
Designs, Codes and Cryptography, 4, 381-394 (1994) 
�9 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Hash Functions and Cayley Graphs 

G1LLES ZI~MOR 
Network Dept., ENST, 46 Barrault. 75634 Paris 13, France 

Editor: T. Beth 

Received August 20, 1991; Revised September 23, 1993. 

Abstract. We introduce cryptographic hash functions that are in correspondence with directed Cayley graphs, 
and for which finding collisions is essentially equivalent to finding short factorisations in groups. We show why 
having a large girth and a small diameter are properties that are relevant to hashing, and illustrate those ideas by 
proposing actual easily computable hash functions that meet those requirements. 

1. Introduction 

We focus on the problem of designing easily computable cryptographic hash functions, for 
integrity purposes. Such a function H should map the set of variable length texts over an 
alphabet A, to a set of (short) fixed length texts. 

H : A *  > A n 

A hash function should have the following properties: 

�9 It should easily (i.e. quickly) computable. 

�9 It should be computationally difficult to find "collisions", i.e. two texts having the same 
hashed value. (This is sometimes known as the strong collision criterion). 

Many hashing schemes have been proposed and studied (see e.g. [5]), one of those, 
discussed by Godlewski and Camion in [6], is a Knapsack-type scheme based upon error- 
correcting codes, with the attractive property that the modification of any set of less than 
d characters of text will necessarily yield a modification of the hashed value, where d is 
the minimum distance of an appropriately chosen code. Unfortunately, such schemes are 
based upon linear computations which are well-known for their cryptographic weakness. In 
this paper we have tried to devise a hashing scheme with improved cryptographic strength 
which retains something of the features of the coding-based scheme. For that purpose, we 
substituted the original tool, i.e. the minimum distance of a code, by the girth of a Cayley 
graph. We will elaborate on this in the next section. 

Our purpose in this paper is twofold. First we wish to make evident a correspondence 
between some hash functions and certain classes of Cayley graphs, and that the study 
of certain graph-theoretic parameters are relevant to hashing. Secondly, we illustrate the 
potential of this correspondence by studying actual, easily computable hash functions, and 
discuss some of their attractive features. 
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The paper is organised as follows. In section 2 we show how to construct hash functions 
from Cayley graphs, we also show why it is desirable that we choose those graphs with 
a large girth and small diameter. We also informally interpret the difficulty of finding 
collisions in group-theoretic terms. In section 3, we propose an actual hashing scheme 
based on a Cayley graph ~(p) over SL2(Fp). We show that hashing is fast and that ~(p) has 
a large girth. In section 4 we discuss diameter issues. Finally section 5 gives concluding 
remarks and practical considerations. 

2. A Design Strategy for Hashing 

We address the problem of hashing variable length texts over an alphabet -4 (we will mainly 
focus on the case -4 = {0, 1 }). The hash functions we wish to consider will be constructed 
as follows. 

2.1. Construction 

Choose a group G and a set S of generators of G with IS[ = 1-41, together with a one-to-one 
mapping f between .4 and $. The hash function HG.s.f (H for short) associated to G, 
$,  and f ,  is defined as follows. To any text x, i.e. string of elements of .4, associate the 
corresponding string of elements of S, and compute the product in G to obtain the hashed 
value (after a suitable identification between elements of G and An). 

x = x l x 2 . . . x k  ~ n ( x )  = f ( x l ) f ( x 2 ) . . ,  f ( xk )  

Let us restate this definition of H in graph-theoretic terms. Denote by ~(G, S) (or simply 
G when no confusion can arise) the directed Cayley graph associated with G and ,5. This 
means that ~ has G as its set of vertices, and there is a directed edge between vertices v and 
to iff to = vs with s belonging to S. In this setting, a text x can be considered as a directed 
path in the graph ~, with the identity vertex as starting point, and its endpoint is precisely the 
hashed value H(x).  Now two texts yielding the same hashed value correspond to two paths 
with the same starting and endpoints. We would like those two paths to differ necessarily 
by a "minimum amount"; this can be guaranteed, if the graph ~ is chosen without short 
"cycles". Let us make this slightly more formal. 

