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w 1. Introduction 

In this paper we describe the topology of maps of positive degree between 
closed orientable surfaces. Two maps f ,g :  M ~ N  are said to be equivalent if 
there exist homeomorphisms h: M ~ M  and k: N ~ N  such that k f = g h  (or k f  
~-gh in the homotopy category). If k is homotopic to id N we say f and g are 
strongly equivalent. 

Surface maps of special interest are branched coverings, i.e., f :  M ~ N  is a 
branched covering if there exists a finite set of points B c N  such that f l M  
- f - l ( B )  is a covering map. An arbitrary branched covering may be approxi- 
mated by a generic branched covering, i.e., one in which each point of N has d 
or d -  1 preimages where d =  degree f 

One of the first people to study branched coverings was Riemann, who 
proved in his thesis I-R] in 1851 that Riemann surfaces occur as conformal 
branched coverings of S 2. In 1871 and 1873 Liiroth [L] and Clebsch [C] 
showed that generic branched coverings of S z are classified up to (strong) 
equivalence by their degree. In 1891 Hurwitz [Hu] reduced the classification 
problem for general range N to the algebraic-combinatorial study of repre- 
sentations of ~z~(N-B) into S(d), the symmetric group on d letters. 

A generic branched covering q~: M ~ N  may be factored uniquely as poq~ 
where ~: M--*_N is a primitive (i.e., surjective on rtl) generic branched covering 
and p: N ~ N  is the covering corresponding to c~l t l (M)crq(N ). Primitive 
generic branched coverings were shown to be classified up to equivalence by 
Hamilton [Ha]  in 1966 for arbitrary N provided that b>2d, where b is the 
number of branch points and d is the degree. This was improved by Berstein 
and Edmonds in 1979 and 1984 ([BE1], [BE2]) to b>d/2, or if N = S I •  I, 
then no restriction on b. More importantly, Berstein and Edmonds stressed 
that primitive generic branched coverings should be classified up to equiva- 
lence by their degree, and they conjectured a suggestive normal form. 
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We show that primitive generic branched coverings are actually classified 
up to strong equivalence by their degree, and consequently we prove the 
following theorem. 

Theorem 9.2. Two generic branched coverings d?,tp: M-~N of closed orientable 
surfaces are strongly equivalent if and only if degree ~ =degree ~ and c~. ~t(M) 
= O .  rot(m). 

By using results of Nielson IN], Kneser I-K1, K2] and Edmonds [E] we 
obtain as a corollary the homotopy classification of surface maps. 

Corollary 9.4. / f  f,g: M-*N are maps of closed orientable surfaces of positive 
degree then f and g are strongly equivalent in the pointed homotopy category if 
and only if degree f =degree g and f~ rcl(M ) =g# ~l(m). 

Since surfaces are K(~,l) 's  Corollary 9.3 also gives a classification of 
homomorphisms of surface groups. 

Corollary 9.5. I f  f ,g:  G-*H are homomorphisms of surface groups of equal 
topological degree greater than zero such that f(G)=g(G) in H then there exists 
an isomorphism h: G-~G such that f =gh. 

The proof of the theorem starts with an idea introduced by the first author 
in [G] of factoring a map qS: M ~ N  as a branched immersion s: M--*NxI  
followed by projection ~: N x I - , N .  In this way the branched covering is 
"identified" with the space s ( M ) c N x I .  w contains a calculus of double 
curves which will be used to put s, and hence ~b, into normal form. 

w contains a proof of a weak structure theorem which states roughly that 
any generic branched cover is a connected sum of covering spaces. A useful 
technical device for exploiting primitivity of a generic branched cover is the 
virtual graph which is defined in w and used in w via "shuffling". w gives 
some very useful sufficient conditions for uniqueness (such as the existence of a 
nonseparating trivially covered curve in N). w 8 gives a quick proof of unique- 
ness in the case of 4 or more branch points and w 9 contains the general case. 

Acknowledgements. We would like to thank S. Beckmann, A. Casson, P. Edelman, A. Edmonds, W. 
Jaco, and P. Scott for helpful conversations and Donna Gabai for help with computer com- 
putations. We would also like to thank the referee for many constructive criticisms. 

w 2. Definitions and examples 

M and N will be used to denote orientable surfaces. All branched coverings q~: 
M ~ N  will be assumed to be generic (or in the terminology of [BEll ,  [-BE2], 
simple). Notice that if b e n  is a branch point of q5 then there is a unique 
singular point x~c~-l(b), and near x, q~ is 2 to 1. b(q~) is used to denote the 
branch set of 4~, d is the degree of ~b, ]X[ is the number of elements or path 
components of X, and Y(X)  is a closed regular neighborhood of X. All 
constructions may be performed in the category of pointed spaces and maps. 
Discussion of the care needed for dealing with base points is contained in 
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Remarks 2.6, 3.8, and 6.7. Branched coverings of surfaces with boundary  are 
required to be proper maps, i.e. ~b-I(0N)=0M. 

If ~ is a simple closed curve in N and ~b - l (~ )=~ lu . . .W~k ,  we say ~ is 
evenly covered if degree q~l~i=degree q~Iaj for all i and j. If this degree is 1 then 

is trivially covered. A dual curve of ~ is a simple closed curve fl c N such that 
and/3 have 1 transverse point  of intersection. 

Example 2.1. Let T: S 1 • I - ~ S  t x I be the involution given by T(O, t) =(  - 0 ,  1 - t )  
where S 1 =R/(2gTZ) and 1 = [0, 1]. Then S 1 x I/{(0, t) = T(O, t)} is homeomorpbic  
to D 2 and the quotient  map (o: S t •  2 is a degree 2 branched covering 
with two branch points. 

Alternatively, ~b=~os where s: S a •  is a "branched immersion"  
and ~: D 2 x I ~ D  2 is projection. See Fig. 2.1. In Fig. 2.1 x and y are the branch 
points of q~, and the edge e is the image of the double arc of the immersion s. 

Slxl 
O2• 

Fig. 2.1 

D 2 

Example 2.2. Let ~bl: X I ~ N  and ~b2: X2---~N be unbranched  covering maps. 
Let E c X  1 and F o X  z be disks such that cb1(E)=c~2(F.)=D a disk, and let 
E 1 . . . . .  E k C E  and F 1 . . . . .  F k c F  be pairwise disjoint disks such that ~bl(Ez) 
=q52(F,. ) for i = 1  . . . . .  k. Define 

where O(S)x l ) = # E i w ~ F  i. Now let q~l #kq~2: XI 4~kX2 ~ N  by defining 

(~1Z~Zk(])2 k :~k~2 ( k ) 

and ~bl ~k q~2 [S~ x I = the branched covering of Example 2.1. 

Example 2.3. In  the obvious way for covering maps 4~: X i ~ N  define 
~b I 4~kq~2#q~34~... ~ , :  X 1 4ekX2#eX3 ... # X , - - * N  where 4~ - #1. 

In w 4 we shall show that up to strong equivalence all branched coverings of 
closed surfaces occur in Example 2.3. See Fig. 4.2. 
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s: M ~ N  x I  is a branched immersion representing ~b if the following three 
conditions hold: 

1) qS=nos where 7t: N x I ~ N  is projection, and s is an immersion in 
general position with respect to itself on M-(singular set of ~b). 

