Numer. Math. 64, 381-393 (1993)

Numerische
Mathematik

<> Springer-Verlag 1993

The error norm of Gauss-Lobatto quadrature formulae
for weight functions of Bernstein-Szego type*

Sotirios E. Notaris
Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211, USA

Received March 19, 1991/Revised version received December 9, 1991

Summary. In certain spaces of analytic functions the error term of the Gauss-
Lobatto quadrature formula relative to a (nonnegative) weight function is a con-
tinuous linear functional. Here we compute the norm of the error functional for the
Bernstein-Szegd weight functions consisting of any of the four Chebyshev weights
divided by an arbitrary quadratic polynomial that remains positive on [ —1, 1].
The norm can subsequently be used to derive bounds for the error functional. The
efficiency of these bounds is illustrated with some numerical examples.
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1. Introduction

Consider the Gauss-Lobatto quadrature formula for the (nonnegative) weight
function w on [ —1, 1],

n

1
(1.1) [ fOw@)ydt = Lof (= D+ Y AS(0) + dur o f(1) + Ru(f),

-1 v=1
where 1, = 1 are the zeros of the nth degree (monic) orthogonal polynomial
a8 (; w) relative to the weight function w'¥(1) = (1 — t*)w(). It is known that
all weights of (1.1) are positive, and that (1.1) has degree of exactness d = 2n + 1,
ie, R,(f)=0for all fe P,,, (see [2, Sect. 2.1.1]).

Let f be a holomorphic function in C, = {ze€ C:|z| < r},r > 1. Then f can be

written as

1.2) f(z) = i @z, zeC,.
k=0

* Work supported in part by a grant from the Research Council of the Graduate School,
University of Missouri - Columbia.
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Define

(1.3) X, = {f:f holomorphic in C, and |f|, < o0 },
where

(1.4) [f], = sup{la;|r*:k e N, and R,(t*) + 0}

is a seminorm on X,. The error term R, is a continuous linear functional on
(CL —=1,1], | * | » )- The continuity of R,, together with the uniform convergence of
the series (1.2) on [ —1, 1], implies

X

Rn(f) = Z akRn(tk) P

k=0

which, in view of (1.4), gives

(1.9 &rs| 3,

k=0

Since | R, (t*}] < 2|{w], the series in (1.5) converges, and R, is a bounded linear
functional on (X,, | -|,). The || R, || can be used to obtain the best possible estimates
of the type (1.5) for R,, that is, if f€ X, then for every r e (1, R],

(1.6) IR (N S IRMS

and consequently

(1.7) IR.(f)I < inf ([R,II1f]).

1<r<R

If the weight function w satisfies the additional hypothesis

(1.8 i) 1s nondecreasing on ( —1, 1),
w(—t)

or

(1.84) W) is nonincreasing on ( —1, 1),
w(—1)

then || R, || is given by convenient representations. We derive those in Sect. 2.
Here we consider weight functions of Bernstein-Szegd type

_ 2t
(1.9 wED(f) = (—!—% ~1l<t<l1,
P
Atz F1/2
(1.10) wEL2, F 12 () = -1 p((t; + 1) , —l<t<l1,

where p(t) is a polynomial of exact degree 2 that remains positive on [ —1, 1] (see
[9, Sect. 2.6]). In Sect. 3, we compute explicitly | R, | for (1.9), (1.10), when either
(1.8;) or (1.84) holds. The quality of bounds (1.7), for the error term of the
corresponding Gauss-Lobatto formula, is demonstrated with a few numerical
examples in Sect. 4.
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2. Some general results for the error norm

The following theorem will be useful in the subsequent development, but it is also
important in its own right.

Theorem 2.1. Consider the Gauss-Lobatto formula (1.1) for the weight function w on
[—1,1]
(a) If w satisfies (1.8,), then
1 (¢5] t
L — WY
-1l 2, r—t

(2.15) IR, =

(b) If w satisfies (1.84), then

r 1 (L)() (L)(t)dt

214) IRl = g | o

Proof. Substituting f(t} = (1 — t2)t*, k € Ny, in (1.1), we find

2.2) R, (tF —t**%) = f tfwi () dt — Z A (1~

-1

The right-hand side of (2.2) is the error term RSV (¢*) of the Gauss formula for the
weight function w'l, thus,