2.2. The Directed Girth o f  a Graph 

Definition. We call the "directed girth" of a graph ~, the largest integer 0 such that given 
any two vertices v and w, any pair of distinct directed paths joining v to w will be such that 
one of those paths has length (i.e. number of edges) 0 or more. 

Our purpose is to search for hash functions among Cayley graphs with large girths. If 
the Cayley graph ~ has a large girth 8, then the corresponding hash function will have the 
property that "local" modifications of a text will necessarily modify the hashed value; more 
precisely 
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Proposition 1 I f  a substring o f  k consecut ive symbols  o f  a text is replaced by a string o f  h 
consecut ive  symbols,  then sup(k, h) > 0 i.e. one o f  those strings has more than 0 symbols.  

Proof: t e t x  ~- x l x 2 . . . X i [ X i + l  . . .X i+k lXi+k+l . . . x t  a n d x '  = X l X 2 . . . x i [ Y i + l  . . .Y i+h  ] 

Xi+k+l �9 �9 �9 Xt be two texts that differ only in the framed substrings. Then they correspond 
in G to two directed paths 

v --~ v f ( x i + l )  --> v f ( x i + l ) f ( x i + 2 )  -+ "'" --+ v f ( x i + l ) " "  f ( x i+~ )  = w 

V --+ v f ( y i + l )  ~ v f ( y i + l ) f ( Y i + 2 )  --+ "'" --+ v f ( Y i + l ) " "  f (Yi+l l )  = W r 

where v = f (xl) f (x2) . . ,  f(xi). H ( x )  = H ( x ' )  iff w = w',  implying the proposition by 
definition of 0. [] 

Of  course this property in itself will not guarantee a good hash function, but it is sufficiently 
attractive to motivate investigating further. Note, by way of illustration, that it forbids the 
use of  commutative groups, because any Cayley graph over such a group, with two distinct 
nonmutually inverse generators, has girth at most 4. 

2.3. On the  Di f f icul ty  o f  F ind ing  Coll is ions 

In the Cayley graph setting, the difficulty of  finding a collision can be expressed in the 
following way. Find two strings of  generators (elements of S)  such that the corresponding 
products coincide in G; i.e. find sl, s~ . . . .  sn, 0"1, cr2 . . . .  0"m ~ S such that 

S l S 2  . . . S n  = O ' 1 0 " 2 - . . 0 " m  

equivalently 

S l S 2 . . . S n 0 - n ~ 1 0 - r ~ l l . . . 0 - 1 1  ~ I .  (1) 

So we see that finding a collision is equivalent to finding factorisations of the form (1). Now 
it can be argued that there are always trivial factorisations of  the form (1) in any finite group 
(e.g. s lal = l, for any s E S). But we must note that only n ~ log [Gf bits are needed to 
express hashed values, so that we can choose groups of large cardinality (e.g. IGi = 2 5~176 
for which trivial factorisations involving N ",~ ]GI elements are useless as actual forgeries 
(because no text has 2 5oo bits !). This means, broadly speaking, that the strong collision 
criterion is satisfied whenever it is computationally difficult to find short factorisations of  
the form (1). Recall that the general problem of finding the shortest factorisation of an 
arbitrary element of  an arbitrary group over some set of  generators is Pspace-complete [7]. 
This does not formally prove that some proper choice of a group G and generators S will 
yield an actual hash function satisfying the strong collision criterion, but it also motivates 
further investigation. 



384 GILLES ZI~MOR 

2.4. Diameter Issues 

A lot of work has been devoted to the search for Cayley graphs with a small diameter, see 
e.g. [2]. Recall that the diameter of a directed graph is the largest distance d(v,  w) between 
two vertices v and w, d(v,  w) being the smallest number of edges of a directed path joining 
v to w). This is also relevant to our hashing scheme because a relatively small diameter is 
necessary to ensure that every element of G is the hashed value of some reasonably-sized 
text (clearly a desirable feature of a hash function). Existing studies concern non-directed 
Cayley graphs though, (for which S = S- l ) .  This does not suit us, because we should 
not have both an element s and its inverse s -J in S, otherwise the factorisation ss -1 = 1 
yields trivial collisions. We will therefore draw upon existing techniques for estimating the 
diameter of Cayley graphs, but also adapt them to the directed case for our purposes. 

