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On a free boundary problem for minimal surfaces 

M. Struwe* 

Institut ffir angewandte Mathematik, Beringstr. 4, D-5300 Bonn I, Federal Republic of Germany 

For  C4-embedded manifolds S = 1 (  3 which are differmorphic to the stan- 
dard sphere in I (  3 the existence of non-constant minimal surfaces bounded 
by S and intersecting S orthogonally along their boundaries is deduced. 

Introduction 

Let B =  {w=(u, u)e1(2/IW] < 1} be the unit disc in ~x 2 with boundary C, and let 
S be a closed surface in 1(3. A disc-type minimal surface spanning S by defini- 
tion is a mapping XeC2(B; 1(3)n C1(/~; 1(3) such that 

AX=O in B, (1.1) 

IX,[Z-IXvIZ=O=X,.Xv in B, (1.2) 

x(c)=s, (1.3) 
X,(w)J_Tx~w)S, VweC. (1.4) 

Here n is the outer normal to B, subscripts denote partial derivatives, 1"[ and �9 
are the (Euclidean) norm and scalar product in 1(3, and TrS for YeS denotes 
the tangent space to S at Y. For  brevity, problem (1.1)-(1.4) will be referred to 
as problem P(S). 

Free boundary problems of this and related types already were studied in 
the last century. In particular, the extensive investigations of H.A. Schwarz 
[18] should be mentioned here who applied the theory of elliptic integrals to 
these problems and among other results was able to completely describe the 
set of solutions of a famous problem posed by Gergonne in 1816. 

In the first half of this century R. Courant proposed Dirichlet's Principle 
which he had so successfully applied to the solution of Plateau's problem as a 

* This research was supported by the Sonderforschungsbereich 72 of the Deutsche-Forschungs- 
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means to approach P(S) (cp. [4, 5]). He sought to characterize a minimal sur- 
face spanning a given manifold S as a stationary point of Dirichlet's integral 

D(X)=�89 ~lFZ[Zdw (1.5) 

among comparison surfaces satisfying a suitably weakened form of the bound- 
ary condition (1.3), the conformality relations (1.2) and the transversality con- 
dition (1.4) taking the form of "natural"  boundary conditions. Provided that he 
was able to prevent a minimizing sequence for Dirichlet's functional from de- 
generation by imposing a kind of "linking condition" on admissible functions, 
by weak lower semi-continuity of the Dirichlet integral Courant was able to 
produce a nontrivial (weak) solution of P(S). In [-5, p. 213ff.], this is illustrated 
for surfaces S of the type of the torus. Subsequently H. Lewy [15], W. J~iger 
[10], S.Hildebrandt and J.C.C. Nitsche [8, 9] established the regularity of the 
free trace for the solutions of P(S) obtained in this manner. Finally, M. Griiter, 
S. Hildebrandt and J.C.C. Nitsche [7] also proved regularity along the free 
boundary for stationary points of D which were not necessarily absolute mini- 
ma. Thus, problem P(S) became fully accessible by variational methods. 

However, if a "linking condition" is not available - as in the case of a 
convex compact surface S - the direct methods in the calculus of variations in 
general only produce the trivial constant solutions of P(S), while any noncon- 
stant solution necessarily is of non-minimum type. Instead a "mountain-pass- 
lemma" seems to be needed. But due to the nonlinearity of the boundary con- 
dition (1.3) the classical Palais-Smale condition (cp. e.g. [16]) does not seem to 
hold for P(S), impeding the use of more refined variational techniques. There- 
fore for S as above the existence of nontrivial solutions of P(S) in general had 
remained an open (cp. [5, p. 201], [13]; for more historical details we also refer 
the reader to [5, 6], and [13]). 

In the following we establish: 

Theorem 1.1. For any embedded surface S of class C 4 and diffeomorphic to the 
unit sphere in ~3 there exists a nonconstant minimal surface spanning S solving 
(1.1)-(1.4). 

Our approach relies on an adaption of a method developed by Sacks and 
Uhlenbeck [17] to prove existence of harmonic mappings from S z into S. In 
this problem a loss of compactness is encountered simular to P(S), essentially 
due to the fact that in both cases nonlinearities arise which correspond to 
limiting exponents for Sobolev embeddings. 

