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Summary. We generalize a result of Kirchgraber (1986) on multistep methods. 
We show that every strictly stable general linear method is essentially conjugate 
to a one step method of the same order. This result may be used to show 
that general properties of one step methods carry over to general linear methods. 
As examples we treat the existence of invariant curves and the construction 
of attracting sets. 
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In this paper we deal with general properties of integration methods. We show 
how such general properties of one step methods carry over to multistep methods 
and, even more general, to general linear methods. We discuss the following 
two examples of such properties. 

Property A. Assume that the differential equation y' = f ( y )  admits a hyperbolic 
periodic solution. Beyn (1987) and Eirola (1988) showed that for every one 
step method there exists a hyperbolic invariant closed curve near the orbit 
of the periodic solution [see also Brown and Hershenov (1977) and others]. 

Property B. Assume that the differential equation y'=f(y) admits a compact, 
uniformly asymptotically stable set A (an attractor). Apply a one step method 
with step size h to the differential equation. Kloeden and Lorenz (1986) showed 
that for every small h one can find a compact,  uniformly asymptotically stable 
set A(h) containing A such that A ( h ) ~  A with respect to the Hausdorff  metric 
as h-~0. 

Later, these two properties of one step methods were also shown to hold 
for multistep methods, see Eirola and Nevanlinna (1988) for Property A and 
Kloeden and Lorenz (1990) for Property B. 

Our approach is different from the construction of Eirola and Nevanlinna. 
We use a result of Kirchgraber (1986) stating that every strictly stable multistep 
method is essentially equivalent to a one step method. This equivalence allows 
to show that Property A and Property B carry over to multistep methods. 

First let us generalize the result of Kirchgraber to general linear methods. 
These methods include linear multistep methods, predictor-corrector methods 
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in the P(EC) 'E  and P(EC)" mode, split linear multistep methods as discussed 
in Cash (1983) and Voss and Casper (1989), cyclic multistep methods and many 
more. The generalization to general linear methods is not trivial because of 
the difficulties encountered when defining the order of general linear methods. 
Using the fact that any strictly stable general linear method is essentially conju- 
gate to some one step method of the same order, we give a new and more 
general proof  that Properties A and B hold for these methods. 

1. Basic assumptions and definitions 

Consider the differential equation 

dy 
(1.1) ~ - = f ( y ) ,  ye]R a 

where f is of class C p+k, p ~  1, k > 0 ,  and f and all its derivatives up to order 
p + k are continuous and bounded. We denote the solution of Eq.(1.1) by r y). 
A one step method of  order p is a map 4:  IR • I R d ~ R  e such that the local 
error 

l (h ,y)=r 

may be estimated by [l(h, y)] <ch v+~ for some constant c and sufficiently small 
h. We consider a general linear method C in its partitioned form, i.e. a map 

defined as follows. Let y(n)~]Rrd be the vector consisting of the vectors 
y~"), yt2") . . . . .  y~")e~, a. The vector y~") is the information passed from step n to 
step n + 1. In order to compute y~" + a), s internal stages are performed and some 
quantities Y~"), Y2 ~"), ... Y~") are computed. These vectors are not needed again 
after the step is completed. The method C is defined by 

(1.2) Yt"~ = (C ~ ~ | I) h F (Yt")) + (C ~ 2 | I) yr,) 

y(n+ 1}=(C21 | I) hF(Yt"~)+(C22 | I) yr,) 

where F(Y  ~")) denotes the vector in ~se  consisting of f(Y~")) . . . . .  f(Y~"~)eR d. 
For  given yt") and sufficiently small h the first equation uniquely defines Yt"). 
The second equation then determines yt" + ~ = C (h, yt")). The method is character- 
ized by the (s + r) x (s + r) matrix 

c = [ C l l  C12] 
[C21 Cz2I" 

As usual we denote the map  as well as the matrix characterizing the method 
by the same symbol C. 
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The  method  is called consistent with preconsistency vector u and consistency 
vector v if 

C12 u=e, e=(1 ,  1 . . . .  1) x 

C22 u=u  

C21e+C22v=u+v.  