2.3) R, (tF — t**2) = RSWI(t*) .
(a) If w satisfies (1.8;), the same does w'™). Then
(2.4)) RED(FY =2 0, keN,
(see [5, p. 1172]), and (2.3) yields
R,(t*) = R,(t*"?%),

from which it follows by induction that

2.5,) R,(t*) 0, keN,.
We now derive (2.1;). First, (1.5) gives
@ Rn tk
26 IR, = 3 R
k=0 T
Letting
) b= —— =~ 3 . zecC
‘ =T Sty 25

we find, by virtue of (2.5,),

r@)=| 5 B g,
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which, in conjunction with (2.6), yields

23) IR, = \; iy

Moreover, we have

(29) “ Rg(L) ” — i Uw
k=0 r

(see [1, p. 536]). From (2.9), by means of (2.4;), (2.3}, (2.5;) and (2.8), we find
“ RG(L) H
-1

which, together with (1.7;) in [6], implies (2.1;).
(b) If w satisfies (1.84), the same is true for w'X. In this case

(2.44) (—1FRIB(E) 20, keN
(see [5, p. 1173]), hence (2.3) gives
(= DFR,(t*) Z (= 1R, (172),

(2.10) IRl =

from which we get by induction
(2.54) (—1FR,(£)£0, keNo.

Then considering
k

V@ = - Z( D ey > 266G,

in place of (2.7), using (2.44), (2.54), and proceeding as in (a), we obtain (2.15). O

3. The error norm for weight functions of Bernstein-Szegé type
First we recall the following:

Proposition 3.1. ({4, Proposition 2.11). A4 real polynomial p of exact degree 2 satis-
fies p(t) > 0 for —1 =t < 1ifand only if it has the form

(3.1) p(t) = p(t;0, B, 8) = B(B — 20)t2 + 28(B — )t + o® + &7
with
3.2) O<a<f, B+2 [0<f—ua.

Lemma 3.2.([6, Lemma 2.2]). (a) Consider the weight functions w'* /) with
p given by (3.1). Then w'E¥2(t)/w V2 —¢) is strictly increasing on (—1, 1) if

(3.3y) B—2a>0, B(B—2a)<a*+8% 6<0,
or

(3.32) B—2a<0, 6<0,
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equal to 1 if 6 = 0, and strictly decreasing on ( —1, 1) if

(34,) B—-20>0, B(f—20)<a*+6% §>0,
or
(3.4,) B—20<0, 6>0.

(b) Consider the weight functions w'tV2FYD with p given by (3.1). Then
w2 =2 (1) /w2 U2 1y s strictly decreasing on ( —1, 1) if either (3.4,) or
(3.4;) holds, or 6 =0, and w'™ Y2 YD) (1)/w Y2 YD) is strictly increasing on
(— 1, 1) if either (3.3,) or (3.3;) holds, or 6 = 0.

Now we compute the error norm for the weight functions (1.9), (1.10), when
either (1.8;) or (1.84) holds. Let R{FV2 ()= R, (+;w'E/D) RFVZFUA(y =
R,(-; w127 1/2))

Theorem 3.3. Consider the weight function w'™ Y2 with p given by (3.1). Let
T=r—/r* — 1. We have
(3.5) RS

8nrr2nt?

LB - 2007 + 250+ BB — 202 (1 — 22 2) 4 260(1 — ) 4+ Bl — )T — 1

nz1,

if either (3.31) or (3.3;) holds, and the same formula (3.5), with & replaced by —6, if
either (3.4,) or (3.4,) holds. Also, (3.5) is true when 6 = 0.

Proof. If w'™ Y2 gatisfies either (1.8;) or (1.84), then from (2.10) (cf. Theorem 2.1), in
view of w VD (1) = (1 — 2)w' " 1D (1) = wMD (1), we get

| RY&2
rr—1 "~

(3.6) [ R =

where RS/ is the error term of the Gauss formula for the weight function w!/?,
Theorem 3.3 follows from (3.6) and Theorem 3.2 in [6]. O

Remark 1. Since 0 < 1 < 1, it is easy to show that (8 — 2a)1% + 267 + > 0 if
either (3.3;) or (3.3, ) holds. The remaining expression in the denominator of (3.5) is
also positive. This follows from (3.18) below, with m = n, and the fact that
3 (r) > 0 (all zeros of n{/? are contained in { — 1, 1)). Hence, the right-hand side
of (3.5) is positive.

