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Summary.  We consider the Gaus s -Kron rod  quadra ture  formula for the Legendre 
weight function. On  certain spaces of analytic functions its error term is a continu- 
ous linear functional. We derive easy to compute  estimates for the no rm of the error 
functional, which lead to bounds  for the error functional itself. The  efficiency of 
these bounds  is illustrated with some numerical examples. 
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I. Introduction 

The G a us s -Kron rod  quadra ture  formula for the Legendre weight function, 
w(t) = 1 on [ - 1 ,  1], has the form 

1 ~.~ n + l  * * 

(1.1) ~ f(t)dt = ~ a~f(z~) + ~ auf(r~) + R . ( f ) ,  
- 1  v = l  # = 1  

where z~ = z~ ") are the zeros of  the nth degree Legendre polynomial ,  and the 
z* = z *m~, a~ = a~ "~, a* = a *m~ are chosen such that  (1.1) has m a x i m u m  degree of 
exactness d., i.e., R,( f )  = 0 for all f e  n?d. It  is known that  the z* are simple, all 
contained in the interval ( -  1, 1) and they interlace with the z~, that  is, 

(1.2) z * + l < r , < z * < ' " < z * < z l  < z *  

(see [7]). Moreover ,  all weights of (1.1) are positive (the positivity of  the a* is 
equivalent to the interlacing proper ty  (1.2); see [4]). These propert ies  of the nodes 
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and weights of (1.1) make it computationally useful. It has also been shown (see [6]) 
that the precise degree of exactness of (1.1) is 

3 n + l  for n even , 
(1.3) d~= 3 n + 2  for n odd . 

Let f be a holomorphic function in C, = {z~(E: lzl < r}, r > 1. Then 

f ( z ) =  ~ akz k, z~C,.  
k = O  

(1.4) 

Define 

(1.5) 

where 

(1.6) 

X, = { f : f  holomorphic in C, and Lfl, < oo} , 

If[, = sup{[aklr k: k~No and R,(t k) ~: 0} 

is a seminorm on X,. The Legendre weight function is even, and its support is 
symmetric with respect to the origin. Therefore, the nodes of (i.1) are symmetric 
with respect to the origin, and the weights corresponding to symmetric nodes are 
equal. It follows that 

(1.7) Rn(t 2k+1) = 0, k~No �9 

Then (1.6), in view of (1.3) and (1.7), takes the form 

(1.8) [f[~ = sup {[a2krr2k}, 
k > [(3n + 3)/2] 

where [ .  ] indicates the integer part of a real number. Sincef~ C [ -  t, 1], from (1.1) 
we find 

(1.9) ]R,(f)l < 411ft]o~ �9 

Thus Rn is a bounded and, equivalently, continuous linear functional on 
( C [ -  1, 1], I1" 11 o~). The continuity of Rn, together with the uniform convergence of 
the series (1.4) on [ - 1 ,  1], implies, taking into account (1.3) and (1.7), 

R.(f)  = ~ a2kR.(t2k) , 
k = [(3n + 3)/2] 

which, by virtue of (1.8), gives 

I ie,(t2k)17 
(1.10) ]R~(f)t < _ ~ [ f [ , .  

A k = [(3n + 3)/2] 

From (1.9), [R~(t2*)t < 4, hence the series in (1.10) converges, and Rn is a bounded 
linear functional on (X,, I" 1,). Then 

(1.11) [Rn(f)[ < [[Rnl[ I f [ , .  

In the next section we obtain manageable estimates for II R~ II, 2 < n < 30, 
which lead to bounds for Rn of the type (1.11). The method we use was originally 
introduced by H~immerlin in [3]. Even though we carry out this program for 
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n = 2(1)30, our  estimates can be applied for n > 30, after the computat ion of 
appropriate  constants (cf. (2.8), (2.13) and (2.14) below). The right-hand side of (1.11) 
can be optimized as a function of r, that is, if f ~ X R ,  

(1.12) ]Rn(f)[ < inf ([IRnll l f l , ) .  
l < r < R  

The efficiency of bounds (1.12) is demonstrated in Sect. 3 with some numerical 
examples. 

