
crossings. It follows from the construction that 

~ --- R" f,Q~m(log g), 

~P  = R" f .  F p Qx/~(l~ Y), 

where F denotes the usual Hodge filtration of a holomorphic de Rham com- 
plex; and 

~/Y(O) = Ore(Y, (2xm(log Y) | (gy), 

on which {~P(0)} is the filtration induced by F. Assuming for simplicity that Y 
is reduced (as can always be achieved after a base-change), one constructs a 
"resolution" A"" of 

Qx/A(Iog Y) @ (gy 

(cf. our (5.5)) that admits two filtrations, which are shown to induce the limit 
mixed Hodge structure. An important consequence of the construction is a 
proof of the local invariant cycle theorem (posed as a problem in [17, (8.1)]), as 
A"" contains a copy of the cohomological mixed Hodge complex of Y (see also 
Part II, w 

(C) Hodge theory with degenerating coefficients (Zucker [11]). By using the full 
strength of (A) above, and then using the construction for the case 2; =0, given 
by Deligne, as a model, one can construct a filtration F of the complex (resolv- 
ing j ,Vr  

---. V f  c ~ ( l o g  22) | IP" 

by setting F p to be the subcomplex 

~ P  ~ (V ~') c~ (f2~ (log 22) | o~ p- '). 

It is then proved that F induces a functorial Hodge structure of weight m+i 
on Hi(S,j.vg). Moreover, in the global geometric case, the Hodge structures are 
compatible with those of H'(X), in the sense that the Leray spectral sequence 
of f becomes a spectral sequence of Hodge structures. To see this, one must 
first realize that the F here is in a certain precise sense induced by that of 
~ ( l o g  Y), and then make use of many of the results discussed in (B) above. 
There is a companion mixed Hodge theory for H'(S,u compatible with 
H'(X-Y) .  

It was inevitable that there would be attempts to generalize the preceding 
to variations of mixed Hodge structure, corresponding in geometry to families 
of varieties that are singular or non-compact. Of course, one must first decide 
what a variation of mixed Hodge structure is. We take the natural position, as 
before, that it should axiomatize the features of local systems of cohomology 
associated to families of varieties. Now, the very first observation is that for 
any surjective quasi-projective morphism h: U~S,  there is a Zariski-dense 
open subset of S over which h is a stratified fiber bundle, and the weight ill- 
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tration of Deligne's mixed Hodge structures [4] on the cohomology of the 
fibers is locally constant. Thus, in the definition of "variation of Hodge struc- 
ture", one must first add to (0): 

+(0): and an increasing filtration W =  {Wqk} of V• [or u 

and then each GrWV, with the filtration induced by o~, should satisfy (1)-(3). It 
is also quickly seen from relative de Rham theory that one should insist on 
horizontality for the full filtration ~ ,  and not only for each GrW~.  We call 
the package of data described above in this paragraph a graded-polarizable 
variation of mixed Hodge structure3 

In [5, w 1], Deligne posed the problem of distinguishing a good class of 
variations of mixed Hodge structure, such that (A) generalizes. This already 
presupposes, as he made explicit in [5], the existence of a filtration M on f ' (0 )  
that induces on each successive quotient GrW~/?(0) the weight filtration of 
GrWN0 . As an abstract linear algebra condition on N o, it is discovered fairly 
easily that there is at most one possibility for M (see our (2.8)). When the 
variation of mixed Hodge structure is geometric, M does, in fact, exist, and is 
called the weight filtration of N o relative to 141. Existence was shown first by 
Deligne, in [5, (1.8)], for the analogous assertion for the l-adic cohomology of 
varieties defined over a finite field, and it then follows over ~ by comparison 
methods. This may seem ungratifying; however, the generalization of (B) pro- 
vides a proof of the existence of M in the geometric case via characteristic zero 
techniques, as predicted by Deligne and settled by E1 Zein [6] and others (see 
our (5.7)). 

We thus add to the assumptions that the filtration M exists. The generaliza- 
tion of (A) would also imply the existence of a limit Hodge filtration {o~P(0)}, 
which, together with M, determines a mixed Hodge structure on ~7~(0), filtered 
by 14/, on which N o acts as a morphism of type ( - 1, - 1). In addition, we wish 
to add the natural and seemingly innocuous, but actually quite strong, assump- 
tion that {o~P(0)} induces, on each 

a r~ 0 / ~  (0)) ~ ( a r ~  ~ ' ) -  (0), 

the limit Hodge filtration of Schmid. These conditions are also satisfied in the 
geometric case, as follows again from the generalization of (B). 

The conditions concerning M, {~,@P(0)} and N O in the previous paragraph 
are formulated in w as Properties (3.13). We take them as a minimal list of 
extra conditions on a graded-polarizable variation of mixed Hodge structure. 
By some simple examples ((3.15) and (3.16)), we can see that they really do 
comprise extra hypotheses, and that there is more than one independent con- 
dition. 

As a justification for our claim that (3.13) already forms a good set of 
conditions, we prove, as one of the two main results in this paper, that they 

1 Hence also of 
2 The prefix "graded-" is omitted in the terminology used by others. We will later give some 
indication why we feel that it is a good idea to include it 
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allow the generalization of (C). We show, in 84, that H'(S,j,u H'(S,V) and 
H~(S,~ r) all admit functorial mixed Hodge structures, filtered by W, and that 
those of dual cohomology groups are dual mixed Hodge structures. (They re- 
duce to those in [11] when ~r is pure.) 

It is natural - in fact, essential - to ask whether, when ~" comes from a 
family of varieties f :  Z ~  S, the mixed Hodge theory for H'(S,u is compatible, 
as before, with that of H'(Z). The answer is "yes", although we found it sur- 
prisingly difficult to prove that the weight filtrations are compatible; the gener- 
al case is more "entangled" than the pure case. The proof will be given in 
Part II. 

In 85, we present our original construction of the (filtered) cohomological 
mixed Hodge complex A"" for the generalization of (B) in the case of a family 
of smooth (esp. non-compact) varieties. It coincides with the one that E1 Zein 
gives in [6], but has a somewhat neater formulation. In doing this, we take the 
opportunity to clarify the treatment in [10] of the underlying ~-structure, 
which we adapt accordingly to the mixed case. 

In 86, we first give a short exposition of E1 Zein's work on filtered coho- 
mological mixed Hodge complexes. We discovered that an intriguing feature of 
the cohomological mixed Hodge complexes used in Sections 4 and 5 implies 
that the complex belongs to both classes of tri-filtered complexes (with nice 
Hodge theoretic properties) that are discussed in [16]. Specifically, let 
(K', M,F) be a cohomological mixed Hodge complex, with a third filtration W 
such that (say) GrWK ", with the filtrations induced by M and F, is also a 
cohomological mixed Hodge complex for all I. The special feature is 

w,/<'.-. | GrTK'. 
j e t  

There is an undercurrent that the time is now ripe for the development of 
the theory of variations of mixed Hodge structure. Eight years ago, there seemed 
to be only sporadic and casual interest in a general theory, but in the last few 
years there has been a Hurry of activity in the study of degenerations of singu- 
lar or non-compact varieties. As evidence for this, we cite that Usui uses the 
concept of a variation of mixed Hodge structure [19] and that, besides El Zein 
and ourselves, the following mathematicians have produced constructions simi- 
lar to the one in 85: Du Bois; Guill6n, Navarro Aznar and Puerta [13, 18]. 

No, we haven't forgotten 8w I-2; we have only deferred discussing them, as 
they are to a large degree independent from the geometry. In 81, we present 
some basic facts about filtered vector spaces, including the useful notion in 
(1.4) of the convolution L,W of two filtrations L and W. 

The notion of the weight filtration of a nilpotent endomorphism N of a 
finite-dimensional vector space V, relative to a filtration W of V (denoted 
M(N; W)), is recalled in w 2. The other main result of the paper involves giving 
a direct linear-algebraic condition (2.20) that is necessary and sufficient for the 
existence of M(N; W). It is actually a condition on how strict N and its powers 
must be with respect to adjacent W-filtration levels; this gives the criterion for 
obtaining M(N]w,; W), given M(NIw,_,;W). We say that N is an admissible 
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nilpotent transformation if N satisfies the condition of (2.20), i.e., if M(N; W) 
exists. We list some useful cases: 

(i) the following two assertions are equivalent: all powers of N are strictly 
compatible with W; M(N; W)= L .  W, where L is the (absolute) weight filtration 
of N (2.11). 

(ii) if NI'Vk ~ W k_ 1, then M(N; W) exists if and only if NWkC Wk_ 2 (and then 
M(N; W)= W) (2.14). 

(iii) a necessary condition for the existence of M(N; W) is that 

N'  Wk ~ Wk_ 1 = Nt kVk_ 1 + I/Vk_ 2 

for all k and l; we then say that the powers of N are quasi-strict (with respect 
to W) (2.17). 

(iv) (as we have observed earlier) M(N; W) exists whenever N is a nilpotent 
monodromy logarithm from a geometric variation of mixed Hodge structure 
and W its weight filtration. (N.B. - N need not be strictly compatible with W; 
see (2.12).) 

In the appendix, based on a letter from Deligne, we describe a completely 
different approach to the existence of M(N; W). This leads to the observation 
that in fact Condition (3.13, iii) is a consequence of (3.13, i) and (3.13, ii). More- 
over, it follows that if N, N'  are admissible endomorphisms of the filtered vec- 
tor spaces (V, W) and (V', W') respectively, then N |  + I |  is an admissible 
endomorphism of (V | W | 

This finishes the summary of the setting and the contents of the paper. We 
would like to conclude by posing some unresolved questions and problems 
related to the results we have just discussed: 3 

1. Given V, W and N, and for each k a weight k Hodge filtration kF on 
GrWV, give a characterization of when there exists a filtration F of V that 
induces all kF, such that NF p c F p- 1 

2. a) Is it possible to eliminate the recursiveness in the necessary and suf- 
ficient condition for admissibility given in (2.20)? 

b) Give an expression of M k in closed form. 
3. Give a proof  of (2.20) using the approach in the appendix. 
4. Give a good definition of a polarized mixed Hodge structure. (Note, for 

instance, that nowhere in the definition of a graded-polarizable variation of 
mixed Hodge structure is there any statement that relates the polarizations for 
the different w , Gr  k V s.) It is possible that this will be important in: 

5. [5, (1.8.15)] Generalize (A) for an appropriate class of variations of 
mixed Hodge structure. 

There are some related recent developments 3 in the theory of variations of 
(pure) Hodge structure in several variables, i.e., for S =(A*) r, where r > 1. (Such 
a variation of Hodge structure provides variations of mixed Hodge structure 
whose fibers are the limit mixed Hodge structures in given directions.) In [1], 
Cattani and Kaplan have proved results on "the uniqueness of the weight fil- 
t rat ion" and the weight filtration of one monodromy logarithm relative to the 
weight filtration of another (see our (3.12) for the precise statement); these are 

3 Also, see notes added in proof 
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the Hodge theoretic analogues of results of Deligne on the l-adic cohomology 
of varieties over finite fields [-5, (1.9)]. It is trivial that "uniqueness" for 
M(N; W) holds in the mixed case; we ask (3.18): 

6. Is the analogue of assertion (3.12, iii) on relative weight filtrations true 
in the mixed case? 

Finally, we expect that the relations among the various weight filtrations 
provided by [1] will connect up with the solution to: 

7. Carry out the analogue of (B) when the dimension of S is greater than 
one. 

We want to thank Deligne for several helpful conversations, and especially for introducing us 
to the notion of a relative weight filtration. 

The second-named author thanks the University of Leiden and the Z.W.O.-project "Singu- 
larity Theory" for their hospitality during June, 1981 and June, 1982. 
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w 1. Generalit ies  on filtered vector spaces 

In this chapter, we work over a fixed, though arbitrary, field of scalars. There 
is no difficulty in seeing that the notions introduced carry over to sheaves of 
vector spaces. 

(1.1) Definition. A vector space of weight k consists of a vector space V and 
the assignment of the integer k to V; i.e., it is the pair (V, k). We call V also a 
weighted vector space. 

(1.2) Definition. i) An increasing filtration W on a vector space V is a col- 
lection of subspaces {Wk}k~Z, such that 

Wk_lCW k for all keZ;  

ii) A decreasing filtration F of a vector space V is a collection of subspaces 
{FP}p~z, such that 

F P ~ F  p-1  

A decreasing filtration F on V defines also an increasing filtration t 0 by the 
formula 

Fk=F -k. 

As such, we will consider only increasing filtrations in this chapter. 
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We call the pair  (V, W) a filtered vector space. 
Given a filtration W on V and neZ ,  one lets W[n] denote the shifted fil- 

t ra t ion on V given by 
W [ n ] k  = ~+. .  

The trivial filtration T of V is determined by 

T_,  = {0}, To=V. 

The filtration W of V will be called finite if Wk={0} if k is sufficiently 
small, and W k = V when k is sufficiently large. In practice, the filtrations we will 
consider are all finite. 

As usual, we put  
G r ~  V = ~/~_ , ,  

which we shall regard as a vector  space of weight k. 
For  any subspace V' of V, there is an induced filtration WV'  defined by 

wkv'= ~ v'. 

Likewise, if V " c  V', one defines 

Wk( V' /V")= Wk V'/Wk V"= Im { Wk V'--~ V'/V"}. 

In part icular,  if L is ano ther  filtration of V, then W induces a filtration on 
Gr~V, and one has 

(1.3) GrWGr~V ~- G r ~ G r W V - ~ ( L j n  Wk)/[(Lj c~ W k_ 1) + (Lj-1 ~ WD]. 

(1.4) Definition. Let L and  W be filtrations on V. Then  the convolution L * W  
of L and W is the fil tration with 

(L* W)i = ~ (Lj c~ Wk). 
j + k = i  

Clearly, L ,  W = W , L, T , W = W, and (L ,  W)[n] = L , (W[n]) .  Unfortunately,  
convolut ion is not an associative operat ion.  The following proper ty  of the con- 
volut ion is the mot iva t ion  for introducing the not ion:  

(1.5) Proposition. Let C = L * W .  Then 

w w V CiGr k V ~ L i _ k  Gr k 
Proof. 

c ,n  ~ = ~ n y~ (Lj~ W~) 
j + l = i  

l<k l>-k 
j + l = i  j+~=i  

[ z <so  
/ < k  

j + l = i  

= ~ (Lj~W1). 
l<_k 

j + l = i  
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Thus also 

Therefore, 

But 

C i (3 I/V k - 1  = E ( L j  (~ Wl) .  
l < k - 1  
j + t = i  

C i GrWV~-(L,_kr~ Wk)/[(L,_kC~ Wk)~ t~<k (Lf~ W~)]. 
j + l = i  

Li_k~Wk c~ ~ (L j~Wl )=Li_k~  ~ (Li_INWt) 
I<k l<k 

j + l - - i  

= L i _ k ~ VV'k _ I , 

again by (1.12, iii). We now have 

Ci  G r W V : ( L i - k  (~ W k ) / ( L i - - k  ("~ Wk 1) 

= L i -  k GrW V, 

as desired. [] 

(1.6) Corollary.  c w L W Gri Gr  k V ~ G r i _ k G r  k V. 

In other words, taking the convolution with W shifts the filtration L on Grff l /  
by - k :  

C G r W V = L G r W V [ - k ] .  

(1.7) Definition. Let V be equipped with filtration W, and V' with filtration 
W'. The linear mapping ~: V-~ V' is called a morphism of filtered vector spaces 
if it is compatible with the filtrations: 

~(W~) ~ W;. 

We then write ~: (V, W ) ~ ( V ' ,  W'). 

If 4~ is a morphism of filtered vector spaces, then ~ defines linear mappings 

~k: %---, W[ 
Gr k �9 : Gr w V-+ Gr  w' V'. 

