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w 1. Introduction 

The main purpose of this paper is to present a natural and explicit family of 
framed manifolds which represent, via the Thom-Pontr jagin construction, ele- 
ments of arbitrarily large order in the stable homotopy groups of spheres. In 
the course of the proof we also give a complete spectral analysis of the 
classical Laplace operator on these manifolds. 

Atiyah and Smith [6] have shown that for compact connected Lie groups 
of dimension m the e-invariant vanishes for m-= 3 mod 4 and m > 3. From this 
and subsequent work of Knapp,  Ossa and others it became increasingly clear 
that compact Lie groups are far from sufficient to describe the stable ho- 
motopy of spheres. 

Therefore we consider a more general situation: 
Let G be a not necessarily compact oriented Lie group of dimension m with 

a discrete subgroup F such that G/F is compact, and let G/F be endowed with 
the parallelization induced by the choice of a Lie algebra basis belonging to 
the orientation. We denote by [G/F] the corresponding element in rc m.s For G 
we select the nilpotent Lie groups with the simplest representation theory, the 
so called Heisenberg groups H(n). They can be defined as follows: 

H(n) = Ix, y, z] = 

(lx xnzl l 
",~ y l x,, ~,~, z e IR ""'"'......0....... Ytl 

" ' 1 /  

1 
In H(n) we consider the arithmetic subgroups Fk(n ) defined by x i, y i~Z,  z ~ i Z  
for k in N. tL 
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Theorem. Let n be an odd integer. Then: 

e [H(n)/Fk(n)] = e(n) k" ~( - n) + (~(n) 

in q / Z ,  where ~ is Riemann's zeta function and 

{ - 1  for n = 3 m o d : }  6(n)={~ for n = l }  
e(n)= �89 for n=--lmod ' for n > l " 

Thus e[H(n)/Fl(n) ] is a generator of the image of e : rcs ,+l~l l ) /Z  for 
n - 1  mod4 and twice a generator for n - 3  mod4. This follows from [1] and 

the formula ~ ( 1 - 2 v ) = ( - 1 ) v ~ ,  for the values of the zeta function at the 

negative odd integers. By way of contrast, for every arithmetic subgroup F of a 
simply connected nilpotent non-abelian Lie group G the d-invariant of [G/F] 
vanishes [15]. 

The proof of our result is based on the relation between the e-invariant and 
the q-function of the Dirac-operator established by Atiyah, Patodi and Singer 
in [4]. In general it is hopeless to determine the spectrum of an elliptic 
operator explicitly and to calculate the t/-invariant directly. Therefore we have 
to introduce a modified version of the Dirac operator for which the eigenvalue 
problem can be solved completely. This approach is possible because of the 
local nature of 0 and since our manifold is a covering space of itself with an 
arbitrarily large number of sheets. 

In more detail, the plan of proof is as follows: 
We concentrate on the case k = l  and set F(n)=Fl(n), as the general case 

requires only trivial modifications. We start out by finding the eigenvalues and 
eigenfunctions of the Laplace operator on H(n)/F(n) thus obtaining a basis of 
L2(H(n)/F(n)). Unfortunately the Dirac operator D is complicated with respect 
to the corresponding basis of the Hilbert space of spinors. We simplify D by 
neglecting the constant terms of this first order elliptic differential operator to 
obtain an operator /5. The square of/5 is closely related to the Laplacian on 
functions studied in w Therefore it becomes possible to solve the eigenvalue 
problem for/52 explicitly. By considering/5 on the different eigenspaces of/52 
we are able to determine the spectrum of/5 and finally to derive the value of 
the e-invariant. 

Our interest in this problem was aroused by the work of Seade and Steer 
[14] which, incidentally, is completed by the special case n = 1 of our result. 

