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w O. Introduction 

In Sects. 302 and 304 of the Disquisit iones [5, 6], Gauss  gives conjectures for 
the average number  of proper ly  primitive classes of a given determinant .  We 
state these conjectures in the more  modern  form 

2n 
Average  h(O),.~7~ ~ IOl ~ (O <0),  

1 
log~D~12 ~ -  ~ Average  h(D) (3) D (D>0)  

where h(D) is the nar row class number  of the order  of discr iminant  D con- 

tained in the quadrat ic  field Q(I//D); and for D > 0 ,  eD is the unit defined by eD 

= �89  where t,u are the smallest  positive integral solutions of tZ-Du 2 
=4.  Here,  the average is taken over  all D - 0 , 1 ( m o d 4 )  which are not perfect 
squares. It  is well known that  D can always be expressed as D=Dom 2 where 

D o is the discr iminant  of the field Q(t /D) and in this case 

h(D) = h(Do)m ~[ (1 - ZDo(P)/P), if D < 0, 
p[m 

h(D)logeo=h(Do)(logeDo)m~(1-)~oo(p)/p), if D > 0 .  
plm 

Gauss '  conjecture for imaginary  quadrat ic  fields was first p roved  by Lip- 
schitz [-14] and subsequently improved  upon  by Mertens  [-15]. Vinogradov  
[-25-28] has the best result at present,  namely 

4n 2 ~+~ 
h(D)=21 ~(3) x ~ -~7x+O(x  ). (0.1) 

O < - D < x  

Other  interesting results have also been obtained by 1-2] and 1-23]. 
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Siegel [22] was the first to prove the Gauss conjecture for real quadratic 
fields. He obtained the result 

7~ 2 

~, h(D) logeo= 18~(3) x~ + O(x log(x)). 
0 < D < x  

This was further improved upon by Shintani [21] who showed 

7z z 1 
h(D) l~ X~ -z((z~-~ x l~ 

0 < D < x  

-~ x + O(x ~ + ~). (0.2) 
2~(2) 

Let D=0,  l(mod4) and not a perfect square. We consider the nonprincipal 
real Dirichlet character OD where 

~D(n)= ( D ) (Kronecker's symbol mod IDD, (0.3) 

and the Dirichlet L-function 

L(S,~D)= ~, ~o(n)n s. 
n = l  

In view of Dirichlet's class number formula [13] the asymptotic formulae (0.1) 
and (0.2) are equivalent to asymptotics for sums of the type 

y '  L(1, 0o)- (0.4) 
0 < •  

It is curious that until very recently, no one has ever considered sums of type 
(0.4) going over primitive characters or equivalently over fundamental discri- 
minants. 

The main purpose of this work is to consider the more general related 
problem of obtaining asymptotic for sums of the type 

L(p, Z,~) (Re(p) >= �89 (0.5) 
0 < •  

where m is squarefree and Z,~ is the real primitive Dirichlet character defined 
by 

(m) m - l ( m o d 4 )  

L,(n) = (0.6) 
( ~ )  m-=2, 3(m~ 

where the symbols on the right are Kronecker symbols (modm), (mod4m) 
respectively. Note that X,, is slightly different from the character defined in 
(0.3). Moreover, ((p)L(p,L,) is precisely the zeta function associated to the 
quadratic field Q(I/~). 
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In Goldfeld-Viola [8] conjectures for the asymptotics for sums of type (0.5) 
(going over primitive characters) were formulated. Jutila [12] was the first to 
prove the conjecture for (both real and imaginary) quadratic Dirichlet L-series. 
He obtained the result 

L(�89 Z,,,)=clxlogx +czx  +O(x ~+~) 
O < _ + m < X  

for certain constants c t and c 2. It is clear that his method also works at a 
general complex point p. Takhtadzjan and Vinogradov [24] gave asymptotics 
for sums of the type 

L(p, tpo) (Re(p) > 3) 
0 < - D < x  

where the sum goes over all D - 0 ,  l(mod4) and not a perfect square, and with 
$o as in (0.3). They assert that their methods also apply to (0.5) with primitive 
characters, but mention that in this case the error terms become less manage- 
able. 