Theorem 3.4. Consider the weight function w2 with p given by (3.1). Let
t=r—./r? — 1. We have

2n+4 0,2 2 — 4 2 _
(37) |RUP| = Sare” (= 2t~ dna)yr = | , 21,
[(F — 2007 + 201 + Bl @127 op + 271 10pe1 — Ones)
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where
= ad
NI —a? = I + (P = — ) n+ap’
— )2 52 2 2 2 s2
(338) ,, LB= = FJnt 1 + (B — o = 5%)n + 1) + uf

4IB—2)?—*In* + (B> —o? —&*)n+af}
— (ﬁ _ 20()‘[2(1 _ TZn‘Z) + 251,(1 Zn) + ﬁ( 2n+2)

if either (3.3;) or (3.3;) holds, and the same formulae (3.7), (3.8), with 6 replaced by
— 0, if either (3.4,) or (3.4,) holds. Also, (3.7), (3.8) are true when 6 = 0.

Proof. Assume that either (3.3;) or (3.3,) holds. Then by Lemma 3.2(a), w*/2(t)/
w2 (—¢) is strictly increasing on (—1, 1), and applying (2.1;) in
Theorem 2.1(a),

1 TC;L)(I/Z)()

r D pwam gy g

e e R

where w'P (1) = (1 — t2)w (1), and 7/ is the nth degree (monic) ortho-
gonal polynomial relative to w'®?) Using Christoffel's theorem (see [9,
Sect. 2.5]) we can express n{-/?) in terms of #n{!’?, the (monic) orthogonal
polynomials relative to the weight function w(*/2),

(3.9 IR =

w0 mil w0
(3.10) (€2 — DA () = constant- | z2(—1) 2H2(-1) 2P(-1].
W) mi M) w3

The ={!/® have been explicitly computed in [4, Eq. (3.9)],

G.11) 2 =§[Um(r> N 2—;Um_1(r> ; (1 —2—;‘>Um_z<t)} mz1,

where U, is the kth degree Chebyshev polynomial of the second kind. This can be
defined by

sin(k + 1)0
sinf
From (3.11) we find, by means of (3.12),

(3.12) Uy (cos8) = k=0,1,2,....

n(—1) = (2 gl =5~ om+al,
(3.13)
/21 = [(B—a+d)m+a].

2m lﬁ

Expanding the determinant in (3.10), and using (3.13), we obtain, after an elemen-
tary but tedious computation,

G14) mPUP) = 57— [L‘l?(t)—ylnﬁ‘ﬁ’(t)—yznal/”(r)], nz1,
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where y;, y, are given by (3.8). Then the integral on the right-hand side of (3.9) takes
the form

1 TELL)“/Z)(t) 1 7.[;1/2)0)
(3.15) [ P wd g dr =y, | w0 e
-1 -1
1 7.{:511/2) t
+ 74 j .__tizw(lll)(t)dt
Jor—t

1. (1/2)
_ y 7_1"_+2_(t)w(1/2)(t)dt'
2or—t

We recall from [6, Eq. (3.17)] that

1 n(l/z)(t) nrmtl
3.16 w5y de = >1.
(3.16) Jl r—t (® 2" 2B0(B — 200)1* + 261 + BT "
Thus (3.15) gives

(3.17 } ww(uu/z)mdl _ "t L (dy, + 2y,1 — 12)

Jor—t 2"BL(B — 20)7% + 26T + B

Also, from (3.11), by means of

1 — ’[2k+2

Ulr) = k=0,1,2,...

206+ 2 7
(see [8, p. 10]), we get
(B —20)72(1 — 2™~ 2) 4+ 26t (1 — ©2™) + B(1 — 72m*2)

2m+1ﬂ_[m+1 /r2 ~1

(3.18) nW2(r) =

Then (3.14) yields

2
_ Ope2 = 2910 — 49277 0,

(3.19) a2 (r) P PRI I

where o, is given by (3.8). Combining (3.9) with (3.17) and (3.19) we obtain (3.7).

