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On a free boundary problem for minimal surfaces

M. Struwe*

Institut fiir angewandte Mathematik, Beringstr. 4, D-5300 Bonn 1, Federal Republic of Germany

For C*-embedded manifolds ScR* which are differmorphic to the stan-
dard sphere in IR? the existence of non-constant minimal surfaces bounded
by § and intersecting S orthogonally along their boundaries is deduced.

Introduction

Let B={w=(u, v)eR?/|w| <1} be the unit disc in R? with boundary C, and let
S be a closed surface in R® A disc-type minimal surface spanning S by defini-
tion is a mapping X e C*(B; R*n C'(B;R?) such that

AX=0 in B, (1.1)
|X,2—|X,|*=0=X,X, in B, (1.2)
X(C)<s, (1.3)
X,(W) L Ty,,S, VweC. (1.4)

Here n is the outer normal to B, subscripts denote partial derivatives, |+| and *
are the (Euclidean) norm and scalar product in R?3 and T, S for YeS denotes
the tangent space to S at Y. For brevity, problem (1.1)-(1.4) will be referred to
as problem P(S).

Free boundary problems of this and related types already were studied in
the last century. In particular, the extensive investigations of H.A. Schwarz
[18] should be mentioned here who applied the theory of elliptic integrals to
these problems and among other results was able to completely describe the
set of solutions of a famous problem posed by Gergonne in 1816.

In the first half of this century R. Courant proposed Dirichlet’s Principle
which he had so successfully applied to the solution of Plateau’s problem as a
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means to approach P(S) (cp. [4,5]). He sought to characterize a minimal sur-
face spanning a given manifold S as a stationary point of Dirichlet’s integral

DX)=L |V X|2dw (1.5)

among comparison surfaces satisfying a suitably weakened form of the bound-
ary condition (1.3), the conformality relations (1.2) and the transversality con-
dition (1.4) taking the form of “natural” boundary conditions. Provided that he
was able to prevent a minimizing sequence for Dirichlet’s functional from de-
generation by imposing a kind of “linking condition” on admissible functions,
by weak lower semi-continuity of the Dirichlet integral Courant was able to
produce a nontrivial (weak) solution of P(S). In [5, p.213ff.], this is illustrated
for surfaces S of the type of the torus. Subsequently H. Lewy [15], W. Jager
[10], S.Hildebrandt and J.C.C. Nitsche [8, 97 established the regularity of the
free trace for the solutions of P(S) obtained in this manner. Finally, M. Griiter,
S.Hildebrandt and J.C.C. Nitsche [7] also proved regularity along the free
boundary for stationary points of D which were not necessarily absolute mini-
ma. Thus, problem P(S) became fully accessible by variational methods.

However, if a “linking condition” is not available - as in the case of a
convex compact surface S - the direct methods in the calculus of variations in
general only produce the trivial constant solutions of P(S), while any noncon-
stant solution necessarily is of non-minimum type. Instead a “mountain-pass-
lemma” seems to be needed. But due to the nonlinearity of the boundary con-
dition (1.3) the classical Palais-Smale condition (cp. e.g. [16]) does not seem to
hold for P(S), impeding the use of more refined variational techniques. There-
fore for § as above the existence of nontrivial solutions of P(S) in general had
remained an open (cp. [5, p. 2017, [13]; for more historical details we also refer
the reader to [5, 6], and [13]).

In the following we establish:

Theorem 1.1. For any embedded surface S of class C* and diffeomorphic to the
unit sphere in R® there exists a nonconstant minimal surface spanning S solving
(1.1)-(1.4).

Our approach relies on an adaption of a method developed by Sacks and
Uhlenbeck [17] to prove existence of harmonic mappings from §2 into S. In
this problem a loss of compactness is encountered simular to P(S), essentially
due to the fact that in both cases nonlinearities arise which correspond to
limiting exponents for Sobolev embeddings.

From this observation and in view of recent results for surfaces of pre-
scribed constant mean currature [1, 20, 23, 24], and Yamabe’s equation [2] it
may be conjectured that a Palais-Smale type compactness condition (as in [21]
or [22]) holds locally for P(S) - and for the harmonic mapping problem - in a
certain range of energies. For harmonic mappings this conjecture is strongly
supported by the results of Sacks and Uhlenbeck [17].