We now state our main theorems: 

Theorem (1). Let e > 0  be fixed. Let Z,, be defined as in (0.6). Then there exist 
analytic functions c(p) and c*(p) with Laurent expansions c(p)=c~/(p-�89 

0 1 _ + (p--~), c*+(p)= --c~/(p--�89189 such that 

F. L(p, z.,) 
l < _ + m < x  

m s q u a r e f r e e  

[ c(p)x + O(x ~+ q, 

={ c(p)x  + c*+ (p)x  ~-  p + O(x  ~ ~), 

- t 1 9  
t c~ x log x + (c" + c* ~ - c ~ ) x  + O(xgg + ~) 

Here 

and 

if Re(p)> 1 
if P4:�89 �89  1 

if p=�89 

c ( p ) = 3 ( l _ 2 - 2 o ) ~ ( 2 p ) ] q ( l _ p - Z _ p - 2 0  a+p  2o 2), 
p4~2 

c�89 IJ  ( 1 - 2 p - Z + p  3) 
p : # 2  

I 
1 

0= 19+_3Re(p)-6Re(p)  2 

/ 24 + 16 Re(p) 

/f Re(p)>-5 +1 /~  
12 

if ~ <_Re(p) <= -5 +l/~12 

and all O-constants depend at most on p,e. 

Theorem (2). Let Re(p)>�89 7-he Dirichlet series 

g+(p,w)= ~ Z(p,Z, . ) lml  -w  
+ m > l  

m s q u a r e f r e e  
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Z 
O < m < x  

m squarefree 

converges absolutely for Re(w)>l .  It has a meromorphic continuation to the 
half-plane Re(w)>�89 with simple poles at w = l ,  3 _ p  unless p=�89 when it has a 
double pole at w= 1. For p+�89 the residues at w =  1, 3 _ p  are c(p) and c*(p). 
Finally, for �89 1 and e>0,  we have the growth estimate 

Z(p,w),~[Im(w)] 1-Re(w~+~ , [Im(w)]~ ~ 

where the ~ constant depends at most on p,e. 

Remarks. For technical reasons, we have only computed c*(p) for the modified 
sum ~ L2(p, Xm) where 

l < + m < x  

L2(P, X,,) = (1 - Zm(2)2- 0)L(p, )~m), 

is the L-series with 2-factor removed. In this case, c*(p) is given in (4.15), 
(4.16). 

Theorem (1) is an average over fundamental discriminants whereas the 
previous results (0.1) and (0.2) go over all discriminants. 

The leading terms in Theorem (1), namely c(p)x and c+xlogx are the same 
for both positive and negative discriminants. This is in contradistinction to 
Gauss' original conjecture. 

By use of the Rankin-Selberg method [-17, 18] it is possible to obtain a 
version of Theorem (1) for the squares [L(p,)~m)l z. It does not appear as if these 
methods can improve Theorem (1). 

The first theorem is not a consequence of the second. Although the main 
terms in the asymptotic formula given in Theorem (1) can be derived from 
Theorem (2), it is not possible to obtain the same error terms. 

In some sense, the exponent of �89 in the error term of Theorem (1), for the 
range 

Re(p) > - 5 + ]//1-~ ~ 0.74 
12 

is best possible without knowledge approaching a generalized Riemann hy- 
pothesis. This is related to the fact that [29, 16] 

1 = 6 x + O(x �89 e -c(l~176176 ) (unconditionally), 

6 9 
l = ~ x + O(x ~+~) (assuming R.H.). 

O < m < x  
m squarefree 

We conjecture that �88 should be the correct exponent (for all p, Re(p)>�89 
for the error term in Theorem (1). 

The proofs of Theorems (1) and (2) make use of the theory of Eisenstein 
series of metaplectic type. These Eisenstein series have the interesting property 
that their Fourier coefficients involve quadratic twists of the zeta function. It is 
clear (see [7]) that our methods can be generalized to obtain mean value 
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theorems for quadratic twists of any fixed Hecke L-function with 
gr6ssencharakter of any fixed number field. At present, however, we cannot 
obtain mean value theorems for quadratic twists of an arbitrary L-function 
associated to an automorphic form. We have also been unable to obtain mean 
value theorems for twists by cubic and higher order characters as conjectured 
in [9]. These appear to be difficult problems and their solutions may ul- 
timately involve the analytic number theory of GL(n). 

w 1. Eisenstein series on/'0(4) 

Let Fo(4 ) denote the group of matrices (a bd)with integer coefficients, de- 

terminant one, and c-0(mod4) .  This group has three inequivalent cusps at 0, 
�89 i ~ .  Let 

be the stabilizer of ioe. 