Remark. For  n = 1, the Gauss -Kronrod  formula (1.1) is the 3-point Gauss formula 
for the Legendre weight function (see [1, Sect. 2]), for which a number  of error 
bounds are available. 

2. The error bounds 

We begin with a lemma, which will be useful in the subsequent development.  

Lemma 2.1. The error term o f  the Gauss-Kronrod formula (1 . I ) for  the Legendre 
weight function satisfies 

(2.1) Rn(t 2k) > 0 for  all k > Kn , 

for  some constant Kn > [-(3n + 3)/2]. 

Proof. From (1.1) we have 

1 ~ n+ l  
R,(t2k) = S t2kd t - -  ~v zz~k Z _,_ ,2k  

-1  v=l  #=1 

Evaluating the integral on the right-hand side, and using the interlacing property 
(1.2), we find 

2 
Rn(t2k) > 2k + 1 v =  l ~ = 1  " 

Replacing the sum of the weights by S ~_ 1 dt, we get 

R,(t  2 k ) > 2  2k + l " 

Therefore, to prove (2.1), it suffices to show that 

1 
> ~ , 2 k  for a l l k > K n  (2.2) 2k + 1 = = " 

Since 0 < z* < 1, we have 

lim (2k + 1)z *2k = 0 ,  
k~oo 

and (2.2) follows. [] 
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We can now derive a formula for 1] R. [1- First, (1.10) gives 

IR"(tZk)l 
(2.3) II R.  II 5 r2k 

k = [ (3n  + 3 ) /2 ]  

Letting 

K. - 1 sign(R.(tEk) 2k+l ~ z2k 
4~(z) = Y~ + r2k+l 

k = [(3n + 3)/2] k = K. 

K. -  1 sign(R.(tZk))z2k Z2K, 
Z r 2 k + l  +rZK.- l ( r2  z2) , ZECr '  

k = [(3n + 3 ) / 2 ]  

it is easy to see that  

We have 

1 
Ir  = - - .  y 

I K. - 1 sign(R.(t2k))R.(t2k) R,( tZk)l  1 

= Z - - 7  , : '  k = [(3n + 3)/2] k = K. 3 ~ 

hence, by Lemma 2.1, 

I lR~(t2k)l~ 

IR . (~b) l  = k = r(3n~+ 3)/2 ] ~ Alq~[r , 

which, together with (2.3), implies 

Ie"(tZk)l 
(2.4) [I R,  1{ = r2 k 

k = [(3n + 3)/2] 

The estimates for 11R, 11, 2 _< n < 30, will be based on (2.4). It is then apparent  
that we need bounds for [Rn(t2k)]. Since f e C ~  1], from [5, Sect. 3, with 
# = 1/2], we have 

(n!)2  m a x  I f  (a-+ 1)(01, 
(2.5) ]R. ( f ) ]  < 2._3(2n)!(d" + 1)! -1 _<t___ 1 

with d. given by (1.3), which yields 

e. 
(n!) 2 I-[ (2k - i) 

~=o k > [(3n + 3)/23.  (2.6) IR"(tZk)] < 2"-3(2n)!(d,  + 1)!' = 

For  2 < n < 30, we will show that 

d n - i n 

(n!) 2 [-I ( 2 k - i )  
i=o k > l-(3n + 3)/2] (2.7) IR"(t2k)l < 2"-3(2n)!(d.  + 1)!' = ' 
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where i~ is a constant  defined by 

d n - j  

(n!) 2 1-I ( 2 k -  i) 

{ , : o  forall[(3n+3)/~]<__k<K~} (2.8) z~ = max j :  IR~(t2k)t < 2~_3(2n)!(d ~ + 1)! 

