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Summary. We consider the Gauss-Kronrod quadrature formula for the Legendre
weight function. On certain spaces of analytic functions its error term is a continu-
ous linear functional. We derive easy to compute estimates for the norm of the error
functional, which lead to bounds for the error functional itself. The efficiency of
these bounds is illustrated with some numerical examples.
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1. Introduction

The Gauss-Kronrod quadrature formula for the Legendre weight function,
w(t) = 1 on [ —1, 1], has the form

n n+1

(1.1) [ f@di= ¥ o,fz)+ X aXf@h) + Ru(f),

v=1

where 7, =t are the zeros of the nth degree Legendre polynomial, and the
¥ =1}" g, =0, oF = a¥™ are chosen such that (1.1) has maximum degree of
exactness d,, ie, R,(f) =0 for all feP, . It is known that the 7 are simple, all
contained in the interval (— 1, 1) and they interlace with the t,, that is,

(1.2) thi<t,<ti< --<t¥F<t <1¥

{see [7]). Moreover, all weights of (1.1) are positive (the positivity of the o} is
equivalent to the interlacing property (1.2); see [4]). These properties of the nodes

*Work supported in part by a grant from the Research Council of the Graduate School,
University of Missouri - Columbia



372 S.E. Notaris

and weights of (1.1) make it computationally useful. It has also been shown (see [6])
that the precise degree of exactness of (1.1) is

(1.3)

_ 3n+1 for n even ,
" |3n+2 for n odd .

Let f be a holomorphic function in C, = {zeC: |z} <r}, r > 1. Then

(1.4) f@=Y azt zeC,.
k=0
Define
1.5 X, = {f:f holomorphic in C, and |f], < o0},
where
(1.6) | 1, = sup{|a;|r*: ke N,y and R,(t*) + 0}

is a seminorm on X,. The Legendre weight function is even, and its support is
symmetric with respect to the origin. Therefore, the nodes of (1.1) are symmetric
with respect to the origin, and the weights corresponding to symmetric nodes are
equal. It follows that

(1.7 R, (t?**1) =0, keN,.
Then (1.6), in view of (1.3) and (1.7), takes the form
(1.8) fle=" sup  {laulr®},

kz[Gn+3)2]

where [ - ] indicates the integer part of a real number. Since fe C[ -1, 1], from (1.1)
we find

(1.9) [Ra(N =411 f o -

Thus R, is a bounded and, equivalently, continuous linear functional on
(C[—1,11, || - | »)- The continuity of R,, together with the uniform convergence of
the series (1.4) on [ — 1, 1], implies, taking into account (1.3) and (1.7),

@

Rn(f) = Z aZkRn(tZk) ’

k=[(n+3)/2]

which, by virtue of (1.8), gives

(1.10) uwng[ g Rl )'Jm,.

k=[Grn+3y21 T

From (1.9), |R,(t?*)] £ 4, hence the series in (1.10) converges, and R, is a bounded
linear functional on (X,, |+},). Then

(1.11) IRa() = IR 1S s -

In the next section we obtain manageable estimates for ||R,||, 2<n < 30,
which lead to bounds for R, of the type (1.11). The method we use was originally
introduced by Hidmmerlin in [3]. Even though we carry out this program for
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n = 2(1)30, our estimates can be applied for n > 30, after the computation of
appropriate constants (cf. (2.8), (2.13) and (2.14) below). The right-hand side of (1.11)
can be optimized as a function of r, that is, if fe Xg,

(1.12) IRy(f)I = inf (RS-

1<r<R

The efficiency of bounds (1.12) is demonstrated in Sect. 3 with some numerical
examples.

Remark. For n = 1, the Gauss-Kronrod formula (1.1) is the 3-point Gauss formula
for the Legendre weight function (see [1, Sect. 2]), for which a number of error
bounds are available.