For 7= (~ bd)~Fo(4), 

where 

we define 

j~(z)= (d) ~ d1(c z + d)~ 

e _j l (  d = l ( m ~  (d>0) 
~ -  , i  d - 3 (mod 4), 

(d) is the Legendre symbol, and (cz+d) ~ is chosen so that larg(cz +d)r < 2. If 

d < 0, then j~(z) is defined by the relation jy(z)=j_~(z). 
It is well known [19] that j~(z) is a multiplier system of weight �89 for /'o(4 ). 

This is equivalent to the fact that j~(z) satisfies the cocycle relation 

J~'(z)=J~(7'z)J,(z) 7, Y'eFo(4) 

az+  
where for 7= , ?Z-cz+d. 

Let k be any odd rational integer. We now construct the Eisenstein series of 
weight k/2 for the group F0(4 ). For z=x+iy; y>0 ,  xeN,  and Im(z)=y we 
define the Eisenstein series at the cusp ic~ to be 

Eoo(z,s,k)= ~ (ImTz)~j~(z) -k. (1.1) 
yeF~ \Fo(4) 

k 
It is easily shown that (1.1) converges absolutely and uniformly if Re(s)> 1 4" 

Since k will usually be fixed, we will frequently suppress it in the notation and 
simply denote (1.1) by E~o(z,s ). 
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There are two additional Eisenstein series at the cusps 0,�89 These are 
defined as follows 

Eo(z,s, k)= z -k/2 End(- 1/(4 z),s, k) (1.2) 

E~(z, s, k) = (2 z + 1 ) - k/2 Eo (z/(2 z + 1), s, k) 

and satisfy the automorphic relations 

Ec(Tz, s)=jr(z)kEc(z,s) (c =0,�89 ~ )  

Eo( - 1/(4 z), s) = (4z) k/z i-kE~(z, s) 

E+(z + �89 s) = 2k/Z(2z + 1)- k/z E| + 1), s) 

E+(z, s) = i- k E~(z + 1, s). 

For our future purposes, we require a more explicit description of the 
Eisenstein series defined in (1.1) and (1.2). Accordingly, let us put 

g = e , 
a(modn) 

where m, neZ, n+O. This Gauss sum was studied by Hecke over arbitrary 
number fields, and he proved [11] a general reciprocity law for it. For our 

it is useful to consider a normalized version of g Imp; purposes, namely 
\ n !  

The value of G(m)  depends only 
satisfies 

A deeper result is Hecke's reciprocity law 

where 

on the congruence class of m(modn) and 

(m, n) = 1. 

G = eu  sgn(n) G ~m 

sgn(a)={ + 11 a > 0  
- a < 0 .  

Here m, n are any pair of integers, not necessarily relatively prime. 
The propositions of this section describe certain properties of the Eisenstein 

series (1.1) and (1.2). As the techniques by which these results are obtained are 
well known we omit the proofs and refer the reader to [20]. 
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Proposition (1.1). For Re(s)> 1 -k /4 ,  the following representations hold: 

- d  k 
~zik 

Eo~(z,s)=yS+e~-Y ~ ~ [4cz+dl2~(4cz+d)k/2' 
(d, 2 c)= 1 

c>O 

m Y  k 

Eo(Z,S)=(Y/4) s ~ [v+uzl2S(v+uz)k/2' 
(u, 2 v ) = l  

u > 0  

G(d-2e k 
,ik \ 8d / 

Et(z,s)=(y/4)Se - ~ -  ~ [dz+cl2,(dz+c)k/2" 
(d, 2c)= 1 

d>O 

We now give the Fourier expansions for E o~(z,s), Eo(z,s) and E~(z,s). These 
expansions are given in the following three propositions. 

Proposition (1.2). We have 

where 

In the above 

Eo(z,s,k)= ~ amt,y,'s k'e 
tn = -- oo 

[ o~ (ev,)kg(_m, pt)] Km(s,y,k). 
am(s,y,k)=(Y/4)" 1-I ~, pl(2s+k/2) " 

p:#2 l = 0  

a )  2rtiam 
g(m,n)= ~ e ~  

a(modn) 
(a ,n)=l  

e- 2nimx 
Km(s, y, k) = _ ~ (x 2 + y2)~( x + iy)k/2 

Corollary (1.3). We have 

yS ( ( 4 s + k - 2 )  ( 1 - 2  -4~-k+2) 
ao(S, y, k) = 4 ~ ( ( 4 s + k - 1 )  ( 1 - 2  -4s-k+1) 

and for m not divisible by an odd square 

dx. 