Now assume that either (3.4,) or (3.4,) holds. If R{}/?(7) is the error functional
corresponding to the weight function w2 ( —), using (1.1) we can show that
Ry = ( — 1 R (tY), ke Ny. By Lemma 3.2(a), w'?(t)/w¥D(—¢) is
strictly decreasing on ( —1, 1), hence w'/2( —)/w't/3(¢) is strictly increasing on
(=1, 1), and (2.8) implies that R}/ = || RMP)). Also, wD( —r:a,B,
8) = wA(t;a,p, —5), with a, B, —3 satisfying either (3.3;) or (3.3,). There-
fore, || REY/2H7) ||, and consequently || R{M2) |, is given by (3.7), (3.8), with & replaced
by —é.

Finally, it is clear that (3.7), (3.8) remain true when 6 = Q. O

Remark 2. As in Remark 1, (8 — 2a)t? + 26t + B > 0 if either (3.3;) or (3.3,)
holds. Here the remaining expression in the denominator of (3.7) is negative
(cf. (3.19)), but it can be shown that so is > — 2y, t — 4y, for 0 < t < 1. Thus, the
right-hand side of (3.7) is positive.
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Theorem 3.5. Consider the weight functions w'*12F12 with p given by (3.1). Let
t=r—./r* — 1. We have

(3.20)
| RMZ 12| =

8nrt?" 3 (1 + 2y) r+ 1\? 51
n=
[(B — 2)t® — 267 + P12y, + Bpey) \r — 1 o ET

where
_(B—a+d)mn+1)+a
(3.21) T AB—ato)mtal
= (B —20)7*(1 — t2"72) — 26t(1 — ") + B(1 — t>"*?),

if either (3.41) or (3.4,) holds, or 6 = 0. The | RS Y212 is given by the same
Jormulae (3.20), (3.21), with o replaced by — 9, if either (3.3,) or (3.3, ) holds, or 6 = 0.

Proof. First we compute || R(/2~1/2) || If (3.4,) or (3.4;) holds, or § = 0, then by
Lemma 3.2(b), w/2 ~22) () /w1/2 ~1/21( _¢) is strictly decreasing on ( —1, 1), and
using (2.14) in Theorem 2.1(b),

r
(r2 _ 1)n§'L)(1/2, —1/2)( . r)

1 n;L)(l/Z, - 1/2)(t)

(3.22) | R =112 | =

. w D2 =D (1) gy
2 r+t

Ly(1/2, — — , = , =
where w172, ~12) (g =(1- 12)ywl/2: ~12)(p) =(1- t)yv(l/z)(t), and mPW/2 =12
is the nth degree (monic) orthogonal polynomial relative to w@®/2.~12) From
Christoffel’s theorem we can get a formula for 7{1’(/2 = Y2 jp terms of n}/?,

w20 i (0
21w W)

Expanding the determinant above, and using the second equation in (3.13), we find

(t — NP2 -2 (1) = constant -

1
(3.23) mPAR B0 = — [mal O -y ) nzl,

where y is given by (3.21). Then the integral on the right-hand side of (3.22) takes the
form

R R O T L O
3.24 e A UL S B st A O
( ) jl ; + " ( ) y __’.1 r + t ( )
1 _(/2)
— O g
Sy, r+t

We have w2 (—t;0, B, 6) = w'/2(t;0, B, —38), and using (3.11), (3.12) we can
show that zll/2( —t; o, B, 8) = (= 1)"nl/D(t;a, B, —5). Therefore, replacing t by
—t in the left-hand side of (3.16) yields

L (1/2)( ) ‘“”(t)dt - ( - 1)"'7\7‘[ +1

_fl rt T T T T T
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in view of which (3.24) gives

(3.25) ulf w0 MI/Z)(t)w(u(l/z, ~1D (5 gy = (—D"re"* Mt + 2y)
-1

r+t 2"1BI(B — 212 — 261 + B1°

Also, from (3.18) we get
(=B — 2077 (1 — 22"2) — 253(1 — o2") + B(1 — 12"*2))

2m+1ﬂrm+1 r2_ 1

niy/(—1)

’

which, inserted into (3.23), yields

(—1)"2y10y + Du+ 1)
2B+ 1) /P — 1

where @, is given by (3.21). Combining (3.22), (3.25) and (3.26) we derive (3.20).
We now compute || R, 2 12| assuming that either (3.3,) or (3.3;) holds, or
6=0. Let R{"¥/%12(7) be the error functional corresponding to the weight
function w'~ Y2 Y2( ) Similarly as in the proof of Theorem 3.4, we can
show that |RL V2D | = [RCVZIDC Since w~Y2UD(_ 1y B 8)=
w12 o B — §), with «, B, — & satisfying either (3.4;) or (3.4,), or § =0,
| RE Y2 Y2 - and consequently | RS Y2 U2 | is given by (3.20), (3.21), with
o replaced by — 4. O

(3.26) A W2 =D () =

Remark 3. Similarly as in Remark 2, we can show that the right-hand side of (3.20)
is positive.