2) Each branch point  x is contained in a disk D c N  such that ~b-~(D) 
consists of d - 2  disks which are embedded horizontally and disjointly in N • I 
and 1 disk which contains the singular point above x which is mapped into N 
• I by s with just one double arc. See Fig. 2.2. 

r NxI 

J 
f 

J 

DeN 

Fig. 2.2 

3) The boundary components of M are efficiently immersed in ON x I. See 
Definition 2.5. 

It is straightforward to construct a branched immersion s representing any 
given qS. s may be thought of as having almost horizontal image. In w 3, s will 
be varied in such a way that its image remains almost horizontal and hence 
nos will remain a branched covering. This technique was first used in [G]  for 
studying surface maps. 

The branched immersion s has various double curves and triple points in N 
• Call s regular if the projection of its double curves have transverse 

intersections in N. A branched immersion s representing ~b may be perturbed 
without changing nos so that it is regular. We shall refer to regular branched 
immersions as immersions. 

Let  F~cN be the projection of the double curves of the immersion s 
representing ~b. The vertices of F~ are those points of F~ which do not have 
neighborhoods homeomorphic to R 1. An edge of F~ is the closure of a com- 
ponent of F~-(vertices of F~). F~ will be referred to as a graph, though some of its 
edges may be homeomorphic to S 1. 

Fo r  each point x~N-F~,  label the d points of q~-~(x) 1 through d so that 
the labeling preserves the order of nos(q~-l(x))cI = [0, 1]. Points of M labeled 
i are said to be at height i. Label each edge e of F~ with the transposition tr i 
=(i i+1),  where i and i+1  are the heights of the points near the double curve 
which projects to e. (Notice that  regularity of s implies that there is a unique 
double curve projecting to e.) 

By regularity of s, the vertices v of ~ are one of the following three types: 
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1) v has six edges leaving it. These are the projection of triple points of s. 
The edges must be labeled consecutively crl, tri+l, tr i, or/+1, tri, try+ 1 for some i. 

2) v has four edges leaving it. These are the intersection of the projections 
of two double curves occuring at different heights above v. The edges must be 
labeled consecutively ~ ,  trj, r cr~ for some i , j  with l i - J l  > 1. 

3) v has just one edge leaving it. These are either the branch points of q~ or 
points in F~ c~ ON. 

Remark 2.4. This construction may be performed on any branched covering, 
generic or not. Conversely, given any graph F c N  labeled as above, one may 
construct an immersion s and a branched covering q5 = nos such that F~ = F. 

q~ is determined by its associated unbranched covering, and this is de- 
termined by the representation p: rh (N-b(4) ) ) , x )~S(d) ,  where p is the map to 
the symmetric group given by the action of the fundamental group on the 
labeled fibre qS-l(x) and x ~ N - F ~ ,  c h is primitive if and only if p is surjective. 
(See [BE1].) Corollary 5.2 gives another characterization of primitivity. 

If [ e ] e lh (N-b (~b) ,  x) and 7~N-(vert ices of F~), then pi t t ]  equals the pro- 
duct of the tr~ corresponding to the edges of F~ that c~ crosses in the order that 
crosses them. In general if ~cN-(vert ices  of F~) is a path from x to y where 
x, y e N - F ~ ,  then denote by p(~) the permutation of heights given by following 
the lifts of ct from ~b-l(x) to ~b-~(y). Notice that if ct is a simple closed curve 
and qS-t(cr is connected then p(~) is a d-cycle. 

Definition 2.5. 0M is efficiently immersed in 8N x I by s if ~ is transverse to 0N 
and if ]F~n0NI<I~'c~0NI for all immersions s' representing q~. If 6 is a 
component of ON and p ( f ) = p l  ... Pk is a product of disjoint cycles, then ]F~  61 

k 

= ~ (length Pl - 1). 
~=1 

Remark 2.6. All our work takes place in the pointed category. More precisely 
let ,e/~/  and , ~ N  be basepoints. All our branched coverings ~b: M--*N have 
the property that 4 ( * ) = ,  and *r Equivalence and strong equivalence in 
the pointed category refer to basepoint preserving homeomorphisms and iso- 
topics. In the construction of s: M ~ N  x I, we require additionally that s(,) 
= ( , ,0 )  and , r  

w 3. Calculus of double curves 

In this section we describe some elementary modifications that may be made 
to the labeled graph F~ c N. A modification of F~ will consist of first changing ~b 
within its strong equivalence class and then rechoosing the immersion s. The 
goal is to simplify F~, for instance, by decreasing the number of edges or 
vertices. 

In Lemmas 3.1-3.4 all changes to F~ are made in a disk D c N  whose 
intersection with F~ is shown before and after the changes in Figs. 3.1-3.4. No 
changes are made to s outside M - d p - I ( D )  or to ~ outside O. Lemmas 3.2, 3.3, 
and 3.5 were the key steps in the proof of the Simple Loop Conjecture [G].  
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L e m m a  3.1. Surgery may be performed along an arc ct where ct cuts F~ in 
successive points labeled ai. See Fig. 3.1. 

Proof Just change the height of s in a neighborhood of ~. [] 

Lemma 3.2. A branch point and its edge labeled ~r i may be pushed through edges 
of F~ labeled a~ where J i - j [  > 1. See Fig. 3.2. 

Proof Since ] i - j ]  > 1 the component of ~b-I(D) which creates a i is disjoint in N 
x I from the components creating aj. The desired change in F~ can be made by 

changing the immersion on the immersed disk at heights i and i +  1. []  

Lemma 3.3. A branch point and its edge labeled a~ may be pushed through a 
triple point with edges labeled alternately ai, ai+x- See Fig. 3.3. 

Proof The triple point is formed by the intersection of two components of 
q~-l(D), s may be redefined on the component which contains the singular 
point. []  

Lemma 3.4. F~ may be modified by the pincer move shown in Fig. 3.4. 

Proof See Fig. 3.4. [ ]  

4): M ~ N  is boundary reducible if there exists a component 6 of ~M and a 
strongly equivalent branched covering ~,: M ~ N  such that 1~-1(6')[>{q5-1(6)t 
where 6' is the other component of ON(6). Notice that if e is an edge of F~ 

l 

Fig. 3.1 

Fig. 3.2 
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Lemma 3 3 ~ d .  ~ ) Lemma 3 3 

Lemma 3 t~ 
Fig. 3.4 

connecting a branch point to ON then since 0N is efficiently immersed by s, q5 
is boundary  reducible. 

The next l emma shows that  for closed surfaces all branching of q5 can be 
described locally as a two fold branched covering from a cylinder to a disk. 
See Fig. 2.1. 

Lemma 3.5. Either ~b is boundary reducible, or F~ may be modified so that all 
branch points occur in pairs which are connected by single edges of F~. 