Our results seem to extend to higher dimensions. Moreover, by analogy
with the problem of closed geodesics on a closed compact surface! we conjec-

1 In both cases the space of admissible functions may be identified with the space of closed

curves on S
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ture that in general there will be at least 3 distinct solutions of P(S), and that
analogous multiplicity results will hold in higher dimensions.

indeed, if S is a quadrilateral in R® (or more general: an (n+ 1)-lateral in
R") such results have recently been established by B.Smyth [19]. Finally, re-
sults of J.C.C. Nitsche [14] suggest that in general in R> there will exists at
most three distinct solutions of P(S).

It is a pleasure to thank Prof. S. Hildebrandt and J.C.C. Nitsche for bring-
ing the subject of this note to my attention.

2. Basic notations

The IP-, H™?-, C™*.spaces are defined as usual, || ¢ denoting the norm in
IZ(G) {cp. [1]). The domain G will sometimes be omitted in this notation. d
denotes (total) derivative, V stands for gradient, partial derivatives may be de-
noted by subscripts. * signifies adjoint or duality. {-, *>, is the dual paring
between a vector space V and its dual. In case V=R" we also write (X, Y ).
=X+Y. B,(v; V) is the ball of radius r around v in V. In case V=R? we omit
V in this notation. Moreover, B,(0)=B. A generic point of B is denoted by w
=(u, v). Sometimes (especially on C=¢B) polar coordinates (r, ¢) will be used.
Capital letters X, Y, Z denote generic points in IR?® or functions into R>.

1
For az1 let H"“?*=H" 2"‘(B']Rs) with trace spaces H' 2%
=H1_# 22(C;R3), the norm in H' “22"*" being

IX(W) X (w)**

X3 2,—j|X|2“dW+S§ WL dwdw'. 2.1

1
Note that the embedding H'2%(B; R — H' "2 **(C; R?) is continuous. Con-
versely, for any a=1 there exists a continuous linear extension operator 7,

1
from H' ™ za'?® into H'2%. Moreover, from (2.1) we easily obtain the following

1 1
Lemma 2.1. Let a=1.1) If X, YeH' "2 > AI2(C), then X-YeH' 22 ** A L*(C)
and

—Za

XYL 2a<HX]| VI Lt IV X 2

i) If XeHl'EE’Z“(C;IR") and ce C1(R"), then

HO-OX”1__2L,2<1§”60X||2a+H(do-)oxnoonX“1~1 2

Also let H)>* denote the closure of C¥(B;R® in H"?% { will denote the
A

mean over a set A. The letters o, O are the standard Landau symbols, J, ; is the
Kronecker symbol. The letter ¢ denotes a generic constant, occasionally num-
bered for clarity. A summation convention is used.

Let S be an embedded surface of class C* differmorphic to the standard
sphere in R3.
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Note that this implies

(S,) There is a uniform lower bound pg>0 on the injectivity radius of the
exponential map on TS, the tangent manifold to S.

(S,) There exists a constant d3>0 such that for any point xelR? at distance
from § dist(X,S)<ds there is a unique point Y=pr¢(X)eS such that
dist(X,S)=|X —Y|.

By (S,) the projection prg of a dg-neighborhood U of S onto § and the
reflexion R:U —-U, R(X)=2prg(X)—X, are weil defined. Moreover, let
G: S — §% be the Gauss map on S assigning to any point on S the unique outer
normal vector. Since Se C*, GeC3.

By the relations

R(X)=X+2dist(X, S)G(X) (2.2)
if X lies in the bounded component of R3\,

R(X)=X —2dist (X, S)G(X) (2.3)
else, also Re C3.

3. The perturbed problem

We embed P(S) in a one-parameter family of problems (F,(S)),,,, such that

a

each P,(S) for «>1 corresponds to a variational problem for which the Palais-
Smale condition is satisfied. Applying the minimax-principle [16] we then ob-
tain saddle-type solutions X, for P(S), «>1. Finally, a non constant solution
of P(S)=P,(S) is obtained on passing to the limit o — 1 in an appropriate se-
quence of such surfaces X,.