From this observation and in view of recent results for surfaces of pre- 
scribed constant mean currature [1, 20, 23, 24], and Yamabe's equation [2] it 
may be conjectured that a Palais-Smale type compactness condition (as in [21] 
or [-22]) holds locally for P(S) - and for the harmonic mapping problem - in a 
certain range of energies. For  harmonic mappings this conjecture is strongly 
supported by the results of Sacks and Uhlenbeck [17]. 

Our results seem to extend to higher dimensions. Moreover, by analogy 
with the problem of closed geodesics on a closed compact surface 1 we conjec- 

1 In both cases the space of admissible functions may be identified with the space of closed 
curves on S 
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ture that in general there will be at least 3 distinct solutions of P(S), and that 
analogous multiplicity results will hold in higher dimensions. 

Indeed, if S is a quadrilateral in IRa (or more general: an (n+ 1)-lateral in 
IR") such results have recently been established by B. Smyth [19]. Finally, re- 
sults of J.C.C. Nitsche [14] suggest that in general in 1/3 there will exists at 
most three distinct solutions of P(S). 

It is a pleasure to thank Prof. S. Hildebrandt and J.C.C. Nitsche for bring- 
ing the subject of this note to my attention. 

2. Basic notations 

The L p-, H ' 'p-, Cm'&spaces are defined as usual, II'[Ip;G denoting the norm in 
LP(G) (cp. [1]). The domain G will sometimes be omitted in this notation, d 
denotes (total) derivative, 17 stands for gradient, partial derivatives may be de- 
noted by subscripts. �9 signifies adjoint or duality. ( . ,  ")v is the dual paring 
between a vector space V and its dual. In case V=IR" we also write (X,  Y)~,, 
=X.  Y. Br(v; V) is the ball of radius r around v in V. In case V=IR 2 we omit 
V in this notation. Moreover, BI(0)=B. A generic point of B is denoted by w 
=(u, v). Sometimes (especially on C = ?B) polar coordinates (r, 4~) will be used. 
Capital letters X, Y, Z denote generic points in IR3 or functions into IR a. 

For e >  1 let HI,2~=Hl,Z~(B; IR3) with trace spaces H 1-2~'2~ 

=HI-~d, 2~(C; IRa), the norm in H 1-22g '2~ being 

IX(w)-X(w)l 2" 
]IXI2~-L2~=5IXIZ'dw+SS= c ] w ~  dwdw'. (2.1) 

C C 

Note that the embedding H1'2"(B; IR3)~H1- I ' 2~ (C ; IR3)  is continuous. Con- 
versely, for any ~>1 there exists a continuous linear extension operator G 

1 _ 1  
from H ~,2~ into H ~'2". Moreover, from (2.1) we easily obtain the following 

1 
Lemma 2.1. Let e > l .  i) If X, YeH a 2~' c~12 (C), then X.YeHa-~ 'z 'c~L~(C)  
and 

IlX" ri l l  - ~ ,  2~ <- blX]lo~ H YII1 - ~ ,  2~ § II rHo~ IlXl[ 1 - ! ,  2~. 
2c~ 2~ 2~ 

1 1 
ii) I f  X e H  -G'2~(C;IR") and aeCl(R") ,  then 

ttooXll ~ _ ~ 2 ~  < II~roXll 2~+ [l(da)oXll~ IIX[I t - •  2~. 
2e 2~ 

Also let H0 ~'2= denote the closure of C~(B;]R 3) in H ~'z=. y will denote the 
A 

mean over a set A. The letters o, 0 are the standard Landau symbols, 6~,j is the 
Kronecker symbol. The letter c denotes a generic constant, occasionally num- 
bered for clarity. A summation convention is used. 

Let S be an embedded surface of class C 4 differmorphic to the standard 
sphere in IR3. 
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Note that this implies 
($1) There is a uniform lower bound ps>O on the injectivity radius of the 

exponential map on TS, the tangent manifold to S. 
($2) There exists a constant 6s>O such that for any point x e N  3 at distance 

from S dist (X, S) < (3 s there is a unique point Y=prs(X)eS such that 
dist (X, S) = IX - Y[. 