Ko(s, y, k) 

k - 1  ) 2~ k-1 
L 2s+-~---,Zm (l_Zm(2) 2-  --Y-) . . . . .  y- 

ar~(S'y'k)=~ ~ ( 4 s + k - 1 )  ( i ~  l kml ,  s ,  y ,  K) 

where )~m is the real primitive Dirichlet character associated to the quadratic field 
Q(l//#km), where # k = ( -  1) (k-l)/2, 
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Proposition (1.4). We have 

Eo~(z,s)= ~, bm(s,y,k)e 2~im~ 
r t l  = - o o  

where 

and for m 4= 0 

where for m ~ O(mod4) 

~ z i k  

b o(s, y, k) = y~ + e~-4 ~ Co(S, k) ao(S , y, k) 

Co(S,k)=~ps(k)2-4~-k+~(1 _ 2 - 4 s - k + 2 )  -~ 

bm(s , y, k) =- (1 -q-- ik)4s cm(s, k)am(s, y, k) 

--2 -4s-k (-- 1) (k- 1)/2m~ l (mod4)  
Cm(S'k)=(2-4s-k +l~s(m)2-6s-(3k/2)+(3/2) (_l)(k-1)/2m-- l(mod4) 

and for m = 4 t m o ,  m o ~ 0 ( m o d 4  ) 

c,,(s, k ) = 2  -4*-k (1 --2 -t(4s+k-2)) 
(1 _2_(4s+t_2))  ~'2-'(4*+k-2)Cmo(S,k). 

Here, ~8 denotes the real primitive Dirichlet character (mod 8). 

Proposition (1.5). We have 

E�89 s,k)= f~ d,.(s,y,k)e 2'~im(~+~) 

where 
m =  - - G o  

(l_ik)am(S,y,k)2_Zs_k+ ~ 
dm(s, y, k ) = - --jR)am(S, y, k)2-Zs-k+  

m( - 1) (k-1)/2 - l ( m o d  8) 

m( - 1) (k- t)/2 -- 5(mod 8) 

otherwise. 

Before giving the functional  equat ions  satisfied by the Mellin t ransforms of 
Eisenstein series on F0(4 ) it is first of  all necessary to obta in  the t rans format ion  
laws of the Eisenstein series at the cusps. 

(107) (0ol) Proposition (1.6). Let % . , =  , % =  4r 2 where reZ  + and ( u , r ) = l .  

Then for r - l ( m o d 2 )  and a chosen so that - 4 u a  == - l ( m o d r )  we have 

Eo(%,/crz, s)=(arz)k/e(ier)_k (a) E~(%,,z,s) 

and 

E~(~u, rZ, Z,S)=(rz)k/2erk (a) Eo(~a, rZ, S). 

Proposition (1.7). Let z, and a,,~ be as in Proposition (1.6). For a chosen so that 
au = - l ( m o d 4 r )  

Eo(eu,,~Ze,Z,S)= (47----~z)k/2 (G (~r) ) -kE~ 
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Proposition (1.8). Let "c~, c~,,, be as in Proposition (1.6). ?hen for r= l(mod2) and 
a chosen so that au = - l (mod2r )  we have 

and 

Ex~(~,2~z~z,s)= (~ )k /2  (G (~r ))-kEo(O~u,2~z,s). 

We now introduce the Mellin transforms of Eisenstein series on Fo(4 ). Let 

% , = ( ;  a~r) 

as before. Then we define 

oO 

4~(w,a/r;s,k)= S (Eo~(%,riy, s,k)-bo(s,y,k))yW-l dy, 
0 

~o(W, a/r; s, k) = ~ (Eo(%,riy , s, k) -ao(S , y, k))y w-1 dy, 
0 

o~ 

�9 ~(w, a/r ;s, k) = ~ E~(a~,fly, s, k)y w- i dy. 
0 

Since we are subtracting the constant term from the Eisenstein series it is 
clear that the above three integrals converge absolutely for Re(w) sufficiently 
large. 

The following propositions give the functional equations and locate the 
poles of the Mellin transforms of our Eisenstein series. 

Proposition (1.9). Let r -  l(mod 2) and let a, u be chosen so that - 4 a u -  l(mod r). 
Then 

where 

Oo(W ;  w,s;a t 

A~o (w, a, k ) =(2r)(k/2)- 2~(-- 2i)k/z ef k (a) . 