The me thod  C is called strictly stable if C22 has 1 as a simple eigenvalue and 
all other  eigenvalues of  C22 lie inside the unit circle. To  start  a general linear 
method,  one needs a start ing me thod  S, i.e. a m a p  S: IR x l R d ~ N  rd providing 
start ing values y~O) . . . .  , y~O~ for any given initial value q of  Eq.(1.1) 

ly? ' \  ! 
\y?)/  

A linear starting method S is defined similarly as in Eq.(1.2) and may  be described 
by an (g+r )  x (g+ 1) matr ix  

S=($11 
(1.3) kS21 :)  

where e = ( 1  . . . . .  1) T and u is the preconsistency vector  of C. The  local error 
L(h, q) of the method C relative to S is defined as 

L(h, rl)= C(h, S(h, q)) -  S (h, q)(h, rl) ) 

The order of C relative to S is the greatest  integer p such that  

]L(h, q)] <ch v+ t 

The order of C is the greatest  p such that  there is a s tar t ing me thod  S such 
that  C is of order  p relative to S. Fo r  more  details on general linear methods  
see e.g. Butcher (1987). 

L e m m a  1.1. Let f be bounded, of class C v + k, p > 1, k > O, with bounded derivatives 
and let C be a general linear method of order p. 
Then for sufficiently small h the local error L(h, rl) of C satisfies 

L(h, rl) = h v +' R (h, q) 

where R (h,') is of class C k. 

Proof The general linear me thod  C is defined by Eq.(1.2). Put  n = 0 .  By the 
Implicit  Funct ion  Theorem y(o) is of  class C v+k with respect to h and y(0). 
Hence by the second equat ion  of (1.2) 

yta) _ (C2  2 (~) I) ytO) 
= (C21 | I) F (Y(~ 

h 
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is of class C v+k. Puting yr S(h, it) we get 

C(h, S(h, q) ) -  (C22 | I) S(h, tl) -u (h ,  q)eC p+k 
(1.4) h 

for some function u(h, rl) of class C p+k. According to Eq  (1.3) the starting method 
S is defined by 

Y=(S11 | I) hF(Y) +(e | I) r l 

yt~ q) =(S21 | I) hF(Y)+(u |  l)q. 

By the Implicit Function Theorem Y is of class C p§ with respect to h and 
t/. Next we want to eliminate the factor (C22 |  in Eq. (1.4). By definition 
of the starting method we get 

(1.5) (C22| I)S(h,~l)-S(h,q) ((C22 S 2 , - S 2 1 ) |  I)hF(Y)+((C22 u - u ) |  I)rl 
h h 

= ((C22 $21 -$21 ) ~) I) F(Y)= v(h, rl)~C p+k 

where we have used that the preconsistency vector u satisfies C22 u =  u. Finally 
let us relate S(h, q) to S(h, q~(h, ~l)). To save writing we set O=~o(h, q) and denote 
the internal stages and the starting value corresponding to r7 by Y and ~0). 
One gets 

(1.6) 
S(h, q ) -  S(h, 4)) = yr ~o~ 

h h 

=($21 | I ) (F(Y)-F(Y'))+(u | I) FI--q 
h 

= w(h, rl)eC p+k. 

Adding the three equations (1.4), (1.5), (1.6) one gets 

L(h, ~l) _ C (h, S(h, rl) ) -  S(h, r rl)) = u(h, rl) + v(h, i7)+ w(h, rl)e C p+k 
h h 

The function u + v + w may be expanded with respect to h. This leads to 

L(h, 11) = h [-r ~ (q) + h ~ r ~ (q) + . . .  + h p-~ r p - '  (q) + h p R (h, r/)] 

where R(h, rl)~C k. From the assumption that the general linear method C is 
of order p it follows that 

r ~ (q) = r 1 (r/) . . . . .  r p-z (q) = O. 

This completes the proof of Lemma 1.1. []  

Now assume that the general linear method C is strictly stable. The r x r matrix 
C22 has 1 as simple eigenvalue and all remaining eigenvalues ),i have modulus 
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12i[<0<1, i = 2  . . . . .  r. Thus there is a transformation matrix T=(u . . . .  ) such 
that 0] 

T-  1 C22 T= with 11 (~22 tl < 0 < 1. 