By ($2) the projection pr s of a 6s-neighborhood U of S onto S and the 
reflexion R:U--*U, R(X)=2prs (X) -X ,  are well defined. Moreover, let 
G: S---,S 2 be the Gauss map on S assigning to any point on S the unique outer 
normal  vector. Since SeC 4, GeC 3. 

By the relations 

R(X) = X + 2 dist (X, S) G(X) (2.2) 

if X lies in the bounded component  of N3 \S ,  

R(X) = X - 2  dist (X, S)G(X) (2.3) 

else, also R e C 3. 

3. The perturbed problem 

We embed P(S) in a one-parameter  family of problems ( e~ ( s ) )~ t> l  , such that 
each P,(S) for e >  1 corresponds to a variational problem for which the Palais- 
Smale condition is satisfied. Applying the minimax-principle [16] we then ob- 
tain saddle-type solutions X~ for P~(S), ~ >  1. Finally, a non constant solution 
of P(S)=P~(S) is obtained on passing to the limit e--,  1 in an appropriate  se- 
quence of such surfaces X~. 

For  ~>  1 let 

M~= {XeHX'2~tX(C)~S}, 

E=(X) =�89 S [-(1 +[Vx[2) = -  1] dw. 
B 

M= is a reflexive Banach manifold with tangent space TxM ~ at a point XEM~ 
given by 

TxM ~ = {q~eH t' 2~tq~(w)e Txo~)S, V we C}. 

Similary we may define for e = 1 

M=MI={X~.Ht'2~C~ E(X)=�89 S [[7XI2dw. 
B 

M is a non-reflexive Banach-manifold with tangent spaces 

Tx M = {q~ e H  1, 2 n C~ R3)t q~ (w) e Tx(w)S, V we C}. 

For simple notation let 

Ta.=H1,2ac3C~ o~>1. 
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We now derive a convenient representation of dE~: M - - , T * M , .  First define 
the projection pr,(X; "): T, ~ TxM=c T= by letting 

pr=(X ; qo) = q) - q~([G(X)( G(X), q0)m ] Ic). 

Lemma 3.1. For any ~>1 the mapping pr~:M, x T=--*TM= is Lipschitz con- 
tinuous and satisfies the estimate: I f  (X,,) is a sequence in M~ such that X , , ~  X 
weakly in H 1, 2= and uniformly as m ~ o o  then 

II(X, , -X)-pr=(Xm; Xm-X) l l l ,2=~O (m--,oo). 

Proof. i) Lipschitz continuity follows from Lemma 2.1 and the continuity prop- 
erties of r/=. ii) Clearly XeM=. We may assume that HXm--Xll~<pS. Let we C, 
T'.= the geodesic distance from Xm(W ) to X(w) on S, {Yt}o~,=<r the unique 
geodesic line joining Yo=Xm(w) with Yr=X(w)  in the geodesic ball Bos(Yo) on 
S, parameterized by arc length. 

S ince /G(Yo) ,dYt  = o ) m = 0 ,  wehave  

= dtds G(Yo)<G(Yo), Yo - YT>F.3 i G(Yo) G(Yo)' ~ Yt ~ 
0 0 

= : a ( Y o ,  Y T ) .  

Note that since S~C a, by well-known properties of the exponential map, a is 
differentiable with respect to (Yo, YT) eS X S satisfying ]Yo-YTI<Ps, and in fact 

[da(Yo, YT)I <C[Yo - YTI 

with a constant c depending only on S. 
Hence by continuity of r/= and Lemma 2.1 

i[(X, _X)_pr=(Xm;X, .  2~t - X ) l l l , 2 =  

= X X 2a 11,7=([G(X,.)<~(Xm). , . -  > ~ 3  Ic)ll 1. ~ 

<c }IG(Xm)<G(X.,), X , . -  2= _ X > ~ l l ~ _ •  
2or 

2a 1 = c  It ~ o (x , . .  x ) l l l  - _ , 2 =  
2= 

<cllXm__Xlt~.(ilX,.icll2= , 2= 2=+ tlXlcll 1_1,2=). 
= 1 - ~ - ,  2= 

~ 0  (m ~ oo). qed 

Now uniformly represent TxM~=pr~(X; T,), and define d~E,: M--,T,* by let- 
ting 

<d,E=(X), q~)T= = <dE=(X), pr=(X ; qO))TxM. 