2. The error bounds
We begin with a lemma, which will be useful in the subsequent development.

Lemma 2.1. The error term of the Gauss-Kronrod formula (1.1) for the Legendre
weight function satisfies

2.1 R,t*)>0 forallkzK,,
for some constant K, = [(3n + 3)/2].

Proof. From (1.1) we have

1 n n+1
R,(t*)= | t**dt— ) 0,12 = ) okt
21 v=1 p=1

Evaluating the integral on the right-hand side, and using the interlacing property
(1.2), we find

2 n n+1
tzk . * *Zk.
B> g (£ ot T oo

=1

Replacing the sum of the weights by [, dt, we get

1
2k %2k
R, (t )>2(2k+1 73 >

Therefore, to prove (2.1), it suffices to show that

1
2k +1

2.2) > 3% forallk 2 K, .

Since 0 < t¥ < 1, we have

lim 2k + 1)1¥* =0,

k—

and (2.2) follows. d
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We can now derive a formula for | R, ||. First, (1.10) gives

- |R,(t*)]
2.3) IR X Tt
k=[Gn+3y21 F

Letting

K,—1 4 2k 2k <] 2k

p sign{R,(t*))z z
#(2) = ) — gmer Y
k=[(3n+ 3)/2] k=kK,T
K,—1 : 2k 2k 2K,
. sign(R,(t**))z zo0n
= g(2k(+1)) t ok =12 5 2€C,
k=[(3n+3)/2] r ret T ot — 2%)
it is easy to see that
1
l¢[r =7 -
r
We have
K,—1 M 2k 2k 2k
! sign(R,(t*))R,(t™) & R,(t™) |1
Rn(¢) = [: Z 2k + Z 2k o
k=[Gn+3y2] r k=k, T r

hence, by Lemma 2.1,
. |RA(t*)]
IR,.(¢)I=[ > —z— ||l
k=[Gn+3y2] T
which, together with (2.3), implies
id |Ra(£%%)]

2.4) IR= X Tt
k=[Bn+3)y2] T

The estimates for | R, ]|, 2 £ n £ 30, will be based on (2.4). It is then apparent
that we need bounds for |R,(t%*)|. Since feC*[—1, 1], from [5, Sect. 3, with
u = 1/2], we have

(n!)?

(d,
(25) |Rn(f)] < 2n—3(2n)!(dn + 1)' _F;atxé . [f * 1)(t)| >

with d, given by (1.3), which yields

d,
)2 T1 @k — i)

i=0
(2.6) |R,(t?%)] < T an@ T O k=[(Bn+3)/2].

For 2 < n < 30, we will show that
d, —1,
@)? 1 @k—1)

@n IR, (%)) < 2,._3(;1)!((1" v kz[(n+3)/2],
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where 1, is a constant defined by

dy—j
() I @k—1i)

8)1, = it | R, (t%* =90 < .
(2.8) 1, max{; [R,(t*")] < 73 0nd 1 1 forall [3n+3)/2] £k < K,,}
Clearly, (2.7) is an improvement of (2.6) by 1, factors.

We first prove (2.7) for k = K,,. Then, in view of Lemma 2.1, we must show that
d,—1,
(m)? [ @k—1i)

2k i=0
Rt™) < =@ + 1

or equivalently, by means of (1.1),

dy — 1,
) [T @k —1) 5 , "
= - 2k * %2k
T, O 1T O T L >0,
which is true whenever
d,—1,
n)? [] @k—1i)
2 i=0

<

@9) 2k + 172" 3@2n)!(d, + )
Since the left-hand side is decreasing with k, while the right-hand side is increasing,
(2.9) is satisfied for all k = K, ,, for some constant K, , = K,. The values of K,
K, were computed numerically for n = 2(1)30, and it was found that K; , = K.
Thus, it remains to verify that (2.7) holds for [(3n + 3)/2] £ k < K,,. The verifica-
tion was done numerically for n = 2(1)30.

It is clear that (2.7) is valid for n > 30, provided that we know 1,. To determine
1, for a fixed n, we first compute K,,. Then we start increasing j in (2.8), beginning
with j = 1. For each j, we find the first k = K, , = K, such that (2.9) (with j in
place of 1,) is satisfied, and subsequently check the inequality in (2.8) for all
[(3n + 3)/2] £k < K, ,. As we already mentioned, K, , = K,,,2 < n < 30,and we
conjecture that this is the case for n > 30. The process stops when we find a k,
[(3n + 3)/2] £ k < K4, such that the inequality in (2.8) is not satisfied. The 1, is
then chosen to be the j of the previous step. The values of z,, 2 £ n £ 30, are shown
in Table 1. All computations in this and the following section were performed on
a MicroVAX II computer in quad precision (machine precision approximately
33 decimal digits).