C22 

Setting 

/urn)\ 
y'n)=(T| I)[vtn)), U(")~d,v(n)~IR(r- ')d 

y~") is transformed to new coordinates u ~"), v ~"~. The transformed general linear 
method is determined by the matrix 

C12 T 7"]" 
C = [ T C ' c 2 1  T_IC22 

From now on we assume that the method C has already this special form, 
i.e. we assume without loss of generality that 

[ '  0 1 (1.7) C22= with IIC2211 < 0 <  1, 
0 C22 

that y~") is split into u~")~lR d, vtn)~]R tr-1)d and that the preconsistency vector 
is u =ex =(1, 0 . . . . .  0) r. 

2. General linear methods are essentially conjugate to one step methods 

Let C be a stricly stable general linear method and assume without loss of 
generality that C22 has the special form (1.7). For h=O the method reduces 
to 

(2.1) u~"+l)=u ~") 

/)(n+ 1) ~ C22 /)(n). 

Hence the set 

is invariant under C(0,-) and is exponentially attractive. Note that if f~.C p+k 
then the method C is also of class C v+k (see the proof of Lemma 1.1). 

One may show that the manifold M o persists under perturbations. For our 
situation we may use the following 

Proposition 2.1. Let the map 

P: (x, y)e~-~" x ~"~---~(~, ~)r X ~-~" 
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be of the form 

2 = A x + f ( x , y )  

y=g(x, y). 

Let the following assumptions be satisfied: 

a) The functions f, g are of class C k with bounded derivatives. 
b) The matrix A is regular and Ij A -  1 [] < a. 
c) l a n d  g satisfy the following Lipschitz conditions 

[f(x~, Y O - f ( x 2 ,  Y2)I < L l l  Ix1 --x2t At-L12 [Yl --Y2] 

[g(xl, Y l ) -g (x2 ,  Yz)[ < L21 [x~ - x21 + L22 [y~ -Y21. 

d) The Lipschitz constants ct and L~j satisfy the conditions 

1 
Ll l  +L22 + 2 ] / ~ 2  L21 < -  c~ 

and 

2L12L21 <rain 1, - L l l  1 
L22+ -1--L1 x--L22 Ll l  --L22" ~ 

Gt o~ 

Then there is a function s: P,~" ~ IR" such that the following holds 

i) The set M..={(u, v) lueR",  v=s(x)} is invariant under P. 
ii) The function s is of class C k with bounded derivatives. 
iii) The invariant manifold M is exponentially attractive with constant 

2L12 L21 
Z-----L22-[ 1 < 1. 

----Lll--L2z 
o~ 

iv) The property of "asymptotic phase "" holds, i.e. there is a constant c such 
that for every (Xo, Yo) there is a (So, ~o)~M such that for i~]N o 

lxi-~Zi[ < c z i lYo-  S(Xo)[ 

ly i -y i l  <xilyo - S(Xo) l 

where (xi, y3:=P~(xo, Yo) and (2i, Yi):=U(2o, Yo)eM. 

A detailed proof of this Theorem may be found in Nipp and Stoffer (1992). 
For invariant manifold theory in a more general set up see e.g. Hirsch et al. 
(1977) or Shub (1987). 

In the present case we take h as an additional variable in order to get 
differentiability of the invariant manifold with respect to h. We put x =(h,  u), 
y.-= v. The general linear method then has the form 

~= x+O(h) 

y=Cz2y+O(h). 
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Hence we have e = 1, L l l  = L 1 2  = L 2 1  = O(h), L22 = I I C22 I I-t-O(h) and thus the 
assumptions of  Proposi t ion 2.1 are satisfied for sufficiently small h. As a conse- 
quence we get the following 

Proposition 2.2. Let f in ( I . I )  be bounded, of class C p + k, p > I, k > O, with bounded 
derivatives and let C be a strictly stable general linear method satisfying (1.7). 

Then there are constants ho and K and a function a*(h,u) of class C p+k 
with bounded derivatives such that for all he(O, ho) the following holds 
i) The set 

is invariant under C, i.e. y(~ implies C(h, y(~ 
ii) Mh is exponentially attractive, more precisely 

dist (C" (h, y(O)), Mh) < O" dist (y(O), Mh) 

where dist (y, mh) is defined as dist((u, v), mh),= [v-  ~* (h, u)l. 
iii) The property of asymptotic phase holds, i.e. for all y(O)elud there is a unique 
y*(~ Mh such that [y(")-y*t")[ < K O" dist(y ~~ Mh) holds for all neN.  