From these representations of TM= and dE= it is easy to deduce: 

Lemma 3.2. M=, E= are of class C 1" 1. 
Moreover, we have 



552 M. Struwe 

Lemma 3.3. E, satisfies the Palais-Smale condition on M~: I f  (X,,) is a sequence 
in M, such that E,(X,,)<c and dsE,(X,.)~O strongly in T* as m~oo, then a 
subsequence of (X,,) converges strongly in M,. 

Proof By uniform boundedness [IVX,,t12~<E~(X,.)<=c and nXm[cH~<sup[X[, 
XeS  

the family (Xm) is uniformly bounded in H 1'2". Hence, and by Sobolev's em- 
bedding theorem we may assume that Xm--*X weakly in H ''2~ and uniformly 
on /3 as rn-~oo, where XEM,.  But then, as always letting 0(1) denote quan- 
tities that tend to zero as m ~  00, 

c-XltX.,-Xll2~,z<~(VX.,(1 + [VX,.lZ) ~'-1 
B 

- V X ( l + l V X l 2 ) ~ - ~ ) ( v x ~ -  VX)dw+o(1)  

--~ (1 +]VXm]2) "-~ VX,," V(Xm--X ) dw+o(1) 
B 

= (dsE~(Xm), X ~ -  X>T ~ 

~- < dEa(Xm) , (X m-  X)-pr~(Xm; X m- X) >n,,2, + o(1) 

<=c[l(X~-X)-pr,(X,,; Xm-X)[ 11,2~+o(1)-o0 (m-o ~),  

by Lemma 3.1. qed. 

Definition 3.4. A surface XcM~ is called a critical point of E~ iffdsE~(X)=O , its 
value E~(X) then is called critical. 

By Lemmata 3.2, 3.3 Lusternik-Schnirelman theory may be applied to 
problems P~(S) in order to obtain non-constant critical points of E~ for ~> 1. 
To define a suitable class of subsets of M~ which is invariant under continuous 
deformations of M~ introduce polar coordinates (~b, 0) on S 2. Then $2~_ C • [ 

5, 5] with C • {-~},  C • {5} collapsed to points. Let a: S ~ S  z be the diffeo- 
morphism in the assumptions on S. Then any continuous mapping p: [ 

~ ] ~ M ~  such that p(-~) ,  p(~) are constant maps induces a mapping p: 
S 2 -o S 2 by letting 

~(q6, O)= a(p(O)(e~)). (3.1) 

Endowing the space of mappings $ 2 ~ S  2 with the C~ set 

P= = {pc C~ - 5, 5]; M=)Ip(- 5) = const, p(~) = const, pc C~ S 2) 

is homotopic to the identity on $2}. 

Since (3.1) for ~=id/S 2 defines a path pcC ~, clearly P~+0 for any ~>  1. 

Proposition 3.5. For any a> 1 there exists a critical point X~eM~ of E~ charac- 
terized by the condition 

E~(X~) = inf sup E~(X) =." fl~. 
pep  X~im(p) 

Proof Since P~ is invariant under deformations of M~ along integral curves of 
VE~ the result follows in a standard way. (Cp. e.g. [3, p. 42fj, [16, 
p. 190].) qed. 
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Remark 3.6. No te  that  for all XeM~,  all c(e[1, c~] we have E,(X)NE~(X) ,  and 
P~ c Pa,. Hence  for all ct '< ~ we have fla,--< fla. 

Tak ing  a compar i son  path  p of class C 1 we thus obtain  a uniform upper  
bound  for the critical values fla: fla < fl~ < oo. 

Moreover ,  

L e m m a  3.7. There exists a number f i0>0  such that for any ~>1 we have 

Proof By R e m a r k  3.6 we may  restrict our  a t tent ion to ~ =  1. Replacing an 
arbi t rary  curve peP,  by replacing X=p( t )  by the harmonic  extension of X[c 
does not  change/~ and reduces energy. Hence  it suffices to give a lower bound  
for sup E(X) if peP  consists of ha rmonic  surfaces X. 