To summarize, we wish to look for hash functions among directed Cayley graphs with 
a large directed girth and a small diameter. Note that when IG[ goes to infinity and [SI 
is kept constant, the girth of Cayley graphs over G may not grow faster than O(log ]G]), 
while the diameter may not grow slower than O (log [G I). In the rest of this paper we will 
investigate hash functions based on families of directed Cayley graphs whose directed girth 
and diameter are both in O(log Ial) .  

3. Hashing Schemes Based on Computations in SL2(Fp) 

From now on we will deal with the alphabet ,4 = {0, 1}. Let p be a large prime number, 
(e.g. of about 150 bits). Denote by Z the set of integers and by Fp the finite field with p 
elements. We shall be dealing with Cayley graphs over the group G = SL2(Fp) of 2 • 2- 
matrices of determinant 1 over Fp. We shall consider severall possible sets of generators 
S = {A, B}, among which three basic sets: 

['o'] [' 1. $1 = {At, BI} with At = 1 B1 = 1 

2. $2 = {A2, B2} with A2 = A 2 = 0 B2 = B~ = 

['0 '] '] 3. S 3 = { A a ,  B a } w i t h A 3 = A I =  1 B a = A j B I =  1 1 

Denote by ~i (P), i = 1, 2, 3, the corresponding Cayley graphs (from now on will shall 
often ommit the p to lighten notation). 

Define the corresponding hash functions Hi associated with Gi as in section 2. I where 
f will simply be the correspondence: f : 0 w-~ Ai, 1 w-~ Bi. When the actual choice of 
generator set {Ai, Bi} is indifferent, we shall simply write A and B. 
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3.1. A Few Remarks 

(i) Note that the function thus constructed hashes texts over the alphabet {0, l }, and that 
the hashed values have a (fixed) length close to 3 log p bits, because ISL2(Fp)I = 
p(p2 _ 1). Note also that the multiplication of an arbitrary matrix of SL2(Z) by A 
or B requires just integer additions (between two and four), so that in SLz(Fp), a 
multiplication by A or B requires essentially a few additions of log p-bit integers; 
so computing the hashed values is therefore reasonably fast. 

(ii) Hash functions based on associating an alphabet with a basic set of matrices and 
multiplying them in GL2(Fp) have been proposed before, but with basic matrices of 
arbitrary size, so that a large p could not be chosen without damaging the speed of 
computation, and forging could be achieved with probabilistic methods of factoring 
in GL2(Fp), see Camion (1987), which do not seem to apply here. 

(iii) As mentioned in section 2.3, The problem of devising a forgery, i.e. finding col- 
lisions, involves factoring elements of SL2(Fp) into products of A's and B's, for 
instance finding factorisations of the unit element. Some trivial factorisations can 
easily be found, e.g. A p --- B e = 1 . . . .  but they have a length comparable to p (in 
O(p)), so are useless as an actual forgery provided p is large enough; (no text has 
215~ bits !). What is needed is a method for finding short factorisations of elements 
of SL2(Fp) into products of A's and B's; this is really the problem whose difficulty 
our scheme relies on. 

3.2. The Girth of  the Graphs ~i  

Suppose we are using a hash function of the above type, i.e. associated to some Cayley graph 
(;(G, {A, B}) with G = SL2(Fp). Suppose that a subset ofk  consecutive bits x lx2 . . ,  xk of 
a text is changed into h consecutive bits Yl Y2-.. Yt~, with xl ~ Yl and xl, r Yh. We wish to 
show that if max(k, h) is small enough, then the hashed value is necessarily changed. 

If the hashed value is unchanged, then the corresponding products of A's and B's are 
equal in SL2(Fp): 

X j X 2 . . . X k  = Y1112... Yh mod p (2) 

Now suppose we have chosen our generators A, B in such a way that equality 

X 1 X 2 . . .  Xk = Yl Y2... Yh (3) 

where X i = A or B, Yi = A or B, holds in SL2(Z) (over the integers) if and only if h = k 
and Xi = Yi for 1 < i < k. In this case we will say that {A, B} satisfies property (,). 