The following is elementary and well-known. 

(1.8) Lemma.  Suppose in the above that W is a finite filtration. I f  Gr k@ is 
injective for all k, then ~ is itself injective. Similarly, if W' is finite and Gr k �9 is 
surjective for all k, then ~ is surjective. 

This gives immediately: 

(1.9) Proposition. I f  W and W' are finite filtrations, and Gr k~ is an isomor- 
phism for all k, then q) is an isomorphism. 

(1.10) Definition [3, (1.1.5)]. A morphism of filtered vector spaces as in (1.7) is 
said to be strictly compatible with the filtrations (strict, for short) if 

~ ( v )  c~ w ;  = ~(wk), 
i.e., 

q~- ~(Wk') = Wk + ker 4~. 
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The above definition can be reformulated as follows. The image of �9 in- 
herits the filtration W'. Via the isomorphism 

~(V) _~ V/ker ~, 

the image of �9 also gets a quotient filtration induced by W, and 

Wk Im q~ c Wk' Im q~ 

for all k. To say that �9 is strict is equivalent to asserting that the two fil- 
trations coincide. 

(1.11) Remark. The composite of strict morphisms need not be strict. In fact, 
if ~ is an endomorphism of V that is strictly compatible with W, ~b 2 will not in 
general be strict. For example, let V be a 4-dimensional vector space with basis 
{e 1, e 2, e 3, e4}, and let V'=Span{el,e2}. Suppose that V' is the only non- 
trivial filtration level. Let ~ be the transformation determined by putting ~(e~) 
=0, Cb(ez)=e 1, ~(ea)--0, and q~(e4)=e 1 + e  2 + e 3. One checks readily that q~ is 
strict. However, one has that ~2(ea)=~Z(e2)=0 , while ~2(e4)=elEV', and we 
see that ~2 is not strict. It is even easier to see that it is possible for ~2 to be 
strict (e.g., the zero mapping) when �9 is not. 

At the risk of appearing frivolous, we have decided to make explicit some 
very elementary facts we will make repeated use of; they already appear in the 
proof of (1.5): 

(1.12) Tautologies. i) If P, Q and R are sets, then P n Q c R  if and only if 
Pc~QcQnR.  

ii) If P, Q and R are subspaces of a vector space, and P~Q, then 
Pn(Q+R)=Q+(PnR) .  

iii) If P, Qo, . . . ,Q, ,  Ro .. . .  ,R,  are subspaces of a vector space, PcRo,  and 
Qi~Qo for all i, then 

P n  ~ (Qic~Ri)=PnQo . 
i=o  

w 2. Relative weight filtrations 

Let V be a finite-dimensional vector space, and let N be a nilpotent endomor- 
phism of V. The following is well-known: 

(2.1) Proposition. There is a unique filtration L=L(N) of V such that 

(1) NLicL i_  2 
(2) N i induces an isomorphism Gr/LV -- GrLi V. 

Suppose that Nq+l=O. Then L is given iteratively (as i decreases) by the fol- 
lowing formulas: 

(i) L_~q+ 1)=0 , 
(ii) if i>O, Li={v~V: Ni+lvEL_i_2}, 

(iii) if i > 0, L_ i = Ni Lr 
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One interprets (2.1(1)) as saying that N is a morphism from (V,L) to 
(V,L[ -2 ] ) .  From (2.1) and (1.8), one obtains the following useful property of L: 

(2.2) Corollary. I f  i<l, then NI: Li-~Li_zt is surjective, 
ii) I f  i> - l - 1 ,  then Nl: V/Li+21--~V/Li is injeetive, i.e., 

Li+ 21 = (Nt) - 1Li" 

(2.3) Remark. In fact, one has the following explicit formula for Li: 

Li= ~ NZ(kerNi+l+zt). 
l>=O,--i 

Let now K denote the kernel filtration of V: 

K~=ker  N ~+1 (j> - 1 )  

and I the image filtration, determined by 

I k = N - k V  (k<O). 

With the aid of the elementary formula 

one sees that 
Kj t~ I k = ker N j + 1 c~ N -  k V = N -  k(ker N j + 1 - k ) ,  

L = K * I .  

One calls L the weight filtration of N. It is in an obvious sense centered at 
zero. If V is of weight k, then it is useful to recenter L at k by setting 

(2.4) M = M ( N ) = L [  - k ] .  

We remark that when N is the logarithm of an unipotent local monodromy 
transformation of a polarizable variation of Hodge structure, then M is impor- 
tant for mixed Hodge theory (see [9, (6.16)], [11, w 13]). 

Let N now be a nilpotent endomorphism of the filtered vector space (V, W), 
and let kM denote the filtration M(GrkN ) on GrffV. 

(2.5) Definition. A weight filtration of N relative to W is a filtration M of V 
such that 

i) N M  i c M i _  2 

ii) M Grff V = kM. 

(2.6) Proposition [5, (1.6.13)]. There is at most one filtration M of V satisfying 
the conditions of (2.5). 

Thus, if such M exists, we call it the weight filtration of N relative to W, 
and denote it M = M ( N ;  W). If N is the logarithm of the unipotent factor of 
the local monodromy of the l-adic cohomology of an algebraic variety over a 
field of characteristic p, and W is the weight filtration according to the eigen- 
values of Frobenius, the existence of M is proved in [5, (1.8.5)]. It follows by 
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comparison methods that the same holds when N is a local monodromy logar- 
ithm for an algebraic family of complex algebraic varieties, and W is the (lo- 
cally constant) weight filtration of the mixed Hodge structure of the homology 
or cohomology V of a fiber. We will discuss the geometric construction of M in 
this latter case, which we henceforth call the geometric case, in w 5. It is impor- 
tant to have a filtration on V that induces the weight filtration of each GrkN 
on GrWV; because of the possibility of the non-strictness of N (see (2.11), 
(2.12)), it is not always the case that L(N) induces L(GrkN ). 

(2.7) Remark. Suppose that M exists. Then: 

i) M[n] is the weight filtration of N relative to Win].  
ii) For any k>l,  M(Wk/Wt) is the weight filtration of the induced endomor- 

phism of Wk/W t relative to the induced filtration. 

It follows that whenever W is finite, then M exists if and only if it can be 
built up successively to higher and higher W k. Let tk)M denote the weight fil- 
tration of N]wk relative to W. In seeking the existence of tk~M, given that (k-1) M 
exists, we may, in view of (2.7), assume that k = 0 and V= W o. We then put 

M'=(_  1)M. 

Proposition (2.6) is proved by establishing the following recursive formulas for 
M=t0)M (cf. (2.1)). 

(2.8) Lemma. Suppose that Wo=V, Nq+l=0.  Then 

i) i>q, then M i=M'_i, 
ii) i l l>O, Mi={v~V:  N i + l v E M  i_2}, 

iii) / f i > 0 ,  M i = N i M i + M '  i. 

We can see that {Mi}, as defined in (2.8), is indeed a filtration of V, and 
moreover N M  i~ Mi_ 2, without any further hypothesis on N, by the following 
observations: 

(2.9) a) If i__>l, NiMic:::M_i. T h e r e f o r e  N i - t ( N M i ) c M _ i ,  SO N M i c M  i 2 by 
(2.8, ii). 

b) If i>  1, then 
i , N M  i = N ( N  M i + M  i) 

= N i + l M i d - N M ' _ i c M _ i _ 2  

by (2.8, ii) and the properties of M'. 
c) N M  o c M 2 by (2.8, ii) directly. 
d) By (b), (2.8, ii), we get for i>__ - 1  that 

M _ i _ 4  c::: M _ i _  3 =~. N M _ i _  2 c M _ i _  3 =~ M i  ~ M i  + I. 

e) By (a), (2.8, iii), and the properties of M', we get for i > 1 that 

M i -  1 ~ M I ~  N M I  + 1 ~ M i  ~ M - i -  1 ~ M - i "  
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(2.10) Corollary. The weight filtration of N relative to W exists if and only if 
the Mi's given in (2.8) satisfy: 

a) m i W _ l - ~ m '  i 
b) M i ( V / W _  1) = ~ 

The existence of M places restrictions on what N might be. We are even- 
tually going to give necessary and sufficient conditions for getting M from M'. 
Before doing so, we would like to present some examples to give the reader 
some feeling for the nature of the problem. 

(2.1l) Proposition. Suppose that for every l> O, N l is strictly compatible with W. 
Then the relative weight filtration exists, and is given by 

M=L(N)*W.  

Conversely, if the above formula for M holds, then all powers of N are strict. 

Proof. We claim that if the strictness hypotheses on N hold, then L(N)(GrWV) 
=L(GrkN),  from which the desired formula follows by convolution with W. To 
verify the former, it suffices to see that there is an N-invariant splitting of the 
filtration W. By induction we may assume that V= W o and W 2 =0. To get a 
section to the projection n: V---~GrWo V it is enough to show that whenever 
u~GrWV and (GroN)~u=O, there exists veV with 7r(v)=u and Nlv=O (for it is 
a question of lifting the cyclic factors of an N-invariant decomposition of 
V/W 1). This follows immediately from the strictness assumptions. 

Conversely, suppose that M=L(N)*W.  It is enough to show that if y e w  k 
and N~+lV~Wk_I for some l>0,  then in fact V e W k _ l + k e r N  t+I. We may as 
well put k =0,  in view of (2.7, i). Then 

n(v)eker(Gro N)l+ a c L  z Gr  ~ N = M  I GroN. 

Thus, there exists u~M t with 
W-~-V--I, I c W  1 

By hypothesis, u~L~(N). From (2.3), it follows that we may write 

u = u' 4- N u " ,  

with u ' e k e r N  ~+1. We now have 

v=w+u'  + Nu" 

NZ+ a v=Nl+ 1 w+ NZ+ 2 U", 

from which we see that N~+Zu"~W1. Arguing by induction (since N J = 0  is 
strict for sufficiently large j), we can write 

N I+2 u " = N  l+z  w' 

for some w's W 1. This yields 

Nl+ 1 v = N  t+ l(w + Nw' )eN  t+ 1 W_ 1, 
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or equivalently, 
yeW_ 1 + ker NZ+ 1, 

as desired. [] 

The following example shows that one does not have this kind of strictness 
in the general geometric case: 

(2.12) Example. (Deligne) Let C be a rational curve with one node x o. Let A 
denote the unit disc in the complex line. Take a paramemzat lon  ~: A-* C of 
one branch of C through x o with e ( 0 ) = x  o, and put 

X=(C--{Xl} x A*)- (g raph  of a), 

where A* is the punctured disc, and x a e C - a ( A  ). The projection f :  X - . A *  
displays X as a topological fiber bundle. For  any teA*, we take Xt=f - l ( t ) ,  
and put V=HI(Xt,tI~), W its weight filtration. Let 

e 2 =homology  class of a small loop about a(t), 
e 0 = homology class of a loop in C -  {xl, a(t)} that generates Hi(C, Z). 

Then e 2 generates W a, and e 0 projects to a generator of GrWV. The Picard- 
Lefschetz transformation z is seen to be given by z ( % ) = % + e  2, z(e z)=e 2. 
Thus N = z - 1 satisfies 

N~3o--=e 2, Ng_2=O, 

so is evidently not strict. 

(2.13) Remark. Example (2.12) was constructed as the geometric realization of 
the motif  

z(1) ,Hz 

z(1)- - - - -~ r 

,Z 

,[ z(n)=q" 

, if2* p(w)=exp(2~iw). 

We can modify (2.12) by taking C to be of arbitrary genus and still have 
non-strictness for N. However, these examples are illustrations of the follow- 
ing: 

(2.14) Proposition. I f  G r k N = 0  for all k, then M exists if and only if NWk ~_ 
Wk- 2, and then M = W. 

Proof. Since L(GrkN) is trivial for any k, it is clear that the trivial filtration T 
of V induces it, so T * W = W  induces (k)M for all k. The remaining condition 
defining the relative weight filtration is that N Wkc Wk_ 2, whence the asser- 
tion. [] 

(2.15) Remark. If N W  k dg Wk_2, the filtration defined by (2.8) will, of course, be 
something other than W. 
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The next assertion explains why one cannot find counterexamples to the 
strictness of N in the local monodromy of families of smooth or complete 
curves: 

(2.16) Proposition. Suppose that W is o f  length two, i.e., for some k, V =  W k and 
Wk_2=0. Then M exists if and only if N I is strict for  all positive integers I. 

Proof. Of course, one direction is contained in (2.11). Suppose, then, that the 
relative weight filtration M exists. We may, again, assume that k=0.  Suppose 
that N I w W _ l .  Let u=n(v) .  Then N l u = O  in GrWV, so 

u C M t -  1. 

We can therefore find v'eM~_ 1 with n(v')=u. Then n ( v - v ' ) = O ;  that is, 
( v - v ' ) e W  1. Applying N a, we see that 

Nl v' e M - t -  1 ('~ W_ 1 = M ' - t -  1 = L - l ( N -  1). 

By (2.1, iii), we can then write N l v ' = N l w ,  with w e W  1. We have now 

N l v = NZ(v - v') + N z w e N  t W_ 1, 
as desired. [] 

Applying the above to all length-two quotients Wk/Wk_ 2 in the general 
case, we obtain: 

(2.17) Corollary. A necessary condition for M to exist is that for all integers 
l > 0  and k, 

Nt W~ n W~_ I c N~ W~_ I + W~_ 2 . 

The condition in (2.17) deserves a name: 

(2.18) Definition. Let 4): (V,I/V)--~(V',W') be a morphism of filtered vector 
spaces. Then 4) is said to be quasi-strict if 

(~(Wk) O Wkt 1cz ~ ( W k _  1)-~ - Wkr_2 , 

The following example shows that the quasi-strictness of all powers of N in 
(2.17) is not sufficient to give the existence of M: 

(2.19) Example. Let V be 3-dimensional, with basis {e 1, e 2, e3}, Wo= V, W_ 1 
=W_2=Span{e2,e3},  W_3=0. Define N by N e i = e 2 ,  N e 2 = e  3, Ne3=O.  It is 
clear that all powers of N are quasi-strict. However, we can see that (2.8) fails 
to define the relative weight filtration. Retaining our previous notation, we see 
that M _ 2 = M '  2 by (2.8, i), so (2.8, ii) gives 

M o = { v ~ V :  N v e M _ 2 } = V V  1; 

whereas MoGroWV ought to be equal to Lo(GroN)=GroWV. 
We now address the general problem of determining whether (k)M exists, 

given that (k-1) M does. We assert: 
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(2.20) Theorem. I f  the weight filtration (k-1) M of  Nlwk_~ relative to W exists, 
then (k)M exists if and only if for  all integers l> 0 

Nl Wkc~ Wk- 1 c Nl Wk- 1 + (k-  1 ) M k - t -  1. 

The remainder  of this chapter is devoted to the proof  of Theorem (2.20). Of 
course, by our cus tomary reduction, it suffices to consider the case k = 0, where 
our  condit ion reads 

(2.20)~ Nl Wo (~ VI/'- 1 C Nt W_ 1 + (-- ~)M_ l- 1" 

Since by (2.8, iii), with a shift, 

(_ l )M_t_ l = Ntl_ l)Mt_ l + (_ 2)M_t_ l , 

we can rewrite (2.20)~ as 

(2.21) NIWo c~ W 1 ~ N I W -  1 +~-2} M -  i- 1. 

This is a condit ion that visibly lies between strictness and quasi-strictness of all 
N ~, as we should expect. 

By (2.10), the existence of M is equivalent to the following two sequences of 
assertions about  the subspaces defined in (2.8): 

(2.22) ai) M i ~ W_ 1 = M'i 

bi) (M i + W_ O/W_ 1 = ~ 

The verification of these, and their relation to (2.20)~ will go by induction, as in 
(2.9). 