Let M(p, q, r) be the Brieskorn manifold 

{(z0, Zl, z2)ell?3lz~ + ~  +z~ =0,  IZo12+[zl12+lZz12=~}, 

e > 0 small. It is known [10] that there are diffeomorphisms between H(1)/F~(1) 
and M(6, 3, 2), between H(1)/F2(1 ) and M(4, 4, 2) and between II(1)/F3(1 ) and 
M(3, 3, 3). Brieskorn manifolds admit a canonical framing and with respect to 

this framing e [ M ( p , q , r ) ] = ~ 4  l where # = ( p - 1 ) ( q - 1 ) ( r - 1 )  is the Milnor 

number [13]. The agreement of the e-invariants of the respective homogeneous 
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spaces and Brieskorn manifolds makes it plausible that there exist diffeomor- 
phisms which respect the natural framings. 

w 2. Spectrum and eigenfunctions of the Laplace operator 

We begin by describing the irreducible unitary representations of the Heisen- 
berg group H(n). Their knowledge goes back to v. Neumann [11]. Of course 
they can also be read off from the general representation theory of nilpotent 
Lie groups [9]: 

For  2,/~elR" define the one-dimensional representation U~, u of H(n) by 

Ux, u([x, y, z])=exp(Zrt i ( (  21x) + (#IY))) 

where ( [ ) is the usual scalar product in IR". 
For ~ e~, , \0  define a representation of H(n) in L2(~,, ") by 

(U~([x, y, z]) .f)(v) = exp (2 rciz(z + (v [y))) . f ( v  + x). 

In this way we obtain all classes of irreducible unitary representations of H(n). 
Next we consider the "regular" representation R of H(n) on LZ(H(n)/F(n)) 
given by ( (Rg) . f ) (F(n)g ' )=f(F(n)g 'g) .  (We denote by G/F the cosets Fg.) By 
results of [7] or [12], 

(2.1) R =  ~ Ux,,+ ~, Iml"U,,. 
2,, ,u~Z ~ m e Z \ O  

The Hermite functions are basic for our construction of the eigenfunctions of 
the Laplace operator. We adopt the following convention: 

and 

dv 
Fv(t ) = ( - 1) ~ e,2/z _ _  le-,21 

dt ~ , , 

F~(t) = 0  for v<0 .  

for t e N ,  v__>O 

The following identities valid for v > 0 are classical: 

(2.2) F'(t) = t F~(t) -F~+ l(t) 

F~(t)= 2v F~_ l ( O - t  F~(t) 

F,~'(t) = t 2 F,.(t) - (2 v + 1) F,,(t). 

We use the F~ to construct functions on H(n) which are left invariant under 
F(n) and will also be considered as functions on H(n)/F(n): 

For k, h e Z" let 

fk, h([X, y, z ] ) = e x p ( 2 n i ( ( k l x )  + (hlyS)) 
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and for m67 / \0 ,  q~7.n and h=(h  I . . . .  , h , )eN~ let 

gq, m, h([ x, Y, Z]) = exp (2 ~ i(m z + (qly)))  

For  q=-q' mod(mZ)n we have gq,,,,h=gq,,,,h . 
The Lie algebra b(n) of H(n) consists of the matrices 

""0 "'"'"'"-.... Vl [[u, v, w]l = [ "'"".. 0 �9 ; u~, v~, w ~ ~ .  

U n 

' " 0  

Our left invariant Riemannian metric on H(n) is defined by considering 
[[u,v,w] as element of p2n+l  with the standard scalar product. We endow 
H(n)/F(n) with the induced Riemannian structure. The volume element on H(n) 
is left invariant and thus equals Haar  measure which can be chosen to be the 
standard Lebesgue measure d x d y d z on H (n) ~ ]R 2n + 1. For purposes of integra- 
tion we note that a fundamental domain for the operation of F(n) on H(n) is 
the unit cube in ~2n+1. The Laplace operator on functions corresponding to 
the Riemannian structure is given by: 

j=l 

where Dj=0@j,  j Oyj+Xj~z  and z 0 z '  

A straightforward calculation based on (2.2) yields: 

(2.4) A fk ,  h = --47r2(llkl[2 + Hhl[2) fk, h 

Agq,,,,h = --2r~ Im[(2h 1 + ... + 2 h n + n  +21r [ml) gq,m,h. 

(2.5) Theorem. The functions fk, h (k, he2gn) and gq, m,h ( m e Z \ 0 ;  qe(Z/m) ~, 
heN~)  form a complete orthogonal basis of LE(H(n)/F(n)) consisting of eigen- 
functions of A and ~z. 

Remark. This basis is the union of bases of the representation spaces of the 
isotypical components Ux,, and ]m[nUm of R. 