Then equality (2) will occur only if the matrix 

x, [acd b] 
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evaluated over the integers has at least one of its entries a, b, c, d equal to a non-zero 
multiple of  p, which implies 

,x,x  

(With the classical notation IIMII = sup~o  IIM~UII~ II and I1~11 = V / ~  2 + ~2 for~ = / r ~ )  \ ~ 2 }  " 

Inequality (4) implies 

max(llX~ X 2 . . .  Xk II, II YJ Y2. - -  Yh II) >-- p/2 

and puttting ot = max(ll A II, II B It), we obtain, by submultiplicativity of  the norm of  matrices, 

max(k, h) > log s p 
-- 2" 

Next we prove that the 3 sets of  generators SI,  $2, $3 mentioned above satisfy property 
(,) .  To see this, note that it suffices to show the property for ,-ql = {A1, B1}, because 
A2 = A~, B2 = B12 and A3 = A1, B3 = A1BI. Recall now that SL2(Z)is classically 
generated by the matrices 

S = A I =  and 7"=  - I  

in the modular group F = SL2(Z)/{I, -1} ,  we have T 2 = I and (TS) 3 = 1, furthermore 
it is well known that F is isomorphic to the free product of  a cyclic group generated by an 
x of  order 2, and a cyclic group generated by a y of order 3, where x corresponds to T 
and y corresponds to TS (see e.g. [8] or [13]). From this it can readily be deduced that an 
equality of  the form: 

X1X2...XkY~1... yfly~-I = 1 (5) 

with Xi = A1 or Bl, and Y/ -- AI or Bl, cannot hold in F; to see this, express the 
lefthandside of  (5) as a string of  S's and T 's  and of  S -  1 and T's,  and observe that the formal 
simplifications T 2 = (TS) 3 = 1 do not suffice to formally collapse this product, unless 
X1, X2 . . . . .  X~ and Y1, Y2 . . . . .  Yh are identical strings. 

By elementary linear algebra, II A II = ~ = v ~  where ;~ is the largest eigenvalue 

1+~  ~ 1.62. IIA2[t = lIB211 = or2 = oftAA. Hence IIAIII = [IBlll = IIA311 = ~b = 2 

1 + ~ -~ 2.41. lira11 = ~3 = L ~ _  ~ 2.61. 
We have proved: 

Proposi t ion 2 The girths of G1 (p), G2(p), ~3(p) satisfy respectively 

01 > log o p (6) 
- 2 

P (7) 02 >__ log~2 "~ 

P 0 3 > log,~ 3 -~ (8) 
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The idea of using SL~(FI,) for constructing Cayley graphs with large girths originates in 
[10], from which the above proof is inspired. 

3.3. Choosing a Set of Generators 

In a preliminary version of this work, we thought of using the pair of generators $l = 
{Al, Bl } for a hashing scheme: however, it was pointed out to us by J-P Tillich that the set $1 
should not actually be used because of the following property. Any integer matrix of SL2(Z) 
with non-negative coefficients can be decomposed as a product of A1 's and B1 's in SL2(Z) 
(essentially by applying Euclid's algorithm). To obtain collisions, it suffices therefore to 
find a matrix C, different from the identity matrix, with non-negative coefficients, such 
that C ~ Id mod p. If enough care is taken to ensure that C has coefficients of the same 
order of magnitude (J-P Tillich found a nice trick to do this [14]), then factoring C over the 
integers as a product of Ai's and BI's will yield a short factorisation of unity in SL2(Fp) 
that can be used for constructing collisions. 

To avoid this type of attack, one should take care to choose generators A, B with the 
property that the set of matrices of SL2(Z) that can be expressed as a product of A's and B's 
is sufficiently scarce. The sets $2 = {A2, B2} and $3 = {A3, B3} are such that choosing (by 
random search methods) matrices of SL2 (Z) that are equivalent modulo p to a given matrix, 
will yield with very small probability (exponential in log p) a matrix that decomposes over 
,32 or ~ in SL2(Z). 