Remark 4. Let I' = 0C, = {ze C:|z| = r}, r > 1. If fis a function holomorphic in
C, and continuous on C,, then we can obtain a bound for the error term of (1.1) of
the form

ur)

(3.27) IRy (N =

max | K, ,(z)| max | f(z)|

|zl=r lzl=r

(cf. (1.8) in [3]), where I(I") = 2mr is the length of I and

(29 Kuesl = R 1)

is known as the “kernel”. If w satisfies (1.8;) or (1.84), Gautschi has shown in [3, Egs.
(2.1) and (2.4)] that

(329 max (K, 2(2)] = max (KW Q)

jzl=r |zl=r

where K$P is the “kernel” of the Gauss formula for the weight function w'@,
Moreover, by (3.26) in [6],

G
(3.30) max | K¢D(z)] = w )

lz}=r
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It is now immediate from (3.29), (3.30) and (2.10) that

(331) max K, @) = L3I

Then (3.27) implies

(332) RIS IR max 1],
and if f is holomorphic in Cp,

(333) RIS inf ( IR, gx[eg:f(zn) .

Therefore, the max,,|-, | K,+,(z)| for the weight functions (1.9), (1.10), when either
(1.8;) or (1.84) holds, has also been computed.

Remark 5. We could not compute the norm of the error functional of the
Gauss-Radau quadrature formula relative to the weight functions (1.9), (1.10), when
either (1.8;) or (1.84) holds. The sign of the error functional, when applied to the
monomials %, k € Ny, does not seem to follow a pattern like the one described by
(2.4,)—(2.44) or {2.5;)—(2.54), which is essential in the derivation of Theorem 2.1.
Consider, e.g., the weight function

(1 _ t2)— 1/2

wh 12 (t) = (1 + ﬂ)zm’

~1<t<l, O<ipl<1,

which is of the form (1.9), with p given by (3.1), and a =1, § =2/(1 + u), 5 = 0.
Clearly, w§™ Y2 (0)/ws Y2 (—t) = Lon(—1, 1) forall 0 < |u| < 1. If RR s the error
term of the Gauss-Radau formula for w§™ /2, we have found numerically that
when 0 < p < 1, the sign of RX(t*) does not follow the same pattern for all k € N,,.

4. Examples

All computations in this section were performed on a MicroVAX II computer in
quad precision (machine precision approximately 33 decimal digits).

Example 4.1
! (1 — %)~ cost

—“.1 B(B —20)t% + 25(B — a)t + o + 524t

where a, B, 0 satisfy (3.2).
The integral can be approximated by the Gauss-Lobatto formula (1.1) for the
weight function w(~ /2, with p given by (3.1). Since (1.1) has degree of exactness
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d=2n+1,and f(z) = cosz = ki} (=1t (2:;, is entire, one easily finds
Lflr
r2n+2 -
e L<rsVenedants,
_ 2+ 2k+2
- (n+2k+2)" \/(Zn + 2k + D20 + 2k +2) <r £ /(20 + 2k + 3)2n + 2k + 4),

k=12....

Thus, fe X ., and an error bound can be obtained from (1.7), with || R{" /2 | given
by (3.5).

Another error bound can be found if | f|, is estimated by max,, -, | f(z)! (see [7,
Eg. (4.2)]). Then (1.7) takes the form

(4.1) IREYP(f)| < inf (HRE.'”Z’IimaXIf(Z)I>,

1<r<o jz|=r

which is the same as the bound obtained by Gautschi (cf. (3.33)). Using
cosz = 4(e”? + e %), we find, for |z] = r,