Proof. The orthogonality assertion can be verified using the orthogonality of 
the Hermite functions F v in L2(N). The proof  of completeness will be given in 
three steps: 

First we prove the theorem for n = 1 by an explicit spectral analysis of A. In 
step two we establish, for n =  1, the connection with the representation theory. 
Finally in step three this together with (2.1) is used to derive the theorem in 
the general case. 
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Step 1. The functions f on H(1)/F(1) can be identified with those f on H(n) 
which satisfy: 

f ( x  - 1, y, z) = f ( x ,  y, y + z), 

f ( x ,  y, z ) = f ( x ,  y +  1, z), 

f ( x , y , z ) = f ( x , y , z + l ) .  

By the regularity theory of elliptic differential operators the eigenfunctions of A 
have the following form: 

(2.6) f ( x ,  y, z)= ~ A~l .(x)  e 2~ri('lz+vzy) 
~ , v 2 ~ z  (v2l 

where Av: ~ ;  is a C~)-function with: 

(2.7) A(;,) (x - 1) = A(v2~,.,) (x ). 

Partial integration shows that for some constant b and all v l , v2+O the 
estimate [A~(x)l <b(vl v2)-1 holds. Together with (2.7) this implies the boundary 
condition: 

A~(x)--*O for x ~ + o e  if I) 1:5t=0. 

The function f is a solution of A f = o : f  iff: 

A" (x) = (4 rt z v2~ x 2 + 8 n 2 v~ v 2 x + 4 n 2 (v2~ + v22) + ~)A v(x). 

For v 1=0  this yields the eigenfunctions fk,h" For v~ 4=0 the substitutions t =  

(x + v2 ] ~ and C~(t)= A~(x)lead to the differential equation 
\ v~!  

c;'(t)- 2~c1~11+~+t c~(t)=0 

with C~(t)-~O for t ~  +_ oe. This equation is classically studied and appears for 
example as the radial component of the Schr6dinger equation of the harmonic 
oscillator. Its solutions are the Hermite functions (e.g. [8]). This completes the 
proof of (2.5) for n=  1 since the eigenfunctions of elliptic operators are com- 
plete. 

Step 2. We continue to consider the case n---1. Let E~ (resp. E2) be the closed 
subspace of L2(H(1)/F(1)) generated by the fk,h (resp. gq,m,h)" Since I13 "fk,h is R- 
invariant, E 1 is also R-invariant. According to step 1, L2(H(1) /F(1))=EI•  
and thus E 2 is R-invariant as well. In E 2 we consider the closed subspace V,, 
spanned by the gq,,,, h with fixed m. For  m 4= m', 

(R(a) gq, rn, h[gq,,m,,h, ) =0  for all aeH(1) .  

Thus every V m is R-invariant. By R~ we denote the restriction of R to V~. Since 
the U~ are determined by their restriction to the center of H(1) it is obvious 
that R m is isotypical of type U m. According to step 1 and (2.1), R,,,=Jm]. U m. 
Let V m = Vm, ~ l . . .  • V,,, t'l be a complete reduction of R m. By W m we denote the 
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vector space of  all complex valued functions ~p on IR z such that  e 2~imz q~(x, y) 
lies in V m. Then we have a corresponding decomposi t ion W,, 
=Wm,~@...| 
Step3. N o w  let n be arbi t rary and let V,,(n) be the closed subspace of  
LZ(H(n)/F(n)) generated by gq,,,,h for fixed m. Fo r  q~l . . . .  , (p, in W m the function 

~(q)  l ,  " " '  r IX, y, Z]w'*e2nimz (pl(Xl, yl)...q)n(X,, Yn) 

is in Vm(n ). For  any map a:  {1, ..., n } ~ { 1 , . . . ,  [m[} we denote by Y, the closed 
subspace of  Vm(n) generated by all functions 4~(~0~ . . . . .  (p,) with q)j e Wm,~j). The 
tml" spaces Y~ are pairwise or thogonal  and invariant under R. To  see this 
observe that  H(n) is generated by the images of  the n canonical  embeddings of 
H(1) in H(n) given by Ix, y, z]H[xa i, yai, z] where a 1 . . . .  , a, is the canonical  
base of R". Now the theorem follows from (2.1). 

w 3. The Dirac operator 

Let M be an m-dimensional  manifold without  boundary  and with a tri- 
vialization of the tangent bundle given by vector fields X1,  ..., X m. They define 
on M a Riemannian  metric and a spin structure, that is a principal Spin(re)- 
bundle P on M. Writ ing m = 2 n + 2  if m is even and m = 2 n +  1 for odd m we 
have an inclusion of Spin(m) into the Clifford algebra C2,+2 (see [3]). The  
complexification C2,+2 | ~ of C2,+2 is isomorphic to End(W),  W a complex 
2 "+ 1-dimensional vector space. We make  the following explicit choice [2] :  