4. The Diameter of{~3(p) 

As mentioned in section 2.4, it is desirable that our Cayley graphs have a relatively small 
diameter. Although we suspect that G2(P) does have a small diameter, we know of no way 
to prove this. However if we change the set of generators to $3, we can prove, and this will 
be the purpose of this section, that ~3(P) has a diameter in O(log p), with an acceptable 
constant, so that hashed values of megabyte-texts will range over all of SL2(Fp). Of course 
the proof will be completely nonconstructive; (a constructive method would be equivalent 
to breaking the scheme). 

Several techniques have been developped for studying the diameter of a Cayley ~aph 
~(G, S) see e.g. [2], [1], [4]; they concern however nondirected graphs, (with nondirected 
edges), corresponding to generating sets S satisfying S = S -1 . So we will need to adapt 
those techniques to directed graphs. As mentioned in section 2.4, note once more that we 
could not have chosen for our hash function a nondirected Cayley graph, if only to avoid 
the existence of trivial factorisations of the kind AA -1 --- 1. 

4.1. Notation and Plan of Proof 

A graph (directed or not) with vertex set V and edge set E will be denoted by (V, E). 
If ~ is the Cayley graph G(G, $), then G* will denote the corresponding nondirected 
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graph (obtained from G by suppressing the orientation of the edges) i.e. the Cayley graph 
G(G, S t_J S-1). Therefore ~ ( p )  will denote ~(SL2(Fp), {Ai, Bi, A~ 1 , B/-I }). 

If X is a subset of vertices of a graph, denote by N+ (X) (N_ (X)) the set of vertices not in X, 
that are the endpoints of an edge with its initial point in X (that are the initial points of an edge 
with its endpoint in X). In the Cayley graph case, N+ ( X) = X S \ X, N_ ( X) = X S -1 \ X. 
Let N(X)  denote N(X)  = N+(X) t3 N_(X). 

A method is indicated in [2] to prove that G~(p) has a diameter in O(log p); it cannot 
be deduced from it directly, however, that ~j (p) and ~3(p) have a diameter in O(log p). 
We will need to use the "expansion" properties of those graphs. Following [1], call c a 
magnifying coefficient of a nondirected graph with vertex set V whenever 

IVl 
for all subsets X of V such that IX[ < --~-, IN(X)t > c]XI 

For a directed graph we will also call c a magnifying coefficient when 

IVl / IN+(X)I ~ clXl 
for all subsets X of V such that IX[ < --2-' / [N-(X)I ~ clXI 

It is reasonably straightforward to obtain that if the graphs G3 (p) and ~ (p) (in directed 
and nondirected cases) have "good expansion properties" (i.e. magnifying coefficients in- 
dependent of p) then they have a diameter in O(log p); it is also possible to prove that if 
the nonoriented versions G~(P) of the graphs ~3 (P) have good expansion properties, then 
the oriented versions ~3(P) also have good expansion properties. This is essentially the 
object of the next lemmas, namely to reduce the study of the diameter of G3(p) to the study 
of the expanding properties of a nondirected graph. Actually the nondirected graph we 
will reduce our problem to will not be G~(p) but rather ~(PSL2(Fp), {S, S -1 , T}) (S and 
T being defined as in (3.2)), at which point arithmetic considerations can be brought in, 
following [2]. 

4.2. Reduction to the Study of G( P S L2( Fp),{ S, S - l ,  T }  ) 

LEMMA 4.1 Let (V, E) be a directed graph, and suppose it has magnifying coefficient c. 
Then the diameter D verifies 

IVI 2 
D _< 21og0+c) T + 1 - c  < - I n  IV[2 + 1 

Proof: Let v and w be any two vertices of V. Denote by N~](v) (N[~](w)) the subset of 
vertices of V reachable from v by paths of length k or less (from which w can be reached 
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by paths of length k or less). In other words define inductively 

[k+l] N~I(v) v; N+ (v) N~](v) [kl v = = U N+(N+ ( ) )  

N[_~ = w; N~+1](w) = N[_k](w) U N_(N~](w)) 

That c is a magnifying coefficient of (Y, E) means that as long as IN[+k-1](v)l < -~ and 
iN[_h-ll(v)l < L~2, we have: 

N[k]rv  ~ _ + ~ J > ( l + c )  k 
[h] c)h IN_ (w)l > (1 + 

take k > Iog(,+c ~ !_~ and h > logo+c)_~!, then N~+~](v) and Nt_h](w) necessarily have a 
common vertex z, and there is therefore a path joining v to w,passing through z, with length 
k + h or less. [] 

In the nondirected graph case, some other methods can be brought in to improve on the 
constant ~, (see [1 ]; [4]) but by methods that do not seem to generalise to the directed case, 
(at least not for noncommutative Cayley graphs), and that do not represent a substantial 
improvement when c is small, both of which are the case here. 