Proof Let x be a branch point, x occurs on a unique edge of F~, and the other 
vertex of the edge is either a boundary  point, a branch point,  a double point, 
or a triple point. The first two cases, are the desired conclusion. In  the third 
and fourth cases either Lemma  3.2 or 3.3 applies, and the argument  is com- 
pleted by induct ion on the total  number  of edges and  vertices of F~. []  

If D c N  intersects F~ in an  edge e labeled tr i connect ing two branch points, 
then ~b-l(D) consists of d - 2  disks of M and a cylinder which when immersed 
by s connects levels i and i +  1. By imagining the cylinder as being long and 
thin as in Fig. 2.1, it makes sense to talk about  the top and  bottom of the 
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Fig. 3.5 
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cylinder. Given a path c~= N-(vertices of ~) which starts at a boundary point of 
D and misses/9, we may slide the cylinder along ~ in such a way that the new 
cylinder connects heights p(e) (i) and p(e) (i + 1). Furthermore, though sliding a 
cylinder along e may add concentric circles about the final position of e to ~,  
the rest of F~ is unchanged. This is proved by induction on the number of edges 
of ~ that e crosses and the following lemma. 

Lemma 3.6. An edge surrounded by concentric circles may be slid across an edge 
labeled cr i o f  ~. A concentric circle labeled ai will be added to F~ but otherwise F~ 
will remain unchanged. See Fig. 3.5. 

Proof By Lemma 3.1 surgery may be performed on the arc/~ of Fig. 3.5. [ ]  

This proof does not necessarily produce an immersion s with the fewest 
concentric circles in ~. If the cylinder connects heights i< j ,  then s may be 
chosen so that the disks at various heights are embedded horizontally and so 
that the double curve of the cylinder occurs between the disks at height j - 2  
and j +  l.  The concentric circles are then labeled cri, a~+l, . . . ,  o j _  2 and the edge 
is labeled a~_ 1. 

Lemma 3.7. ~b: M ~ N  is boundary reducible if and only if there is a strongly 
equivalent ~b: M - o N  with immersion s' such that there is an edge e o f  ~' 
connecting a branch point to ON. 

Proof Details are given only for the only if direction. Suppose 
10-1(5')f>l~-X(,~)[ where ~, 6, and 6' are as in the definition of boundary 
reducible. Choose an immersion s' so that IF~'c~6'I is as small as possible. The 
proof is by induction on the number n of branch points of ~ in A, where A is 
annulus bounded by 6 and 6'. Notice that I0-1(6')1 > I~b-l(6)l implies n > 0. 

Pick a branch point x in A and  use Lemma 3.5 to attempt to form a short 
double arc. There are three possibilities. First ,  pushing on x may lead across 6'. 
This decreases n and increases 1~-1(6')1. Second, a short double arc may be 
formed in A. By Lemma 3.6 this may be slid across 6', thereby decreasing n 
without effecting I~0-~(6')1. Lastly, pushing on x may lead to 6. This is the 
desired conclusion. [] 

Remark 3.8. The modifications of q~ described in this section do not  change the 
strong equivalence type of q~ in the pointed category, provided only that the 
arcs along which surgery is performed or cylinders are slid are chosen to miss *. 

An isotopy g: N - o N  corresponding to any of the above moves corresponds 
to a branch point slide. Fo r  example, the isotopy corresponding to the move of 
Fig. 3.3 is an isotopy which pushes the old  branch point to the new one along 
the obvious arc of F~. 



The classification of maps of surfaces 227 

Remark 3.9. If th: M ~ N  is a generic branched covering and qS=po~ where 4S: 
M ~ N  is a branched covering and p: ]V--*N is a covering map, then in a 
natural way s: M - - * N x I  induces a map ~: M ~ N x I  such that n~=q~. Ifq~ is 
modified to q~' by double curve calculus moves, then by viewing these moves as 
occurring in N x I (after projection by p) we see that q5 is strongly equivalent to 
p o q~'. 

w 4. The weak structure theorem 

Lemma 4.1. A generic branched covering ~b: M ~ N  with two branch points is 
either boundary reducible or is strongly equivalent to a generic branched covering 
which has a separating cylinder. 

Proof First use Lemma 3.5 form a cylinder C. If M - C  is connected let m be 
the maximum height of any point in M - t~ and let ~ be a path in M -  C from 
the base of C to a point at height m. When C is slid along ~=qSo~ the vertical 
orientation of C is changed. 

It follows that the vertical orientation of C must have changed at some 
point where c~ crosses an edge e of F~. Furthermore, just prior to crossing e, C 
must connect heights h and h +  1 where e is labeled tr h. Now use Lemma 3.1 to 
surger a, the double arc corresponding to C, and e, then use Lemma 3.5 to 
reform the short double arc connecting the branch points. The net effect is to 
reduce the number of edges of F~. 

This procedure may be repeated until the new cylinder C has its boundary 
components contained in different components or until F~ has no edges other 
than a. In  the latter case M - C  must consist of two components each mapped 
homeomorphically by qSIM-C,  hence C is separating. [] 

Lemma 4.2 (The weak structure theorem). If  (9: M ~ N  is a generic branched 
covering of compact surfaces then either q6 is boundary reducible, or there exist 
covering maps dpi: Xi---~N such that c~ is strongly equivalent to 

q51 ~,~b2 ~ b 3  ~ ... 4~ q~,: X1 # ~ X 2 ~ X 3 ~  ... 4 e X , ~ N .  

Proof Apply Lemma 3.5 to q~ to conclude either q5 is boundary reducible or we 
have created e l , . . . ,e ,  short edges of F~ connecting branch points. Let D i 
=~(e i ) ,  let C i be the cylinder component of ~p-I(Di), let X = M - d p - l ( b ~  w...  
wDt) and let Y= N - / ~ I  w ... w/)t. Let G be the graph with vertices equal to the 
components X1, . . . ,X u of X and edges C~, ..., C t. By Lemma 4.1 it may be 
assumed that each edge connects distinct vertices. 

Let A be the longest embedded arc connecting vertices of G. Relabel the 
vertices and edges of G so that A = X I w C I w X 2 w . . . w X o ,  and so that the 
bottom and top of C~ are contained in X i and Xi+a respectively. 

If v----t + 1, A contains all of the edges and hence all of the vertices of G, 
and the result is immediate. If v < t + i there are two cases to consider. 

Case I. There is a vertex of G not in A. 
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Fig. 4,1 

Choose such a vertex X,;+I connected to A by an edge C~ and say the base 
of C~, is contained in the vertex X s. of A. If j =  v then A ~ C~ u X~+ l is a longer 
embedded path in G. If j < v slide the base of C o to the base of ~ ,  then slide 
C~ up C s into Xj+~ so that C,, now connects X~+, and Xv+ 1. See Fig. 4.1. This 
can be continued until C v connects X~, and X~+~. 

Case 2. A contains all vertices of G but not all edges. 

Let C~ be an edge not in A, and let X~ and Xj (i<j) be the vertices 
containing the bottom and top of C~. Use the technique of Case 1 to slide the 
base of C~ into Xt (and notice that the top stays in X). Then slide the top of 
C~ into X 2 until it is next to the top of C 1. The bottom of C~ will have stayed 
in Xt, and it may or may not be at the same height as the bottom of C~. If it 
is at a different height, the top of C, may be slid down Ct, and X~ will contain 
both ends of C~. Lemma 4.1 may be applied to find a longer path than A. 

