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Abstract. A difference set D in a group G is called a skew Hadamard difference set (or an antisymmetric difference 
set) if and only if G is the disjoint union of D, D (-1), and {1}, where D (-I) = {d -1 I d c D}. In this note, we 
obtain an exponent bound for non-elementary abelian group G which admits a skew Hadamard difference set. 
This improves the bound obtained previously by Johnsen, Camion and Mann. 

I.  I n t r o d u c t i o n  

We assume that the reader is familiar with the theory of difference sets as can be found in 

[3] and [5]. 
A difference set D in an abelian group G is called skew Hadamard if G is the disjoint 

union of D, D (-1), and {1 }. The definition gives: 

v - 1  v - 3  v + l  
I ~ D ,  k -  2 ' )~= 4 ' n =  4 

where v is the order of the group G, and k is the size of D. 

If we employ the group ring notations, then in Z[G],  we have 

DD(_I )  _ v +  l v - 3  

--7-+-7-a 
D + D ~-~) = G -  I 

Applying any non-principal character X of G to the above two equations, one has 

-1 •  
x ( D )  = (1) 

2 

This is an important property of skew Hadamard abelian difference sets of which we will 

make use later. 
Skew Hadamard difference sets were studied by E. C, Johnsen [2], P. Camion and H. Mann 

[ 1], and also by Jungnickel [4] in connection with L-ovals. The results of Johnsen, Camion 
and Mann were summarized in [3] as follows: 

THEOREM A Let  D be a skew Hadamard  difference set in an abelian group G. Then v 

is a pr ime p o w e r  pm =__ 3(mod4), and the quadratic residues mod v are multipliers f o r  
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D. Moreover, if G has exponent pS with s >_ 2,then any basis o f  G contains at least two 
elements o f  order pS, and hence one has m >_ 2s + 1. In particular, i f  v = p3 for  a prime 
p, then G is elementary abelian. 

The only known examples of  skew Hadamard difference sets are the Paley-Hadamard 
difference sets formed by the (nonzero) quadratic residues in GF(q), where q is a prime 
power congruent to 3(mod 4) (see [7]). It is conjectured that there are no further examples. 
The exponent bound in Theorem A can be viewed as evidence for this conjecture. In this 
note, we obtain an exponent bound which improves the one in Theorem A. In particular, we 
prove that if v = pS, for a prime p congruent to 3(mod4) ,  then G is elementary abelian. 

2. Main Results 

In this section, we first prove a result concerning subsets D in abelian p-groups with the 
property that D + D I-j) = G - 1 and D (t) = D for any nonzero quadratic residue t of  
(mod p),  then we will use it to get a new exponent bound on skew Hadamard difference 
sets. 

LEMMA 2.1 Let G be an abelian p-group o f  order pro, where p is a prime, p =- 3(mod 4), 
m is a positive integer, and let D C G. Suppose that D + D ( -n  = G - 1, D (t) = D for  
any nonzero quadratic residue t (rood p). Then 

[~1_  1 ( l )  There exists a non-principal character X of  G such that X ( D ) ~ ~ (mod p[~2 -~]) .  

m-I 

(2) I f  m is odd, and for  any non-principal character X of G, X (D) -- e ~ - 1  (mod p ~ ) ,  
then D is a difference set in G. 

Proof:  Since D (t) = D, for any nonzero quadratic residue t (mod p), and note that 
t is a quadratic residue mod p if and only if it is a quadratic residue mod pro, we have 
crt(x(D)) = x ( D ) ,  where ~rl is the Galois automorphism ~p,, ~-~ sepm, Sp~ is a primitive 
pm-th root of unity, X is any non-principal character of  G, by Galois theory, we have 
x ( D )  e Z[o)], where w = ( - 1  + ~2--fi)/2 and Z[w] is the integer ring of Q (4'-2--p) (see 
[6]). Assume that x ( D )  = a x + bxw, ax, bx c Z. Since D + D (-1) = G - l, applying 
X to this equation, we get x ( D )  + x ( D  (-j))  = - l .  Therefore 2a x + 1 = b X and hence 
x ( D )  = ( - 1  + (2a x + 1 ) ~ - ~ ) / 2 .  

m+I 
If  x ( D )  =- ( p i T ]  -- 1)/2(rood p[(,,+l)/2]), for any non-principal character X of  G, then 

p[(m+l)/2] I (2ax + 1). Let 2a x + 1 = p[~-~]Cx,where c x is a non-zero integer. We have 

m+l 
D2[--y--]+l/72 1 + r  -x  

x ( D ) x ( D  (-1)) = 
4 
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Calculating the coefficient of 1 in D D  ~-I) in two ways, one by Fourier inversion formula 
(see [3]), the other by direct calculation, we have 

p r o - 1 -  1 ( ( P m 4 1 ) 2  

2 p-u - +  

Simplifying this equation, 

2) pm _ 1 + p 2[z~-t]+l Y~xCx0 Cx 

4 

2 pro(pro _ 1) = p 2Iz~]+l Z cx- 

g:~Xo 

But, this is impossible because ,L+I 2[ 2 ] + 1 >_ m + 1, we thus deduce a contradiction. This 
finishes the proof of  (1). 