IXS n XI > 

Ixs  2 n xs t  > 

IXS2TSn XI > 

(11) is equivalent to 

LEMMA 4.2 Suppose ~(PSL2(Fp), {S, S -I , T}) has a magnifying coefficient c, then ~ is a 
magnifying coefficient for G( PSL2(Fp), {A3, B3}). 

Proof: suppose the contrary, then there is asubset X C PSL2(Fp), with IXI _< I PSL2(Fp)I/2 
such that in G(PSL2(Fp), {A3, B3 }), either N+ (X) or N_ (X) has cardinality less than 6 IX I. 
Suppose, for example, that it is the case for N+(X) (the other case being analoguous), then 

c 
]XA3 \ XI < IX[ and IXB3 \ XI < ~lXl 

therefore (recall that A3 = S and B3 = S2TS) 
r 

( 1 -  ~)IXI,  equivalently, (9) 

r 
( 1 -  ~)IXI,  and (10) 

C 

C 
Ixs r x s - ' l  > (1 - Ixl 

but (9) means that IXS -l n XI > (1 - ~)lxl,  and applied to (12) this yields 

(12) 

,x,2Tnx, (, 
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or equivalently, since 

IXS 2 Cq XTI > 

applying successively 

IXS f3 XT[ > 

I X f3 XT[ > 

4c 
IXT \Xl  < ~-[Xl 

(9) yields also 

C 

T = T -1 in PSL2(Fp), 

(10) and (9), we obtain: 

( l -  ~6~)IX I i.e. 

(13) 

(14) 

05) 

IXS \ xI < ~lXI (16) 

c X I X S - ' \ X I  < ~l I (17) 

and since in O(PSL2(Ft,), {S, S -1 , T}) we have 

IN(X)I _< IXT \ X[ 4- [SS \ Xl 4- IXS -1 \ X[ 

aciding (15), (16), and (17) we obtain 

IN(X)I < clXl 

a contradiction. �9 

Note that since - !  commutes with every matrix, every magnifying coefficient of 
G(PSL2(Fp), {A3, B3}) is a magnifying coefficient for ~(SL2(Fp), {A3, B3}), our problem 
is therefore now reduced to finding a magnifying coefficient for the nondirected graph 
~(PSL2(Fp), {S, S - 1  , T}). 

4.3. The Expanding Properties o f  G(PSL2(Fp) ,  {S, S -l , T } )  

The method we are about to describe to obtain a magnifying coefficient for the graph 
G(PSL2(Ft,), {S, S -1 , T}) is hinted at in [2]; we will present it here in more detail for the 
sake of completeness. Denote by F the modular group as in section 3.2; for more detailed 
information on F and related arithmetic, see for example [13], [8]. 

For a prime number p denote by Up the congruence subgroup of F 
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Figure I. 

we have 

r / r .  PSL (v   = SL2(Fp)/{1,-1} 

Let us denote by ~p the Cayley graph G(PSL2(Fp), {S, S -1 , T}). Let H denote the upper 
complex half-plane {z I Imz > 0}. Recall that F acts on H in the following way: 

z - -  

A fundamental domain for this action is the region 

1 1 X2 } 
. ; - - - < x <  D =  z = x + i v  2 -  - 2 '  + Y 2 > l  

For any z 6 H ,  identify z with all Mz when M 6 l"p. We obtain a (Riemann) surface 
Np = H\l-'p on which PSL2(Fp) = F / F  r acts naturally. I]p provides us with the following 
geometric representation of the Cayley graph 7-r the vertices of 7~p can be seen as the 
domains gD for g ~ PSL2(Pp), and any two domains glD and g2D are adjacent in 7-/p iff 
they intersect in a curve in I]p. Seefig. 1 for an illustration. 