If the bottom of C~ is the same height as the bottom of C~, then C~ has 
slid into the position required by the Weak Structure Theorem. Repeating 
Case 2 with the remaining edges finishes the proof. []  

Lemma 4.2 gives a quick proof of the following corollary which was first 
proved by Luroth [L] and Clebsch [C] in 1871 and 1873. 
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Corollary 4.3. I f  d?, ~p: M ~ S  2 are generic branched coverings and degreed? 
=degree ~, then d? and ~ are strongly equivalent. 

Proof. By Lemma 4.2 d? is strongly equivalent to 

d?I :~:kd?2 z~:'" z~(d?n: Xl #kX2 :~... # Xn --* N. 

It follows that Xi=S  2 for all i, hence n=degree  d? and k=(genus  M ) - I .  Since 
Xi, n, and k depend only on the degree of d? and M, it follows that 4) and ~ are 
strongly equivalent. []  

w 5. The virtual graph 

Let d?: M ~ N  be a generic branched covering and suppose that e c N  is a short 
double arc connecting two branch .points and C is the cylinder above JV(e). 
We shall use the following device to keep track of all positions to which C 
may be slid. 

The virtual graph F(d?, C)x is defined for each point xEN-b(d?). The vertices 
of F(d?, C)x are the points in d?-l(x). Two vertices a, b~d?-l(x) are connected by 
an edge if it is possible to slide C in N so that it connects a and b. The virtual 
graph depends on the choice of C, but F(d?, C)x may be slid isomorphically to 
F(d?, C)y along any path in N-b(d?) so the dependence on x will usually be 
omitted. 

If N 1 is a submanifold of N containing e, then the restricted virtual graph 
F(d?x, C), is defined over each z~N l-b(d? 0 where d?l is the restriction of d? to 
d?- '(N1). 

The induced cover l~(d?, C) of N, is defined to be M/F(d?, C). More precisely, 
if xEN-b(d?) then points of d?-l(x) in the same component of F(d?, C)x are 
identified. If beb(d?) and x is a nearby point in N, then points in d?-l(b) are 
identified if the nearby points in d?-l(x) are identified. This is well defined since 
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(9 is generic, that is, the two points of qS-l(x) near the singular point must lie 
in the same component of F((9, C)x. 

It is not hard to see that the canonically defined maps ~: M~N((9 ,  C) and 
p: ill((9, C)--*N are respectively branched and unbranched covering maps. 

Proposition 5.1. (9 may be factored as po~ where ~: M~I~I((~, C) is a primitive 
generic branched covering and p: l~(dp, C ) ~ N  is an unbranched covering map. 

Proof  To show that ~ is primitive it is enough to show that ~ cannot be 
factored as a branched covering ~ followed by a covering map q. To see this, 
notice that ~ must also identify the boundary components of C and hence 
must also identify points of M to which C may be slid. It follows that 
identifies points in path components of F((9, C). [] 

Corollary 5.2. (9: M ~  N is primitive i f  and only i f  F((9, C) is connected. [] 

The following definition will be used to measure the extent to which a 
branched covering (9: M--*N can be put into normal form. Let ~ be a simple 
closed curve contained in N - b ( ( 9 ) ,  and let A(~)=gcd{degree ((9]~)18 is a 
component of (9-1(c0}. 

Lemma 5.3. I f  (9: M ~ N  is a primitive branched covering and c t c N - b ( ( 9 )  is a 
simple closed curve then either (9 is boundary reducible or there exists a simple 
closed curve fl c N - b((9) such that 

1) ct and fl are isotopic in N 

2) a(/~)< a(~) 
3) fl is evenly covered, i.e., each component of  (9-l(fl)  is mapped by degree 

A(~). 

Proof  The proof  will use the techniques of w 3. Start by choosing an immersion 
s in such a way that when p(a) is written as a product of disjoint cycles 
Pl ... Pk, that p i = ( x l x i +  l x i + 2  ... xi+ 1 - 1 )  and the edges of F~ intersecting c~ 
are labeled ax,, ax, + 1, ax,+2 . . . .  , a . . . .  -2  for i =  1, . . . ,k. Among all immersions 
representing (9 near ~, this has the fewest number of double curves intersecting 

transversely. Next, form a short double arc. This may cause some of the 
double curves intersecting c~ to disappear and therefore split various Pi into 
products of shorter cycles, but it cannot increase A(~). 

If not all components of (9-1(~) are mapped by equal degree, then by 
connectivity of the virtual graph, the cylinder corresponding to the short 
double arc may be assumed to connect two components of (9-1(~) which are 
mapped by different degrees. Lemma 5.4 shows how to find an isotopic curve fl 
such that A(fl)=d(ct), but f(9-1(fl)J=[(9-1(cOt+l. Continuing this leads to a 
curve with the desired properties. []  

Lemma 5.4. Let (9=(91#(92: $1 •  l x I - - , S  l x I  where degree 4)1 
= a < degree (92 = b. There exists a simple closed curve fl ~ S 1 x 1 - b((9) such that 
fl is isotopic to S l x O  and dp-l(fl) has exact ly  three components mapped by 
degrees a, b - a ,  and a respectively. 
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Proof. Figure 5.1 shows the double curves of ~p and a closed curve 7 starting at 
a point x. Notice that p (7 )=(ba+b)  and p ( S l x O ) = ( 1 2 . . . a ) ( a + l a + 2 . . . a  
+b), hence if/~ is chosen to be a simple closed curve near 7 , (S ~ xO) then p(fl) 
=(12 ... a ) ( a + l  ... b)(b+ 1 ... a+b). ~b-l(~) now has the desired properties. []  

w 6. Shuffling 

This section describes a more global method of varying a branched covering in 
its strong equivalence class than the local moves described in w Though the 
terminology of w 3 is used, no effort is made to keep track of the changes in F r 

A good example of shuffling is the following. Let C be the separating 
cylinder in ~b~ =~ ~b2: M~ =~ M 2-~ N, let ~ c N be a trivially covered nonseparating 
simple closed curve, and let ~ i c M i  be the components of ~b/-l(~) bear C. Let 
M be the connected surface obtained by cutting M i along ~ and then glueing 
~ to ~ .  The effect of shuffling is to replace ~b 1 # 42 by the canonical map 4' 
from M to N. 

More precisely and more generally, let ~ be a simple closed curve in M 
- b ( ~ )  with base point a parametrized by ~(t): [0, 1]-~M such that ~(0)=u(l)  
=a.  If b~dp-l(c~(a)) then there exists a unique lift fl(t): [0, 1]-+M of 4)oc~ such 
that f l (0)=b and ~b(fl(t))=cp(c~(t)). fl[0,1] is not in general either closed or 
embedded. 

Now assume that fl[0, 1] is a simple closed curve ft. Let X ( ~ ) = e x I  and 
A~(fl)=flx I be regular neighborhoods where c~ (resp. fl) is identified with 
x 1/2 (resp. flx 1/2) in such a way that n(c~(t), t') = n(fl(t), t'). Suppose also that 
[(.A/'(a) w .At (fl)) n ~b - l(b (4))1 = O. 