X~im(p) 
F o r  a ha rmonic  surface X e M  dist(X, S)=supdist(X(w), S) is assumed at an 

w~B 

interior point  weB. By conformal  reparamet r iza t ion  we may  achieve that  w=O, 
wi thout  changing E(X). By the mean  value proper ty  

x (o) = ~ X (w) dw, 
C 

and since X ( C ) c S ,  we may  est imate 

dist (X, S) = dist (X(O), S) < f IX(O) - X(w')[ dw' 

--< S ~ IX(w)-X(w')l awdw' 
C C  

a w a w  
} W - -  ' 

< c2 (e(x))~. 

N o w  p ( [ -  ~, ~] • B) cannot  lie in a as -ne ighborhood  of S. Else we could con- 
t inuously project im(p) onto  S via pr s defined in w Then applying the ho- 
m o t o p y  {Pr}0-<r<-> P~(O,w)=Prs(P(O, rw)) we obtain  a h o m o t o p y  of p--~id[s= 
with a mapp ing  that  takes S 2 into a line. Since such a mapp ing  is homotop ic  
to a cons tant  mapp ing  in C~ $2), while id[s: is not, a contradic t ion results. 
Hence  we obta in  

inf sup d i s t ( X , S ) > a  s, 
p~P XEim(p) 

and therefore fll > (c21 as)2 = :  rio >0 .  qed. 

In L e m m a  5.1 we show that  the numbers  (fia)a> 1 in fact are bounded  f rom 
below by the energy of a non-constant  minimal  surface spanning S. F o r  convex 
surfaces S the next result therefore provides a bet ter  bound  for fla. 

Proposition 3.8. Assume S is a convex surface and tc >0 a bound for the sectional 
curvature of S. I f  X is a non-constant solution of P(S) we have 

E(X) > rt/~: 2. 
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Proof By Lemma 1 of [11] for any e>O we may extend G to F. 3 such that 
LIdGlloo<x+e. Now note that the set GoX(C) cannot be contained in a hemi- 
sphere {Y~SZlY. Yo>O}. Else by the Hopf maximum principle and since 
X ~ const. 

Hence, introducing polar coordinates on C, by (1.2): 

2~< ! ~ G o  ItdGH~ o X d4, 

---lidall~ ff(VX, da( X) V X )~dw 
B 

< 2 ltdG 11L E(X) < 2 (K + e) 2 E(X). 

Letting e ~ 0 the claim follows, qed. 

4. Regularity properties of the perturbed problems 

Lemma 4.1. For any ~ ] 1 , 3 [  any critical point X~M~ of E~ belongs to the class 
HE,q(B; N3), for any q < o~, and is a classical solution of the equation 

- rE(1 +[VXl2)  ~-1 c x ]  = o  (4.1) 

satisfying the orthogonality condition (1,4) pointwise on C. 

Proof i) Since for any (p~Hg "2~ 

(dE~(X), ~P)nl,2, = (dsE~(X), ~P)T, =0,  

X is a weak solution of (4.1). But then by H~Jlder continuity and [12, Theorem 
1.11.1] X~H21o~Z(B;~3), and higher interior regularity follows as in [17, Prop. 
2.3]. 

ii) To obtain boundary regularity we use the reflection principle to extend 
X as a solution of a quasilinear elliptic system to a region containing B. The 
problem of boundary regularity thereby is reduced to the problem of interior 
regularity for equations of the type encountered also in [17]. Since X is HiSlder 
continuous in /~ there exists _r<l such that for _r<Lw[<l dist(X(w),S)<6 s, 
where 3 s is the constant in condition ($2). Let ?=_r-1 and define 

Yf(w)=R(X(w/Iwl2)), if 1 < Iwl <7, 
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R being the reflection in S. Since R2=id, clearly X(w)---=R(X(w/lwl2)) for 
r < I wl < 1; thus as in [8, p. 261 f] we obtain that for all q~eH~' 2"(B~(0)\B; 1/3) 

d s (1 + I VR((2 + ~q~)(w/Iwl 2))] 2Vdwl~= 0 = 0, 
B 

or equivalently, that 2 weakly solves the system 

- v I-(1 + Iwl '~j(2) v 2 ' .  vRJ) ' -  1 ~ ( 2 )  vRJ] 

+ �89  V2~V2~) ~-1 ?' " ~X ? g~ (8)  VX j IZXk = O, 

with 

and summation over repeated indices. 
Note that by (2.2), (2.3) ff ~ C 2 and 

~ij(X) = 6~+ 0(dist(X, S)). 