We begin with the easy steps: 

(2.23) Proposition. Without any hypothesis on N, 

(b i )~(b_ i )  when i>O. 

Proof. Because 
M _ i + W _  1 i ,_ _ = ( N M i + M  i ) + W  1 

= N iM i + I/V 1, 

we have 
(M_ 1 + l/V_ 0/W_ 1 = (GroN) / ~ assuming (bi) 

~ by (2.1, iii), 

as desired. [ ]  

(2.24) Proposition. Also with no additional hypothesis on N, 

(a_ i_2)~(a i )  when i>=O. 
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Proof. We have 

Mir3VI/ I={VEV: N i+1 veM i _ 2 } ~ W 1  

= {yaW_ 1: Ni+lv~M_i_2~W_I}  
= { y e W  1: Ni+tveM'_i_2} assuming (a_i_2) 

= { y e W  i: Ni+lveNi+lMi+(_2)M_i_2} 

by (2.8, iii), with a shift. 

We plainly see that Min  W_ 1 ~M'~. On the other hand: 

M'ic3Wlc{veW_l:  Ni+2F~Ni+2M'i+N(_2IM i_2} 

c { v E W - l : N i + 2 v e M ' i  4} 

= M~ by (2.8, ii), with a shift. []  

For the remaining steps, we will need to impose conditions on N. 

(2.25) Proposition. Suppose that 

(2.25)~ N i V ~ W_ 1 ~ Ni W_ 1 + M'_ 

(a condition slightly weaker than (2.20)~). Then 

(a,) ~ ( a  i) 

Proof. Statement (a_i) asserts that 

(Ni Mi + M'-i) ~ W~ 1 = M'-i" 

By (1.12, ii), we can write this as 

(Ni Mi ~ W_ I) + M'_i= M'_i, 

which is equivalent to the statement 

We compute: 

Ni Mic~ W_ l 

as desired. []  

Ni Mi n W_ 1 c M'-i. 

=Ni{veV:  N i + l v e M _ i _ 2 } n W  1 

= { u : N u e M _ i _ 2 } ~ N i V ~ W _ l  

~ N - 1 M i _ 2 c s ( N I W _ I + M ' _ i )  by (2.25)~ 

= ( N - 1 M i _ 2 n N i W _ I ) + M ' _ i  by (2.8, iii) and (1.12, ii) 

=Ni{  WCW- 1: Ni+ 1 wEM_i_2} +M, i" 

= Ni({vE V: N i+ 1 vEM_i_ 2} ~ W_ 1) Jr- M' i 

=Ni(Mi~W_1)+M'_i  by (2.8, ii) 

= Ni MI+M'  i assuming (al) 

=M'_i, 

505 
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Finally, the most  impor tant  ingredient in the proof  of (2.20) is the follow- 
ing: 

(2.26) Proposition. Let i>_O, and assume that (b i _2  ) is true. Then (bi) is true if  
and only if  (2.20)~ § is satisfied. 

Proof. We can write (bi) as 

( N i + I ) - I M _ i _ E + W  I = ( N i + I ) - I ( M _ i _ 2 + W  1). 

Since the left-hand side is obviously contained in the right-hand side, (bi) re- 
quires 

(2.27) (Ni+ 1)- I(M_~ - a + W_ 1) c (N i+ 1)- 1 M _  i-  2 + W_ 1, 

or equivalently, as one readily checks, 

N ~+1 V~(M_i_2-t-  W_ 1 ) c ( M _ i _ 2  + N  i+1 W _ I ) ~ N  i+1 V. 

We perform some manipulat ions:  

Ni+ 1 V ~ ( M _ i _  2 + W_ 1 ) = g  i+ 1 V ~(Ni+ 2 Mi + 2 -I- W_ l) 

=Ni+2Mi+2 +Ni+ 1 Vc3 W 1" 

From this, we see that  (2.27) is equivalent to 

N i + I V ~ W _ I c M _ i _ 2 + N i + I W _ I ,  

which is, by (1.12, i), the same as 

N i + I v ~ w  1 c ( M  i _ 2 + N i + I W _ I ) ~ W  1 

=M_i_2(3  W 1 + N  i+l W_I 

= M'_ i- 2 + Ni + 1 W 1 assuming (b_ i- 2). 

This is precisely (2.20)/o + 1, so we are done. [ ]  

Putt ing (2.23)-(2.26) together, we get (2.22) for all i if and only if (2.20)~ is 
satisfied for all l, which gives Theorem (2.20). In the proof, we saw that  it was 
only in the verification of  (2.22, b~) for i > 0  that the precise condit ion on N was 
needed. 

We can view Theorem (2.20) as asserting that the existence of the relative 
weight filtration imposes severe restrictions on N. If N satisfies the conditions 
of (2.20), we will say that  N is an admissible nilpotent  endomorphism of V 
(relative to W). We stress the following: 

(2.28) Corollary. I f  N is a nilpotent logarithm of  a local monodromy transfor- 
mation o f  the cohomology o f  an algebraic variety, then N is admissible. 

w 3. Variations of mixed Hodge structure 

In this chapter, we discuss the definition of a variat ion of mixed Hodge  struc- 
ture. While certain conditions are evident, it is not  fully unders tood at the 
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present time what constitutes a "good"  variation of mixed Hodge structure, as 
Deligne avers in [5, (1.8.15)]. 

First we recall the definition of a variation of Hodge structure: 

(3.1) Definition. Let S be a complex manifold, IF a sub-field of the real num- 
bers. A variation of  Hodge structure of  weight k over S, defined over IF, is the 
collection of data (u  o~), where 

a) VF is a locally constant sheaf (local system) of IF-vector spaces ~ on S, 
b) ~ - = { f ' P }  is a decreasing filtration by holomorphic subbundles of the 

bundle (more properly, locally free sheaf) Y/~=(gsQFu ~. 
c) At each seS,  ~ induces the Hodge filtration F s of a Hodge structure of 

weight k on the fiber V s of Y/: 
i) whenever p + q = k 

Vs= F?+  Fq, +1 , 

where the "bar"  denotes complex conjugation, 
ii) equivalently, 

P'  q - -  c~ F~ . V s= @ Hf  'q where H s - F ?  
p + q = k  

d) Under the flat differentiation V in ~//', 

V~-pc  i ~ p - 1  (2s|162 for all p. 

If f :  X - - , S  is a smooth, proper holomorphic mapping, and X is a Kiihler 
manifold, then Rkf,r is the underlying local system of a variation of Hodge 
structure of weight k, defined over I1~, in which F~ is the usual Hodge filtration 
of the cohomology of the fiber: Hk(X~,~).  Such examples provided the moti- 
vation for the Definition (3.1). One refers to these, and sometimes also varia- 
tions of Hodge structure derived from them by standard functorial construc- 
tions, as geometric variations of Hodge structure. 

A variation of Hodge structure defined over IF gives, merely by extending 
the scalars in V F, one defined over IE for any I F c I E c R .  One has, also, an 
obvious notion of a morphism of variations of Hodge structure. 

(3.2) Definition. A polarization over IF of a variation of Hodge structure of 
weight k over IF, is a non-degenerate, flat bilinear pairing: 

fl: u  x u  

such that fl is (-1)k-symmetric,  and the Hermitian form on each fiber: 

MC~v, ~) 

is positive-definite. Here, C, denotes the Well operator with respect to Fs, 
namely the direct sum of multiplications by ff-q on H", 'q. A variation of Hodge 
structure is said to be polarizable (over IF) if it admits a polarization (over IF). 

4 If IF =~, it is customary to include a statement about the structure over Z. Such considerations 
are extraneous for our purposes 
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By adjusting the cup-product on cohomology by use of the K~ihler class 
and its (fiat) primitive decomposition, one obtains a polarization over n/ for 
Rkf, R in the geometric case. If X is a family of algebraic varieties, then the 
polarization is in fact defined over II~. 

(3.3) Remark. It is immediate that any subvariation of a polarizable variation 
of Hodge structure is polarizable. In particular, the kernel and image of a 
functorial morphism of cohomology in the geometric case are polarizable. It is 
easy to get confused over this point if one worries too much about the source 
of the polarization! 

One can now formulate the following: 

(3.4) Definition. A variation of mixed Hodge structure defined over IF on the 
complex manifold S is the collection of data V =(V~,  W,o~), where 

a) u  is a local system of F-vector  spaces on S, 
b) W = {Wk} is an increasing filtration of V F by local subsystems, 
c) ~ = { Y P }  is a decreasing filtration by holomorphic subbundles of 

V = (~s| ~VF, 
d) Vo~pc Q ~ |  1, 
e) with ~ denoting (gS| 

i) the data (GrWVF, o~(~f/s163 ) is a variation of Hodge structure of 
weight k, defined over IF; 

ii) equivalently, on the fiber, (V~, W~, F~) is a mixed Hodge structure, 
defined over IF. 

(3.5) Definition. A variation of mixed Hodge structure will be called graded- 
polarizable if the induced collection of variations of Hodge structure (3.4, e, i) are 
all polarizable. 

(3.6) Example. If f :  X-+S is a proper flat morphism such that there exists a 
hyperresolution X. of X ([4] w 6.2) such that all X i are proper and smooth over 
S, then Rif,  lI~x is the underlying local system of a natural, graded-polarizable 
variation of mixed Hodge structure [-13, 18]. The same holds if f is not nec- 
essarily proper but its fibres can be compactified in a sufficiently equisingular 
way. 

Next, we recall a little from the theory of degeneration of Hodge bundles. 
Suppose that the complex manifold S is embedded in S, via the mapping j, 

such that S = S - S  is a divisor with normal crossings. Let V be any local 
system of complex vector spaces on S, and • the corresponding vector bundle. 
Then f "  admits a "canonical" prolongation ~" to S, as defined in [2, p. 91]. It 
is easy enough to describe ~? as a subsheaf ofj ,~U when the local monodromy 
is unipotent. The local picture of S o S  is (A*)r x A ' - ' c A ' .  We let t I . . . .  ,t, de- 
note the variables on the punctured disc factors, and N 1 .... , N r the (commuting) 
nilpotent logarithms of the associated monodromy transformations of the fiber. 
For z x .... ,zr in the upper half-plane, the universal covering mapping for (A*) r 
is given by 

t~=exp(2~izj) j = l ,  ...,r. 
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Then, as v ranges over the mult i -valued sections of V, the formula  

j = l  

determines sections of f over  (A*)rx A "-r, and these are, by definition, the 
generators  of ~ over  A". By construction, 

(3.8) V ~/? _~ (2~ (log S ) |  ~7-. 

Now,  let u 1 7 4  underlie a var ia t ion of Hodge  structure of weight k 
over  S. We construe the data  of ~ as describing a ho lomorph ic  mapp ing  

7/: S --~ D(~F), 

where D denotes the appropr ia te  flag bundle of ~ .  Of course, (3.1, c, d) im- 
poses some condit ions on 7L One of the impor tan t  results f rom 1-9] can be 
expressed as: 

(3.9) Nilpotent Orbi t  Theorem. [9, (4.12)] For polarizable variations of Hodge 
structure, 

i) the mapping 7 ~ extends to 

~,: ~-~ D(r 

i.e., the filtration ~ of ~" extends to a filtration ~ of ~'; 
ii) in terms of local coordinates "at infinity", (A*)r • A "-r,  and the trivializ- 

ation of 9" via (3.7), the "constant" mapping ~(0) defines a variation of Hodge 
structure (of the same weight) on sc~me open set of the form 

r 

l-I Ilogltj[] > c ,  I t j ] < l - e .  
j=l  

(3.10) Remark. In  the case of a geometr ic  var ia t ion of Hodge  structure, the 
regulari ty Theo rem [-7] a l ready implies the existence of ~'(0) when S is a curve. 

In the case of  one variable,  i.e., S = A * ,  one can say more  about  the fil- 
t ra t ion ~(0). We regard the fiber V o of ~ at the origin as a vector  space of 
weight k. The unipotent  m o n o d r o m y  logar i thm N O becomes an endomorph i sm 
of Vo, namely  the residue of the connect ion at  the origin, and we then also 
have its shifted weight filtration M(No) of (2.4). F r o m  his SL2-orbit  theorem, 
Schmid deduced: 

(3.11) Theorem. [-9, (6.25)] (Vo, M(No), ~(0)) is a mixed Hodge structure. A 
polarization of the variation of Hodge structure determines 5 a graded-polarization 
of this mixed Hodge structure. 

Some good informat ion abou t  the si tuation in the several-variable case is 
provided by: 

5 By a well-known procedure: see [9, (6.4)] or [1, (1.14)] 
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(3.12) Theorem. [1, w For a polarizable variation of Hodge structure on (A*) r 
with unipotent monodromy, let, for any non-empty subset J c {1 .. . .  , r}, 

r j = { N =  ~, 2~Nj: 2~>0}. 
jeJ 

Then" 

i) for any fixed J, L(N) (or M(N)) is the same filtration for all NeTs, 
ii) if J={1  .... ,r}, then for NeTs,  (Vo,M(N), ~(0)) is a mixed Hodge struc- 

ture, 
iii) if NeTj  and N'ezj , ,  then if N"eTj~j, ,  L(N") is the weight filtration of N 

relative to L(N'); thus, 
M ( N  ; M(N')) = M(N").6 

In [5, (1.8.15)], Deligne poses the problem of defining a notion of a good 
variation of mixed Hodge structure, even in one variable, so that (3.9), (3.11) 
and (3.12) will have suitable generalizations. We will look briefly at the case S 
-A* .  

For  a variation of mixed Hodge structure over A*, we have a morphism 

inducing for each k 
~u: A*---* D(~V'), 

~k: A*---~ D(~kk), 

Grk kg: A*---~D(Grff~V'), 

where D again stands for a suitable flag bundle. The image of ku necessarily lies 
in a certain subset of D(~),  namely the set of flags which induce flags of the 
right type on the ~r ' Gr  k ~ s, which we call DG(~ ). We again have the prolon- 
gation ~/?, but now it comes equipped with the filtration {ff/s by sub-bundles. 
The fiber V o at the origin is naturally filtered by W. One wants the following to 
hold: 

(3.13) Properties. i) The unipotent local monodromy logarithm N o is ad- 
missible (i.e., the weight filtration M of N O relative to W exists), 

ii) ~ extends to give 
tp : A --~ Dff/~), 

such that ~(0)eDaff//~). 
iii) For each k, (Wk, M , ~k(0)) is a mixed Hodge structure, and N o gives a 

morphism of type ( -  1, - 1). 

We will see in w that the Properties (3.13) are sufficient to produce a 
mixed Hodge theory with degenerating coefficients, generalizing [11]. In the 
geometric case of (3.6), that they are satisfied will follow from the construction 
in w 

(3.14) Remark. i) From (3.13, ii), it follows that ~ induces 

~ :  A--~D(~) ,  

Gr k ~:  A --~ D(Gr~f-~). 

6 This assertion is slightly misstated in [1] 
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ii) It will be shown in the appendix that (3.13, iii) is a consequence of (3.13, 
i) and (3.13, ii), given (3.11). This is not at all trivial: one must be careful when 
working with three filtrations. Although 

GrW GrtW V~--( l/Vk c~ Mt)/[( Wk ~ Ml_ l) + ( Wk_l ~ Mt)] 

~--[(Wk c~ Mt)+(Wk_l + Mz_t)]/(Wk_, + M,_I) 

is symmetric in W and M, the filtration induced by F may depend on the 
order the quotient is formed. For instance, in the order given above 
F p Gr w Gr w V is the image of 

(FP c~ MI + MI_ I) c~(Wk~Mt + Mt_ a). 

iii) Note that (3.13, iii) contains the assertion that N o is strictly compatible 
with M, in the sense that N o V ~ M k _ 2 = N o M  k. This is not, however, implied by 
the admissibility of N o . (It is always true in the pure case.) There are even 
counterexamples of type (2.14). 