Shuffling Lemma 6.1. I f  an edge of  the virtual graph connects a x 0 to b x 0, then 
dp is strongly equivalent to qS': M - * N  whose immersion s' has image equal to 

s ( M - ( ~  x [1/4, 3/4] u flx [1/4, 3/4]))u A 1 u A 2 
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where A 1 = S  l x [-1/4, 3/4] satisfies 

S 1 x 1/4 =s(cr x 1/4), 

S 1 x 3/4 = s(fl x 3/4) 
and 

re(r, t)= ~(s(~(t)))= ~(s(/~(t))) 

and A 2 = S  1 x [1/4, 3/4] satisfies 

S 1 x 1/4 = s(]~ x 1/4), 

S 1 x 3/4=s(or x 3/4) 
and 

~(r, t)= ~(s(~(t)))= ~(s(/~(t))). 

Proof Figure  6.1 shows how to construct  4,' in the case that  ~ and fl map  
homeomorphica l ly  to a curve in the range. The general case may be sketched 
as follows. 

Let C be the immersed cylinder connect ing a x 0 and b x 0. Next  modify 4, 
through t ime in such a way that at t ime t, C is elongated into an immersed 
cylinder C(t) whose back por t ion connects a x 0  and b • 0 and whose front 
por t ion connects co(t)x0 and /~(t)• At  the double curve level, the short 
double arc corresponding to C is stretched along the curve 4,(~(t)) while the 
leading branch point  is pushed through double curves as necessary. Since c~ 
and /~ are closed curves, as t approaches  1 the leading por t ion  of C(t) ap- 
proaches the unmoved  back portion,  that is, the top  and bo t tom boundary  
components  of C(t) approach the por t ion of  C(t) that  was never moved  away 
from a • 0 and b x 0. Therefore a surgery (Lemma 3.1) may be performed. This 
restores the original cylinder C and completes the shuffle. [] 

We state as a l emma the most  c o m m o n  situation for shuffling. 

L e m m a  6.2. I f  7~N-b(4 , )  is evenly covered by 4,: M ~ N ,  then we may shuffle 
along two components of 4,-1(7) that are connected by an edge of the virtual 
graph. [] 
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Lemma 6.3. I f  r  M - ~ N  is a generic branched covering and genus N ~ I ,  then 
either r is boundary reducible or dp is strongly equivalent to a branched covering 
~' for which there exists a cylinder C with M - C connected. 

Proof. Let & = p ~  where ~: M ~ N  is primitive and p: /~-~N is a covering map. 
By Lemma 3.5 r and hence ~b is boundary reducible, or ~ is strongly equiva- 
lent to a branch covering r  containing a cylinder C. Let a clV be a non- 
separating curve. By Lemma 5.3 we may assume ct is evenly covered. If M - C  
is not connected then C connects different components of ~-1(a) and after 
shuffling along a, M - C  will be connected. By Remark 3.9 q5 is strongly 
equivalent to po q~' and the result follows. []  

Lemma 6.4. If r M ~ N  is a primitive branched covering, and ~ N - b ( r  is a 
trivially covered nonseparating simple closed curve, and f l c N - b ( c ~ )  is a dual 
curve to ~, then r may be modified within its strong equivalence class so that ct is 
trivially covered and d?-l(fl) is connected, i.e., d( f l )=d=degree  d? or equivalently 
p(fl) is a d-cycle. 

Proof. The proof is by induction on kb-l(fl)l. If J r  then by con- 
nectivity of the virtual graph we can choose a cylinder that connects two 
components of r These two components correspond to two disjoint 
cycles when p(fl) is written as a product of disjoint cycles. Shuffling over a with 
this cylinder combines these two cycles without effecting the others, hence 
Ir is decreased. []  

In general, shuffling over an evenly covered curve a changes the virtual 
graph. An important exception occurs when ~ is parallel to a boundary 
component of N. This is exploited in the following technical lemma. 

Lemma 6.5. Let  r  M ~ N  be a branched covering, let ~ be an evenly covered 
nonseparating simple closed curve in N - b ( r  and let fl be a dual curve to ~. Let 
~1: M I ~ N I = N - d V ( ~ )  be the restriction of  ~ to M-qS-l(~r  and assume 
dp 1 is primitive. Then r may be modified so that either d(a) is decreased or so 
that d(fl) = 1. 

Proof. By Lemma 4.1 applied to qSIJV'(~ ) if an edge of F(q~, C) connects a 
component of r  1 (a) to itself then d (ct) can be decreased. 

Say 0dV(a)=ct § w a - .  By a slight abuse of notation identify N with N1/~  
where ~ identifies corresponding points of ~+ and ~-. Similarly identify M 1 / ~  
with M in such a way that the map induced by r is r 

Let fll=flc~N1 and choose a lift fil of ill. Let x e r  -)  and y~r  be 
the endpoints of ill- Choose z~r  -)  so that z = y  in M 1 / ~ .  If x = z  then 
q~-l(fl) has a component mapped homeomorphically to fl and hence d(fl)= 1. 

Otherwise by primitivity of ~b~, x and z lie in the same component of 
F(r C)w (the restricted virtual graph over w = ct c~ fl), and are hence connected 
by a sequence of edges e l , . . . , e  k. If r is first modified by this sequence of 
shuffles over a curve parallel to a+, it will follow that x = z. 

This is schematically pictured in Fig. 6.2. [] 
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Fig. 6.2 

Remark 6.6. The proof of 6.5 shows that the assumption that q51 is primitive 
may be replaced by the assumption that x and z lie in the same component of 
r(4,~, cL. 

Remark 6.7. The modifications to ~b necessary to make a curve c~ evenly 
covered and to then perform shuffles over c~, have no effect on the pointed 
strong equivalence type of ~b as long as r misses , .  In the following sections, 
and various dual curves should be chosen to miss , .  

w 7. Sufficient conditions for uniqueness 

For N~=S 2 uniqueness is proved by showing that a branched covering th: 
M--*N may be put into normal form, that is, F s consists of precisely d - 1  
parallel nonseparating simple closed curves labeled a l , . . . , t ra_  1 where d 

=degree q~, and ~ short double arcs labeled a r In particular if 0 is in 

normal form, the boundary components of N are trivially covered. See Fig. 7.1. 

Lemma 7.1. I f  ok: M ~ N  is a primitive generic branched covering, and if there 
exists a nonseparating simple closed curve c tcN-b(q~)  such that A(ct)=l, then 
either dp is boundary reducible or c~ is strongly equivalent to a map in normal 
.form. 

genus N �9 1 

Fig. 7.1 
N=S z 
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Proof  By L e m m a  5.3 we may  assume ~ is trivially covered, c~ has a dual  curve 
//, and by L e m m a  6.3 we may assume p(fl) is a d = d e g r e e  q~ cycle. Thus q~lJV 
(where J f = J V ' ( c ~ f l ) )  is just  the s tandard  cyclic covering of a punctured torus. 
It is therefore possible to choose an immers ion s such that  Fsc~Jr consists of d 
- 1  circles paral lel  to ~ that  are labeled a l , a 2 , . . . , a a _  1 consecutively. Next  
slide a cylinder near  qS-l(c~JV) in such a way that  is connects heights 1 and 1 
+ f, and hence has length t ~. 

Claim. We may assume that ~ld. 