Remark. This proposi t ion states that  the behaviour  of the general linear method 
C is essentially determined by the dynamics  of  C restricted to Mh. 

Theorem 2.3. Let f satisfy the assumptions made in Proposition 2.2 and let C 
be a strictly stable general linear method of order p. 

Then there is a constant ho, a (nonlinear) starting method S* and a one 
step method cb both of class C v+k such that for all he(O, ho) the following holds 

i) S* (h, tl)e M h for all initial conditions q elR d. 
ii) C is of order p relative to S*. 
iii) The one step method cb is conjugate to C restricted to Mh, i.e. 

C (h, S* (h, tl) ) = S* (h, q)(h, tl)) 

or equivalently: the following diagram commutes 

]R d ~ ) ~ d  

s,~ ~s,. 

Mh C ) Mh 

iv) The one step method �9 is of order p. More precisely: the local error satisfies 

l(h, q):=~(h, q)-~o(h, t/)= h p+ i r(h, q) 

where r is of class C k. 

Proof We write the general linear method C as 

(2.2) u(,+ 1)= G(h, u ("), v(n))eC p+k 

v(, + 1) = H (h, u ("), v (")) E C p + k. 
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Note  that  for h = 0  the m a p  reduces to Eq.(2.1). Let S be a linear s tar t ing 
me thod  such that  C is of  order  p relative to S. S is as regular  as f and hence 
of class C p+k. One  may  split S into a u-part  and a v-part  and  we may  write 

. [u(~ [Su(h , 
S(h' tl)=~vtO,)=~Sv(h, ~)))- 

By Eq.(1.3) and  our  special choice of the preconsistency vector  u = ( 1 , 0  . . . .  ,0) x 
we have for h = 0 

S, (0, '7) = n 

S v(0, '7) = 0. 

Hence  the near  identity m a p  Su(h, tl) is invertible for small h. N o w  we define 
the start ing me thod  S* as 

S . (h ,  r l)=(S?(h,  rl)] ( Su(h, rl) 
(h. n))"=\o* (h. &(h. ,))/ 

where o* is the function given in Proposi t ion 2.2. No te  that  S*(h,-) is a diffeo- 
mo rph i sm  from 11 a to M h. We therefore m a y  define 

�9 : = S * -  t oCoS*.  

By our  definitions of S* and  �9 clearly assert ions i) and iii) hold. 
Next  we show that  S* - S is of  order  h p + i. Set 

tr(h, u)-'=So(h, S~- 1 (h, u)) 

and similarly to S* the s tar t ing me thod  S m a y  be writ ten as 

S,, , { S~(h, rl) 
tn, r/)=~a(h, S.(h,  r/)))" 

N o w  we t ransform the coordinates  ( ~ ) i n  Eq.(2.2) to new coordinates  ( ; )  by 
setting 

v = a ( h , u ) + h P +  lw.  

The general l inear me thod  C is t ransformed to 

(2.3) u (n + 1)= G (h, u ~"), or(h, u ~)) + h v + l w(")) 

hV+ 1 w~,+ 1~ = H (h, u t"~, a(h, ut~) + h p+ 1 wt,~) 

- -  tr (h,  G (h, u ~"), tr (h, u t")) + h v + 1 wt,))) .  

Since C is o rder  p relative to S we know by L e m m a  1.1 that  for some R(h,  rl)eC k 

(2.4) C (h, S (h, r/)) - S (h, (p (h, r/)) = L(h, rl) = h p + t R (h, I"1) 
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or equivalently 

(2.5) G(h, S.(h,  rl), Sv(h, t l ) ) -  S.(h,  rp(h, n))= hP+ 1U(h, q) 

H (h, S j h ,  q), S j h ,  q ) ) -  Sv(h, q)(h. q) )=h  "+1 V (h, , )  

for some functions U(h, 7/), V(h, q ) e C  k. S .  being invertible one may  choose q 
such that  Su(h. q)=  u ~"). Hence 

S.(h,  ~o(h, q)) = G(h, u ~"), a(h, u~")))- h p+ 10 (h ,  u t")) 