Table 1. The values of 1,, 2 <n <30

n I, n 1, n 1, n I, n I,
2 4 8 7 14 7 20 8 26 8
3 5 9 7 15 7 21 8 27 8
4 5 10 7 16 7 2 8 28 8
5 6 17 17 8 23 8 29 8
6 6 12 7 18 8 24 8 30 8
7 6 13 7 19 8 25 8
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Now (2.4) can be used, in conjunction with (2.7), to derive estimates for [|R,]|,
2 < n < 30. First,

d, —1,
(2.10) IR il R
1 R,| <= = .
2"732n)(dy + Dy — s 3y r
Let
d, —1,

v I1 @k—9

@.11) S= Yy
k=[(n+ 3)/2] r

Writing S(r) explicitly, and factoring out (1/r)* ~** ! we find, after an elementary

computation,
1 dy—1,+1 dd,,—t,,+1 (1/r)d,,+l
Str)=1{- r A 3 |»
r d(1/ry 1—-Q/n

where d™/d(1/r)™ denotes the mth derivative with respect to 1/r. The division inside
the brackets, and the partial fraction decomposition of 1/[1 — (1/r)?], yield

1 dy—1,+1 dd..—ln'*‘l 1 1 1
S(ry= (;) d(l/r)d,r—x,.+l[§(1 —1/r + 1+ 1/r>

(-]

Differentiating we get, after a simple computation,

2.12) S(r)=(d, — 1, + D E(r),

where

1

d,—,+1+i 1 d,— 1, +3+1i 1
dn_ln+1 ran—ln+l+i d,—1,+1 rd,,—z,.+3+i
d,— 1 1 i 0 for 1, even ,
U \d, =+ 1)1 "7 )1 for i, odd .
Thus, (2.10), by virtue of (2.11) and (2.12), takes the form

@)2(d, — 1, + 1)!
2°732n)\(d, + 1)!

Using (2.14), we obtain bounds for R,. First, (1.12) gives

m)2d, — 1, + 1) .
2"_3(2?1)!((1,, + 1)' 1<1£1;R [E(r)lflr] .

Moreover, it can be seen from (2.13) that the magnitude of E(r) is dominated by the
expression inside the brackets. The remaining terms are higher-order terms with

(2.14) IR, I < E().

(2.15) IR.(f)] =
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respect to 1/r, and their contribution is negligible, particularly as n increases. By
omitting them, we arrive at a bound that is computationally simpler and less
expensive, that is,

m*d, — 1, + 1!
N 5 =20ma@, 1)

(2.16)  |R(

R e e e S

Both bounds (2.15) and (2.16) can be computed, assuming that | f|, is available or
can easily be calculated. If this is not the case, |f|, can be estimated by
max; - , | f(z)], which exists at least for r < R (see [3, Eq. (4.2)]), and then (2.15)
and (2.16) become

1) IR T n DL PMMMWﬂ,

27730, + D Lo Izl =r
and

2 (d, — 1, + D!
2" 22n)l(d, + 1)!

218) IR, (N =

inf {[(r—_—T):—;—ﬁ + (_1)5“%;__‘;2] max| f(z)[} .

1<r<R zl=r

3. Examples

Example 3.1

1
ye—w”dtz\/gcp(\/a), w>0,
-1

where &(t) is the so-called probability integral, which can be defined through
a power series,
2 © (_l)kt2k+l
&(t) = 7 Z M A
T o 2k + k!

(see [2, Sect. 8.25]). We shall approximate the integral using the Gauss-Kronrod
formula (1.1).
© (_ 1 )k (Dk ZZk

Since f(z) =¢~ %' = ¥

is entire, we find
k=0 k!