For a>1 let

M,={XeH" 2 X(C)cS},
E(X)=4 [ [ +|Vx/2¢=11dw.
B

M, is a reflexive Banach manifold with tangent space Ty M, at a point XeM,
given by

TuM,={peH"**|p(w)e Tx,,S, Y we C}.
Similary we may define for a=1
M=M,={XeH">*nC°(B;R*)|X(C)=S}, EX)=% lj; IV X|*dw.
M is a non-reflexive Banach-manifold with tangent spaces
TyM={peH"2nC°(B;R)|p(w)e Ty,,S, Vwe C}.
For simple notation let

T,=H'"2*nC°(B;R%), azl.
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We now derive a convenient representation of dE,: M —» T*M,. First define
the projection pr,(X; ): T,—» TyM,< T, by letting

pra(X ;5 90) =0 —n,([G(X)(G(X), 9Ips]lc)-

Lemma 3.1. For any a1 the mapping pr,: M, x T,—»TM, is Lipschitz con-
tinuous and satisfies the estimate: If (X,) is a sequence in M, such that X, —» X
weakly in H',?* and uniformly as m — oo then

(X = X)=pry (X, Xy = X) 1, 2,20 (m—>00).

Proof. i) Lipschitz continuity follows from Lemma 2.1 and the continuity prop-
erties of ,. it) Clearly X e M,. We may assume that | X, — X||  <ps. Let weC,
T:= the geodesic distance from X,(w) to X(w) on S, {¥;},<,<s the unique
geodesic line joining Y, =X, (w) with Y, =X (w) in the geodesic ball B »s(Yo) on
S, parameterized by arc length.

Since <G(Y0),ad— Y, O>R =0, we have
= 3

Tt d2
G(Yo)<G(Yp), Yo — Yp)ps = *(g (f) G(Y, o)<G(Y Yz>wdtds
=:0(Y,, Yq).

Note that since Se C?, by well-known properties of the exponential map, o is
differentiable with respect to (Y, Y;)eS x S satisfying | Y, — Y| < pg, and in fact

l[da(Yy, Y SclY, — Yy

with a constant ¢ depending only on S.
Hence by continuity of n, and Lemma 2.1

I(X = X) = pro (X X, = X122,

= 1, ([GX )G (X Xy = X Dps] 1724
<clGX ) G(X ), Xy = XDpoll 12 1

=clloo(X,, X)||1__ 24

-

<clX,—X[12-(X, |c”1-* za+\|chHf°i§1;,za)-
-0 (m—-o0). qed

Now uniformly represent Ty M,=pr,(X;T,), and define d.E,: M - T* by let-
ting

(dE(X), @31, = dELX), pr,(X; 0P 1,
From these representations of TM, and dE, it is easy to deduce:

Lemma 3.2. M, E, are of class C'.
Moreover, we have
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Lemma 3.3. E, satisfies the Palais-Smale condition on M,: If (X,) is a sequence
in M, such that E (X,)<c and dgE (X,)—0 strongly in T.¥ as m— oo, then a
subsequence of (X,,) converges strongly in M,.

Proof. By uniform boundedness VX, |32<E (X, )<c¢ and | Xl Ssup|X]|,
XeS

a == o

the family (X,) is uniformly bounded in H!-?* Hence, and by Sobolev’s em-
bedding theorem we may assume that X, — X weakly in H'2* and uniformly
on B as m— oo, where XeM,. But then, as always letting o(1) denote quan-
tities that tend to zero as m— oo,

X=X S J (VX L+ X, )2
B

— VX1 +F XYV X, ~VX)dw+o(l)
=[(1+PX, "'V X, - V(X,—X)dw+o(l)
B

={dsE (X ), X,,— X>r,
+ AE (X ), (X, — X)—pr(X,; X, — XD pgi2ato0(1)
< l(X = X)=pr(X s X, = X)| 1 2 +0(1) =0 (m— o0),

by Lemma 3.1. qed.

Definition 3.4. 4 surface XeM, is called a critical point of E,iffdgE (X)=0, its
value E (X) then is called critical.