For the proof  of  (2), we simply let 2a x + 1 = p~? td  x, then 

x ( D ) x ( D ( _ I ) )  _ 1 -I- p'nd2 x 

4 

Similarly, by calculating the coefficient of 1 in D D  (-l)  in two ways, we have 

2 
p " ' ( p "  - 1) = pm Z dx 

x Cxo 

l+p", This forces d 2 = 1 for all X r X0. Hence x ( D ) x ( D  ~-1)) = 4 for all ;( 7~ X0. By 
Fourier inversion formula, D is a skew Hadamard difference set in G. This completes the 
proof. �9 

LEMMA 2.2 Let  G = Zp,, x Zp,,  where m, n are posi t ive integers, p is a prime,  p --  

3(rood4), and Iet D C G. I f  D + D (-J) = G - 1, D (t) = D f o r  any t, t =_ a2(modp) ,  
f o r  some a, (a, p )  = 1, then there is a non-principal  character  X o f  G such that x ( D )  

(rood p). 

Proof :  Define ~b : G --~ G via x ~ x z~. It is easy to see that q~ is a homomorphism and 
K = Ker4)  ~- Zp • Zp. Let Do = D - D fq K. Then D0 (t) = Do for any t, t - a2(mod p),  
for some a, (a, p) = 1. Noting that Do has no element of  order p, we have 

D o  = Ux Ul<i_<p_l.(~)= ~ xi(xPl, 

where x runs through a complete set of  representatives of  the orbits of  Do under {t I t - 
a 2(rood p),  for some a,  (a, p)  = 1}, and (x p) ~ {1}. 

Since X((xP)) = 0 if ;( is non-principal on (xP), and X ((xP)) = ](xPtl if ;( is principal 
on (xp), we have x(D0)  - 0 (modp) ,  for any non-principal character ;( of  G. I f  for any 
X ~ X0, X (D) -- ~ (rood p), then X (D N K) --= e@ (rood p),  for any X r )~o. But this 
contradicts ( ! )  o f  Lemma 2.1, therefore, there is a non-prir~cipal character X of  G such that 
X (D) ~ ~ (mod p) .  This completes the proof. �9 
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Now we are in the position to state the main theorem. 

THEOREM 2.1 Let G be an abelian p-group for  some prime p = 3(mod 4), and let I G I = 
pm e x p G  = pS. I f  G admits a skew Hadamard difference set D, ands  > 2, then s < ,n+l 

' - -  - -  4 " 

Proof:  By Theorem A, we can assume that G G' = x Z p  x Zp,. By equation (1), if 
X r Xo, then 

- 1  + x/-2--F " 
x ( D )  -- 

2 
m - I  

p--r- - 1 m-1 - !  4- 
_ _ _  + p - - f -  

2 2 

Let D1 = D N (Zp, x Zp.,), G' = {gl = 1, gz . . . . .  gt}. Then 

D = D1 + D2g2 4- . . .  4- Dlgl (2) 

where Di C Zp, x Zp,, i = 1,2 . . . . .  1. 
For each non-principal character X' of  Zp, x Zp,, we can extend it to G in 1 ways, assume 

the extensions are X'l, X; . . . .  Z;, then {Xl Io', i = 1,2 . . . . .  l} = (G')*. 
Applying these characters to equation (2), one has 

x ; ( D )  = x ' ( D I )  

X'2(D) = x ' (D1)  

xI (D)  = x ' ( D l )  

Since El=,  xi(gj)=0, j 

1 

+ x ' (D2)xI (g2)  + " "  + x'(DI)X'ltgz) 

+ x'(Dz)x'2(g2) + " "  + x'(Dl)x '2(g/)  

4- X' (Dz)X; (g2) + " "  4- x ' (DI )x I (g l )  

i=1 
m - I  

, p - W - I  
= IGI 

2 

where 3 e Z[w]. Therefore 

m I m - I  
, p - - f -  - -  1 p - - f -  

x ( D 1 ) - -  ~ + - ~  

, , ~ ' 
tG IX (D1) = x i (D)  

m - I  
- -  + p- ' r-8 

Noting that IG'I = pm-2s, one has 

t t l - - I  
, p - T  - -  p -_, ,_.0.  p - -  1 

x (D~) -- - -  + p~-~ 2 8 + - -  
2 2 

By the definition of  skew Hadamard difference set, and Theorem A, it is easy to see that D1 
satisfies the hypotheses of  Lemma 2.2, so by Lemma 2.2, there is a non-principal character 

= 2, 3 . . . . .  l, we get 
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' m + l  m + l  X of  Zp.~ x Zp.~ such that X' (D1) 7~ f @  (rood p),  therefore 2s - --7- < 0, so s < 4 " 

This completes  the proof. �9 

COROLLARY 2.2 I f  an abelian group G admits a skew Hadamard difference set, and IG] = 
pS, then G is elementary abelian. 

The proof  of  this corollary is immediate  from Theorem 2.1 by letting m = 5. 

COROLLARY 2.3 I f  G is an abelian group which admits a skew Hadamard difference set, 
and G is not elementary abeIian, then p-rank(G) > 4. 

This is an immedia te  consequence  of Theorem 2.1. 

In view of  Theorem 2.1, the first open cases for testing whether an abelian p-group admits  
a skew Hadamard  difference set or not  are: G = Zp x (Zp2) 3, and G = (Zp) 3 x (Zp2) 2. 

These two cases seem to be more difficult than the case [G[ = pS. 
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