Proof of  Claim. Let x=gcd(t~,d).  It is not  hard  to show that  there is an integer 
u such that  

ux  =-f mod(d) 

gcd(u, d) = 1. 

Choose r,s such that  r u + s d = l  and consider the pa i r  of dual  curves ~, fi such 
that  g is an (r, d) curve a n d / ~  is a ( - s ,  u) curve. Then p(a-) =p(f l )d=(1)  and p(fi) 
=p(fl)" is a d-cycle. Fur the rmore  p(fi)x(1)=p(fl)"x(1)=p(fl)e(1)=(+l,  hence 
with respect to g and /~  the cylinder has length x and x ld. 

Claim. Either ~ = 1 or some double curves of  F s n (N - JV) can be eliminated. 

Proof of  Claim. The proof  is by induct ion on the set of lexicographical ly 
ordered pairs (ledges of Fs c~ (N - JV)I , f). Not ice  that  if IF~ c~ (N - Jr = 0, then 
primit ivi ty implies ( =  1. 

Consider  the vir tual  graph restricted to ~,, i.e., F(~bl~,, C). Since p(fl) 
=(1 2 ... d) and t~Wd, it follows that  F(qSl~,, C) has f components  and contains 
the set of edges S =  {(i,j)l l i - j ]  =E}. 

Let  7 c N - J l ~ "  be a closed curve start ing at a point  in OJK. If the entire set 
of edges S (each or iented from bo t tom to top) is slid a round  7 the following 
cases can occur:  

Case 1. The or ienta t ion  of some edge is reversed. As in L e m m a  4.1, a double  
curve of F s c~ ( N -  JV) may be eliminated. 

Case 2. The length of some edge is decreased. This new edge has length less 
than f and the first claim allows us to assume its length divides d and is less 
than f wi thout  changing F c~(N-JV') .  

Case 3. The length of some edge is increased. If Case 1 does not  hold, Case 3 
implies Case 2. 

Case 4. The length of every edge is preserved. Suppose that this is the case for 
all y. Then S is preserved by sliding over  all of N - ~ .  It follows that  
F(~bl~,, C) is preserved by sliding over J V u ( N - J t / ' ) = N .  F(~bIJV,, C) has f > l  
components  and F(qS, C) is generated by sliding C over  N, therefore F(~b, C) is 
not  connected.  This contradicts  pr imit ivi ty  of qS. 

Completion of  the proof. The cylinder has length 1 and hence projects  to a 
short double  arc e labeled a~ (as opposed  to a short  double  arc  surrounded by 
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concent r ic  circles) nea r  ~A#(~wfl).  We n o w  e l iminate  all doub le  curves in 
F~c~(N- JV ' )  other  t h a n  the o ther  shor t  doub le  arcs as follows. 

Suppose  t ha t  c c N - J V  is labeled  crj and  is the closest double  curve to e. 
Cons ider  the  effect of s l iding e once  a r o u n d  ft. The  cyl inder  cor responding  to e 
connects  heights  i a n d  i + 1 ,  p ( f l ) = ( 1 , 2 . . . d ) ,  and  hence  sliding e a r o u n d  fl 
creates a cyl inder  connec t ing  heights  i +  1 and  i + 2 .  A t  the  doub le  curve level, 
the  label a i on  e is changed  to ~ri+ a. Slide e a r o u n d  fl unti l  it is labeled ~rj. 
Per form a surgery to kill  c, re form the shor t  double  arc  e, and  con t inue  unt i l  
the  only r emain ing  doub le  curves  are shor t  double  arcs. These  may be  re- 
labeled a l ,  as in Fig. 7.1, by sl iding a r o u n d  ft. 

We can  now choose  a h o m e o m o r p h i s m  of N tak ing  the doub le  curves of ~b 
to the doub le  curves in the n o r m a l  form wi th  the same  labeling. This implies 
equivalence  up  to h o m e o m o r p h i s m  of d o m a i n  and  range.  Equivalence  up  to 
isotopy of  N follows f rom the next  two lemmas.  [ ]  

L e m m a  7.2. I f  e' intersects e transversely in one point, then 4) may be modified 
so that the double curves cl, .. . ,  Cd_ a labeled al ,  .. . ,  ~d-1 parallel to ~ are made 
parallel to e'. (No ta t i on  as in 7.1.) 

P r o o f  Let e be a shor t  double  a rc  labeled cr 1 of F~, a n d  use it to do a surgery 
wi th  c 1. S t re tch  this doub le  arc f rom one side of c2, paral lel  to e', to the o the r  
side of c z. Use L e m m a  3.4 to do  a p incer  move  thereby  creat ing the first 
doub le  curve  c' 1 paral lel  to c(. See Fig. 7.2. The  pincer  m o v e  also creates a new 
double  arc labeled a z ou t  of a po r t i on  of c 2. This doub le  arc in turn  may  be 
s t re tched f rom one side of c3, paral lel  to c(, to the o t h e r  side of  c a. C o n t i n u e  
the  process  of using pincer  moves  and  m o v i n g  doub le  arcs unt i l  all c~ are 
conver ted  to c' i. [] 

L e m m a  7.3. Given two nonseparating simple closed curves ct, ~ there exis ts  a 
sequence o f  nonseparating simple closed curves e l , . . .  , e ,  such that  e 1 =or, c~ =~, 

and l e ic~i+xl  = 1. 

P r o o f  We first show how  to cons t ruc t  a sequence cq . . . . .  e. of nonsepa ra t i ng  
s imple closed curves where  l e~ c~ c~i+ll = 0 or  1 by i nduc t i on  on Is c~ ~1. 

Choose  an  arc t i c  ~ with endpo in t s  p, q such tha t  ~ c~fl = {p, q}. Let 6, 7 be 
arcs  con ta ined  in �9 such  tha t  ~ = 6 u 7 and  6 c~ ~, = {p, q}. 

Fig. 7.2 
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Case 1. ~ and ~ intersect algebraically with the same sign at p and q. In this 
case c5 w fl may be isotoped so that [a c~ (6 u fl)[ = 1 and I(6 w fl) c~ ~[ < [a c~ ~[. 

Case 2. ~ and ~ intersect algebraically with different signs at p and q. Notice 
that homologically (6 w fl) + (7 w - fl) = ~ 4: 0, hence without loss of generality we 
may assume 5 w fl is non  zero in homology and hence is nonseparating.  Now 5 
wf l  may be isotoped so that Ic~c~(6wfl)] = 0  and [ (6wf l ) c~[  <[c~c~[. 

To finish the proof of the lemma it is enough to show that if [ctc~gl=0 , 
then there exists a curve k such that [e n k[ = 14c~ k[ = 1. It is easy to construct k 
by considering separately the cases when N - ( ~ w ~ )  has one or two 
components.  []  

Since the moves used in Lemma 7.2 only use isotopies of N, it follows that 
the labeled double curves of ~b may be put in normal  form by a homeomor-  
phism of M and  an isotopy of N. 

Corollary 7.4. I f  (p, M ,  N,  and ~ are as in 7.1, but A ( ~ ) = d = d e g r e e  d~, then 
either d? is boundary reducible or (~ may  be put into normal form.  