By Lemmata 3.2, 3.3 Lusternik-Schnirelman theory may be applied to
problems B(S) in order to obtain non-constant critical points of E, for a> L.
To define a suitable class of subsets of M, which is invariant under continuous
deformations of M, introduce polar coordinates (¢, 6) on S2. Then S?=Cx[
—Z 2] with Cx {~12}, Cx{%} collapsed to points. Let o: §—S? be the diffeo-
morphism in the assumptions on S. Then any continuous mapping p: [
—%%]— M, such that p(—%), p(§) are constant maps induces a mapping p:
5282 by letting

B¢, O)=a(p(0)(e'?)). 3.1

Endowing the space of mappings S2— S? with the C°topology set
P,={peC°([—3% 51; M,)Ip(— = const, p(§)=const, e C°(5*; §?)

is homotopic to the identity on S2}.
Since (3.1) for p=id/S* defines a path peC!, clearly P,+0 for any a=1.

Proposition 3.5. For any a>1 there exists a critical point X eM, of E, charac-
terized by the condition
E(Xpy)=inf sup E(X)=:8,.
peP Xeim(p)
Proof. Since P, is invariant under deformations of M, along integral curves of
VE, the result follows in a standard way. (Cp. eg. [3,p.42f], [I16,
p- 190]) qed.
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Remark 3.6. Note that for all XeM, all «’e[1, «] we have E_(X)<E(X), and
P, F,. Hence for all o'Sao we have §,.<8,.

Taking a comparison path p of class C' we thus obtain a uniform upper
bound for the critical values f,: 5,< 8, <co.
Moreover,

Lemma 3.7. There exists a number [,>0 such that for any az1 we have

ﬁa;ﬂO'

Proof. By Remark 3.6 we may restrict our attention to a=1. Replacing an
arbitrary curve peP, by replacing X =p(t) by the harmonic extension of X},
does not change j and reduces energy. Hence it suffices to give a lower bound

for sup E(X) if peP consists of harmonic surfaces X.
Xeim(p)

For a harmonic surface XeM dist(X, S)=supdist(X(w), S) is assumed at an
weB

interior point we B. By conformal reparametrization we may achieve that w=0,
without changing E(X). By the mean value property

X(0)=f{ X(w)dw,
C

and since X(C)< S, we may estimate
dist(X, S)=dist(X(0), S)§3c 1X(0)— X (W) dw'
o

<f§1X(w)— X (w')| dwdw

1

<, (fg X0 XL )

< o (E(X)).

Now p([ — 3% Z] x B) cannot lie in a dgneighborhood of S. Else we could con-
tinuously project im(p) onto S via prg defined in §2. Then applying the ho-
motopy {p, }0<,<1, p,(0, wy=pry(p(6,rw)) we obtain a homotopy of p~idls
with a mapping that takes S? into a line. Since such a mapping is homotopic
to a constant mapping in C°(S§%; $?), while id|s. is not, a contradiction results.
Hence we obtain

inf sup dist{X, S)=J;,

peP Xeim(p)
and therefore f, 2(c; 'd5)*=:§,>0. qed.

In Lemma 5.1 we show that the numbers (§,),., in fact are bounded from
below by the energy of a non-constant minimal surface spanning S. For convex
surfaces S the next result therefore provides a better bound for f,.

Proposition 3.8. Assume S is a convex surface and k>0 a bound for the sectional
curvature of S. If X is a non-constant solution of P(S) we have

E(X)z /K2
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Proof. By Lemma 1 of [11] for any ¢>0 we may extend G to R? such that
|dG| . <x+e Now note that the set Go X(C) cannot be contained in a hemi-
sphere {YeS?|Y-Y,>0}. Else by the Hopf maximum pr1nc1ple and since
X £const.

0 0
(d5EX). Yo)r =] <5~ X, Y0>R3 —<5; X, G(X)>R3<G(X), Vodpodw

=_5|< X, G(X)> [<G(X), Yo pedw <O0.

Hence, introducing polar coordinates on C, by (1.2):

2n 2n
2n§£ dd)G X’d¢<ndG|| jﬁ(b \dqﬁ
0
=[dG| (j: <a_n X, G(X)>m3dw

=ldG], [<VX,dG(X) VX ygedw
B
<2}dGl|2 E(X) < 2(x + &)* E(X).

Letting ¢ —» 0 the claim follows. qed.