Clearly, (2.?) is an improvement  of  (2.6) by l~ factors. 
We first prove (2.7) for k __> K,.  Then, in view of  Lemma 2.1, we must show that 

Rn(t 2k) < 

d ,  - -  t n 

(n!) 2 H ( 2 k -  i) 
i = 0  

2"-3(2n)!(d. + 1)! '  

or equivalently, by means of (1.1), 

d n - -  1 n 

(n!) 2 1-] ( 2 k - i )  
i=o 2 

2"-3(2n)[(dn + 1)! 2k + I 

which is true whenever 

2 k  r r * , r * 2 k  
~ l a  - #  r, 

v=l //=i 

d n - -  I n 

2 (n[) 2 1-[ ( 2 k - i )  
(2.9) _ _  < i=o 

2k + 1 = 2"-3(2n)!(d~ + 1)! " 

Since the left-hand side is decreasing with k, while the right-hand side is increasing, 
(2.9) is satisfied for all k > Kl,n, for some constant KI,~ > K,.  The values of K~, 
KI,~ were computed numerically for n = 2(1)30, and it was found that K L .  = K..  
Thus, it remains to verify that (2.7) holds for [(3n + 3)/2] < k < K. .  The verifica- 
tion was done numerically for n = 2(1)30. 

It is clear that (2.7) is valid for n > 30, provided that we know z~. To determine 
z~ for a fixed n, we first compute  Kn. Then we start increasing j in (2.8), beginning 
with j = 1. For  each j, we find the first k = K L ,  > Kn such that (2.9) (with j in 
place of t~) is satisfied, and subsequently check the inequality in (2.8) for all 
[(3n + 3)/2] < k < KEn. As we already mentioned, K L ,  = K~, 2 < n < 30, and we 
conjecture that this is the case for n > 30. The process stops when we find a k, 
[(3n + 3)/2] < k < Kl,n, such that the inequality in (2.8) is not  satisfied. The z~ is 
then chosen to be t h e j  of the previous step. The values of t,, 2 < n < 30, are shown 
in Table 1. All computat ions  in this and the following section were performed on 
a MicroVAX II  computer  in quad precision (machine precision approximately 
33 decimal digits). 

Table  1. The  values of zn, 2 < n < 30 

n I n /'1 I n t l  1 n n | n  n [n 

2 4 8 7 14 7 20 8 26 8 
3 5 9 7 15 7 21 8 27 8 
4 5 10 7 16 7 22 8 28 8 
5 6 11 7 17 8 23 8 29 8 
6 6 12 7 18 8 24 8 30 8 
7 6 13 7 19 8 25 8 
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(2.10) IIR.II < 

Let 

Now (2.4) can be used, in conjunction with (2.7), to derive estimates for [I Rn I[, 
2 < n < 30. First, 

d n - i n 

H (2k - i) (n!) 2 ~ i=o 

2n- 3(2n)!(d. + 1)! k = [(3nZ~'+ 3)/2] ~ . 2 k  

dn m in 

I-[ (2k  - i) 

(2.11) S(r ) -=  ~, i=0 r 2k 
k = [(3n + 3)/2 3 

Writing S(r)  explicitly, and factoring out ( l / r )  a" - " § l, we find, after an elementary 
computation, 

S(r) = d( i. +,  Li 2 J ' 

where d " / d ( 1 / r )  m denotes the mth derivative with respect to 1/r. The division inside 
the brackets, and the partial fraction decomposition of 1/[1 - (1/02], yield 

S(r) = d(1-7~. --~. u ~ 2 ~ 1 + l l r  

Differentiating we get, after a simple computation, 

(2.12) S(r )  = (d, - z, + 1)! E(r)  , 

where 

(2.13) E ( r ) = ~  r - - l )  N - " + 2  + ( - 1 ) " ( r +  1) a " - "+2  

_(dn-,.+l+i) 1 _(d,~-,,,+3+i) 1 
\ d . - - l . + l  r a " - " + l + i  \ d n - / n + l  r d " - " + 3 + i  

. . . . .  ( d . - 1 ) r . l _ ~ ,  i=_{~  f o r , , e v e n ,  
d . - ~ , +  1 for i, odd . 