( ) k 
Moreover cl) o w,s;U,k is holomorphic except for simple poles at w = s + ~ ,  

( k a t 1- s ,  s + ~ - l ,  with corresponding residues equal to A~ s+~,r ,  k , 

cl(s,k)A ~ 1 - s , - ,  k , --Cl(s,k)Oa(k)(i)-k/222~+k-~(1 --2 -4~-k+2) where 
r 

Cx(S,k ) 08(k)ik/2((4s+k-2)Ko(s' l 'k)  
- 24s+k- ~((4S + k - 1)(1 - 2- ~s-k+ 1)" 
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Proposition (1.10). Let a,u be chosen so that a u -  - l (mod4r ) .  Then 

 o(W r )Oo ~ 
where 

a a --k 

(u ) Moreover, q~o w ,~r ; s , k  is holomorphic except for simple poles at w = l - s ,  s 

k ( a k )c2(s ,k )~(4s+k_l )  -1 where + ~ - 1 .  The residue at w = l - s  is A o 1-s ,  4~, 

c2(s ,k) is given by 

c2(s,k)=~s(k ) i -k/2 22a+k-�89 ((4a + k -  1)(1-2 -4a-k+ 2) c, (a, k). 

Proposition (1.11). Let r be odd and a u -  - l (mod2r ) .  Then 

u a k a 

where 
a - - a  k 

A�89 (W, ~r, k) = 2tk/2)- 2Wrtk/2)- 2W G (~-r ) . 

( u )  Moreover, q~o w,s; 2rr' k is holomorphic except for a simple pole at 

k 
w = s + ~ - l .  

w 2. Whittaker functions 

We now investigate the Whittaker functions Kin(s, y, k) occurring in the Fourier 
expansions of the i-integral weight Eisenstein series we have been considering. 
It will be shown that the Mellin transform of Kin(s, y, k) is essentially a hyper- 
geometric function. 

L 

Proposition (2.1). For Re(w) > Re(s) + 2 - 1 ,  m ~ 0 

nik 
i w+s-1 e 4 F+(w,s,k) 

Km(S,y,k)Y dY=22w-k/2~Z . . . .  k /2[m[W+l-s-k/2 

where 
k 1 k 

k -1 
F ( w + s , w - s +  l - ~ , w +  l ;~)  

re>O(+) 

re<o(-) 
r(s) F(w + 1) 
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and 
F(c) ~ C(a+n)F(b+n) 

F(a'b'c;Z)=c(a)F(b) ,=o F(c+n)n! z" 

is the Gaussian hypergeometric function. 

Proof. An easy consequence of the relations given in [1, 15]. 

It will be convenient, at this point, to change notation and let 

p=2s+(k-1)/2,  

w=s+k/2+6. 
We now define 

[p 1 k 6 p 1 k~ 
Gk(P,6)=F+ ~2 +~+~+ , ~ + ~ - ~ ]  

p 1 k 
t2~+4+4 +6,p 1 k\ G k(p,6)=F - 

(2.1) 

It is clear that there is no ambiguity in this definition since it is easily checked 
that 

Gk(P, 6) = G_(_k)(p, 6). 

Proposition (2.2). Let Gk(P, 6 ) be defined as in (2.1). Then for p fixed, [61 large 

p 1 k . [ p  1 k 6\ 

where the O-symbol depends at most on p and k. 

Proof Using the transformation ([-1], 15, 3.6) 

r(c)r(c-a-b) 
F(a,b,c;z)-  F(a ,b ,a+b-e  + l; 1 - z )  

r(c - a) r(c - b) 

+(1 - z )  . . . .  br(c)r(a+b-c) F ( c - a , c - b , c - a - b +  1; 1 -z) ,  
r(a) r(b) 

valid for larg(1-z)[<~,  and applying this to (2.1), we see that 

Gk(P, 6)-- G_k(O, 6) 
p 1 k 

r(~+~+~)r\4 2 4] 

~ p 1 k F P k 1 P  k 3 6 P k" 
2 4 ' 4 ~ 2  4 '4  2 4' . (2.2) 
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For large [,5[, the function F in (3.11)is 1 + 0  ~1~) and the proposition follows 

by substituting (2.2), with k replaced by -k ,  for G k(p,,5) in (2.2), and solving 
the resulting expression for Gk(P,,5). Q.E.D. 