S j h ,  rp(h, q)) = H (h, u ~"~, a(h, ut")))-h p+ 1 F'(h, u ~")) 

where we put U(h, u t"))..= U(h,  S~  1 (h, u~"))), r/(h, ut")),= V(h, S~ 1 (h, ut"))). Combin -  
ing these two equtions we have 

H (h, u ~"~, a) - h p + 1 F" - a (h, G (h, u ~"), a) - h v + 1 U) = 0 

where we have omit ted the a rguments  (h, u t")) in the functions ~, 0 and V.. 
Subtract ing this last equat ion  f rom the w equa t ion  in (2.3) one gets 

h v + 1 w(n + 1) = H (h, u ("), a + h p + 1 W ( n ) )  _ _  H (h, u ("), a) 4- h p + 1 F/ 

4- a (h, q (h, u ("), a) - h p + 1 (1) - a (h, G (h, u ~"), a q7 hp + i wt.))). 

Defining the functions ,SG, 6 H ,  6rr as 

1 

 Gfh, . ,  v; z)  lh,.,v+tz)dt 
6 H ( h , u , v ; z ) : = ~  ( h , u , v + t z ) d t  

0 

l ( h  ' 6 c r ( h ' u ; z ) ' = ~  o t?u u 4 - t z ) d t  

we readily obta in  the general relat ions 

G(h, u, v + z ) - G ( h ,  u, v) = ~ a (h ,  u, v; z) z 

H(h,  u, v + z ) - - H ( h ,  u, v ) = 6 H ( h ,  u, v; z) z 

a(h, u + z ) - t r ( h ,  u)=  6a(h ,  u; z) z. 

Note  that  6G, 6 H ,  6 a e C  p+k-  1. N o w  the general linear me thod  C in u, w coordi-  
nates may  be writ ten as 

u~.+ 1) = G(h, u ~"), a + h p+ 1 w~.)) 

wt,+ 1) = 6 H (h, u ~"), a;  h p+ 1 w~.)) w(.) + p 

- b i t ( h ,  G(h, u ~"), a); - h  p+ 1 U) U - 6 a ( h ,  G(h, u ~"), a); h p+ 1 A) A 
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where A =fiG(h, u ~"), cr; h v+ i wt,~) wt,). This map  is of class C k. It is easy to verify 
that for h = 0 the map reduces to 

u(n+ 1) ~ u(n) 

w~,+ 1~= C22 w~")+ ~'(0, u ~")) 

where again C'z2 denotes the matrix in Eq.(1.7). Hence for h = 0  the manifold 

is invariant and exponentially attractive. It follows from Proposition 2.1 that 
for small h there is an invariant manifold I n near I o which may be described 
by some function # of class C k as 

In:={(Uw) u f l R  a, w=~(h ,u ) } .  

By uniqueness the two manifolds I h and M h describe the same invariant manifold 
of the method C, but in different coordinates. It follows that 

a* (h, u) = a(h, u) + h p + 1 #(h, u) 

or that S*(h, r l)-S(h,  t / )=h p+I Ro(h, rl) is of order O(h p+ 1). This means that S* 
is O(h p§ C~-close to S. Hence Eq.(2.4) implies that C(h,S*(h,q)) 
- S *  (h, q)(h, rl))= L* (h, rl)= O(h p § 1) holds. This proves assertion ii) of the Theo- 
rem. 

We now show that 4~(h, t/) is O(h p+ 1) CR.close to q~(h, q). From the definition 
of the integration method q~ and from the definition of the local error L(h, q) 
we get 

S* (h, ~(h, rl) ) -  S (h, q) (h, rl) ) = C (h, S* (h, q ) ) -  C (h, S (h, tl) ) + L(h, q) 

= h(C21 (~)I)(F(Y*)--F(Y))+(C22 (~ l)(S*(h, q ) -S (h ,  q))+ hP+lR(h, rl). 