Proo f  Let fl be a dual curve and suppose p( f l ) (1)=i .  Choose k such that 
p(f lc tk)(1)=l ,  SO that the nonseparat ing simple closed c u r v e  flo~ k has d(f l~ k) 
=1. []  

Remarks  7.5. The idea of proving uniqueness by finding a curve ~ such that 
p(~) is a d-cycle, is due to Berstein and Edmonds [BEl l ,  [BE2]  who show that 
if [b(q~)[ > 2  and p(~) is a d-cycle, then th may be put  into normal  form. 

In  practice it is much easier to find curves ~ such that A(~)=I .  For  
instance, if degree ~b--p a prime, then for any curve ~, A(ct)[p hence A(ct)--1 or 
d(~)=p.  This proves uniqueness for maps  of pr ime degree with N as in 7.1 and 
with no condit ion on b(q~). 

w Uniqueness for lb(~)]>2 

Theorem 8.1. I f  d?: M ~ N  is a primitive generic branched covering o f  orientable 
surfaces with genus N > 0 ,  and if  [b(q~)t > 2 ,  then either ~ is boundary reducible or 
d# is strongly equivalent to a generic branched covering in normal form. 

Proo f  The goal is to find a nonseparat ing curve ct and  a generic branched 
covering q~' strongly equivalent to ~b such that, with respect to ~b', A(~)= 1. The 
result will then follow from Lemma 7.1. By Lemma 4.2 we may assume ~b 
= ~ l :~ k (~ E :~: . . . :~z ~) n " X a # k X 2 ,~ . . . #e X , ---, N. 

Case I. k > 1. 

Let C denote the k th cylinder between X t and X 2. Let c~ be any nonseparat-  
ing simple closed curve in N - b ( d p )  that starts and ends near the edge e 
corresponding to C but  does not  cross e. Let q~'=q~l#ek_lq~2#.. .#~b,:  
X1 # k _ l X 2 4 #  . . . X , - * N .  It is easily seen directly that ~b' is surjective on ~1 i.e., 
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that  ~b' is primitive. Therefore the representat ion p' corresponding to qS' is 
surjective onto S(d). 

Say p (e ) (1 )= i .  Since p' is surjective, it is possible to slide C until it returns 
to its original  posi t ion above  N but  now connects heights 1 and i. Now ~ may 
be isotoped slightly so that  it crosses the double  curves corresponding to C. 
Then p(c~)(I)= 1 and therefore A(c~)= 1. [ ]  

Case 2. k = 1. 

The proof  is by induct ion on degree q5 3. If degree ~b 3 > 1, apply L e m m a  6.3 
to ~b 1 #~b2: MI~M2- - ,N  to produce  a strongly equivalent  branched covering 
0'1: M ' l=M14~Mz~N with a nonsepara t ing  cylinder C 1. Let  C 2 be the sep- 
arat ing cylinder in M'~ ~ M  3 and slide the top of C 1 through M'  1 up C2, and 
into M 3. Then slide the base of C 1 to the base of C 2. There are two possibil-  
ities. 

First,  C1 and C 2 are adjacent  and  connect the same heights. This case was 
handled in Case 1. 

Otherwise, C 1 and C 2 are adjacent  but  have only the bot tom height in 
common.  In this s i tuat ion the bo t tom of C~ may be slid up C 2 thereby placing 
all of C~ in M 3. L e m m a  4.1 can then be appl ied to split  M 3 into M ; # M ~  
thereby lowering the degree of q~3. [ ]  

The next theorem was first proved by Berstein and Edmonds  in [-BEll.  

Theorem 8.2. Let dp: M--* T be a primitive generic branched covering where T is 
the torus. Then 4) is strongly equivalent to a generic branched covering in normal 
form. 

Proof By Theorem 8.1, we may assume ]b(qS)l=2. F o r m  a cylinder C c M  and 
choose a nonsepara t ing  simple closed curve ~ c  T which misses the double  arc 
of qS. Modify  q5 so that  ~ is evenly covered, and shuffle over ~ if necessary so 
that  M - C  is connected. 

4 ) [ M - C  is just  the restriction of a covering map  of the torus, hence there 
exist dual  curves c~, f l ~ T  such that  A(~)=a ,  A(fl)=b, a b = d e g r e e  qS, and alb. 
Consider  

H I ( M ) ~  HI(T ) = Z q ) Z  ~ +  Z , ~ Z  b 

where v [ a ] = ( 1 , 0 )  and v[fl] =(0, 1). ~b, is surjective since q~ is primitive. HI(M ) 
has a basis consisting of a component  of ~b-l(~), a component  of ~b-l(fl), a 
nontr ivial  separat ing curve in C, and a curve from the bo t t om of C up through 
C and then through M - d 7  to the bo t t om of C. voqS, is zero on the first three 
basis elements, hence Z , ~ Z  b is cyclic. This implies A(c~)=l which implies 
uniqueness by L e m m a  7.1. [ ]  

w 9. Classification theorems 

Theorem 9.1. I f  d?: M-- ,N is a primitive generic branched covering of  orientable 
surfaces such that rb(~b)[ = 2  and genus N>=2, then either d? is boundary reducible 
or dp is strongly equivalent to a generic branched covering in normal form. 



The classification of maps of surfaces 239 

Proof Let ~ c N - b ( ~ b )  be a nonseparating simple closed curve. By 5.3 we may 
assume 7 is evenly covered and that s is chosen so that IF, c~ct I is as small as 
possible. Let NI=N-~A?(ct  ) and say t3JV'(c~)=~+wct -.  By creating an evenly 
covered nonseparating simple closed curve in N~ and shuffling, we may assume 
M 1=~-1(N1) is connected. Creating this evenly covered nonseparating simple 
closed curve may lower A(ct), but the proof is by induction on ordered triples 
(deg~b,A(~),d-m(7)) where ~ is a nonseparating evenly covered curve with 
qS-1(N1) connected, and m(7) is defined as follows. Let 7cN1 be a nonseparat- 
ing simple closed curve and let ~l(y)=71W.. .UTk where qS~=~b[M~. Say 
degree ~b~ly~ is maximized for i =  1, and call this maximum degree m(7). 

We now show that either A(ct) may be reduced, or  while keeping A(ct), M1, 
and N 1 fixed, m(7) may be increased. This will complete the proof of the 
theorem, for by Lemma 7.1 and Corollary 7.4, A(ct)=l or m(7)=d imply 
uniqueness. 

By connectivity of the virtual graph of ~b, there is a cylinder C connecting 
71 with another component of q5~-1(7), say 72. By Lemma 6.5 we may assume 
F(~b~, C) is not connected, i.e., ~b~ is not primitive. Therefore ~b 1 may be 
factored as 

where q~l is a primitive branched cover of degree d 1 <d  and p is a covering 
map of degree n> 1. Say ~1(~0=~. Since C connects ~/1 and 72, it follows that 
q~l(7Z)=~, and since 7 is a nonseparating simple closed curve in N1, ~ is a 
nonseparating simple closed curve in bl~. 

We now assume genus N >= 3. 

Since Z(]~/1)= n z(N1)it follows that 

genus N1 = 1 + n(genus N 1 - 1) +�89 Jc3N~]- Jt3.N1 f ) 

> 1 + n(genus NI - t) > 1 + 2(2 - 1) = 3, (*) 

and therefore by induction on the degree of 4~, we may assume that the 
theorem is true for q51. 