4. Regularity properties of the perturbed problems

Lemma 4.1. For any ae]1,3[ any critical point XeM, of E, belongs to the class
H?>%B;R3), for any q< o0, and is a classical solution of the equation

~PL+IP X1V X]=0 4.1)
satisfying the orthogonality condition (1.4) pointwise on C.

Proof. i) Since for any geHy **

CAE(X), @ y1.2a={dsE (X), 931, =0,

X is a weak solution of (4.1). But then by Holder continuity and [12, Theorem
1.11.1] XeHZ2(B;R?), and higher interior regularity follows as in [17, Prop.
2.3].

ii) To obtain boundary regularity we use the reflection principle to extend
X as a solution of a quasilinear elliptic system to a region containing B. The
problem of boundary regularity thereby is reduced to the problem of interior
regularity for equations of the type encountered also in [17]. Since X is Holder
continuous in B there exists r<1 such that for r<[w|<1 dist(X(w), S)< s,
where dg is the constant in condition (S,). Let F=r~! and define

loc

X(w)=R(X(w/w|?), if 1<|w|<F,
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R being the reflection in §. Since RZ=id, clearly X(w)=R(X(w/|w|?)) for
r<|w|<1; thus as in [8, p. 261] we obtain that for all peH} **(B;(0)\ B; R*)

d g
1e £(1 +HIVR((X +e@)(w/w*))*Fdwl,_ o =0,

or equivalently, that X weakly solves the system
—VIA+ MW X)) VX -V Xy g (X) VP XI]

. Lo~ lél - R
+%(1+|w|“§.~,-(X)VX‘VX’)““ﬁg} (XyrXivXk=o0, 1<i<3,

4.2
with (42
; (X)—<i R(X). = R(X)
ST \axt P ax0 -
and summation over repeated indices.
Note that by (2.2), (2.3) §e C? and
g,;(X)=0,;+0(dist(X, 3)). (4.3)

Now extend X to B(0) by letting X (w)=X(w) for |w|e]1,7[, and define a new
matrix function g: B,(0) x R*—IR>*? by letting

0y if weB
Sw, X)=<4
glj(w’ ) {gi,-(X), if W¢B.

- 1, if weB
A=110¢,if weB,

Also let

Then by (4.1), (42) X is a weak solution of the equation
— V(1 +a(w)g,(w, X) VXkVXl)“'lgij(w, bel2.d!
+3(1+a(w)guw, X) VX"VX’)“"%gj w, X)VXiVX =0,
1<i<3, (4.4)
in B,(O)\ C. But for peH{ *(B;(0); R’) the boundary integrals

§(1+|VX|2)“_1<2X,(,0> dw
C or R3
. s L0 o~
—j(1+a(w)gkl(w,X)VXkVXI)a_lgij(W:X)EX](pldW
c

N @
=2£(1 +XPPyt [<5 X, (p>]R3 - <(7r X, G(X)>]R3<G(X), QOpsdw
=2(dsE(X), ) 1,=0.

Hence X in fact weakly solves equation (4.4) in B;(0).
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iii) To show the contended regularity from (4.4) next note that X satisfies a
local Morrey-type condition

[ (1+7PX)2rdw<cqr (4.5)

Br(wo)

2
like r, depend only on the modulus of continuity and energy E,(X) of X.
Indeed, letting w,,r be as above choose a smooth cut-off function 7 vanishing

. . . 71
with constants ¢, y>0 which are uniform for all wyeB1+#(0), rgrogf—i—, and

outside B,,(w,) and identically 1 on B,(w,). Define X = f X dw and
insert ¢ =(X —X)1? into (4.4) to obtain: Bar(wol\Br(wo)
[ (1+7X 2P X dw
Br(0)
<c, | (L+IPXPPF-YX —XPPel2dw
Br(0)
e | L+ XPPF XX — X t2dw.
B(0)

F-1 _ 1
Choosing r0§r—z— sufficiently small we can achieve that | X — X| <§-—.
)

Hence by the Poincaré inequality

[ A+PXPF-YrXPdwse, [ (1+PX])rdw

By{wo) B2r{wo)\ Br(wo)
|X _ X| 2a
+cy | e dw (4.6)
B2y (wo)\Br(wo)