Gy Ufk

pln+ 1/2pds + 1

T, + /20 L<r =/ +3)/o),

= {oldn+ 26+ 1/2,d, + 2+ 1

[(d, + 2k + 1)/2]!

, a2k + 1)/Qw) < r £ /(d, + 2k + 3)/Qw) ,
k=1,2,...,
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under the assumption that d, + 3 > 2w. In case that d, + 3 < 2w, the formula for
| f|, starts at the branch of (3.1) for which d,, + 2k + 3 > 2w. Thus fe X . More-
over, for |z| = r, we have

lf@) =le” wr?cos20 — iwr’sinZOl = @~ @ricos2f

>

which implies

max | f(z)] = e’

lz} =7

(3.2)

Consequently, the error in approximating the integral can be estimated by means
of the bounds in Sect. 2. For comparison purposes we employed all four of them:
(2.15), (2.16), (2.17) and (2.18).

Our results are shown in Table 2. (Numbers in parentheses indicate decimal
exponents.) The infimum for each bound was attained at the value of r given before
that bound. In the last column we give the modulus of the actual error. The true
value of the integral was computed from the power series expansion for the
probability integral. Whenever the actual error is close to machine precision, the
actual error could be larger than the error bound. In this case we enter “m.p.” (for
machine precision) in the last column.

It is worth noting a few things here. First, as it was already mentioned in Sect. 2,
the bounds (2.15), (2.16) and (2.17), (2.18) are very close, particularly as w and
n increase. Since (2.16) and (2.18) are computationally simpler and less expensive (in
the number of arithmetic operations involved), they are a more attractive choice
than (2.15) and (2.17). Also, all four bounds, which are quite sharp for small values
of w, worsen as w increases, and eventually become gross overestimates of the

Table 2. Error bounds and actual error for Example 3.1

Bound r
2.15)

Bound r
(2.16)

Bound r
2.17)

Bound
(2.18)

Error

05 54472
10 5.831
15 7071

20 8.000

53162
10 4.243
15 5.099
20 5.831

52429
10 3.082
15 3.808
20 4.243

5 1.871
10 2371
15 2.828
20 3.162

5 1.541
10 1.871
15 2.200
20 2424

1.0

20

4.0

8.0

1.074(—14) 3.166
1.019(—29) 4.714
6.526(—47) 7.000
1.751(—64) 7.875

8.533(~12) 3.162
1.216(~24) 4.123
2.733(—39) 5.099
1.004(— 54) 5.745

1.159(—8) 2.345
3.113(—19) 3.082

2.797(~14) 4.343
2.315(~29) 5.758
1.088(—46) 7.054
2.981(—64) 7.991

1.432(—11) 3.156
1.653(—24) 4.160
3.056(~ 39) 5.095
1.117(—54) 5.755

1.317(—8) 2.363
3.267(—19) 3078

3.416(—31) 3.800 3.453(—31) 3.753
1.944(—44) 4.243 1.959(—44) 4.218

5253(—5) 1871 5343(—5) 1.852
3.962(—13) 2368 3.973(—13) 2.352
3.276(—22) 2.828 3.276(—22) 2.828
3.615(—33) 3.162 3.615(—33) 3.153

2726(0)  1.541 2.728(0)  1.520
9.240(—6) 1.871 9.241(—6) 1.859
9.253(—12) 2.200 9.253(—12) 2.186
2.676(—20) 2.424 2.676(—20) 2.411

8.439(—14) 4.034
1.052(—28) 5.543
8.203(—46) 6.934
2.489(—63) 7.874

6.820(—11) 3.033
1.280(—23) 4.088
3.505(— 38) 5.066
1.453(—53) 5.729

9.768(—8) 2.332
3416(—18) 3.065
4.560(—30) 3.751
2.923(—43) 4.216

4934(—4) 1.848
4.683(—12) 2.352
4.657(—21) 2.828
5.738(—32) 3.153

2952(1)  1.520
1225(—4) 1.859
1.436(~10) 2.186
4.590(—19) 2411

2.775(—13) 3469(—15)
2.632(—28) 2.450(— 30)

1.341(—45) m.p.
4.171(~63) m.p.