Thus, (2.10), by virtue of (2.11) and (2.12), takes the form 

(n!)2(d, - ~. + 1)! 
(2.14) Ile.ll < 2._3(2n)!(d" + 1)! E ( r ) .  

Using (2.14), we obtain bounds for R.. First, (1.12) gives 

(n!)2(d. -  z. + 1)! inf [ E ( r ) [ f l , ]  �9 
(2.15) I R . ( f ) l  =< 2 n ~ ) T ( ~ n  + 1)! l < r < / t  

Moreover, it can be seen from (2.13) that the magnitude of E(r) is dominated by the 
expression inside the brackets. The remaining terms are higher-order terms with 
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respect to 1/r, and their contr ibut ion is negligible, particularly as n increases. By 
omit t ing them, we arrive at a bound that  is computa t ional ly  simpler and less 
expensive, that  is, 

(2.16) [R. ( f ) I  < (n!)2(d" - z. + 1)! 
= 2"-2(2n)!(d.  + 1)! 

i n f { [  r r ]} 
( r _ l ) ~ _ , . + 2 + ( - 1 ) ' " ( r + l ) N _ ~ , + 2  [f l ,  �9 

l <r<__R 

Both bounds  (2.15) and (2.16) can be computed,  assuming that  I f  Jr is available or  
can easily be calculated. If  this is not the case, I f[ ,  can be estimated by 
maxN = r If(z)], which exists at least for r < R (see [3, Eq. (4.2)]), and then (2.15) 
and (2.16) become 

( n [ ) 2 ( d " - ' " + l ) '  inf [E(r) max lf(z)[ 1, 
(2.17) [R.( f ) [  < 2 " ~ ( d .  + 1)! l <r < n I~1 =r 

and 

(n!)Z(d. - z. + 1)! 
(2.18) JR.(f ) [  < 2 " ~ ( ~  + 1)! 

l < r < R  ( r - - l )  ~ - z " + 2  + + 1)d _ , .+2  max If(z)[ . lzl =r 

3. Examples 

Example 3.1 

i e-~ /~(I)(w/-~), 0 9 > 0 ,  
- 1  

where ~(t)  is the so-called probabi l i ty  integral, which can be defined through 
a power  series, 

2 ~o ( _  1)kt2k+l 

(see I-2, Sect. 8.25]). We shall approx imate  the integral using the Gaus s -Kron rod  
formula  (1.1). 

S incef (z)  = e-~~ = ~ ( -  1)kmkZ2k 
k=O k! 

(3.1) I f  l, 
(D(d. + l ) / 2 r d .  + I 

} 
= ~_co(d n + 2k + 1)~2yd. + 2k + 1 

is entire, we find 

1 < r =< ~/(d~ + 3)/(209) , 

~ / (d .  + 2k + 1)/(2co) < r < ~/(d.  + 2k + 3)/(209) , 

k =  1 , 2 , . . . ,  
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under  the assumption that d, + 3 > 2co. In case that  d, + 3 < 2co, the formula for 
I f  It starts at the branch of (3.1) for which d, + 2k + 3 > 2co. Thusf~Xo~.  More-  
over, for Izl = r, we have 

which implies 

(3.2) 

I f ( z ) l  = l e  - ~~176176  - i ~  sin20[ = e - c~176 , 

m a x  I f ( z )  l = e ~ . 
Izl=r 

Consequently,  the error in approximating the integral can be estimated by means 
of  the bounds in Sect. 2. For  comparison purposes we employed all four of them: 
(2.15), (2.16), (2.17) and (2.18). 

Our  results are shown in Table 2. (Numbers in parentheses indicate decimal 
exponents.) The infimum for each bound  was attained at the value of  r given before 
that  bound. In the last column we give the modulus of the actual error. The true 
value of the integral was computed  from the power series expansion for the 
probabili ty integral. Whenever the actual error is close to machine precision, the 
actual error could be larger than the error bound. In this case we enter "m.p." (for 
machine precision) in the last column. 