We already showed that S* is C k O(hP+l)-close to S. Hence Y* is also C k 
O(hP+l)-close to Y. We restrict ourself to the u-part of the equation above. 
Since * -  S. - S u  holds we obtain 

(2.6) S,(h, r q ) ) -  S,(h, r q)) = h p+ ~ T(h, rl) 

for some function T(h, rl) of class C k. Note that S,(h, ~1), r q) and ~o(h, q) are 
of class C p+k and that S,(O,y)=y. It follows that S ; l ( h , y )  (satisfying 
S ;  1 (h, S.(h, y))=y) is of class C ~'+k. From Eq.(2.6) we get 

�9 (h, tl)= S ;  1 (h, S,(h, q~(h, q)) + h "+1 T(h, rl) ) = rp(h, q) 
O 

+ hP +~ i ~y  S2 ~ (h, S,(h, q~ (h, tl)) + t h p +x T(h, q)) T(h, rl) d t 
0 

The integral is of class C k since all ocurring functions are at least of class 
C k. This completes the proof  of Theorem 2.3. [ ]  
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Remarks. 1) In the proof  of Theorem 2.3 we showed that if C is of order p 
relative to some starting method S, then dist(S(h, q), Mh)= O(h p+ 1) holds. This 
means that S approximates the invariant manifold Mh up to order p. The con- 
verse is not true. It is also not true in general that C is of order p relative 
to the starting method 

See e.g. the section on the "effective order of Runge-Kutta  methods"  in Butcher 
(1987). 

2) The starting method S* of Theorem 2.3 is not at all uniquely determined. 
Is there an "op t imal"  choice of S*? Is there a simple way to find S* such 
that the associated one step method q~ has minimal local error in some reason- 
able sense? We do not know the answers to these questions. 

We give a condition under which the general linear method C is essentially 
equivalent to a one step method (not only conjugate). For the precise statement 
see Corollary 2.4 ii) below. 

The information passed from step to step is the vector y(,)~Nrn consisting 
of y]"), y(2 ") . . . . .  y~"). In many cases one of these vectors, say y]"~, approximates 
the solution directly, i.e. ~p(h, y]")) =y]"+ 1)+ O(hP+ 1). (This holds e.g. for multistep 
methods, for predictor-corrector methods, etc.). Under  this assumption one may 
choose the starting method to satisfy y]O)= ~/. 

Corollary 2.4. Let f satisfy the assumptions made in Proposition 2.2. Let C be 
a strictly stable general linear method of order p relative to the starting method 
S. Assume that S satisfies y]O) = ~. 

Then there is a starting method S*(h, q) with y.(O)=~/and a one step method 
of class C p*k such that for sufficiently small h 

i) The assertions of Theorem 2.3 hold. 
ii) For the first d components y* ("~ of the vector y* ("~'= C" o S* (h, tl)e M h the equali- 
ty 

y .  (, + 1) = ~ (h, y* (")) holds for all n > O. 

Proof Construct S* and (b as in the proof of Theorem 2.3. Hence i) holds. 
By assumption we have Su(h, 17)= S* (h, ~/)= ~/for all h. According to the definition 
of 4~ we therefore have q~(h, q) = G(h, ~l, Sv (h, q)). Thus ii) follows at once. []  

In order to easily formulate the next corollary, we use so-called "finishing 
methods"  as in Butcher (1987). A finishing method F: (h, y("))elR x ]Rrd~--'~y.E]R a 

is a L-Lipschitz map which undoes the work of a starting method S, at least 
up to order O(h p+ 1), i.e. 

(2.7) F (h, S (h, q)) = q + 0 (h p + ~). 

For  given initial value ~/ER d the general linear method C with starting method 
S and finishing method F defines a numerical orbit Yo, Yl, Y2 . . . .  defined by 

(2.8) Yo = q 

y,=FoC"oS(h,q) n = i , 2  . . . .  
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Corollary 2.5. Let C be a strictly stable general linear method of order p with 
starting method S and finishing method F. 

Then there exists a constant K, a one step method q~, a starting method S* 
and a finishing method F* such that the following holds: 

For every numerical orbit Yo,Yl ,  Y2 . . . .  defined by (2.8) there is a y~ such 
that 

* . _ _  n 3r _ _  $ o  n o  ~ :~ y , . - - ~  (h, y o ) - F  C S (h, yo) n=0,  1,2,. . .  

and 
l y , - y * l < K ,  hV+l. 

Proof. We choose S* as in Theorem 2.3 and define F* as 

, . _  * - 1  (2.9) F (h, y).-Su (h, u) = S~- 1 (h, u). 