1.098(—10) 1.285(—12)
1.711(—23) 1.229(—25)

3.908(—38) m.p.
1.612(—53) m.p.

1.102(—7) 3.336(—10)
3.580(— 18) 4.741(~21)

4.603(—30) m.p.
2.944(—43) mp.

5.008(—4) 3.273(~8)
4.694(—12) 1.103(~—16)
4.658(—21) 3.103(~27)

5.738(—32) m.p.

2.954(1)
1.225(—4)

5.249(~6)

1.008(—12)
1.436(— 10) 7.480(—21)
4.590(—19) 1.646(—29)
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actual error. This happens, presumably, because of | f|, or maxy; -, | f(z)], whose
magnitude grows at a nonlinear polynomial and an exponential rate, respectively,
with respect to w (cf. (3.1) and (3.2)). Finally, of practical importance is the fact that
the bounds can also be used to determine a value of n in (1.1) guaranteeing a given
accuracy, and the results are quite satisfactory. Our computations to this end
usually produced an overestimation of n by just a few units.

Example 3.2

1
cost
| sdt, w>0.

Lttt o
We shall approximate the integral using the Gauss-Kronrod formula (1.1),
without separating out the poles at + iw.
Both cosz and 1/(z? + w?) have a Maclaurin series expansion for ze € and
ze C,, respectively. From the series multiplication theorem we find

cos z © 2 w2k ZZk
= =¥ (145 iy o
f(Z) 22 + wl kg ) [ + 2' + - (2k)!}w2k+2 ZGC

The bounds of Sect. 2 can be used, to estimate the error in approximating the
integral, only if w > 1. The calculation of {f|,, 1 <r =< w, is quite cumbersome,
hence |f], was estimated by maxj, -,|f(z)|. By setting cosz = i(e” + ¢ %), we
compute, for |z| =7,

1 ~rsin@+ircos 8 + ersinB——ircnsO
If(z)l =35 2 2 I ]

2| r*cos26 + w* + ir*sin 20
' e"¥"% 4 e7*"?  cosh(rsinf)
=2 w?*—=r:  wr-r*

from which it follows that
coshr
max | f(z)| < 5 -
|zl =r -r

Since for 6 = n/2, we have

le+e r coshr

1f@) =5 p

R R

we finally get

(3.3) max |/(@)] = v

—~—, l<r<ow.
fz|=r -r

Thus fe X,,.

The error bounds resulting from (2.17) and (2.18), together with the modulus of
the actual error are shown in Table 3. The true value of the integral was computed
using the Maclaurin expansion for f(z),

1 cost . 2 w* 1
_Il t*+ o d_zz( b [Hz Tt e ekr DetE
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Table 3. Error bounds and actual error for Example 3.2

w n r Bound r Bound Error
2.17) (2.18)

20 5 1923 2.286(—9) 1922 2339(—9) 6.719(—13)
10 1961  1613(—16) 1961  1613(—16)  1.181(—22)
15 1976  4478(—22) 1976  4478(-22)  9.196(-33)
20 1982 5636(—29) 1982  5636(—29) mp.

30 5 2844  2497(—13) 2831  3490(—13)  1.281(~15)
10 2920  2985(-24) 2919  3.077(-24)  9.970(-28)
15 2951  1.326(—34) 2951  1.326(—34) mp.
20 2963  2050(—45) 2963  2051(—45)  mp.

40 5 3764  1213(~15) 3725  2958(—15)  1.488(—17)
10 3878  1.135(—28) 3874  1407(—28)  2.322(—31)
15 3925  9253(—42) 3924  9391(—42) mp.
20 3943  7485(—55) 3943  7.508(—55)  m.p.

Here, there seems to be almost no difference between bounds (2.17) and (2.18),
which stresses once more the point made in Sect. 2 and Example 3.1. Also, both
bounds worsen as w decreases, and become gross overestimates of the actual error
when o drops below 2. In fact, for a fixed value of w, the bounds are worse for
higher values of n. The reason for all this is the term r/(r — 1)~ * 2 contained in
both bounds. The magnitude of this term gets large for r < 2, and even larger when
d, — 1, + 2 is high (both of which happen when w < 2 and n is high).
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