The following two examples show that the conditions in (3.13) are, in a 
certain sense, independent. 

(3.15) Example. Let V be 4-dimensional, with basis {e o, el ,  e2, e3}, W 1 = V, W o 
=W l=Span{ez,e3}, W 2~-0; and define N by Neo=0 ,  N e l = e  2, N e z = e  3, 
Ne3=0 .  We have merely added a trivial one-dimensional summand to Exam- 
ple (2.19) and shifted W, so the weight filtration of N relative to W does not 
exist. With this defining the underlying local system, it is possible to define a 
graded-polarizable variation of mixed Hodge structure on A*, with Hodge 
numbers h~ '~  ~ - ~ =  1, such that the limit filtration exists, and behaves well 
under passage to Gr w. In fact, we can take a "nilpotent orbit"  as the variation: 

~ 2  =0,  

o~x = Span {~eo + ~l +/t~2}, ~,/x r ~:~ 

Y ~  el,  e :+Pe3},  
j ~ - i  = g - .  

(One readily verifies that the conditions of (3.4) and (3.5) are satisfied.) 

(3.16) Example. Let V be as in (2.12), and take 

F, ~ = Span {go +f( t )  ~_ 2}. 

This defines a graded-polarizable variation of mixed Hodge structure for any 
analytic function f on A*. We distinguish three cases: 

i) f extends analytically across the origin. Then (V o, W, Fo) is a mixed 
Hodge structure (recall that M = W here). 

ii) f has a pole at the origin. Then F o behaves poorly with respect to GrW; 
(Vo, W, Fo) fails to be a mixed Hodge structure. 

iii) f has an essential singularity at the origin. Then the limit filtration F o 
does not even exist. 
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We feel that  the assumpt ion  that  a var ia t ion of mixed H o d g e  structure be 
graded-polar izable  is too weak. In fact, those of geometr ic  origin ((3.6), or vari- 
at ions on (3.11)) have the proper ty  that  the polar izat ions of the G r W u  are of 
a c o m m o n  source, i.e., are related. An axiomat ic  understanding of this point  
may  be the missing ingredient in the theory of variat ions of mixed Hodge  
structure. 

The  following embarrass ingly  simple observat ion  contains a touch of the 
above complaint ,  so we ment ion it now: 

(3.17) Proposition. Let V be a complex vector space with real structure with an 
increasing filtration W defined over ~ and a decreasing filtration F. I f  F induces 
Hodge structures of the same weight on each Gr w V, then (V, F) is itself a Hodge 
structure. 

The proof  of (3.17) is left to the reader. Al though one could regard it as a 
clever trick that  might  be useful in construct ing Hodge  structures, it seems to 
us that  it should be possible, even desirable, to avoid using (3.17). (We add for 
compar i son  the wel l -known fact that  a filtration of a polar izable  Hodge  struc- 
ture necessarily splits.) 

We conclude this chapter  with some remarks  on the mixed Hodge  theoretic 
variants  of (3.12). Given  a graded-polar izable  var ia t ion of mixed Hodge  struc- 
ture on (A*)r, we again have m o n o d r o m y  logar i thms N 1 . . . . .  N r. We define z s as 
before. Suppose that  for each N e z j ,  M(N;  W) exists. Since M(N;  W) induces 
M(GrWN),  we obtain,  f rom (3.12, i) and the uniqueness of  M, that  M(N; W) is 
constant  on zs. 

One can raise the obvious next quest ion:  

(3.18) Is it true that if NCTJj and N'ez j ,  that for N"@"cju J, 

M(N; M(N'; W) )=M(N";  W)? 

This is asserting that  for all i and k 

G_M" ,-,rM'V u, , G r ~ ' ; G r f f ' V  [ k + i  k J  k 

is an i somorphism,  where we are writing M ' = M ( N ' ;  W), etc. By (3.12, iii), we 
have that  

W ' "  M '  W N ~ M "  M '  Grk + i Grk Grl ' Grk - i Grk GrW V 

is an i somorph i sm;  moreover ,  it would suffice to know that  

G r  w M" M' N, , G r  w M" M' Gr  k+~Gr k V G r  k_~Gr k V 

is an i somorphism,  but  we face a p rob lem similar to the one in (3.14, ii). 

w 4. Mixed Hodge theory with degenerating coefficients 

Let S be a compac t  R iemann  surface, 2; c S a finite set of  points, S = S - Z ,  and 
j:  S - - , S  the inclusion mapping.  Let  (Xgv, W, o~) be a var ia t ion of mixed Hodge  



Variation of mixed Hodge structure. I 513 

structure on S, defined over IFclR,  and put ~ r r 1 7 4  This chapter will 
be devoted to the proof of the following theorem, which generalizes the results 
in [11]: 

(4.1) Theorem. Suppose that (VF, W, ~ )  is graded-polarizable and satisfies the 
Properties (3.13). Then the spaces Hi(S,V) and Hi(S, Rkj, V), for all i, k >O, 
carry natural mixed Hodge structures defined over IF, such that the Leray 
spectral sequence .for j becomes a spectral sequence of mixed Hodge structures. 
Moreover, the mixed Hodge structure is functorial in both V and S. 

We will have to study several extensions to S of the connection 

(4.2) V: d ~ ~2~ |  

where d = ( ~ s | 1 6 2  r for subquotients A of ~g. We recall that the canonical 
extension s~' of d is characterized by the properties that (4.2) extends to 

(4.3) V: ~ -~ 01 (log Z) | ~ ,  

and for each a6Z, the eigenvalues of the residue N(a), of (4.3) on the fiber A(a) 
of ~ at a, lie in the interval [0, 1). The extensions of (4.2) that we will consider 
are complexes of the form 

(4.4) ~ v N', 

where Vs~' = ~ ~ ~2~- (log Z) | s).  Such an extension is characterized by (A and) 
the image B of ~ in 

A = (~  A(~) 
a E ~  

via the residue mappings; we have 

B = Q B(ol, 

with N(a)A(a)c B(a)c A(a). We let {A, B} denote the complex (4.4). 

(4.5) Remark. If one puts B =  NA, where N =  �9 N(a), then {A, B} is a resolu- 
tion of j , A r  At the other extreme, if B=A, then the complex {A, B} repre- 
sents the object Rj,  Ar in the derived category D + (S, ~). 

It is clear that B ~ A is determined by its image/~ in 

H ~ (S, Rlj ,  Ar ~ A/NA. 

We can then see how to make a parallel construction to that in (4.5) for A F 
and D + (S, IF). Let C'(AF) be the canonical resolution of A F (by discontinuous 
sections). We claim that the complex 

(4.6) 0 ~ j ,  C O (AF)~  ker {j, C' ( A F ) ~ j ,  C 2 (AF) } ~ 0 

represents R j , A  F. Indeed, on S the sequence 

0 - * A  F ~ C ' ( A ~ )  
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is exact, and C'(Av) is a complex of flasque sheaves. Hence, Rkj ,  Ci(AF)=0 for 
k > 0. Thus 

j f k  (j , ( C. (Av))  "~ Rkj , A F = 0 

for k > l ,  so we may cut off the complex j ,  C'(AF) to obtain (4.6). This shows 
that a complex {A, B} should be said to be defined over IF if the image/~ of B 
in R l j , A r  is defined over IF. 

The quotient of two complexes of type (4.4) need not be of the same type. 
However, we have the following: 

(4.7) Proposition. Let  A ' c A  be local systems on S, and suppose that 

A ' ~ B ' ~ N A ' c N A c B c A ,  

so that {A', B'} c {A, B}. Then there is an exact sequence of  complexes 

0 --+ K" --+ {A,  B}/{A' ,  B'} -+ {A/A ' ,  (B + A')/A'} --+ O, 

where K" = (B c~ A')/B' [ - 1]. Moreover, i f  (NA c~ A') c B' and B = ( N A  + A'), the 
sequence has a canonical splitting, which is defined over IF if {A, B} and {A', B'} 
a r e .  

Proof  First note that ~ / ~ '  is the canonical extension of ~ ' / d ' .  Moreover, K 1 
is naturally identified with the torsion subsheaf of N/N', for the latter is the 
kernel of the natural mapping 

N'/~' -+ fas ~ (log X) | s~'/~" 

(whose image contains (2}| so is locally free of the same rank as ~/~)'). 
This image is then characterized by its residue in A/A', namely 

BIB' ~ (B + A')/A'. 

The condition N A  c~ A' ~ B' means that V(f~'/~") c~ K 1 = {0}, and B c N A  + A' 
says that V ( ~ / ~ ' )  + K 1 = ~3/~'. We see that under both assumptions, V ( ~ / ~ ' )  
is a complementary submodule to K 1 in ~ /~ ' ,  which gives the desired splitting 
of {A, B}/{A', B'}. The proof of the rationality of the splitting over IF uses (4.6) 
and is left to the reader. [] 

To prove (4.1), we define filtrations ~J~ and F on the complex {V, V}, with 
~J~ defined over IF, such that we obtain a cohomological mixed Hodge complex 
on S. In analogy with [11, w 13], we put 

(4.8) Zk(a ) = N (a) l/Vk(a ) + M k_ a (a) VV k_ 1 (a) 

= n ( a ) W k ( a ) + M k _ , ( a ) W k ( a  ) (cf. (2.21)), 

Zk = @ Zk(a). 
aEX 

Here, Wk(a ) is the fiber of the canonical extension ~g/~ of ~//~, and M(a) is the 
weight filtration of N(a)o relative to W(a). Recall that N(a)o is the nilpotent 
part of N(a) in its Jordan decomposition. We put 

(4.9) 9Jlk {~ r, V} = { ~ ,  Zk}, 
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and let FV{Vr V} be the complex 

(4.10) 0--*~P v, f2~ ( l o g X ) |  -"-1 ~ 0 ,  

where ~ P = ~ ' c ~ j , ~  v is locally free on S by (3.13, ii). Moreover, ~ is assumed 
to be inducing on each V(~r) a filtration /?(a) of the right type with respect to 
the filtration determined by the ~r Because N(a), and also the splitting of 
N(a) into nilpotent and semi-simple summands, is defined over IF, the filtration 
~J~ is also defined over IF. 

We compute Gr~  = 9J~k/gJ~ k_ 1. First, we observe that Z k ~ N W k + W k_ 1, and 
also N Wkc~ Wk_ ~ C Zk_ 1 by Theorem (2.20). Hence we obtain by Proposition 
(4.7) a splitting: 

Gr~ -~ {~Wj~W k 1, (Zk + Wk- 1)/Wk- 1)} @ K~,. (4.11) 

Since 
(Zk+Wk_l)/Wk I=(NWk+Wk 0/Wk_l 

= Gr k N(Gr w V), 

the first summand in (4.11) is just the complex resolving j,(~Nffg~qk_l) that was 
studied in [11, w The filtration on it, induced by F, makes it into a 
cohomological Hodge complex of weight k. 

It remains to study the torsion summand K~,. At this point, we use Hy- 
pothesis (3.13, iii): for every aeX, the filtrations M(a) and P(a) define a mixed 
Hodge structure on V(a), filtered by W(~r). (We may ignore the non-unipotent 
summand, as it plays a trivial role here.) We have: 

Hi(  ~, K;,)= H~ ~, K~)=(Zkm Wk-1)lZk 1 

= ( N W k + ( M  k l ~ W k  a))r~VVk ,/(NWk_I +(Mk_2C~WR_1)) 

=(NVV k , +(M k l~Wk_l)) / (nWk_a +(Mk_zr~Wk_a)) by(2.20); 

that is, 

(4.12) 

(4.13) 
k - 1 .  

(Zk (~ Wk_ l)/Zk_ l ~-- GrM_ I (VVk_ I/N Wk_ I). 

Lemma. F induces on G r f  l(Wk 1/NWk_I) a Hodge structure of weight 

Proof. No: Wk_I~Wk_ 1 is a morphism of mixed Hodge structures of type 
( - 1 , - 1 ) ,  as it maps M i to Mi_ 2 and PP to pp-1. Hence, M and P in- 
duce on Wk_I/NWk_ 1 a mixed Hodge structure. [] 

One can easily check that the isomorphism (4.12) is strictly compatible with 
F. Taking into account the shift in the Hodge filtration under the residue 
mapping, we see from (4.13) that as a Hodge structure, 

HI(R. K'~)~--Gr~_I(W~_dNWk_O(--1), 

where ( - 1 )  denotes the tensor product with the Tate Hodge structure (1)(-1), 
which is of pure type (1, 1). Of course, H~(S, K~,)=0 for i4: 1. Summarizing, we 
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obtain that for all i>0, 

H~(S, Gr~)~_Hi(S,~&Vk/YOVk ~)@Hg(S, Kk) 

carries a Hodge structure of weight i+k,  i.e., 93l and F give {V, V} the 
structure of a cohomological mixed Hodge complex. 

The complex {V, N V }  is a subcomplex of {V, V}, and is quasi-isomorphic 
to j ,Vr  On it, we have the induced filtrations 9Jl and F. One computes 
Grff{V, N V}  in a way similar to the above. Again, we have a splitting 

Grp{u  NV} ~- { W k / ~ k _ l ,  ( ( Z k f ~ g r ) - [ -  W k 1)/Wk 1} @Sk 1 [-- 1] (4.14) 

where 

Since 
S k _ ( Z k n N V n  Wk_l)/(Zk_ 1 ~ N V ) .  

Z k ~  N V  =(NWk +(Mk_ 1 n Wk_ I))n N V  

= NWk + (Mk_ 1 ~ VVk_ 1 ~NV),  
we can rewrite (4.14) as 

(4.15) Gr~'{V, N V }  

-~ {~k/~Wk 1, Grk N( Grw V)} | Gr~_ 1 ((NV c~ W k_ 1)IN W k_ 1)( - 1) [ - 1]. 

We see that Gr~{V, NV} is a cohomological Hodge subcomplex of 
Gr~{V, V}. Thus, ~J~ and F also give {Xr N V }  the structure of a cohomologi- 
cal mixed Hodge complex. 

The long exact sequence of hypercohomology of the exact sequence 

0 ~ {v, NV} ~{v,  v} ~Q'~O, 

where Q" is the quotient (concentrated on ~), is identified with the Leray 
spectral sequence for the mapping j and the sheaf V, which thereby becomes a 
spectral sequence of mixed Hodge structures. 

For the functoriality of our construction with respect to S, one argues as in 
[11, (8.2)]. Proving the functoriality with respect to V comes down to showing 
the following: 

(4.16) Proposition. Let N be a nilpotent endomorphism of the filtered vector 
space (V, W), and I~ be one of (17 17V). Assume that the relative weight filtrations 
M = M ( N ; W )  and ~ = M ( N ; ~ )  both exist. Suppose that r (V, W ) ~ ( P ,  IF) is 
a morphism of filtered vector spaces such that ~ N =  Nq'. Then 

(Mk) ~ ;Ik. 

Proof. One can argue recursively by a straight-forward double induction, using 
(2.8). Details are omitted. [] 

(4.17) Corollary. With Z k and 2 k defined as in (4.8), ~ ( Z k ) c 2  k. 