It is worth noting a few things here. First, as it was already mentioned in Sect. 2, 
the bounds (2.15), (2.16) and (2.17), (2.18) are very close, particularly as co and 
n increase. Since (2.16) and (2.18) are computat ional ly  simpler and less expensive (in 
the number  of  arithmetic operations involved), they are a more attractive choice 
than (2.15) and (2.17). Also, all four bounds,  which are quite sharp for small values 
of  co, worsen as co increases, and eventually become gross overestimates of the 

Table 2. Error bounds and actual error for Example 3.1 

o9 n r Bound r Bound r Bound r Bound Error 
(2.15) (2.16) (2.17) (2.18) 

0.5 5 4.472 1.074(-14) 3.166 2.797(-14) 4.343 8.439(-14) 4.034 2.775(-13) 3.469(-15) 
10 5.831 1.019(-29) 4.714 2.315(-29) 5.758 1.052(-28) 5.543 2.632(-28) 2.450(-30) 
15 7.071 6.526(-47) 7.000 1.088(--46) 7.054 8.203(-46) 6.934 1.341(-45) m.p. 
20 8.000 t.751(-64) 7.875 2.981(--64) 7.991 2.489(--63) 7.874 4.171(--63) m.p. 

5 3.162 8.533(-12) 3.162 1.432(-11) 3.156 6.820(-11) 3.033 1.098(-10) 1.285(--12) 
10 4.243 1.2t6(-24) 4.123 1.653(-24) 4.160 1.280(-23) 4.088 1.711(-23) 1.229(--25) 
15 5.099 2.733(-39) 5.099 3.056(--39) 5.095 3.505(--38) 5.066 3.908(-38) m.p. 
20 5.831 1.004(-54) 5.745 1.117(--54) 5.755 1.453(--53) 5.729 1.612(-53) m.p. 

5 2.429 1.159(-8) 2.345 1.317(-8) 2.363 9.768(-8) 2.332 1.102(-7) 3.336(-10) 
10 3.082 3.113(-19) 3.082 3.267(-19) 3.078 3.416(-18) 3.065 3.580(-18)4.741(-21) 
15 3.808 3.416(-31) 3.800 3.453(--31) 3.753 4.560(-30) 3.751 4.603(-30) m.p. 
20 4.243 1.944(-44) 4.243 1.959(--44) 4.218 2.923(-43) 4.216 2.944(-43) m.p. 

5 1.871 5.253(-5) 1.871 5.343(-5) 1.852 4.934(-4) t.848 5.008(-4) 3.273(-8) 
10 2.371 3.962(-13) 2.368 3.973(--13) 2.352 4.683(--12) 2.352 4.694(-12) 1.103(--16) 
15 2.828 3.276(-22) 2.828 3.276(--22) 2.828 4.657(--21) 2.828 4.658(-21) 3.103(-27) 
20 3.162 3.615(--33) 3.162 3.615(--33) 3.153 5.738(-32) 3.153 5.738(-32) m.p. 

5 1.541 2.726(0) 1.541 2.728(0) 1.520 2.952(1) 1.520 2.954(1) 5.249(-6) 
10 1.871 9.240(-6) 1.871 9.241(-6) 1.859 1.225(-4) 1.859 1.225(-4) 1.008(-12) 
15 2.200 9.253(-12) 2.200 9.253(-12) 2.186 1.436(--10) 2.186 1.436(-10) 7.480(-21) 
20 2.424 2.676(- 20) 2.424 2.676(- 20) 2.411 4.590(-- 19) 2.411 4.590(- 19) 1.646(--29) 

1.0 

2.0 

4.0 

8.0 
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actual  error. This happens, presumably,  because of [f l ,  or maxlz I = r If(z)[, whose 
magni tude grows at a nonlinear polynomial  and an exponential  rate, respectively, 
with respect to co (cf. (3.1) and (3.2)). Finally, of practical importance  is the fact that 
the bounds can also be used to determine a value of n in (1.1) guaranteeing a given 
accuracy, and the results are quite satisfactory. Our  computa t ions  to this end 
usually produced an overest imation of n by just a few units. 