1_<i<3, 

(4.2) 

Now extend X to B~(0) by letting X(w)=X(w)  for Iwle]l,~[, and define a new 
matrix function g: B~(0)x 113 ~113 • 3 by letting 

Also let 

16ij,X,, if we/~ gi~(w, X)=  
k~ijt ) if w(EB. 

a(w)={1, if we/3 
Iw[ 4, if w(EB. 

Then by (4.1), (4.2) X is a weak solution of the equation 

- V [(1 + a (w) gkt(W, X) V X k V X z), - a gij(w ' X) V X j] 

+�89 ) VXkVX~) ~ 1 0 ~ g j  (w,X) V X i V X  =0, 

1<i-<3, (4.4) 

in Br But for q~EH~'2(B~(0);F,~ 3) the boundary integrals 

~ ~ ~" i -S(1 + a(w) gkl(W, X) v 2kV Xt)~- ' gij(w, X) ~r XJ ~o dw 
C 

= 2(dsE~(X), q))T. =0. 

Hence X in fact weakly solves equation (4.4) in Be(0). 

(4.3) 



556 M. Struwe 

iii) To show the contended regularity from (4.4) next note that X satisfies a 
local Morrey-type condition 

(1 +[VXl2)~dw<co r~ (4.5) 
Br(wO) 

? - 1  
with constants Co, 7>0  which are uniform for all wo~BL~Z(0), r<ro<~4-- , and 

like r o depend only on the modulus of continuity and energy E~(X) of X. 
Indeed, letting Wo, r be as above choose a smooth cut-off function r vanishing 
outside Bzr(Wo) and identically 1 on B,(wo). Define X =  ~ X dw and 
insert q ) = ( X - J ( ) r  2 into (4.4) to obtain" B2r(W~176 

5 (1 +[VXI2)=-IIVXI2r,2dw 
B~(O) 

<ci ~ (I+IVX]2)~'-IlX-XI2IVTI2dw 
B~(O) 

+c2 5 (I+[VX[2)~-IlVX[Z[x-xI~Zdw. 
B~(O) 

~ - 1  - 1 
Choosing r o < ~  sufficiently small we can achieve that I X -  X I < ~c2. 

Hence by the Poincar6 inequality 

(1 -qI-[VX[2)~-I[VX[2dw~c3 f (1 --~l~TXl2)adw 
Br(wo) B2r(wo)\ Br(wO) 

§ C a ~ r2 ~ dw (4.6) 
B2r(Wo)~Br(wo) 

<c4 ~ (1 +lVXl:)'dw 
B2r(WO)\Br(wO) 

and (4.5) follows by hole-filling" Add c 4 times the left-hand side to (4.6), divide 
by (c 4 + l) and iterate. 

iv) Now introduce polar coordinates (r, q~) on BR(O ). For h + 0  let 

Xh= ~ IX(r, qS+r-Xh)-X(r, ~b)] 

be the difference quotient in angular direction. Also let r be a smooth cut-off 
function having support in a ball B2,(w0) centered at a point wo~C and identi- 
cally 1 on B~(wo). We shall assume that 2r < ? - 1 .  Inserting the testing function 

q~ =(Xhr2)_h 

into (4.5) after some standard estimates and rearranging of terms we arrive at 
the inequality 

(1 § 
B~(O) 

< c  a �9 ~ (1 +lVXl2) ~-x IVXl2lXhlZz2dw (4.7) 
B~(O) 

+c2" ~ (l +lVX[2)=-l(lVXl2 +jxhlZ)lvz[Zdw 
By(O) 

+%-  ~ (l+a~l,,(X) V X I [ 7 X m ) ~ - I ~  (X) VXJVXk(XhZ2)_hdw. 
Bv(O)\B 
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Now "integrate by parts" with respect to the difference quotient in q~ in the 
last term to obtain 