It is easy to see that this completes the proof of Theorem (4.1). 
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(4.18) Remark. i) For any k>l,  Wk/gV I underlies a graded-polarizable varia- 
tion of mixed Hodge structure in its own right, and these subquotients are 
covered by the functoriality assertion. One might ask whether the filtration ~ 
defined for V (4.9) induces the one correspondingly defined for Wk/WI, e.g., the 
filtration of [11,w for W k / ~ ' V k _  1 . This doesn't seem to be the case; it 
involves verifying relations such as 

(N Wk + (Mg_ 1 ~ Wk_ 1)) c~ Wq= NWq+(Mk_ 1 ~ Wq) 

if q < k, and this is clear only for q-- k -  1. (The inclusion ~ ,  which is obvious, 
is all one needs in this instance for functoriality.) Note also the corresponding 
problem with (4.15). 

ii) We can see that (4.11) gives 

Gr~ {V, V} ~-@ Gr~ GrW{~ r, V} 
l 

as a filtered complex. This is because K~, being supported on 2;, is comprised 
of a polarizable Hodge structure at each point a; W induces a filtration by 
Hodge substructures, hence is automatically split. The above decomposition of 
Gr~ seems to be a typical phenomenon in the theory (compare (5.24)). 

iii) It is not hard to see that Theorem (4.1) generalizes to the case where S is 
a compact K~ihler manifold of any dimension and 2; is a smooth hypersurface, if 
we state (3.13, ii, iii) accordingly with parameters along X. In particular, it 
holds when 2; = r in which case (4.9) reduces to 

Let seS. From (4.9) and (4.10), we see immediately (cf. [11, (8.4)]): 

(4.19) Proposition. The evaluation mapping 

H~ W) ~ V(s) 

is a morphism of mixed Hodge structures. In other words, the monodromy 
invariant subspace of V(s) is a mixed Hodge substructure (independent of s). 

As in [9, (7.24)], we obtain the following rigidity theorem, asserting that a 
good variation of mixed Hodge structure is determined by the Hodge filtration 
at one point and the monodromy representation. 

(4.20) Theorem. Let ~riv be a local system on S, with filtration W. I f  so~S, and 
F is a filtration of V(s0), there is at most one filtration ~ of ~ such that 

i) o~ gives F at So, 

ii) V=(VF,  W,o~ ) is a graded-polarizable variation of mixed Hodge struc- 
ture satisfying Properties (3.13). 

Proof. Suppose we had two: ~r 1 with ~1 and ~r 2 with ~2" The identity 
mapping on ~r F defines an element 

ee WoH~ H o m ( V  F, VF)). 
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Using ~1 on the domain and o~2 on the range, we obtain a graded-polarizable 
variation of mixed Hodge structure H o m ( V , V ) ;  it satisfies (3.13) by (A.10). By 
(i), e(So)SF ~ Hom(V(s0), V(so) ). By (4.19), it follows that e(s)eF~ for all s, i.e. 
e defines an isomorphism between ~t I and V z (as variations of mixed Hodge 
structure) as desired. 

(4.21) Remark. It is easy to see that rigidity fails to hold in the absence of 
(3.13). We can even see counterexamples in (3.16), if we let tOl~ and allow t to 
approach infinity. The set of all such variations of mixed Hodge structure is 
parametrized by the set of all entire functions, but only the constant functions 
provide variations that satisfy (3.13). 

(4.22) If V is any local system on S, by Poincar6 duality the dual of Hi(S, V) 
with respect to Q ( - 1 )  is identified with 2 i V* H c (S,V*),  where is the dual 
local system of V. Of course, one may use this fact to put a mixed Hodge 
structure on H~ ~(S, X~), but it is more satisfactory to dispose of a construction 
as above. 

The cohomology groups with compact supports Wc(S, V) can be computed 
as Hi(S,j~V), where j~g  is the extension of V by zero over Z. One has an exact 
sequence 

0 ~ j ! V  - ~ j , V  ~ Q  --*0, 

where Q is the skyscraper sheaf supported on Z with Q~= ker (No) as fibers. We 
will put a natural mixed Hodge structure on these cohomology groups in such 
a way that Poincar6 duality becomes a duality between mixed Hodge struc- 
tures. 

We construct first a cohomological mixed Hodge complex on S that is 
quasi-isomorphic to j~V. We will not bother about the rational structure here; 
it is treated in a similar way as for j , V .  We consider the single complex of 
sheaves associated to the double complex 

(4.23) 

r 

V~i7 " , (~  No V = N V. 
f f  

Because the first column is quasi-isomorphic to j , V ,  and the second to 
Ker(N),  the complex as a whole is quasi-isomorphic to j~V. We let F p denote 
the subcomplex 

(4.24) 

~ P  ~ F p V 

(~&p-1 | V ~  , F p-1 V n N V ,  

and ~ k  the subcomplex 
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# ~ - -  , W~+M~+ I~N - ~  ~=:U~ 

(4.25) ]v 1~ 

where ~es = Res 1 , ~ ~1~). (Z~) c~ (f2 s (log Z) | 

(4.26) Theorem, Suppose that ~ satisfies the conditions of (3.13). Then the 
bifiltered complex defined above is a cohomological mixed Hodge complex. 
Moreover, we have 

Gr~j,  ~z ~_ {Gr w ~r, Gr k N(Gr w V)} | Gry+ l(ker N; V/Wk)[ - 1]. 

Proof By (4.15), ~'s163 ~-V(~/~c[rk_O@GrMI((NVc~VV k 1/NWk_~)), and the 
second summand injects into Z'k/Z' k 1 with quotient GrkN(GrWV). Hence in 
Gr~j~V we discover the acyclic subcomplex 

0 ~ G r ~ I ( ( N V c ~ W  k ~)/NW~ 1))~Grk M I ( (NV~Wk ~)/NW k 1))" 

Factoring this out, we obtain the complex 

Note that 

v ( ~ i / ~ - 1 )  ~ Grk N(ar~ V). 

(4.27) M k ~ N - x ( W k _ , ) + W k _ , = M k ~ N  '(l/Vk_e)+Wk_ ,. 

For let x ~ M  k be such that Nx~Wk_ 1. Then N x ~ W k _ l n M k _  e. Since the 
latter equals N(Wk_lc~Mk)+Wk_2~Mk_2,  we can write N x = N x ' + y  
with x ' ~ W k _ l ~ M  k and y~Wk_ 2. Then x = x ' + ( x - x ' ) ,  where x'~Wk_ 1 and 
x-x'~Mkc3N-X(Wk_e). Next, observe that 

Vfk~Mk+ 1 ~ N  -1 Vfk_ 1 ~ Uk_l,  

so Uk/U k_ 1 is the direct sum of 

(w~ + uk_ o/u~_ , 

(which is mapped isomorphically by N onto Gr k N(Gr w V)) and 

( M k + I ~ N - ' ( W k _ , ) + U k _ , ) / U  k ,= ,  T. 

This means that after taking the quotient by an acyclic subcomplex again, we 
obtain a quasi-isomorphism 

Gr~ j~V-  {GrkWV, Gr k N(Grk w V)} �9 T [ -  1]. 
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We must therefore show that 

T~-ar~+ l(Ker N; V/Wk). 
We have 

T = ( M k + I ~ N - I ( W k - 1 )  + Wk-O/(Mk~N-'(Wk-2)+ Wk 1) 

=(Mk+I~N-I(Wk-1)+Wk-a)/(Mk~N-'(Wk 1 ) - ' ~ - W k  1)  by (4.27) 

=ar~+ l (N- l(Wk_ l)/Wk_ l)=arkM+ a (Ker N ; V/Wk_ I). 

We wish to replace the Wk_ 1 by ~ in this expression. We have the com- 
mutative diagram with exact rows 

M W ' GrM+I(V/I/Vk 1) 0--, Grk+ 1Gr k V 

0 ~ Gr~_l Gr w V - - - *  G r ~ l  (V/W k 1) 

, Gr~+ 1 (V/Wk)~0 

, Gr~ t I(V/I/Vk)~0, 

in which the left vertical N is an isomorphism. Hence (by strictness of mor- 
phisms of Hodge structures), 

Grff+l(Ker N; V/Wk 1)=Ker(N:  Grff+l (V/Wk_I)~Gr~I(V/Wk_I)) 

=Grff+ 1 (KerN;  V/Wk) 

by the snake lemma. [] 

(4.28) Remark. Analogous to (4.19), we have for any s6S a natural map- 

ping V(s) ~ H 2 (S, V), 

which is a morphism of mixed Hodge structures of type (1, 1) and identifies 
H2(S,u with the largest quotient space of V(s)( -1)  on which rh(S,s ) acts 
trivially. 

(4.29) Example. Let •=11) s. Then the resulting Hodge structure on H2c(S, V) 
is just the Tate Hodge structure ~ ) ( -  1), purely of type (1, 1). 

(4.30) Theorem. Let V be a variation of mixed Hodge structure as in (4.1) with 
quasi-unipotent monodromy (this is the case whenever V can be defined over a 
number field, e.g. in the geometric case). Then for all i, the mixed Hodge 
structures on H~(S, V) and H2-i(S, V*)(1) are dual to each other. 

The proof of this theorem will occupy the rest of this section. We may as 
well assume that all local monodromy transformations of ~g are unipotent. For 
if this is not the case, we can find a Zariski-dense open subset S' of S and a 
finite unramified covering r c : S ~ S '  such that the local monodromy of gr 
=~*(u is unipotent everywhere, and obtain morphisms of mixed Hodge 
structures 

/-/" (s, v )  ~ H" (S, V), 
(4.31) ~ ~ 

H;(S, v)  ~,- H;(S, v). 
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This reduces us to the unipotent case. (It should be possible to avoid this 
reduction step and give a direct argument along the lines which follow, which 
would work even in the case of general monodromy.) 

We observe that the connection V: ~--+ f2~ | ~f has a dual connection on 
~U* = Homes (f-, Cs) given by 

</), V*/)*) + < V/), /)*) =d </),/)*) 

as sections of 01. The canonical extensions of ~/~ and ~f~* are related by 

(~U*) % Home,(~f ~, es). 

If  Y is a variation of mixed Hodge structure, the same holds for u  and the 
dual Hodge filtration on V *  is given by f f*P=(o~-P-1 )  • Moreover, if V 
satisfies the conditions of (3.13), the same is true for ~r,. The relative weight 
filtration on V* is just the dual of the relative weight filtration on V. 

We concentrate on the duality between H~(S,W) and HI(S,W *) as the 
remaining cases are easy consequences of (4.19) and (4.28). We must show 
that under the pairing 

H~ (S, V) • H t (S, St,) __+ H 2 (S, W) =IF ( - 1) 

we have for all p, k: 

(4.32) 

(4.33) 

FP H~ (S, Vc) = (F- P H 1 (S, u177 

~J~k H~ IS, v 0  = (~1 _kn' (S, V#)) I. 

To do this we first give an explicit description of this pairing. Observe that 
Ht(s ,v~)  can be computed as the cohomology of the single complex as- 
sociated to the double complex 

(~ Cq(U, 0v*)~| (2se(log S)) 
P,q  

for an affine open covering 11 of S. A similar result holds for FPHI(S, u 
Thus a class [v*] ~FPH 1(S, V~) is represented by a pair 

(v*, v*)e c 1 (u, y ( :~*) - )  | c~ ~-p- 1 (~*)~| O~(log z)). 

For  cohomology with compact  supports we observe that the double complex 
(4.23) is quasi-isomorphic to the complex 

(take cohomology sheaves in the horizontal direction). Similarly the filtration 
level ~-qj~V e is quasi-isomorphic to the complex 

hence a class [v] e FqH~ (S, re)  is represented by a pair 

(Vl, /)2) {~ C1 (U, ~2 ~q) • CO (U, ~q-- 1 | ~c~). 



(4.34) 

(4.35) 

By (4.26) we have 
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The element [v]/~ [v*]eH~(S, II?)___H' (S, O}) is then represented by 

(v,, v~)+ (v2, v~')e c 1 (a, ~). 

By the relation between ~,~ and ~ *  and this formula we can conclude that 
FPH~(S ,u162  • To verify (4.32) it remains to be checked that 
the induced pairing 

p l M q 1 , GrFH~(S, Ve) GrvH (S,Vr r 

is nonsingular for p + q =  1. But these two spaces are the hypercohomology 
groups of the (_9~-linear complex Gr}j~Vr and its dual complex 

Hom~, (Gr~j,Vr f2~-), 

so the required duality follows from Serre duality. 
By a similar argument, we obtain that the pairing 

H1 (S, ~J~kJ! re)  x H '  (S, 93~ l {V*, V*}) --* r 

has zero image if k + l <  0. By passing to subquotients we also get that 

~O~kH ~ (S, u162 • ~Jt~ H'  (S, 1/$) --, r 

is the zero pairing for k + l < 2. We are led to show that the induced pairings 

1 Grk+ 1Hc (S, Vr x GrOg+, U 1 (S, vgg) __, II; 

are nonsingular. We recall that these are the E2-terms of the spectral sequences 

E,k'q+R~--Hq(S, Gr~j,~rr => H~(S, Vr 

*E(k'q+k"~Hq(S, Grp {vr *, V'I) ~ H"(S, Vg). 

Eak, l+k HI,~  �9 w M "" ~ ,J,  Grk '~e)@Grk+l(KerN; V/VVk), 

and by (4.11) and (4.12) 

k l - - k  1 - -  �9 W ~ E," "~H (S, j ,  Gr k u  k 1 V * / N W  k 1V*)(--1) �9 

Because GrWu is polarizable, 

GrWkV * -~ (Gr~ V)* -~ GrWu - k), 

and it follows from [11, w that the pairing 

H a (S,j ,  GrWu x H '  (S,j, Gr_Wk v*)  ~ I F ( -  1) 

is nonsingular. Also it is obvious that 

Gry+ l(Ker N; V/Wk)=Hom(GrM_k_,(Coker N; W k_ , V*), IF( - 1)). 
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It is easy to see that the "cross-pairings" are trivial, so 

E~ k, 1 +k x *E~' 1 - k~li; 

is a nonsingular pairing. To conclude the same about the E2-terms, we must 
understand the d~-maps in the spectral sequences (4.34) and (4.35). The map 

d~l k,l+k: gll-k,l+k__,g~k,l+k 
decomposes into 

u~" H~ arW+~ V0  ~ H~(S,j, arWV~), 

u2: H~ arW+l ~rr --, ar~+a (Ker N; V/Wk). 

We will describe u~ and u 2 explicitly. The other non-trivial dl-maps and *d~- 
maps have a similar description, and it will follow from this that the *d~'s are 
the dual maps of the dl'S. 

Because of the admissibility of V all maps N~ are quasi-strict (see (2.18)). It 
is not hard to see that this implies that the following sequence is exact for all 
k: 

(4.36) O--*j, GrWV ~j,(I/Vk+x V/Wk l V)--*j, GrW+,V--*0. 

The mapping ul is nothing but a connecting homomorphism in the long exact 
cohomology sequence of (4.36). To compute u2, we observe that the decom- 
position of dl into u I and u z is functorial in V, hence u 2 factors as 

0 - . W u 5  H (S,j, Grk+IVr ,Gr~+l (KerN;GrW+l  V)  "'~',Gr~+I(KerN;V/Wk); 

here u~ is obtained from the inclusion GrW+l V ~ V/W k, and we can see that u~ 
is the natural mapping 

(-] Ker (Gr k + 1 N~) --* @ Gr~+ 1 Ker (Gr k + 1 N~). 
cr 

(Because GrW§ is pure of weight k + l ,  each Ker(Grk+lN~) is contained in 
Mk+I.) By the complete reducibility of polarizable variations of Hodge struc- 
ture ([3, (4.2.6)]), it suffices to check this for a constant local system, in which 
case it is obvious. 

w 5. The geometric case 

In this chapter, we show that a family of algebraic varieties f ' :  X*--,A* gives 
rise to a variation of mixed Hodge structure over A* that is graded-polarizable 
(see also [19]) and satisfies the conditions of (3.13). We restrict ourselves here 
to the case of smooth varieties, for which we had worked out most of the story 
from a slightly different angle from the one that E1Zein takes in [6]. For a 
construction in the general case, we refer the reader to [6], in which the case of 
a family of varieties with normal crossings is taken as the point of departure. 
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(5.1) Notation. Let X be a complex Kfihler manifold, A the unit disc in the 
complex plane, f :  X ~ A  a proper mapping, D c X  a divisor (we write D as 
0 Di, the union of its components), Y = f - l ( O ) .  We suppose that Dw Y is a 
divisor with normal crossings, and that f and its restriction to each intersection 
Dilc~...c~Dip ( p > l )  are flat over A and smooth over the punctured disc A*. 
Moreover, we assume here that Y is reduced (the non-reduced case can then be 
handled as in [10]), and thus the monodromy will be unipotent. 