Example 3.2 
1 COS t 

_ co~dt, co>O. ~1 t2 + 

We shall approximate  the integral using the Gaus s -Kron rod  formula (1.1), 
without  separat ing out  the poles at -+_ i0). 

Both cosz  and 1/(z 2 + 0)2) have a Maclaurin  series expansion for z ~ C  and 
z ~ Co,, respectively. F rom the series multiplication theorem we find 

COSZ __ ~ [ 0)2 o)2k 1 z2k  

f ( Z ) - z 2 + 0 ) 2  k=0(--1)  k l+~. ( . t  + ' ' ' + ( - ~ . T A 0 ) - Z ~  z ,  zeC,~. 

The bounds of Sect. 2 can be used, to estimate the error in approximat ing  the 
integral, only if 0) > 1. The calculation of If[ , ,  1 < r =_< co, is quite cumbersome,  
hence I f  l, was est imated by maxiz I =, If(z)l. By setting cosz  = �89 + e-lZ), we 
compute ,  for I z] = r, 

1 e - rs inO+irc~  -~- e r s inO- irc~  I 

1 e '~i~~ + e - '~i~~ cosh(r sin O) 
= 2 692 __ F2 0)2 __ r 2 , 

f rom which it follows that  

cosh r 
max If(z)[ < co2 _ r2 �9 Izt=r 

Since for 0 = re/2, we have 

1 e r + e -r  c o s h r  
If(z)l - 2 0) 2 - -  r 2 - -  0 ) 2  _ F2 , 

we finally get 

cosh r 
(3.3) max tf(z)l 0)2 1 < r < co 

Izl = r - -  r 2  ' " 

Thus  f ~  X,o. 
The error bounds  resulting f rom (2.17) and (2.18), together with the modulus  of 

the actual  error  are shown in Table 3. The true value of the integral was computed  
using the Maclaur in  expansion for f(z), 

ilCOS, i t2+co~dt=2 ( - 1 )  k 1 + - ~ f  + . . .  + (2k)!J  ( 2 k +  1)co  2 k + 2  ' 
- k=O " 
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TaMe 3. Error bounds and actual error for Example 3.2 

co n r Bound r Bound Error 
(2.17) (2.18) 

2.0 5 1 . 9 2 3  2.286(-9) 1.922 2.339(-9) 6.719(- 13) 
10 1.961 1.613(- 16) 1.961 1.613(- 16) 1.181(-22) 
15 1 . 9 7 6  4.478(-22) 1.976 4.478(-22) 9.196(-33) 
20 1 . 9 8 2  5.636(- 29) 1.982 5.636(- 29) m.p. 

3.0 5 2 . 8 4 4  2.497(- 13) 2.831 3.490(- 13) 1.281(- 15) 
10 2 . 9 2 0  2.985(-24) 2.919 3.077(-24) 9.970(-28) 
15 2 . 9 5 1  1.326(-34) 2.951 1.326(-34) m.p. 
20 2 . 9 6 3  2.050( - 45) 2.963 2.05 t ( -  45) m.p. 

4.0 5 3 . 7 6 4  1.213(- 15) 3.725 2.958(- 15) 1.488(- 17) 
10 3 . 8 7 8  1.135(-28) 3.874 1.407(-28) 2.322(-31) 
15 3 . 9 2 5  9.253(-42) 3.924 9.391(-42) m.p. 
20 3 . 9 4 3  7.485( - 55) 3.943 7.508( - 55) m.p. 

Here, there seems to be almost no  difference between bounds  (2.17) and (2.18), 
which stresses once more the point  made in Sect. 2 and Example 3.1. Also, both 
bounds  worsen as co decreases, and become gross overestimates of the actual error 
when co drops below 2. In  fact, for a fixed value of co, the bounds  are worse for 
higher values of n. The reason for all this is the term r / ( r  - 1) a" - " + 2 contained in 
both bounds.  The magni tude  of this term gets large for r < 2, and even larger when 
d, - t, + 2 is high (both of which happen when co < 2 and n is high). 
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