VXk(Xhr2) hdw (1 + a ~ M X )  VX~VX"y -1 ~ i ~ ( X )  VXJ 
B~(O)\B 

1 < ~ (l+lgxl2)~-ll[TXh]2"c2dw 
= 2C3 B~(0) 

-[-C 4 " ~ (I +IVXIE)=-IlVXI21XhI2Z2dw. 
B~(O) 

To estimate the first term on the right in (4.7) as in [8] we use the self-repro- 
ducing property of Morrey-spaces [12, Lemma 5.4.1] to obtain from (4.5): 

~( (l + [ V X [ 2 ) ~ t - l [ V X [ 2 1 X h l 2 " [ 2 d w  
BdO) 

<c5"Co ~ IV(Xh~)12dw'r e/z 
Br(O) 

<=c~'r ~/~ ~ IVX~l~dw+c~ " ~ IX~l~lWl~dw. 
B~(O) B~(O) 

Choosing r sufficiently small we hance find that 

IVXhl2r2dw<c8 ~ (l +lVX12)~-'(Ivx12 +lXh12)lv~12dw. 
B~(O) B~(O) 

1 
Since X h ~ r . ~ X  in H ~'2~ as h-~0 the right hand side of this estimate re- 

1 
mains uniformly bounded as h--,0, whence XeeHlo2(B~(O). But then from 

r 
equation (4.1) upon solving for X ,  we obtain that XEH2"2(B;~x 3) and hence 
also XeHZo~(B~(O); R3). 

v) To conclude the proof note that by the boundary condition (1.3) for X 
the matrix function w~g(w, X(w)) is a.e. differentiable on Be(0) and satisfies 

Idg(', X('))l <=cldXl +c. 

Hence and since XeH(o ~, differentiation is permitted in (4.4) and we obtain 
after multiplication with (g~(X))- 1(1 -}- ag~j(X) VX ~ VXi) ~ -~ that a.e. on Be(0): 

l A X  k + 2(cr - 1)(1 + agl,,(X ) VX ~ VX m) lagi j  V X  i V2 X j VXk[ 

=<clVXI 2, 
(4.8) 

with a constant c depending only on S. 
Since X~HZo~--,H~o q, V q <  0% from this differential inequality as in [17, 

Prop. 3.1] we infer that for ~ ] 1 , ~ [  X~H2'q(B;fft,3), Vq<oo.  
In particular X~CI(/~;IR3), and (1.4) follows in the pointwise sense from 

the condition dE~(X)=O~T*M,, qed 
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Remark 4.2. For  later reference note that as a by-product of the preceding 
proof we obtain that any critical point X s M ,  of E, may be extended in H 2,q 

to a ball B~(0) as a solution of the elliptic system (4.4) or the differential in- 
equality (4.8), for any q<oo ,  where ? >  1 depends only on the modulus of con- 
tinuity of X (on /~), and the Ha'q-norm of X on B~(0) for any q <  oo may be 
estimated by a constant depending only on q, the modulus of continuity and 
the "energy" E~(X) of X, uniformly as c~ --, 1. 

5. Passing to the limit 

1. In this final section we use the regularity result of Section 4 to obtain a non- 
constant solution of P(S). Consider a sequence (~m)m~, em> 1, am--" 1 (m~ o0), 
and let Xm=X,, ,  be the solution of P~m(S) quaranteed by Proposition 3.5. By 
Remark 3.6 we may assume X ~ X E M  weakly in H a'2. Next choose points 
WmeB and numbers #m > 0 such that 

I VXm(W,,)[ = sup IVXm(W) I =:  #~ 1, 
w,EB 

and introduce a further sequence (Ym)m~N by rescaling: 

V.,(w)= Xm(Wm + #~ W). 