We will henceforth assume n odd. Fo r  1 < j  < n + 1 let Qj = ie2j_ ~ ezj. Put W 
={a~C2,+z| for l=< j=<n+l} .  Then  Cz,+2| operates on W 
from the left. In W we consider the 2"-dimensional subspaces S + = { a c  WIcoa 

n + l  
= (  - 1 ) ~ - a } ,  where e ) = e  1 ... e2,+2. 

The spinor bundle is defined as E=PXspim,,)W. This is a trivial vector 
bundle. The  Levi-Civita connect ion on M lifts to a principal connect ion on P 
which in turn gives a covariant  derivative V on  E. We consider the tangent 
bundle of  M as a subbundle  of the Clifford-algebra bundle C by identifying the 
vector field Xj with ej considered as a constant  section of  C. Then  the Dirac 

opera tor  on M is given by D(s)= ~ ej Ve,(s ) for sections s of E. For  odd m we 
m 

.i=1 
need another  opera tor  D + on  E + =  P x Sp~ncm)S + c E defined as the restriction of  
e2 ,+zD to E +. T h e n  D + is elliptic and formally self-adjoint. 

The spinors in KerD are called harmonic  spinors. We set: 

h(D+ )= �89 dim(Ker D)=dim(Ker D+ ). 

Then the theorem of  Atiyah,  Patodi  and  Singer [4], (4.14) which is fundamen-  
tal for our  paper asserts that  

e [ M ]  = ~c (m) (�89 (h (D +) + t/(D +, 0)) + I (M)) m o d  Z 

s is the element in the stable h o m o t o p y  obta ined  from in It~/Z. Here [ M ]  ~rt.~ 
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the framed manifold M by the Thom-Pontr jagin construction. The r/-invariant 
~l(D +, 0) is the finite value at s = 0  of the analytic continuation of 

sgn 2 
t/(D+, s) = ~ R e s > d i m M .  

~.~+~ I~1 ~ '  
2 * 0  

For our purposes the precise definition of the Chern-Simons invariant I(M) is 
not needed; all we have to know is that it is local and thus behaves multiplica- 
tively for finite coverings. Finally ~c(m)=�89 for m - 3 m o d 8  and ~c(m)=l for 
m-=7 mod 8. 

In addition to our main object of study H(n)/F(n) we have to introduce a 
family of 2 2n+z sheeted covering spaces H(n)/F(n, 2) for 2 e N .  Here F(n, 2) is 
the subgroup of matrices [x,y,z]eH(n) where xe27Z", ye)~jg n, ze227l., and the 
covering map onto H(n)/F(n) is the natural projection. For M=H(n)/F(n, 2) 
the vector fields Xj are constructed fi'om the (natural) basis 

liar, 0, 0] . . . . .  [a, ,  0, 0]l, [[0, a~, 0]1 . . . . .  [[0, a n, 0]], [[0, 0, 1] of b(n) 

by left translation on H(n) and projection to H(n)/F(n, 2). Here a~ . . . . .  a,  is the 
standard basis of ~n. 

A vector field X on H(n)/F(n, 2) is called constant if it is induced by a left 
invariant vector field on H(n). Correspondingly for spinors; hence the constant 
spinors can be identified with the elements of S +. It is clear that D +'z, the 
Dirac operator on H(n)/F(n, 2), maps the space of constant spinors into itself 
and that: 

(3.1) D+'~(fc)=fD+'2(c) 

+ (DJe2,,+2ej+D)fe2.+ze.+)+~J'e2.§ . c 
j -  

for f e  C~(H(n)/F(n, 2)) and c a constant spinor. 
+ , 2  + , 2  By D . . . .  t we denote the operator of order zero defined by D . . . .  t ( f  c) 

=fD+'X(c) and by D ~'~ the modified first order differential operator D ~'2 
_O+,2  +,~ _ - -  Boons  t �9 

w 4. The spectrum of D - ' Z  

The aim of this section is the proof of the following proposition: 

(4.1) Proposition. For n odd (as always) and 2~]N we have: 
n- - I  

~l(D~,~,O)+dim(KerD~.2)=(-1) : 2 ~ ( - n ) + 2  n. 