(5.2) We put U = X - ( D w  Y). We are interested in the cohomology of the 
fibers of the restriction f ' :  U ~ A *  o f f ,  which we study in a way similar to the 
method of [10]. (We remark that for any smooth quasi-projective morphism 
Z ~ A, one sees that there exists, perhaps after shrinking A, a manifold X as in 
(5.1), with Z [ ~ , ~ - X - ( D w  Y), by using Hironaka's  resolution theorem. By semi- 
stable reduction, we can arrange that Y is reduced, after taking a finite 
covering of A.) 

Let m > 0 be an integer, and 

u  R " ( f ' ) ,  ~)v. 

We obtain an increasing filtration W on ~rQ by consideration of the spectral 
sequence 

E~,a .= Rrf, '(Rqg, ff)v ) ~ Rp+qf' a~ J $ ' ~ U ,  

where g: U c - - , X - Y  and f " "  X - Y ~ A * ;  we have 

By the results of [3,w applied to the fibers o f f ' ,  we conclude that Eo~-E  3 
and W indeed gives a filtration by local subsystems; in other words, the mixed 
Hodge theoretic weight filtration of the fibers is locally constant. 

Again imitating [3], we see that 

3v" = (_94, | 1 6 2  --- Rmf, ' (2~ x _ r)/a, (log D) 

is filtered by its locally free subsheaves 

~ P  = R" f , '  F p ~21x_ Y,/A* (log D), 
and 

~ Pf,'Y2~x r)/~,(logD) 

is also locally free. 
As in [7], one sees that the connection V on ~/~ is the connecting homomor-  

phism in the long exact sequence of relative hypercohomology associated to 

0 ~ (f")* ~2~, | t21x_ r,/~,(log D) [ -  13 

~2x- r (log D) ~ (21x_ r)/A,(log D) ~ O, 

and hence maps ffP to (2~, | f fp-1.  
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(5.3) Next, we assert that the canonical extension q? of ~U is given by the 
formula 

Y?~- Rmf, f2x/a (log (O + Y)). 

To prove this, it is enough to check the following: 
i) R"f, f2"x/a(log(D+ Y)) is locally free on A, 

ii) 17 extends to a connection with a logarithmic pole at 0 on 
Rmf, fl'Xl a (log (O + Y)), 

iii) Res 0 (17) is nilpotent. 
We proceed along the lines of [10, w Let X+=X • az]*, where z]* is the 

universal covering of A*, and let k: X~-~X and i: Y ~ X  be the obvious maps. 
Put D~=k-I(D), U~=X~-D~.  Then U~ is homotopy equivalent to any fiber 
of f ' ,  and 

H ~ ( U~, r  ~- H m (X~, t2x~ (log D ~)). 

As in [10, (2.5)], this is isomorphic to 

Hm(Y, i- l k, Q'x~ (logD~)). 

We have quasi-isomorphisms of complexes of sheaves on Y: 

i -x f2 x (log (D + Y)) [log t] ~ i 1 k,  ~2 x+ (log D ~) 
and 

i -~ (2 x (log (D + Y)) [log t3 ~ I2x/A (log (D + Y)) |162 (9 y, 

where t is a coordinate on A. Therefore 

Hm(Y, (2x/a(log (D + Y))| i ~ k, Ox,(logD~))"~ Hm(U+, (17,). 

As a similar formula holds for the other fibers of f, one concludes that 
Rmf, f2x/a (log (D + Y)) is (locally) free on A and commutes with base-change. 

The extension of 17 is obtained as the connecting homomorphism in the 
long exact sequence of relative hypercohomology associated to 

0 ~ f *  f2~ (log 0) @ ~QXIA (log (D + Y)) [ - 1] 

f2x(log (D + Y)) ~ f2x/A (log (D + Y)) --+ 0 
S O  

m �9 O 17: Rm/,f2x/a(log(O + y))~f2~( log0) |  f ,  f2x/a(1 g(O+ Y)). 

The fact that Res0(V ) is nilpotent follows directly as in the proof of [10, 
(2.20)], because Y is reduced. 

(5.4) We define a filtration W(D) on f2x(log(D+ Y)) (the weight filtration with 
respect to D) by: 

W(D), f2](log (D + Y))= f2~(log (D + V))/x (2]-~(log Y) 

We also denote by W(D) the induced filtrations on f2x/a(log(D+Y)) and 
f2"x/a(log(D+ Y))| (gr, or on H"(Y, f2x/~(log(D+ Y))| From (5.3) we obtain 
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the isomorphism (which depends on the choice of t) 

~: Hm(u~, C ) ~  Hm(y, f2"X/A(IOg(D + Y))| 6'y). 

On the left-hand side we have the monodromy transformation T and the 
weight filtration W from mixed Hodge theory, and on the right-hand side we 
have the endomorphism Reso(V ) and the filtration W(D). Under the identifi- 
cation ~ we have (cf. [10, (2.21)]) T=exp(-2~iReso(V))  and W=W(D). 
Hence T is unipotent, and the admissibility of N--log T relative to W is 
equivalent to the admissibility of Reso(V ) relative to W(D). 

(5.5) The complex ~2x (log (D + Y)) also carries the filtration W(Y) (weight 
filtration with respect to Y), defined analogously to W(D). We use this to 
replace O'x/A (log (D + Y)) |162 (gy by the following double complex. Let (compare 
[-10, (4.14)]) 

AP'q=(2~+q+I(log(D+ Y))/W(Y)q (p,q>O), 

d': AP'q--+A p+l'q be ordinary differentiation, d": AP'q-*A p'q+l be cup product 
with the 1-form O=f*(dt/t). Cup product of forms with 0 defines a quasi- 
isomorphism 

qS: ~x/a (log (D + Y)) |162 ~Y --+ sA'" 

(cf. [10, (4.16)]), where s denotes the associated single complex of a double 
complex. 

We put 

W(D)lAP'q=image of W(D)IQPX +q+l(lOg(D+ Y)) in At"q; 

FPA"= @ At"; 
r > p  

Mk Ap'q = W2q+k+ 1 ~r + 1 (log(D + Y))/w (r)q 

(this can be shown to coincide with the definition in [6, II, (3.1)]). Then ~b is 
even a bifiltered quasi-isomorphism with respect to the filtrations W(D) and F; 
if one grades for W(D), one obtains the situation of [10]. 

Let ~ be the endomorphism of sA'" given by the canonical projections 
v: AP'q~A p-l'q+l. Then ~ is a lifting of Res0(V ) to the level of complexes. 

(5.6) Theorem. With the same notations as above, (sA",M,F) is part of a 
cohomological mixed Hodge complex, filtered by W(D). 

The proof of this theorem is rather involved, and we postpone it till the end 
of this chapter. 

(5.7) We show how the Properties (3.13) follow from the theorem. 
As to the existence of the relative weight filtration M(N, W(D)), we observe 

that 
~/?(0) = H" (Y, Ox/a (log (O + Y)) | (9 y) = H"  (Y, A") 

and put (introducing the customary shift) 

Mk~/?(0)=Image of H"(Y, Mk_mA'" ) in ~/7~(0). 
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To show that this defines the relative weight filtration, first observe that 
maps MkA'" to Mk_2A", hence Res o V shifts M by 2. It remains to be checked 
that M induces the monodromy weight filtration on GrW~~ each I. 
From 1-10, w 5], it follows that M induces the monodromy weight filtration on 
H"(Y, GrW(D)A "') for each l, hence we are led to consider the spectral sequence 

(*) Ei -t'~+" = Hm(y, GrWI~ "') ~ Hm(Y, A"). 

This has an analogue for each teA*: 

Ell , l+ m = H" (X,, Gr  w f2x, (log Dr) ) ~ H m (Xt - D t, C), 

which degenerates at  E 2 for each teA*. As its dl-mappings are horizontal over 
A*, the sequence (,) also degenerates at  E 2. 

The next step in the argument is due to E1Zein 1-63. The dl-mappings in (,) 
are morphisms of mixed Hodge structures (because W(D) extends to a filtration 
of cohomological mixed Hodge complexes), hence are strictly compatible with 
the filtrations induced by M 7 on the E 1 terms. Because, for fixed q, M k induces a 
single L-weight filtration level on E] 'q, it follows that M induces also the 
monodromy weight filtration on the terms 

ELl'l+"= E~l'l+m~--GrW(D)Hm(Y, A"). 

From this, we also obtain (3.13, iii) and the graded-polarizability at once. 
As for the extendability of the Hodge filtration, we conclude from the 

theorem again (compare [12, w 2]) that the spectral sequence 

E~ 'q = H q (Y, (2P/A (iog (D + Y)) | (gy) ~ H p + q (Y, (2x/~ (log (D + Y)) | ~,~ (9 0 

degenerates at El. This implies that the sheaves 

Rqf, Y2]/a (log (D + Y)) 

are locally free on A. Moreover, strictness of the dl-mappings in the spectral 
sequence* with respect to the Hodge filtration implies that the various fil- 
trations induced by F on E2, directly and from El, coincide (see [3,(1.3.16)]). 
Thus, we have checked (3.13, ii) also. 

(5.8) We now prove Theorem (5.6). To do this, we have to imitate the 
construction of the double complex A", with its filtrations M and W(D), on the 
level of complexes of ~-vectorspaces.  As [10] is a bit obscure (though essen- 
tially correct) about this, we use the formalism of [8, w 1]. 

For any space Z, we let C'(Z) denote the complex of sheaves of germs of 
rational-valued singular cochains on Z; it is a fine resolution of the constant 
sheaf ~ on Z, hence Hm(Z, C'(Z))~Hm(Z, r Let j: X*=X-Y~---~X, and put 

K'(X*)=i 'f,C'(X*), K'(X~)=i lk ,  C'(X~). 

7 More accurately, Dec M (see (6.2)) 
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Then one shows as in [10, (2.4), (2.5)] that 

H~(Y, K'(X*))~ H~(X *, if)), 

H~(Y,K �9 ~ (x~) )  = U (x~o, r 

The monodromy transformation T on H"(X~,~)  is induced by the automor- 
phism (x,u)~--ffx, u - 1 )  of X ~ = X * x ~ . H ,  where H={ueClImu>O}~_71* is 
mapped to A* by u~-->exp2~iu. Hence T lifts to an automorphism of K'(X~) 
such that 

K'(X*)  = { ~  K' (X~)I  T~  = ~}. 

Let B'~=Ker(T-I)m+lcK'(Xo~) and B '=  U B~,. 
m > 0  

(5.9) Lemma. The inclusion B'-* K'(X~) is a quasi-isomorphism. 

Proof. Let Be, K'(X~o)r etc. be the sheaf complexes obtained by replacing ~ by 
G in the above definitions. One obtains a morphism 

s: i- 1 ~2 x (log Y) [log t] ~ B~. 

Let 2 denote the image of logt under s, so B~,,r ~ 2kK'(X*)r As 
d(2m)eB'm_l,r one obtains a quasi-isomorphism k=0 

2": K'(X*)r  B'~,c/B'~_I, r 

This shows that s is also a quasi-isomorphism. Because the complex 
i -l~2x(log Y)[logt] is quasi-isomorphic to K'(X~)r (see the discussion in (5.3) 
or [10], w the inclusion B'ccK'(Xo~)r is a quasi-isomorphism. This suffices to 
conclude that B'cK' (X~)  is also a quasi-isomorphism. [] 

We thank Navarro Aznar for pointing out an error in a previous version of 
the proof of Lemma (5.9). 

(5.10) Remark. The advantage of working with B" rather than with K'(X~) is 
that every local section of B" is killed by some power of T - I .  

(5.11) Definition. If K" is a complex of q-vector  spaces and r~7l, we put K'(r) 
=(2~zi)*K'cK'| We define 6: B ' ~ B ' ( - 1 ) b y  

1 
8 = - ~  log T. 

(Note that log T makes sense on B', by (5.10).) 

(5.12) We let p(B)" denote the mapping cone of the morphism 5, i.e. 

p(B)P=BPOBP-'(-1),  

d(x, y) = (dx, - dy + 6 (x)). 
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One defines 0: p(B)'--* p(B)'(1)[1] by O(x, y)= (0, x). We finally let 

[p(B)P+q+l(q+l) if p>__0; 

CP'q=iP(B)q(q+l)/Ker(d) ifif P<P=-I;-1- 

We provide �9 C p'q with the structure of a double complex by defining 
d': CP'q-~ C p+l'q as the differentiation in p(B)', and d": cP'q-~ C p'q+~ by d"(z) 
= O ( z ) .  

(5.13) Lemma. The inclusion xF--~(O, ( -  1)Px) from B p into C p'~ induces a quasz- 
isomorphism 

B" ~ s(C"). 

Proof It is easy to see that the sequence O-oBP-o C p'~ C p'I ~ . . .  is exact for 
every p>=0. It remains to be shown that the complex C 1,. is acyclic: let 
( x , y )~Bq(q+l )OB  q l(q) such that dO(x,y)=O. Then dx=O. Because b acts as 
the zero map on Jfq(B'), there exists ~l~Bq-l(q) such that b(x)=dt/. Then 
d(x,r/)=0, so (x , y )=(x ,q )+O(y- t l ,  O)clmO+Kerd,  i.e., (x.y) represents a 
coboundary in C -l'q. [] 

(5.14) Lemma. Let ~ : s ( C " ) - o s ( C " ) ( - 1 )  be given by 3(x,y)=(bx,  6y), and 
v : s ( C " ) ~ s ( C " ) ( - 1 )  by v(x,y)=(-1)P+q+l(x' ,y ' )  for (x ,y)~C v'q, (x',y') its 
canonical image in C v-l"q+l. Then ~ and v are homotopic. 

Proof See [8,(1.7)]. [] 

1 
(5.15) Because 5 is a lifting of - log T to the level of complexes, v induces 

2hi 
Res o (V) on hypercohomology. We now first finish the proof of Theorem (5.6) 
for the case D=O, and afterwards indicate the modifications that have to be 
made in the general case. Assuming D=0,  we let for kr 

MkCP'q=the image of zk+2q+lp(B)P+q+l(q+l) in C v'q. 

Here, for a complex K', 

i p if p < r, 
z, KP= e r d ) n K  p if p=r, 

if p > r ;  

Gr;K" - ~,~' (K') [ - r ] .  

(5.16) Lemma. The map x ~-* (x, O) defines a quasi-isomorphism K" (X*) ~ p (B)'. 

Proof This is a general fact about cones: we use the fact that 6: BP-oBV( - 1) is 
surjective, with Ker(b)-~Kv(X*). [] 

(5.17) Observe that 0: p(B)~p(B)(1)[1]  maps z~p(B) l to zs+lp(B)l+l(1), and 
hence Mk Cp'q to Mk_IC p'q+l. As a consequence, in the complex G r~C" ,  0 
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induces the zero map. We obtain a splitting of the double complex 

a r ~ C " ~  @ arMC"q[--q]~ @ (ar~+zq+lp(B)'(q+ l))[1] 
q ~ o  q>=o 

q> --k q>=--k 

@ (Gr~+2q+lK'(X*)(q+ 1))[1]. 
q>_-0 

q=> - k  

Moreover, from [3, (3.1.4)] we know what the cohomology sheaves of K'(X*) 
are: if Ytq~ is the disjoint union of all q-fold intersections of the components of 
Y, and aq: Ytq~ ~ Y is the natural map, then we have a canonical isomorphism 

:r (q=> 1). 