Lemma 5.1. i) I f  #m >#>0,  then the sequence (X,,) converges to a non-constant 
solution X of P(S) in Cl(/~; It,3). 

ii) I f  #m~O, there exists a non-constant solution X o of P(S) such that 

E(Xo) + E(X) < lim inf E,m(X,). (5.1) 
m ~ ( x 3  

Proof i) In the first case the sequence (X,,) is equicontinuous, hence by Lemma 
4.1 equibounded in Hz'q(B;IR 3) for any q<  oo. Thus a subsequence (Xm) con- 
verges in C1(/~; ~3)  to X. Clearly, X satisfies (1.3), (1.4) and - passing to the 
limit c ~ l  in (4.1) - is harmonic. Hence dE(X)=O~TxM. Moreover, by the 
estimate of Lemma 3.6 X is non-constant. To verify the conformality relations 
(1.2) let z~, let < 1, be any differentiable family of diffeomorphisms of /3 such 

d d VX~TxM from that Zo=id. Since ~(Xor~)l~=o=~Z~l~=0.  

O=(dE(x) ,d(x~ 

d 

and the classical result [5, Chapter 111.4] we infer (1.2). 
ii) In the second case we distinguish two possibilities: 
a) Either the sets Bm={wlwm+#mweB} exhaust all of ~2,  or 
b) there exists a vector WoSR 2 such that after suitable rotation of B m and 

translation by w o B m is contained in the half-plane IR 2 ={ v >0 }  and exhausts 
this set as m--* c~. 
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a) In the event a) holds from the equation for ym 

1 VYmV2 YmVY" S m L(Y,,):=AYm+2(C~m- ) ~ ~  =0  in (5.2) 

(in symbolic notation) and arguments as in part i) of this proof, a subsequence 
(Ym) Cl-l~ converges to some vector YeC1(~2;~3) .  Passing to the limit 
~ m ~ l  in (5.2) Y is harmonic. Moreover, since IVYm(O)I=IVY(O)[=I , Y is non- 
constant. But by the maximum principle for Eq. (4.1) the images of the surface 
Ym are contained in the convex hull of S, hence bounded uniformly in m. Thus 
also Y is bounded. But then Y must be constant, a contradiction. 

Hence we are left with case 
b) Using Remark 4.2 we first note that the surfaces Ym may be extended to 

domains /}m as solution of systems like (4.4) satisfying a differential inequality 
like (cp. (4.8)) 

IL(Y,,,)I<=clVYml 2 
-,,, 

with a constant c depending only on S, where the sets (B)m~N exhaust a half- 
plane [V>Vo} for some Vo<0, and the sequence (Ym) is locally uniformly bound- 
ed in H 2'q on this set, for any q < ~ .  Hence we may extract a subsequence 

(Ym) that converges in CI(RZ+c~BR(O);F,.3), for any R<oo ,  with limit some 
non-constant function Y belonging to the class H2'q(IRZ+~BR(O);~,. 3) for any 

Y(u,O)_LTr~,,o~S for all u ~ ,  and - passing R <  ~ .  Moreover, Y({v--O})mS, 

to the limit in (5.2) - A Y =0. Furthermore, for any k we have 

I V YI2 dw + ~ [V XlZ dw<=liminf ~ I V Yml2 dw + ~ I V X[2 dw 
B k B m ~  c~ B k B 

=liminf(  ~ IVX,,,12dw+ ~ IVSl2dw) (5.3) 
m ~ o o  { w m } + l z m B k  B \ ( { w m } + i z m B  k)  

< lim inf ~ I VX ml 2 d w < 2 lim inf E~,,,(Xm). 
m ~ o o  B m ~ o o  

Passing to the limit k--* ~ we infer that [VYI~L2(~2). But then the harmonic 
function f=2.Y, , .  Y,,, belongs to CZc~D(~ 2) and vanishes on {v=0}, and 
hence may be continued in C2c~LI(]R z) to a harmonic function on R 2  simply 
taking f(u, - v )=  - f (u ,  v). It follows that f - 0 .  Hence the harmonic conjugate 
of f, g = l Y f - l Y f  is constant. Since also gsL 1, g=0,  proving conformality 
(1.2). Conformally reparameterizing Y we hence obtain a surface 
X osH 1,2(B; R2) satisfying conditions (1.1)-(1.4) a.e. By the regularity result of 
Griiter, Hildebrandt, and Nitsche [7] X 0 also is a classical solution of P(S). 
Moreover, by conformal invariance of the Dirichlet integral estimate (5.3) con- 
veys to X0, concluding the proof of Lemma 5.1 and this paper, qed 
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