<c, | A+ |V X)¥dw
B2r(wo)\Br(wo)
and (4.5) follows by hole-filling: Add ¢, times the left-hand side to (4.6), divide
by (¢, + 1) and iterate.
iv) Now introduce polar coordinates (r, ¢) on Bg(0). For h40 let
1
X;.=W[X(r,¢+r‘1h)—X(r, P

be the difference quotient in angular direction. Also let © be a smooth cut-off
function having support in a ball B,,(w,) centered at a point wye C and identi-
cally 1 on B,(w,). We shall assume that 2r <7—1. Inserting the testing function

‘P=(Xh12)—h

into (4.5) after some standard estimates and rearranging of terms we arrive at
the inequality

[ (L+PXPPE-1 VX, 2c2dw

Br(0)
ey j A+V X2V X2 1X, ) 2 dw 4.7
B#(0)
+c,- f (L+IP XYV X2 +1X )PV 2dw
Br(0)

0
+cy- | (I+ag X)Vxvxme-t

— . X VXJVX’CX 2 d .
Bo(O\B aX,g,( ) (X,T%) _pdw
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Now “integrate by parts” with respect to the difference quotient in ¢ in the
last term to obtain

A
)

[ (I+ag (X)rx'vxme-!

B#(0O)\B

C

1
< [ (LHIPXPP P2 dw
2¢3 Bao)
+ege | (LHIPXPP 1P X2 X2 o2 dw.

Br(0)

To estimate the first term on the right in (4.7) as in [8] we use the self-repro-
ducing property of Morrey-spaces [12, Lemma 5.4.17 to obtain from (4.5):

[ (L I7XPF P XPIX P dw
B:(0)
<csoeo | V(X 0)Pdw-r?
Br(0)
Sco " [ WX PPPdwte, [IX )PV Pdw.
B(0) B(0)

Choosing r sufficiently small we hance find that

[ VX2 t2dwcs | (TP X2 (VX2 + (X)) Vel dw.

Br(0) Br(0)

1
Since X,—— ey ¢ — X in H"?* as h—0 the right hand side of this estimate re-

1
mains umformly bounded as h—0, whence ~X €HL2(B;(0). But then from

loc

equation (4.1) upon solving for X,, we obtam that XeH*%(B;R?) and hence
also X € H22(B,(0); R?).

v) To conclude the proof note that by the boundary condition (1.3) for X
the matrix function w—g(w, X(w)) is a.e. differentiable on B;(0) and satisfies

ldg(+, XN EcldX|+c.

Hence and since XeH},?, differentiation is permitted in (4.4) and we obtain
after multiplication with (g;;(X))™'(1+ag;(X) VX'V X’)' ~* that a.e. on B,(0):

|AX*+2(a— (1 +ag (X)VX'VX™) " lag, VX'V XV XY (4.8)
sc|V X%,

with a constant ¢ depending only on S.

Since XeHZ2—HLA, Yg<oo, from this differential inequality as in [17,
Prop. 3.17 we infer that for ae]l,3[ XeH*YB;R?), Vg<oo.

In particular XeC'(B;R?3), and (1.4) follows in the pointwise sense from
the condition dE (X)=0eT¢M,. qed
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Remark 4.2. For later reference note that as a by-product of the preceding
proof we obtain that any critical point XeM_ of E, may be extended in H?*?
to a ball B;(0) as a solution of the elliptic system (4.4) or the differential in-
equality (4.8), for any g< oo, where 7> 1 depends only on the modulus of con-
tinuity of X (on B), and the H*%norm of X on B,(0) for any g<co may be
estimated by a constant depending only on ¢, the modulus of continuity and
the “energy” E,(X) of X, uniformly as a— 1.

5. Passing to the limit

1. In this final section we use the regularity result of Section 4 to obtain a non-
constant solution of P(S). Consider a sequence (o,,)ew> %> 1, &, — 1 (m— o0),
and let X, =X, be the solution of F, (S) quaranteed by Proposition 3.5. By
Remark 3.6 we may assume X, — XeM weakly in H''%. Next choose points
w,,€B and numbers p,, >0 such that

VX, (W) = SHI;IVX,,.(W)I =:fly

and introduce a further sequence (Y,,) by rescaling:

melN
Y, W)= X, (Wy, + sty W).