Hence we obtain [10, Lemma (4.13)]: 

G r M C " ~  @ (ak+2q+~),Q~, . . . . . .  , ( - k - q ) [ - k - 2 q ] .  
q>O 

q> --k 

(5.18) To connect the filtered complex (C", M ) |  with the complex (A", M) 
as defined in (5.5), we use an intermediate complex (C", M), which has filtered 
quasi-isomorphisms: 

(C",M)| 0 ( ~ . . , M ) _ ~  (A", M). 

One obtains C'" as a subcomplex of C " |  by performing the same con- 
struction which transforms B" into C", but now starting out with the complex 
/~" = i ~ f2 x (log Y) [log t], with its endomorphism T: log t ~ log t + 2 n i. If we put 
u = log t/2ni, the endomorphism b is given by 

-27ri6 "~= o /J!, =j= ~ 

It is easily proved that /}'~--+B'|162 is a quasi-isomorphism which is 6-equi- 
variant, hence the natural inclusion C"~--~C"| is a filtered quasi-isomor- 
phism with respect to the M-filtrations. 

The map q~: C"--, A'" is induced by 

for 
(x, y)~---~ x o -2rtidu /x Yo 

x= ~ xj#/j!, a section of i l(2}+q+l(log Y)[u], 
j = 0  

Y= i Yj#/J!, a section of i- l (2Vx+q(log Y)[u ]. 
j = 0  

One checks easily that q5 is a morphism of double complexes, compatible with 
M, such that Gr~(~b) is a direct sum of mappings 

Gr}p(/~) u J,  GrWf2x(log Y). 
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By an a rgument  as in L e m m a  (5.16) the inclusion 

i 1(2x(log Y)~--~p([F) 

is a quasi - isomorphism,  hence a filtered quas i - i somorphism if both  are equipped 

with the canonical  filtration r. Because ((2x(logY), id . z)---~(Y2x(log Y), W) is 
a filtered quas i - i somorphism [3, (3.18)J and ~5(Xo,0)=x o, we may conclude 
that  ~b is a filtered quasi - isomorphism.  Thus G r ~  C'" becomes a direct sum of 
Hodge  complexes of weight k. 

(5.19) In the general case D4=r we modify  the previous construct ion a bit. 
F r o m  now on we will write C"(X), B"(X) etc. instead of C", B', and use the 
fact that  we can apply the same formalism to the compos i t ion  of f with the 
natural  mappings  

bq:/)(ql ~ X 

where /)(q~ is defined analogous  to ~z(q) (see (5.17)). Hence it makes  sense to 
speak of C"(D (q)) or B'(/)  (q)) as well. We put  X ' = X - D ;  j': X'~--,X is the 
inclusion map.  We define 

K'(X') = i- l j ,  C'(X') and 

K'(U)=K'(X*)| K'(U~)=K'(X~)| 

B'( U) = B'(X) |  ~ K'(U)[ )~] = K'(U~o). 

For  a tensor product  K'| of complexes we have part ial  canonical fil- 
t rat ions 

rq(g" | c)=(zqK')| C; 

~q (g" | E) = K ' |  (zqE). 

This applies in part icular  to K'(U), B'(U) and K'(U~). Observe that  we have a 
filtered quas i - i somorphism 

(B'(U), C') ~ (K'(U~), z") 

because Grq"B'(U)~-B'(X)| and similarly for K'(Uo~). 

(5.20) Proposition. We have a canonical isomorphism 

H"(U~, (I))~ Hm(Y, K'(U~)). 

Proof We have a commuta t ive  d iag ram 

X'  

U,  

X. 

Because C'(X') is a resolut ion of II~x,, we have a quas i - i somorphism 
k'C'(U~)--ok"C'(U~)| , Moreover  we have a natura l  morph i sm of 



5 3 2  J.  S t e e n b r i n k  a n d  S. Z u c k e r  

double  complexes 

~: K ' ( X J |  -~ "' "k" J , t ,  c'(ujQ~C'(X')). 

We claim that a is also a quasi-isomorphism. This is easily checked using local 
coordinates (z o . . . .  ,G)  on X such that f ( z  o . . . . .  z , ) = z  0 ... z,, and D is given by 
z,+~ ... z~+~=0 (for suitable r and s). The claim can be reduced to the state- 
ment that for such a polydisc coordinate  ne ighborhood  V, the map  

4~: (k')- ~(V)--* k -  ~(V) x (j')- ~(V), 

defined by O(x)=(x ,  k"(x)) is a h o m o t o p y  equivalence, and application of the 
Ktinneth formula. 

As a consequence we obtain 

�9 ~ rn ~ " ak' C ( U ~ ) ) = H  (Y, ' -~ . . . . .  U (U~, ( I ) )=H ( Y , i -  , ~ J ,k ,C(Uoo))  
m . - -  1 .t t t  �9 * r ~ m = H  (Y,~ j , ( k , C ( U o o ) |  (Y,K'(U~)) .  [] 

(5.21) We define the double complex C"(U)  by 

[p(eP+q+X(U))(q + 1) if p >__ O; 

C P ' q ( U ) = l p ( B q ( U ) ) ( q + l ) / K e r ( d ' |  if p = - 1 ;  
! 

t0 if p <  - 1 .  

The filtration W(D) on C"(U) is induced by the filtration z" of B'(U), and we 
define MkCP'q(U) as the image of  Zk+2q + l p(B p+q+ l(U))(q + 1) in cP'q(u). 

(5.22) Lemma.  i) Gr  if(D) C"(U) "~ (bz) , C"(Da))( - l) [ - l], 

ii) GrkMC"(U)--- @ @ ( C 2 q + k + l ) ,  { ] ~ ( s i c ~ b  ( . . . . . . . .  , ( - k - q ) [ - k - 2 q ] .  
q>=O s > q  

q >  - - k  

Here c, : ( " f ~ ) " ) - - ~  X.  

Proof. F r o m  (5.19) we have 

Gr~"B'(U) --- B'(X) |  

B'(X)  | (b,). Oh,,,( - l) [ - l] 

- B'(b"~)( - 1 ) [  - t ] ,  

because for any A c X  one has C'(X)[ a- - , C'(A). Applying the construct ion 
of C'" to both  sides we obtain the first equality. The second one is a con- 
sequence of  the splitting 

Grff  C " ( U ) ~  @ Grkm C 'q(u)[ - -q]  
q>= O 

q >= - - k  

and the isomorphisms 

G r ~ C ' q ( U ) [  ~ ,' �9 , ,,, - q ]  = @ Gr s K ( X ) |  
s > q  

~ y ,  . . . . .  rs |  O . .  . . . . . .  . , = ~ Y  . . . . . .  ~s~I, . . . . . .  i,,. [ ]  
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(5.23) The isomorphism between (C"(U)| M) and the complex (A", M), as 
defined in (5.5), is defined in a similar way as in the case D =0. One uses the 
intermediate filtered double complex C" (U)c  C"(U)|  starting with 

/~'(U) = s(i- 1 ff2x(log Y)[log t] |162 D)). 

which is in a natural way a subcomplex of B'(U)| Then C"(U) carries 
natural filtrations M and W(D) such that its inclusion in C"(U)| is a 
bifiltered quasi-isomorphism. To end the story, we define the mapping 
cP'q(u) ep _~Ap, q. Recall that by definition, CP'q(U) is a quotient of 

@ i-lf2~x(logY)[u]|162 
r+s=p+ 1 

@ @ i-~f2~(log Y)[u] |162 
r + s = p  

We put 
8p(~ x;iui| ', ~y;iu~| ') 

to be the image in A p'q of 

~, ' , ,_2rciduA Z , ,, XrO A X s Yro A Ys " 

The remaining details are left to the reader. 

(5.24) Remark. The change of index from s to l = 2 q + k +  1 - s  in (5.22, ii) 
gives 

Grk MC' '~  @ @ (C2q+k- 1),ll)t( 2 . . . . . . .  ,~b,," 
q>=max{--k,O} l<_q+k 

Analogously, for A'" we get 

Gr~ A " ~  @ Gr~ Gr wr 
l 

(5.25) Proposition. The natural mapping 

Hm(Y --D, C) ~ H'n(c'| C) -~ ~ (0)  

is a morphism of mixed Hodge structures. 

Proof. As in [10, (4.27)], we show that 

D"=ker{~:  A"-~ A"} 

(see (5.5)) is naturally isomorphic, as a bifiltered complex, to the one which is 
used to define the mixed Hodge structure on Y - D .  One has 

Dp,  q , ~ i ~ r q +  l tDp+q+ l t l r~rdl3  y))~_OP,,+,)(log(~c~ ~tq+ l))), 

with d' inducing differentiation, and d" inducing restriction. For the induced 
filtrations, 

frFIp'q~IgrOP~ =-- ~ + ,~(log(/} c~ ~(q+ 1))), 

Mk Dp'q ~-- W (D)k +qf2~(~+ ,,(log(/} c~ Y(q+ 11)). 
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From this, we see that we have recovered the mixed Hodge complex for Y - D  
(one checks that the above is also compatible with the structure over Q). [] 

As an application of the fact that Conditions (3.13) are satisfied for varia- 
tions of mixed Hodge structures coming from geometry, we give a neat proof 
of [15, Lemma (2.6)], which is related to the extension of AbeMacobi  map- 
pings. Our assumptions will be less restrictive than those in [15]. The same 
kind of reasoning was independently known to Donagi and Griffiths. 

We first state an easy consequence of the existence and functoriality of the 
limit mixed Hodge structures: 

(5.26) Lemma.  Let O - - ~ V ' - ~ V - - ~ " - + O  be an exact sequence of variations of 
mixed Hodge structure over the punctured disc A*, all of which satisfy the 
Conditions (3.13). Let the canonical extensions of their sheaves of holomorphic 
sections be denoted by - '  ~ ' ,  ~ and ~/~" respectively. Then for each p the sequence 

O --~ F p ~ "  __~ F p , ~  __~ F p ~ ,  <_+ 0 

is still exact. 

Proof. Because ~' ~ "  U ,  ~ 7~ and are locally free on the disc A and each F p is a 
subbundle it is enough to show that the sequence 

0 --, F~"(O)  - ,  FP~(O) --, FP~?"(O) ~ 0 

is exact for each p. But this follows immediately from the fact that we have an 
exact sequence of the limit mixed Hodge structures, as morphisms of mixed 
Hodge structures are strictly compatible with F. [] 

(5.27) Remark. A priori, i.e. without (3.13), one knows only that elements of 
F P ~  '' can be lifted to j ,  FP~U and to r separately. 

(5.28) Proposition. Let X be a complex manifold, f :  X - ~ A  a projective map- 
ping which is smooth outside the fiber over O. Let (Zt)t~ a be a family of algebraic 
(m-1)-cycles on X with [Z , i~Xt= f 1(0. Let ~r ' /=H2m- I(Xt, I~) and let co be a 
section of F"~I ~''. Let (7(t))t~a, be a continuously varying family of relative cycles, 
y(t)eH2m_ l(Xt, ]Zt], 7Z). Then the Abel-Jacobi integral ~ o)(t) is a multivalued 
function on A* of the form ~t) 

(5.29) ~ s t"(log t) q 
a,q 

with fa,q holomorphic on A, and f~,q#=O~O<q<_2m-l,= _ aO~, O < a <  1 . =  

Proof. For teA* one has the exact sequence of mixed Hodge structures 

H 2 m  - 2 (IZr ~ H 2~ - 1(Xr  IZ,I) ~ H 2 "  - l ( x  t) ~ H 2m - ~ (IZr 

Because [Z,I is analytic of dimension m - 1 ,  H 2m- 2([Zt[ ) is purely of type ( m -  1, 
, 1 X m - l )  and H2"-I(IZ,I)=0. Hence if V t = i m a g e  of u t , a n d V , = H  2m- ( ,, lEvi), 

we obtain an exact sequence of variations of mixed Hodge structures on A*" 
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all of which come from geometry, so they satisfy the Conditions (3.13). Because 
F"~I~'=0 we get Fm~7~-F"~tT" by Lemma (5.26). Hence co lifts uniquely to a 
section of F " f .  The proposition now follows from the observation that sec- 
tions of f are characterized by the fact that their values on multivalued 
horizontal sections of V* are of the form (5.29). To see this, observe that f o  
has an (gd,0-basis e 1 . . . . .  e, on which the operator V~L has a constant matrix U 

dt  
([2], proofs of Prop. II.5.2 and II.5.4). A basis of multivalued horizontal 
sections of V is given by f .=exp(- logt 'U)e  i, i=1 . . . . .  n ([2], Lemma 

II.1.17.l). Thus v 6 ~  0 if and only if v= ~ g~ exp(log t" U)f/,with gi holomorphic. 

The claim is easily deduced from this. [] 

w 6. On filtered mixed Hodge complexes 

Let M be an increasing filtration of a complex K'. We first recall the following 
definition, adapted from [3, (1.3.3)], of the increasing filtration Dec M: 

(6.1) (Dec M)k Ki= {X~Mk_IK~: dx~Mk_i_ 1Ki+ 1}. 

Except for a shift depending on i, M and DecM define the same filtration on 
the cocycles of K', hence on cohomology; precisely, 

(6.2) (Dec M)kHi(K ") = image of Hi(Mk_ iK'). 

(In other words, the use of Dec M instead of M effects the shift that one sees in 
the definition, in mixed Hodge theory, of the weight filtration on cohomology: 
convolution with degree.) 

The spectral sequences of Dec M and M are related by 

(6.3) i) DecMg0 is quasi-isomorphic to ME1, 

ii) De~ME,~--ME,+I ( r > l )  

[3, (1.3.4)]. In particular, if the spectral sequence of M degenerates at E2, that 
of Dec M degenerates at E 1. 

In [13], the notion of a filtered mixed Hodge complex is introduced. We 
recall the definition (including the "optional" axiom AIV of E1 Zein), adopting 
the abuse of language of [12, p. 126] : 

(6.4) Definition. A filtered cohomological mixed Hodge complex is a coho- 
mological mixed Hodge complex (K', M, F) defined over IF, together with a 
third (increasing) filtration W of K', also defined over IF, such that 

i) For each l, GrWK ", with the filtrations induced by M and F, is a 
cohomological mixed Hodge complex, 

ii) For each l, Dec (mGr  w) and (Dec M)Gr  w coincide on K'=RF(K'), 
iii) The spectral sequence of W on / ( "  degenerates at E 2. 

The notion of a cohomological limit mixed Hodge complex is obtained by 
replacing (ii) in the above definition by 

ii'). For each l, W~K', with the filtrations induced by M and F, is a 
cohomological mixed Hodge complex. 



536 J. Steenbrink and S. Zucker 

(6.5) Proposition [13, I(2.5)]: Let K" underlie a filtered cohomological mixed 
Hodge complex (or a cohomological limit mixed Hodge complex). Then 

i) The filtration induced by W on Hi(I~ ") is a filtration of mixed Hodge 
structures. 

ii) The induced mixed Hodge structure on GrkWHi(/(") coincides with the one 
coming via the isomorphism 

(6.6) wE~(Is ~- wE z (/s ") -~ H'(H'(GrW K'), d 0 . 