For the definition of Su and S* see the proof of Theorem 2.3. By definition 
of F* we have F*(h, S(h, r/))=q and a comparison with Eq.(2.7) yields [ F * - F [  
< c i  h v+ 1 for some ci in a O(h p§ 1)-neighbourhood of Mh. 

Now consider the sequence yt"):=C"oS(h, yo), n=0,  1, 2 . . . .  By the property 
of asymptotic phase, Proposition 2.2, there exists a y*t~ such that 

ly ~") -y*~"~[ < K 3" dist (y ~~ Mh). 

In the proof of Theorem 2.3 we showed that S-S*=O(hP+~),  we therefore 
have 

dist (y ~~ Mh)< IS(h, Yo) -  S*(h, Yo)] < Co hV+ 

for some constant Co and hence 

ly~")-y*~")I<K Co 3 "hv+ 1. 

F being Lipschitz with Lipschitz constant L we get 

l Y , -  Y*[ = IF(h, yt"))-F*(h, Y*t"))l 

< IF (h, yt")) - F (h, y't"))[ + IF (h, y* t"))- F* (h, y* t"))] 

< LK c o 3~h v+ l +cl  h v+ l 

and the corollary follows w i t h / ( , = L K  Co + c l. [] 

3. Applications 

Property A: Invariant curves 

In this section we show how the existence of invariant closed curves carries 
over to general linear methods by means of Theorem 2.3. 

Theorem 3.1. Assume that f r C  v+k+l and that the differential equation (1.1) 
admits a hyperbolic periodic solution. Let C be a strictly stable general linear 
method of  order p and let S* and F* be as in Corollary 2.5. 
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Then for sufficiently small h there exists a closed curve FheIR a, O(h p) Ck-close 
to the orbit of the periodic solution such that for every y* ~ Fh the points 

y* :=F* (h, C"(h, S* (h, y~))) = F* o Co C . . . . .  Co S* (h, y~)~ Fh 

lie on Fh for all n > O. 

Proof By our assumptions Theorem 2.3 applies. Thus there is a starting method 
S* and a one step method �9 of class p + k + 1 such that the assertions of Theo- 
rem 2.3 hold. We may apply the main result of Eirola (1988) for the one step 
method ~. Thus there exists a closed curve Fh invariant under q~ and O(h p) 
ck-close to the orbit of the periodic solution. The claim of Theorem 3.1 follows 
at once. [] 

Property B: Attractive sets 

Here we show how the result of Kloeden and Lorenz (1986) may be generalized 
to general linear methods. 

Theorem 3.2. Assume that f and its first p derivatives are uniformly bounded 
and that the system (I .1)  admits a compact, uniformly asymptotically stable set 
A. 

Then for all sufficiently small h there exists a set 71(h)~A with 71(h)~A 
with respect to the Hausdorff metric as h ~ O. Moreover, there is a bounded open 
set Uo independent of h containing A(h) and there is a time To(h) such that the 
following holds: Every numerical orbit Yo,Y~,Y2 . . . .  starting in Uo (i.e. yo6Uo) 
and defined by (2.8) satisfies y,E.Tl(h) for all n with nh> To(h). 

Proof By our assumptions we may apply Corollary 2.5 and the result of Kloeden 
and Lorenz (1986) holds for the one step method cb. Hence there is an open 
set U0 and for small h there is a set A(h) with A c A(h)c  Uo and lira A(h)= A 

h ~ O  

such that whenever y~eUo and nh>To(h) then y*,=cb"(h,y~)eA(h) holds. Let 
B(g~h p+~) be the closed Ball with radius Kh p+~, K as in Corollary 2.5. Now 
define A (h).'= A (h) + B (K, h p + i), i.e. 

71(h):= {xl dist(x, A (h)) < ff~ h p+ 1} 

and O(h):=Uo-B(ff~hP+~), i.e. 

O(h)..={xllx-yl<=Kh p+I implies y~Uo}. 

There is a ho such that for h<h o the inclusion .,~(h) c U(h) holds. Set Oo:=O(ho) 
and now Theorem3.2 follows immediately from the estimate lY,-Y*[ 
< ff, h p+ I. [] 
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