Lemma 5.1. i) If p,=p>0, then the sequence (X,,) converges to a non-constant
solution X of P(S)in C(B;R3).
ii) If p,,—0, there exists a non-constant solution X, of P(S) such that

E(X o)+ E(X)£liminfE, (X,). (5.1
Proof. i) In the first case the sequence (X ) is equicontinuous, hence by Lemma
4.1 equibounded in H*4(B;R?) for any g<oo. Thus a subsequence (X,) con-
verges in C!(B; R to X. Clearly, X satisfies (1.3), (1.4) and - passing to the
limit «—1 in (4.1) - is harmonic. Hence dE(X)=0€eT,M. Moreover, by the
estimate of Lemma 3.6 X is non-constant. To verify the conformality relations
(1.2) let 7,, |ef<1, be any differentiable family of diffeomorphisms of B such

Dy d
that 7,=id. Since dia(X”e)le:o:E Tlew o VXeTy M from

0= <dE(X), ;—8 (Xot),- 0>

TxM

d
=Te E(Xe1),_,

and the classical result [5, Chapter 1114} we infer (1.2).

i) In the second case we distinguish two possibilities:

a) Either the sets B™={w{w,,+u,weB} exhaust all of R, or

b) there exists a vector w,elR? such that after suitable rotation of B™ and
translation by w, B™ is contained in the half-plane R% ={v>0} and exhausts
this set as m— co.



On a free boundary problem for minimal surfaces 559

a) In the event a) holds from the equation for Y,

VY, VY, VY,

I(Y ):=4Y +2( —1
( m) m+ (am ) .uy2n+|VYm|2

=0 in B" (5.2)

(in symbolic notation) and arguments as in part i) of this proof, a subsequence
(Y,) C'-locally converges to some vector Ye C!'(IR?;R%). Passing to the limit
o, —1in (5.2) Y is harmonic. Moreover, since [FY, (0)|=|VY(0)|=1, Y is non-
constant. But by the maximum principle for Eq. (4.1) the images of the surface
Y,, are contained in the convex hull of S, hence bounded uniformly in m. Thus
also Y is bounded. But then Y must be constant, a contradiction.

Hence we are left with case

b) Using Remark 4.2 we first note that the surfaces Y, may be extended to
domains B,, as solution of systems like (4.4) satisfying a differential inequality
like (cp. (4.8))

IL(Y, ) <clP Y, 2

with a constant ¢ depending only on S, where the sets (E"")melN exhaust a half-

plane {v>v,} for some v, <0, and the sequence (Y,) is locally uniformly bound-
ed in H*7 on this set, for any g<oo. Hence we may extract a subsequence

(Y,) that converges in C'(RZ nBg(0);R?), for any R<oo, with limit some
non-constant function Y belonging to the class H*%(R2 n Bg(0); R?) for any

0 .
R < 0. Moreover, Y({v=0})<S, o Y(u,0)L Ty, (S for all ueR, and - passing

to the limit in (5.2) - AY =0. Furthermore, for any k we have

[IVY|2dw+ [P X |2 dw <liminf [ [PY,|2dw+ [|V X|2dw
Bk B Bx B

m— 00

=liminf( | |VX,|?dw+ { VX|2dw) (5.3)

M=00  {wy} + ptm B* B\({wm} + pim B¥)
<liminf [|PX 2dw<2liminfE, (X,).
m-o0 B m-— oo

Passing to the limit k— co we infer that |V Y|e[*(R?%). But then the harmonic
function f=2-Y,-Y, belongs to C*nLYRZ) and vanishes on {v=0}, and
hence may be continued in C2~L}(R?) to a harmonic function on R?, simply
taking f(u, —v)= —f(u, v). It follows that f=0. Hence the harmonic conjugate
of f, g=|YJ*~|Y,|? is constant. Since also geL', g=0, proving conformality
(1.2). Conformally reparameterizing Y we hence obtain a surface
X,eH"%(B;R?) satisfying conditions (1.1)-(1.4) a.e. By the regularity result of
Griiter, Hildebrandt, and Nitsche [7] X, also is a classical solution of P(S).
Moreover, by conformal invariance of the Dirichlet integral estimate (5.3) con-
veys to X, concluding the proof of Lemma 5.1 and this paper. ged
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