Proposition (2.3). Let 

Dk(P, `5) = Gk(P, `5) G_ k- 4(P, ,5) - G k + 4(P, `5) G_ k(P, ̀ 5). 

7hen for f ixed p,k and ],51~o0, we have 

Dk(P, `5) ~2 2~+~+p 

F(,5 p 5 k \F  p 1 k 

p 5 k [p 1 kk 

Furthermore, if p,,5 are f ixed there exist infinitely many integers k- l (mod4)  
and also infinitely many k = 3(mod4) such that Dk(P,,5)~: O. 

Proof The first part of the proposition easily follows from the asymptotics 
given in Proposition (2.2). 

For the second part, we combine (2.1) and Proposition (2.1) to get 

G+_k(P,`5)=F(I +'5)F(p+~+'5)  

1 1 k F(p+~+,5 ,  +,5, p 5 2-+4-Y-4+`5; 2) 
p 1 k 5_k  `5\ 

(2.3) 

p 5 k 
Now, for p,,5 fixed and k ~  _+ m, ~-+~-T-~+,5~Z it is easily seen that 

+~+ )(1+,5) 1 (P 1 ,5 
F ( p + ~ + ~ , l + ~ , ~ 4 ~ + 6 ; ~ ) = l + ~  ( ~ 4 ~  ~ )  ~ o ( ~ ) .  

Then by Stirling's formula, one checks that for infinitely many k the two terms 
in the definition of Dk(P,,5) do not cancel. 

Proposition (2.4). We have 

- -  T t i k  

Ko(S,y,k)= yl-E*-k/E2k12~/Te 4 

Proof. See [20]. 

Q.E.D. 

r ( 2 s  + k - 1) r ( s )  

w 3. Growth estimates 

Recalling the Fourier expansion given in Proposition (1.2), namely 

Eo(z,s,k)= ~ am(s,y,k)e 2~mx 
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we now define Am(p, k) by the relation 

am(s, y, k) = (y/4) s Am(p, k) Kin(s, y, k) (3.1) 
where 

k - 1  
p = 2 s + - -  

2 

In view of Proposition (1.2) we also have 

pl~O+i) ]" 

When m is squarefree it follows from Corollary (1.3) that 

L(p, Zm)(1 - Xm(2)2 P) 
Am(p 'k) -  ~(2 p ) ( 1 - 2  -2p) (3.2) 

where Z,, is the real primitive Dirichlet character associated to Q(l /~m) ,  where 
#k=(--1)  (k-~)/2. Note that this field is either real or imaginary according to 
whether pk m is positive or negative. 

Now, for Re(p)> �89 and Re(c3)> 0, we define the zeta function 

Z+(p,c~,r,k)= ~ Am(p,k)lm]-i o. (3.3) 
+ m > 0  

m ~ O(mod r) 

The series on the right side of (3.3) converges absolutely for Re(c3)>0. This 
is easily verified because the Rankin-Selberg zeta function 

~, IAm(P,k)[2]m] -1-~ 
m4=O 

has its first pole at C3 = 0. 
The function Am(p, k) satisfies 

Am(p, k) = Am(p, k +_ 4) = A_ re(P, k + 2). 

Therefore Z • (p, C3, r, k) satisfies 

Z• c3, r ,k)=Z• c3,r,k+2). 

For simplicity we shall henceforth assume that k=(1 mod4). 
The main purpose of this section will be to shown that for fixed p,k the 

zeta function in (3.3) has a meromorphic continuation to the entire complex f- 
plane and satisfies certain growth estimates uniformly in 6 and r. 

Proposition (3.1). Let m be squarefree. Then for Re(p)>�89 Re(w) sufficiently 
large, we have 

~ ( w ) ~ ( w + 2 p - 1 ) ( 1 - 2  w 2o+1) 
/ ,  Am,2(p,k)n-W=Am(p,k) L(p+w,  zm)( l_zm(2)2 -p-w) 

n = l  

where Z,, is the real primitive Dirichlet character associated to Q(]/~m).  

Proof See [20]. 
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Proposition (3.2). Let m = mo n2 where m o is squarefree. Then for Re(p)_>_1 

IA,,o,_,(p, k)l < IA,,o(p, k)l a(n)2 wt") 

where w(n) is the number of distinct prime divisors of n and a(n) is the number of 
divisors of  n. 