We fix 2E]N and consider the diffeomorphism ~o: H(n)/F(n, 2)~H(n)/F(n) de- 
fined by 

~(r(~, 2)Ix, y, z3)=r(,0 ~, ~ , ~  

By means of ~p we transport  the operator D ~'~ defined on H(n)/F(n, 2) to 
H(n)/F(n) by setting 

(P (s))(g) = ( o  ~, 2(s o ~0) ) (~-  ~ (g)). 
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Then a(P)=a(D -'~) and for feC~(H(n)/F(n)) and any constant  spinor  on 
H(n)/F(n) we have by (3.1): 

(4.2) P ( f c ) = [ ~  L ( D J e 2 . + z e j + D J e 2 . + 2 e . + )  
j = l  

1 
+ ~  t~zf e2n+ 2 e2n+ l ] " C. 

(4.3) 

with 

A straightforward calculation gives: 

i 
PZ( f  c)= - a z(f)  . c --~2 ~ f  " f2 . c 

and 

1 D}2)+Al_02=21 ( A 1 1) 

Q= L ieje,+j. 
j=l 

In order to find the eigenvectors of p2 it is, in the light of {2.5), sufficient to 
diagonalize s : S + - ,S  +. 

Left multiplication in S + with ie~e,+~ will be denoted by ~ for 1 <j<n .  
The afs are commuting involutions, hence there is a decomposition of S + in 
the form: S+ = @ ~ ,  for_ee{+ 1, -1}"  and 

Setting 

and 

~={veS+lejv=ejv for l <=j<=n}. 

~ =  l~ e2 if * ~ { j l z j = - l }  is even 
j =  1 . . . . .  n 

e j =  - 1 

Y_*=( I-I e ) ' e 2 , + 2  if @ { j [ g j = - l }  is odd, 
j =  1,  . . . , n  

e j =  - 1 

we obta in  i somorphisms  f rom V~ to V a by vF-+ Y~ ~. v. Hence  all V~ are one- 
_ _ ' _  _ 

dimensional and choosing nonzero vectors v~ in ~ we get a basis {v~} of S + 

with Ova= ( ~ ej)v~. Applying (2.4)and (4.3)yields: 
j= 

4• 2 
(4.4) P2(fk, hV~_) = ~ - -  (llkll 2 + Ilhtl 2)L,h v~_ 

4x2m 2 
p2(gq'm'hVe-)= \ X2 j=l - - -  

2gm " 
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(4.5) Lemma. Let 5Pf and ~ denote the closed subspaces of the L2-spinors 
generated by the fk, h" C and the gq,m,h" C respectively with constant spinors c. 
Then 5Pf and ~9~ are P-invariant and the following holds: 

a) I f  do is any eigenspace of P2[~9~f then 

Trace (Pig) = 0. 

b) I f  do is any eigenspace of p2l~g then 

2 ~  
Trace (P[do) ~ ~5- Z. 

Proof. For l < j < n ,  e2.+2ejv~V6_ and e2.+2e.+iv~EV ~ where __6 differs from _e 
exactly in the j-th place. Assertion a) thus follows from Ozfk, h=O. Similarly b) 
follows from ~z(gq,,.,h)=2nimgq,,.,h and ez.+ze2n+lv~_= ++_ivy_, since 
iez.+2e2.+1 is an involution on ~. 

Proof of (4.1). From (4.4) it is clear that the kernel of p2 (and hence of P) 
consists of the constant spinors and hence has dimension 2". 

If do is as in (4.5) and if Trace (Pldo) happens to be zero then q(Pldo, s )=0 for 
all s. Hence: 

q(P, s)= ~ q(Pldo, s) for large Res. 
g 

Trace (P[ g) ~: 0 

According to (4.5)a) it suffices then to consider an eigenspace d o of Pa[SPg. For 
Trace (P [do) + 0 we have by (4.4): 

/2n,m] " n) 492m2 2 n m " f / 2  

with a e Z \ 0 .  On the other hand by (4.5)b) 

2rib 
Trace(Pldo)- 22 with b~Z.  