Case 1. ~ may be put  into normal form. 

In this case since ~ is a nonseparating simple closed curve, q~ may be 
modified as in Lemmas 7.1 through 7.3 so that q~{l(~/) is connected. This 
increases m(7). It is important  to see that as q~ is varied in its strong equiva- 
lence class, that the strong equivalence type of po4~1 is unchanged. The proof is 
basically a diagram chase that we defer to the proof of Corollary 9.2. 

Case 2. ~1 is boundary reducible. 
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We first show that P~ is boundary  reducible. Let 31 be a boundary 
component  of N1 and let p(30=61cON1. Let 3' 1 (resp. 6'1) be the other com- 
ponent of ~?JV'(3 0 (resp. 0JV'(30). We may assume p(3 '0=6 '  1 and that there 
exists a strongly equivalent q~l with 1~[1(3'~)1>J4;i-1(301. If the regular neigh- 
borhoods are suitably chosen then I~i-1(3'i)1 =14;i-1(3i)1 for other components of 
p -  1(6'1) and p -  1(61). It follows that I(P q~l)- 1(6'1)1 > I(P 4; 1)- 1 (61)[. 

Reattach JV(e) to N 1 to get N. If 61 is a boundary component  of N then it 
follows that q5 is boundary  reducible. Otherwise 61 is parallel to c~. Lemma 3.7 
applied to q51 and 61 produces a branch point connected to 61 by a double 
curve. Pushing the branch point across e increases I~b-l(c~)l and hence decreases 
A(~). 

This completes the proof  for genus N > 3. 

Now consider the case genus N--2 .  The argument just given works unless (.) 
fails to guarantee that genus N1 >2.  This occurs only when �89 
In this case the boundary  components of N 1 are trivially covered, hence p: 
N1 ~N1 is an abelian covering. 

Choose x~qSi-t(c~ +) and z~qSi-l(c~ -)  that correspond when q~i-l(X(c~)) is 
reattached to M 1. Let /~ be an embedded arc from 4;1(x) to 4;i(z) in gr 1. Let 
p(/~)=/~=U 1. 

If/~ is not embedded, let w be the closest transverse self intersection to c~ +. 
Figure 9.1 shows how to choose a curve/~' with one less self intersection than 
/~. Since c~ + is trivially covered by p, /~'(0)=4;1(x) and /~'(1)=4;1(z). Continuing 
this leads to an embedded arc/~ such that/~(0) =4;t(x),/~(1)=4;1(z ). 

Now consider the lift / ~ c M  1 of /~ or /? such that /7(0)=x. Since 4;1 is 
primitive and 4;~/~(1)=/~(1)=4;~(z), it follows that z and /~(l) lie in the same 
(unique) component  of F(4;1, C)~,(~). 

Therefore z and /~(1) lie in the same component  of the restricted virtual 
graph F(~bl, c)+,~). /? naturally extends to a closed curve, also denoted /~ in N. 
The argument of Lemma 6.5 and Remark 6.6 shows how to force A(/~)= 1 by 
shuffling. 

This completes the p roof  of the theorem. [ ]  

Fig. 9.1 
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Theorem 9.2. Two generic branched coverings c~, ~: M ~ N  of closed orientable 
surfaces are strongly equivalent if and only if degree dp =degree ~b and 4), tea(M) 

Proof We first show that it is enough to consider the case when q5 and ~ are 
primitive. If 4~ and ~ are not primitive let p: 19-~N be the covering corre- 
sponding to (~,~I(M)=~%nl(M)=nl(N). Then 4 ,=po~  and ~ = p o ~  where 
q~, ~: M~_N are primitive branched coverings. 

f 
M , M  

1 
1 

N idN 
- -  ~ N  

Since ~ and ~ are strongly equivalent ( ~ )  there exist homeomorphisms 
f, g such that ~ f =  g ~ and g - i d a .  We now claim that O 
=p~'_~pg~_~pgt~o~-p(o=~ where gt is an isotopy from g to id~ which may be 
chosen so that Pgt~ is a generic branched covering for all t. It is not hard to 
see that sufficiently close generic branched coverings are strongly equivalent, 
hence the strong equivalence type of pgt4~ is independent of t. The claim 
follows by setting t = 0 or 1. 

The above, together with 4.3, 8.1, and 8.2, and Theorem 9.1 complete the 
proof. []  

Before giving applications to other categories of surface maps, we summar- 
ize results of Nielson [N] (Column 1), Edmonds [E] and Kneser [K1, K2] 
(Column 2) in Diagram9.2. The entry in each box is a map which necessarily 
exists in a given homotopy class of maps from M to N. (A pinch is a map 
which maps a subsurface of M with connected boundary to a point.) 

Diagram 9.2 

-~ injective on ~z I pr imi t ive  

degree = 1 h o m e o m o r p h i s m  pinch 

degree>l covering map generic branched covering 

Historical Note 9.3. Kneser proved in [K2] (see p. 354) that if f :  M ~ N  is a 
map of closed surfaces then either 

1) degree f = 0  and f is homotopic to a map g such that g ( M ) c l  - 
skeleton of N, or 



242 D. Gabai and W.H. Kazez 

2) degree f 4 : 0  and  f is h o m o t o p i c  to a m a p  g such tha t  g ( P ) = p o i n t  for 
some  possibly  empty  connec ted  subsurface  P of M and  fu r the rmore  if M ' = ( M  
-1~')/~ (where a~b  if a, b lie in the same c o m p o n e n t  of ~?P), then  glM' is a 

b r a n c h e d  covering. 

I t  follows tha t  if degree f =  1 then  f is h o m o t o p i c  to a p inch  map.  We 
would  like to t h a n k  Dav id  Epste in  for b r ing ing  this  work to our  a t tent ion.  

Corol lary  9.4. (The h o m o t o p y  classif icat ion of surface maps.) I f  f, g: M ~ N  are 
maps of closed orientable surfaces of positive degree, then f and g are strongly 
equivalent in the pointed homotopy category if and only if degree f=degree g 
and f~ nt(M ) =g# nx(M ). 

Proof There  exist a cover ing m a p  p: f i / ~ N  and  pr imi t ive  maps  f :  M ~  r and  
~: M ~  r such tha t  f = p f a n d  g = p ~ .  

Case 1. degree f =  degree ~ =  1. T h e n  we may  assume t h a t  f and  ~ are pinches.  
It  is easy to find h o m e o m o r p h i s m  h: M ~ M  such tha t  f=~,h and  hence f = p f  
=p~,h=gh. 

Case 2. degree f =  degree ~ > 1. T h e n  we m ay  assume tha t  l a n d  ~ are b r a n c h e d  
coverings and  the  corol lary  follows immedia te ly  f rom T h e o r e m  9.2. [ ]  

Since surfaces are K(rt, 1)'s the  last  corol lary  gives a classification of  ho- 
m e o m o r p h i s m s  of surface groups.  

Corollary 9.5. I f  f , g :  G-*H are homomorphisms of surface groups of equal 
topological degree greater than zero such that f(G)=g(G) in H, then there exists 
an isomorphism h: G ~G such that f =gh. [] 
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