The result that is brought in at this point is the following [12]: 

Proposition 3 For any real-valued function f defined on H and invariant under Fp, and 
satisfying the following properties: 

~) f is continuously differentiable 

"X . dxdr ~) ffD. J t  ,Y~--Vr- ----0 
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Y) ffD. f e(x' Y ) ~  = 1 

we have 

where Dp denotes a union of regions gD when g describes a set of representatives of 
PSL2(Fp) (i.e. Dp is a fundamental domain for the action of Fe). 

Now choose any subset X of vertices of Hp such that IXI _< IPSL2(Fp)I/2. A lower 
bound on IN(X)l/IXI will be achieved through a lower bound on IE(X)[/IX[ where E(X) 
denotes the set of edges joining vertices of X to vertices not in X. The idea is to consider 
the function gx defined by gx(z) : 1 if z is in the interior of gD with g ~ X, and 
gx (z) = - e  if z is in the interior of gD with g # X, e being an appropriately chosen 
positive constant. Then the function gx is modified so as to provide us with a function fx  
satisfying conditions o0,/3), y) above; the point is that the function fx  will essentially be 
constant (with gradfx = 0) except for regions corresponding to frontiers between domains 
gl D and g2D with gl ~ X and g2 # X. Then the application of proposition 3 will give us 
an inequality of the form 

3 1 
- -  < (c21E(X)l + c3[XD 
1 6  - c, lX( 

where c 1, c2, c3 are constants, and hence yield a constant lower bound on t E ( X)]/IX I- From 
this, the fact that ~ _< 3 I--T2F-'IN(X)I and lemmas 4.1 and 4.2 we obtain a constant/c such that 

Proposition 4 The diameter D of Gp verifies D < tc In p 

With some tedious but reasonably straightforward estimations of the above constants 
cl, cz, c3 that we wish to spare the reader, it can be grossly estimated that the constant x 
is of the order 500,000 or less, which is just about satisfactory since hash functions are 
supposed to hash texts of several megabytes. 

5. Concluding Remarks 

We conclude by two technical remarks, and some practical considerations. 

1. The following generalisation of lemma 4.2 is not difficult to obtain. 

I fa  directed graph ~ has degree d (i.e. for any vertex v, IN+(v)] = IN-(v)I = d) 
and if its non directed version G* has a magnifying coefficient c, then c/(d + 1) is a 
magnifying coefficient for ~. 

. Other Cayley graphs than the ones we have proposed can be envisaged, e.g. directed 
versions of the so-called "Ramanujan graphs" constructed in [9], [11], which have 
large girths and magnifying coefficients. The methods of lemmas 4.1, 4.2 and the 
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above remark will prove that they have small directed diameters and will yield a better 
estimate of  the constant tc in proposition 4. The sets of  generators we propose however 
have the practical advantage of being simpler and of  cardinality two. 

It has been pointed out to us, that choosing A and B to be each other's transpose (as in 
the set $2), may be a potential weakness of  the hash function. Essentially this is because 
given a text x, there is an obvious way of  creating a text x r, such that the hashed values 
of  x and x '  are matrices whose diagonal elements coincide. However it seems to us 
that making a third coordinate of those matrices coincide modulo p, in a more efficient 
way than by random search, (which must of  course be prohibited by the size of  p), is 
quite difficult, This remark, among other arguments, shows that the security parameter 
of  our hash function should be considered to be the length log p of  the prime number 
p rather than the length of the hashed value, i.e. 3 log p. We propose using a prime 
number of 150 bits, as a practical value (so that the hashed values are 450 bits long). In 
this case, proposition 2 shows that the girths Oi satisfy 02 >_ l l 8  and 03 >_ 108. It was 
also put to us by Marc Girauit that some care should be taken in the choice of the prime 
number p, because finding simultaneously two texts and a prime number p such that 
those two texts collide for the hash function associated to p, is substantially easier than 
finding a collision for a given p. So p should be chosen in some manner allowing no 
leeway, to ensure that a collision has not been built in the hash function. For instance 
take p equal to the first prime that is bigger than 215~ 

The above precautions being taken, we have a fast hashing scheme that should be 
challenging to break. We also hope to have convinced readers that the design strategy 
is worth investigating further. 
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