Equating gives: aam2=b2 and [ml hj+n Since h i>0  and 
- 1  '= 

I~e j l<n  this is possible only for m>0,  h=O, e = ( - 1  . . . .  , -1 )  or for m<0,  h 
=0, _e=(1 . . . .  ,1). Moreover for m>0 :  

4 g Z m  2 

p2(gq, m, oVt-1 ..... - t ) ) -  2'* gq,m, OVt-a ..... -1) 

and for m<0:  
4 ~ 2 m  2 

p2(gq,.,, o v~l ..... 1))- 24 gq,,., o v~ ..... 1). 

Thus the only eigenspaces 8 of P215~g with Trace (P l do) 4: 0 belong to the 
4 ~ 2 m  2 

eigenvalues ~ for m ~ N  and are given by: 

o~,,= ({gq,m, 0 vt_ 1 ..... _ 1), gq _,,,oVc1 ..... l)lqe(7Z/m)"}) for m e N .  
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Using the definition of S § and ~ we find that: 

and 
e2n+ 2 e2n+ l V ( - 1  ..... - 1 )  ~ - - in~)( -1  ..... - 1 )  

e 2 n  + 2 e2n + 1/ ) (1  . . . . .  1) = i "  V(1 . . . . .  1)" 

Hence a consideration of (4.2) reveals that for m ~ N:  

n--1 [2nm] 
Trace(PIg=)=2m" k~- -  ! ( - 1 )  2 

Since dim(gm)=2m" and since the eigenvalues of Pig= have absolute value 
27rrn 

it follows from this equation that they are in fact all equal to 22 
n - 1  2~tm 

( - - 1 )  2 /~2 " 

We conclude that for Res large: 

n--1 , ~ 2  \ s  

m e n  

Hence by analytic continuation: 
n--1 

n ( e , 0 ) = 2 ( - 1 )  2 

1 
m S _  n �9 

w 5. Determination of the e-invariant 

Returning to w we introduce for every 2 ~ N  a C ~ one-parameter family of 
elliptic self-adjoint first order differential operators on H(n)/F(n, 2) by setting 

(5.1) D]'~=D ~'~ +'~ +uD . . . .  , for u ~ l / .  

By construction these operators for different 2 and fixed u come from one and 
the same operator D j" on the common universal covering H(n). The projection 
operator pr] onto Ker(Dj  "'x) is a self-adjoint pseudo-differential operator with 
C~-kernel. Defining 

F, -D. +pr, 

we thus obtain for every 2e  N a C ~ one-parameter family of invertible elliptic 
pseudo-differential operators on H(n)/F(n, 2) with the same complete symbol as 
D]  'a. Clearly 

(5.2) r/(F, ~ , 0) = r/(D]' 4, 0) + dim (Ker D] '  a). 
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By the remarks preceding (2.12) in At iyah  etal.  [5] ~uurl(Fi,,s) is a local 
invariant and hence: s= o 

i t/(Fta, O) - t/(Foa, O) - J~tl(F~,s)=odu 
=22n+2 } d 1, s ) =  ~ 

o 

= 2 z"+ 2(r/(F?, 0) - r/(Fo*, 0)). 

This equality holds in ~ and not  only in F,/Z. 
Applying (5.1) and (5.2) this gives 

q (D +' z, 0) + dim (Ker (D +' ~)) - (t/(D-, a, 0) + d im (Ker (O- '  a))) = 2 c 22. + 2 

where c is a real constant  independent of  ,L 
Invoking (4.1) we get 

n + [  

t / ( D + , Z , 0 ) + d i m ( K e r ( D + , Z ) ) + ( _ l )  2 2 ~ ( _ n ) _ 2 , = 2 c 2 2 . +  z. 

Since on the other hand  the manifolds H(n)/F(n, 2) are framed diffeomorphic 
for different 2 they have the same e-invariant and hence by the theorem of 
Atiyah,  Patodi  and Singer quoted  in w 3: 

n - - 1  

e[H(n)/F(n)] --- tc(2n+ 1)(c22"+2 + 2 " -  1 + ( _  1) 2 ~ ( - n )  

+ I(H(n)/F(n, 2))) rood Z 
r l - - [  

= ~ c ( 2 n + l ) ( ( - 1 )  z ~(_n)+2.-*)+A2,+2 c' modTI 

for all 2 and some real constant  c' since 1 is local as well. 
A trivial a rgument  implies: 

n - - 1  

e[H(n) /F(n)]=x(2n+l ) ( ( -1 )  2 ~ ( _ n ) + 2 . - 1 ) m o d Z .  

This concludes the proof  of the theorem on the e-invariant. 
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