Proof. According to [4, (8.1.18)] (cf. our (3.17)), (i) is equivalent to the assertion 
that GrkWHi(/s ") becomes a mixed Hodge structure under the filtrations induced 
by M and F. In other words, we need only check, to prove the proposition, 
that the "recursive" filtrations induced on WEE(/(") by M and F, which provide 
a mixed Hodge structure by (6.4, i) coincide with the induced filtrations under 
the above isomorphism (6.6). Now, with the spectral sequences associated to F 
degenerating at El,  the filtration F satisfies the conditions of the lemma on 
two filtrations [3, (1.3.17)3; whereas (6.4, ii) implies that Dec M does likewise, 
given (6.4, iii). Thus, we are done. (In the "limit" case, the hypothesis (ii') allows 
one to bypass the lemma on two filtrations and use a more direct argu- 
ment.) [] 

Concerning the somewhat cumbersome condition (6.4, ii), we note that 
(DeCM)kGrtW/(" is represented by elements of W l that represent cycles in 
WiGrkU/~ ", and Dec(MGrzw)kIs is represented by elements providing cycles 
in GrkMGrlW/( ". It follows that one always has 

(6.7) (Dec M)k Gr w/~" ~ Dec (M GrW)k/s 

as is remarked in [13]. One obtains rather easily the following criterion: 

(6.8) Proposition. I f  GrkMW~K'--~@GrkMGrWK ", then (6.7)is an equality, i.e. 
j<:l 

(6.4, ii) is satisfied. Also, (6.4, i) and (6.4, ii') are equivalent if the isomorphism 
is of F-filtered complexes (cf. (3.14, ii)). 

In view of (4.18, ii) and (5.24), we get: 

(6.9) Corollary. The complexes {vr V} of w and A'" of w 5 are filtered coho- 
mological mixed Hodge complexes, as well as cohomological limit mixed Hodge 
complexes. 

(6.10) Remark. In the proof of (6.5), one does not make use of condition (6.4, 
iii). In fact, the second assertion of the theorem is valid in the "filtered" case 
independent of where the spectral sequence of W degenerates, for the differen- 
tials become morphisms of mixed Hodge structures (see [3, (1.3.13)]). 

Appendix 

In this appendix, we give the proof, due to Deligne, that Condition (3.13, iii) is 
in fact a consequence of (3.13, i) and (3.13, ii). We will also derive from his 
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m e t h o d  a p roo f  of the fact tha t  the ca tegory  of var ia t ions  of mixed Hodge  
s t ructure  on a smoo th  curve which satisfy these condi t ions  is closed under  
tensor  p roduc t  and  Horn. 

Del igne 's  a p p r o a c h  is as follows. Let  n be the one-d imens iona l  Lie a lgebra  
over  the g round  field IF with genera tor  N, and  let JV" denote  the ca tegory of 
n i lpotent  n-modules .  

Given  1/1, VzeJV', we get an ac t ion  of n on V 1 | V 2 by 

(1) N(v  1 | v2) = N(v l )  | v 2 + v 1 | N(v2) 

and  on HomF(V1, V2) by 

(2) N(q0 = N o q~ - ~0 o N. 

This cor responds  to (1) under  the i somorph i sm Hom(V1, V 2 ) = V * |  2. In 
par t icular ,  N(~o)=0 if and  only if ~oeHom~(V1, V2). 

In  N we have the usual  no t ion  of extensions of 1/1 by V 2, the i somorph i sm 
classes of which we denote  by Ex tx (V  ~, V2). 

(A.1) Proposi t ion.  There is a canonical identification 

(3) Extw(V 1 , V2)= H o m F ( V  , , V2)/N Horny(V, ,  V2). 

Proof.  Let 

(4) 0---, V 2 ~ V P , V a---, 0 

be an extension in Y .  Let  s: V1--, V be an IF- l inear  sect ion of p. Then 

c(s) = N o s - s  o N e H o m F ( V 1 ,  V2) 

is a measure  of the failure of s to be a spl i t t ing in X .  Any  o ther  sect ion of  p 
differs from s by  an e lement  ~o of  H o m F ( V  1, V2), and  the cor respond ing  homo-  
m o r p h i s m  c(s + qo) differs by N o ( p - ( p  o N, so 

c(s + q)) = c(s) + N ( qO. 

The remain ing  details  are  left to the reader.  [ ]  

We  need to consider  extensions when (finite) f i l t rat ions are imposed  on the 
vector  spaces in question.  Suppose  that  V 1 and  V 2 each have an increasing 
f i l t rat ion deno ted  M and  that  

0 - , v ~ - , v  P , v i - , 0  

is an exact sequence of IF-vector  spaces. The  choice of a sect ion s of  p 
de termines  a f i l t rat ion M on V by 

(5) M i V - -  M i V 2 + s (Mi  V1), 
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with the property that it induces the given filtrations on V 1 and V 2. This 
implies that the sequence remains exact after taking Gr M. Every such filtration 
on V arises in this way (choose s compatible with M). 

We also have a natural filtration M on HomF(V 1, V2) given by 

(6) M i HomF(V1, V2)= {r V~-~ V2[Vj: ~o(Mj V1)cMi+ j 1/2}. 

NOW suppose that V1, V26~ p have increasing filtrations M such that 
N M i c  Mi-2,  and that V is an extension of V a by V 2 in J('. 

(A.2) Proposition. On V there exists a filtration M, inducing the given ones on 
V 1 and V2, with N M  i c M i_ 2, if and only if there exists a section s of p: V ~ V t 
such that c(s)~M 2 HomF(V 1, 1/2). 

Proof. Suppose s is such a section; then we can define M as in (5) on V. With 
respect to the decomposition V= V 1 (~ V 2 the map N has the form 

Nv,  0 

c(s) Nv2 ) 

so N ( M  i V) c M i_ 21/2" 
Conversely, if M is given on V, choose s compatible with M. Then 

N M i c M I _  2 if and only if c ( s ) M i V l c M i _ 2 V  2. [] 

In order to remove the shift in indices, we make what we call some- 
what prematurely a Tate twist, and view N as a morphism of filtered vector 
spaces; for Ve~"  with filtration M: 

N: V-* V ( -  1) 

where V ( - 1 )  is V with filtration M i V ( - 1 ) = M I _  2V. This applies as well to 
Homv(V 1, V2) with the filtration induced by M, and we rewrite (3) as 

(7) ExtAV1, V2)= HomF(V,,  V2)(- 1)/N HomF(V,,  V2). 

We give ExLv(V1, V2) the induced filtration. Thus, the set of extension classes 
admitting a lifting as in Proposition (A.2) is exactly M o ExLv(V1, Vz). 

Now we prove the result about the tensor product alluded to in the 
beginning of this appendix. We first have: 

(A.3) Lemma.  Let 
0 ~ v 2 - ~ v  P ,v,---,O 

be an exact sequence in Y .  Suppose W is a finite increasing filtration on V, 
inducing filtrations W on V 1 and V 2. Suppose that N acts as an admissible 
nilpotent endomorphism on (V 1, W) and (V 2, W). Let M denote the corresponding 
relative weight filtrations of N. Suppose that there exists a section s of p 
compatible with W such that c(s)= N o s - s o  N satisfies 

c(s)(Wi V1)cWi_I  V2 and c(s)(MiV1)=Mi_2V 2 

for all i. Then N is an admissible endomorphism of (V, W) and its relative weight 
filtration is given by (5). 
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Proof. As s is compatible with If,  it provides sections s k of the sequences 

(8) O ~  w r w Gr  k Vz---*G k V P ,GrWV1--*0, 

which are obviously exact in .IV'. Because c(s) maps M i to Mi_2,  the filtration 
m on V given by (5) satisfies N ( M i V ) ~ M i _ z V .  As C(s)(WkV1)CWk_IV2, we 
have c(s~)=0, so (8) splits in ~/'. Therefore, M induces on GrWV the filtration 
L ( G r k N ) [ - k  ], and M is the relative weight filtration of N on V. []  

(A.4) Theorem. Suppose that V1, V26JV" carry finite increasing filtrations W 
such that N acts as an admissible endomorphism on (Vi, W), i= 1, 2. Define 

Wk(Vl| E (Wi Vl | Wj V2)" 
i+j--k 

Then N | 1 + l | N is an admissible endomorphism of V t | V2, and its relative 
weight filtration is the filtration induced by those of  V 1 and V 2. 

Proof. By induction on the length of the filtration W on V 1. If the length of W 
on V 1 and V 2 is one, then V 1 | V 2 is also "pure"  and there is nothing to prove. 

Suppose that l is such that 0 ~ W zV 1 ~ 1/1. Because M exists on Vt, it exists 
on V1/W1V 1 and on W~V 1 and there exists a section s: V1/WtV1~V 1 which is 
compatible with M and satisfies c(s)Mi(V1/W l V1)cMi_ z V 1. Observe that auto- 
matically 

c(s) ~ = w~_ ~, 

because the weights of W zV 1 are smaller than those of V1/WI VI. 
Consider the exact sequence in Y 

o--~(w, v o | 1 7 4  ~ , ( v , / w ~ v o |  

Observe that at the ends we may assume by induction that M exists; i.e. N is 
admissible there. The section s |  of p has c ( s |174  and determines 
the induced filtration. As it satisfies the requirements of Lemma (A.3), the 
theorem follows. [ ]  

Let us turn to uniqueness of M in (A.2): 

(A.5) Proposition. Let V be an extension of V 1 by V 2 in .~, where V t and V 2 
have an increasing filtration M with N M i c M i _  2. Suppose that the extension 
class of V lies in MoExtx(Vl ,  V2). Then the set of liftings of  M to V with 
N M i  ~ Mi -  2 is canonically parametrized by 

{~oeUomF(V1, V2): N(~o)~M o HomF(V1, V2) ( - 1)} 

Mo HomF(V1,1/2) 
Proof 
We obtain M on V by choosing a section s with c(s)eMoHomF(V1, V2)(-1). 
When  we change s by (peHom~(V 1, V2), we will have e(s+q))eM o if and only 
if N(rp)eM o. Moreover  the filtrations for s and s+(#  are the same if and only 
if q~eM oHomF(V1, V2). [] 
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(A.6) 
determined if and only if  the mapping 

Horn(V1, V2) 

Mo Hom(V1,  V2) - 

induced by N is injective. [] 

Corollary. Let  V e M o E x t w ( V 1 ,  V2). Then the filtration M on V is uniquely 

H o m ( V  1 , 1/2) ( - 1) 

M o Hom(V~,  1/2) ( - 1) 

(A.7) Corollary.  M is uniquely determined on V if  the mapping 

N: H o m ( V  1, V2)--~ H o m ( V  1 , V2)( -  1 ) 

is strictly compatible with M,  and Ker  N ~ M  0 Horn(V1,1/2). []  

F r o m  now on the g round  field will be II~, and  the filtrations M will have to 
be defined over  a subfield IF of ~ .  

We suppose that  V 1 and V 2 have a second, decreasing, filtration F, such 
that  the mappings  N:  V / - . V / ( - 1 )  ( i=1 ,2 )  are compat ib le  with F, i.e. we let 
F p V( - 1) = F p- 1 V so N ( F  p Vii ) c F p- 1 g/. By the a rguments  used to prove  Prop-  
osition (A.2) we see that  F admits  a lifting to the extension V with 
N ( F P V ) c F P - I V  if and only if the class of V lies in F~ V2). With that  
s aid: 

(A.8) Proposition. Suppose that V represents an element of  F~ V2) 
C~MoExtx(V1, V2), and let F be a f i x ed  filtration on V with N F P c F  p- l ,  extend- 
ing those of  V 1 and V 2. Further assume 

(a) the filtration M on V (compatible with N)  is uniquely determined; 
(b) (M, F) define a mixed Hodge structure on V 1 and V 2. 

Then 

i) there exists a splitting V~-1/1G V2 over II? compatible with both F and M ;  
ii) (M, F) define on V a mixed Hodge structure. 

Proof. Let s: V1---~ V be a section compat ib le  with F. Then  c(s)eF ~ Horn(V1, V2). 
We are given that  the extension class also lies in MoExtx(V~,V2) .  Now,  
H o m ( V  1, V2) inherits f rom (b) a mixed Hodge  structure, and N is a morph i sm  
of it to its Tate  twist, whence it follows that Ex tx (V  ~, V2) gets an induced mixed 
Hodge  structure. F r o m  this, it follows that  

1) the extension V can be represented by an element of  

(F ~ c~ Mo) [gom(V~,  V2) ( - 1)]; 

2) the kernel of the mapp ing  

F ~ Uom(V~, V2) ( - 1)--~ Extx(V~, V2) 

is N F  ~ H o m ( V  1, V2) by strictness. 

Thus,  c(s) differs f rom an element of  (F~ [ H o m ( V  1, V2)(-  1)] by N(qo) for 
some rpsF  ~ H o m ( V  1, V2). On the other  hand, we know (cf. Prop. (A.5)) that  the 
splittings of V compat ib le  with F are principal  homogeneous  under  
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F ~ Hom(V1,V2). Therefore, the splitting s+~0 defines both a lifting of M and 
the given lifting of  F on V. With  assumption (a), this gives (i). 

We wish to conclude that the filtration F induces a Hodge  structure of 
weight k on G r ~ V  from the fact that the same holds for V 1 and V 2 by 
appealing to (3.17). Here, one must  proceed carefully. In general, given F on V, 
it induces two a priori different filtrations (see (3.14, ii)) on G r ~ V  1 and G r ~ V  2 
(we view V z c V  as a little filtration, playing the role of W in (3.14)). For  
instance, for V 1 they are induced respectively by the subspaces 
(10) a) (FP+Vz)C~(Mk+V2), or equivalently 

( f  p + V2) f~ m k or F p ~ (M k + V2) , 

b) F v c~ M k. 

The first, which gives the filtration induced by F on Grk MV 1 as written, is the 
one which enters in the mixed Hodge  structure; it is the second, however, that  
is induced by F on GrkMK Thus, we want to know that the two filtrations 
coincide. This follows immediately from (i), for we have a bifiltered isomor- 
phism 

V~- VI (~ V2 
under which 

FPV+VE~-FPV1OV2,  MkV+V2~--MkVI|  

then it is clear that  (a) and (b) in (10) are equal modulo  V:. The treatment of  
G r ~  V 2 is similar, and we get (ii). 

(A.9) Corollary. I f  a variation of  mixed Hodge structure on a smooth curve S 
satisfies Properties (3.13, i, ii) at infinity, then it also possesses Property (3.13, 
iii). 

Proof. Apply (A.8) to successive quotients of the filtration W. [ ]  

(A.10) Corollary. I f  variations o f  mixed Hodge structure V a and V 2 on a smooth 
curve both satisfy Properties (3.13), then the same holds for V I |  2 and 
Hom(Vl ,  V2). 

Proof  For  (3.13, i) see (A.4). For  (3.13, ii) there is no problem as the local 
m o n o d r o m y  is assumed to be unipotent, so taking canonical extensions com- 
mutes with tensor product  and Hom.  [ ]  
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Oblatum 7-VI-1984& 14-II-1984 

Note added in proof 

a) Concerning the list of problems at the end of the Introduction: 
1. Compare (A.2). 
3. It is not hard to see directly, by explicit use of a splitting, that the condition of (A.2) implies 

that of (2.20). 
b) We call the reader's attention to two recent manuscripts: 

1. Cattani, E., Kaplan, A., Schmid, W.: Degeneration of Hodge structure 
2. Kashiwara, M.: The asymptotic behavior of a variation of a variation of Hodge structure. 

In ~ 1, the SL2-orbit theorem of [9] (see (A) of our Introduction) is generalized to variations of Hodge 
structure in several variables, and estimates for the H odge norm are obtained. The latter are derived also in 
4~ 2, from a somewhat different point of view. 