/@) =3

—rsing 1rc059+er51n06—1r0058]

le
(e"51"® 4 758} = cosh(rsinb) ,

from which it follows that
max | f(z)] < coshr.
jz|=r

Since for 8 = n/2, | f(z)| = coshr, we finally get
max | f(z)| = coshr,
jzj=r

hence (4.1) becomes

(4.2) IRYA(f) = inf (RS | coshr).
1<r<w

Our results are shown in Table 1. (Numbers in parentheses indicate decimal
exponents.) We have chosen two sets of values for o, B, 6. The first a = ﬁ,
=3+ \/g, 6 = —1 satisfies (3.3;), while the second a=2, f=2+ \/5,
o=1 /\/§ satisfies (3.4,). The infimum for each bound was attained at the value of
r given before that bound. In the last column we give the modulus of the actual
error. The true value of the integral was computed using the Gauss formula for the
Chebyshev weight function of the first kind. Whenever the actual error is close to
machine precision, the actual error could be larger than the error bound. In this
case we enter “m.p.” (for machine precision) in the last column.

Example 4.2
1 t2(1 . t2)—1/2 p
L,
-jl (4 + t*)LB(B — 2a)t* + 20(B — a)t + o® + 6°]
where o, f, J satisfy (3.2).
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Table 1. Error bounds (1.7), (4.2) and actual error for Exampie 4.1

o B o n r Bound (1.7) r Bound (42) Error
V5 O3+ -1 2 /56  2169(—5) 6169 6960(—5) 1918(—5)
V182 4899(—13) 12079 2160(—12) 4.582(—13)

10 /552 1.998(—28) 22042 1.182(—27) 1.923(—28)
15 1122 8.267(—46) 32.028 5.883(—45) mp.
20 1892  1.505(—64) 42022 1.226(—63) mp.

2 243 1/3 2 /56 4236(-5) 6162 1357(—4) 3771(—5)

5 182

9.597(—13) 12075 4.229(—12) 9.016(—13)

10 552 3921(—28) 22039 2319(—27) 3.785(—28)
15 1122 1.624(—45) 32026 1.156(—44) m.p.
20 1892 2958(—64) 42020 2409(—63) m.p.

As in the previous example, the integral can be approximated using the
Gauss-Lobatto formula (1.1) for the weight function w'~ 1%, with p given by (3.1).

2 © 2k
This time f(z) = gt i Y (—1F? % is holomorphic in C,, and
k=1
r2n+2

|f|r:§3;;—2, I<r=2.

Thus, f€ X5, and an error bound can be obtained from (1.7), with | RSV || given
by (3.5).
Moreover, for |z| =7,

r2

B J16 +r* + 8rfcos 260 ’

1f(2)]

from which it follows that

r2

g l<r<?2.

max | f(z)| =

lzl=r

Hence, estimating | f|, by max,,-.|f(z)|, we find another error bound

(43) IRCYD(f) < inf (HRE‘”” I :{%) :

1<r<2

Our results are shown in Table 2. We have picked the same sets of values for «,
B, § asin Example 4.1. The true value of the integral was again computed using the
Gauss formula for the Chebyshev weight function of the first kind.

In contrast to the previous example, bounds (1.7) and (4.3) overestimate the
actual error by a few orders of magnitude when n is large. This happens because the
infima in both bounds are attained at relatively small values of r. It is easy
to see that 1 — 0 as r » oo, while 7 - 1 as r » 1. Consequently, the magnitude of

T2+ 2/ /r? — 1 (cf. (3.5)), for n large, is substantially larger in the latter case than in
the former, which accounts for the contrast between the two examples.
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Table 2. Error bounds (1.7), (4.3) and actual error for Example 4.2

o

B ] n r Bound (1.7) r Bound (4.3) Error

U5 O3+5 -1 22000  4753(—4) 1736 4357(—3)  1.408(—4)

2

5 2000 1758(—7) 1861  3252(~6) 2435(—8)
10 2000  3.354(—13) 1923  1.146(—11) 1309(—14)
15 2000  6399(—19) 1946  3.189(—17) 7.036(—21)
20 2000 1221(—24) 1959  8.000(-23) 3.782(-27)

243 14/3 2 2000 9268(—4) 1737  8536(—3) 2727(—4)
5 2000 3432(—7) 1861  6365(~6) 4.720(—8)

10 2000  6547(—13) 1923  2239(—11) 2.537(—14)

15 2000  1249(—18) 1947  6231(—17) 1.364(—20)

20 2000  2383(—24) 1959  1.563(—22) 7.330(-27)
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