Proof Equating coefficients in the Dirichlet series occurring in Proposi- 
tion (3.1), we have 

Amon2(p , k ) =  Amo(P , k) Z d~ -- 2p Zmo(d3)iz(d3)d3 p 
dld2d3=n 

(2,d2d3) = 1 

where/~ is the Mobius function. The proposition then follows immediately. 

Proposition (3.3). The function ((2p)Z• 8,r, k) defined in (3.3) has for fixed p 
with Re(p)>__�89 a meromorphic continuation to the whole complex 8-plane. More- 
over, it has simple poles at 6 = 0 • ,2--P, --1. 

Proof For Re(8)>0, the series on the right hand side of (3.3) converges 
absolutely and defines a holomorphic function. It is, therefore, now necessary 
to consider the case when Re(a)<0. 

We recall the Mellin transform 

Oo(w s;a k)= EE0  or,y;s k, Oo S y ldy 
0 

In order to simplify notation, we set 

[p 1 k 8 p  k 1 a k) �9 
i 

for c=0,  ~,�89 
Now, using Propositions (1.2), (2.1) together with (2.1) and (3.1) it follows 

that 

~ p, k =ck(o, 8) EGk(p, 8) Z "~m,~,A ~ . - ,k~ '2~ im"Jr lml  , , 
m > 0  

+G_k(p, 6 ) ~ Am(p,k)e2"ima/rlml-X-~ ] (3.4) 
m < 0  

where 
Ok(P, 8) ---- i -k /2  7Z-~2 k/2 - 2 p -  2 6 - 1 .  

We now define 
q~o(p,8;r,k)=r -~ ~, ~* (p, 8 ; a , k )  (3.5) 

a(mod r) 

and summing (3.4) we obtain 

(9o(p, 8;r,k)=Ck(P,8)[Gk(P,8)Z+(p, 8 ,r ,k )+G k(p, 8)Z_(p, 8,r,k)]. (3.6) 

Substituting k and k + 4 into (3.6) we can then solve for Z • (p, 6, r, k) to get 

Z • (p, 8, r, k) = +_ Dk(P, 8) - ~ [ qb o (P, 8; r, k) G ~; (k + 4)(P, 8) Ck(P, 6)- 

--C~o(p , 8; r, k+  4)G_vk(p, 8)Ck+4( p, 8)- ~], (3.7) 
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where 
Dk(p, 8) = Gk(P, 8) G_ k- 4(P, 8) -- G k + 4(P, 8) G_ k(P, 8) 

is the discriminant. 
The representation (3.7) gives the meromorphic continuation of Z_+ (p, 8, r, k) 

to the whole complex 8-plane. The only possible singularities are the zeros of 
Dk(P, 8) and the poles of qSo(p, 8; r,k). By Proposition (1.9) and (3.5) we see that 
qSo(p, 8;r ,  k) has three simple poles at 6 =0, �89  - 1 .  Now, since 

Z+(p, 8;r,k)=Z+_(p, 8;r ,k  +4) 

it follows that for 8 fixed and 84:0, 1 ~ - p ,  - 1  and 8 a singularity of 
Z+_(p, 8, r, kl) then Dk(P, 8)=O for k=kl(mod4) .  By Proposition (2.3) this is 
impossible. Q.E.D. 

Proposition (3.4). Let e > 0, Re(p)> �89 be fixed. Let r > 0 be squarefree. Let 8 = a 
+i t  satisfy 18l>e, 16-�89 18+ll>e and - R e ( p ) - � 8 9  7hen there 
exists a positive function h(r) (independent of t, a) such that 

IZ + (p, 8, r e, k)[ .~r-  2~- 2 + z~ltl-*+ ~ h(r ) 

where the ~ constant depends at most on p, a, k, e. Moreover, the function h(r) 
satisfies the condition 

~ h(r )r - l -~ .~ l  
r = l  

where the above ~-symbol depends at most on ~. 

Proof For e > 0, it follows from (3.3) that 

]Z + (p, ~ + it, r z, k)l '~ r -  2 -- 2e hl(r ) 
where 

hi(r)= ~ [Amr2(P,k)l'lm1-1-~. 
m : # O  

Let m=mon 2 where m o is squarefree. Then by Proposition (3.2) 

IA,,r2( p, k)] < [Amo(P, k)] a(nr)2 w("~) 

IAmo(p, k)l(nr) ~/z 

since a(n) ~ n ~/4 and 2 w(") ~ n ~/~. Consequently 

r=l r ~  2 2 [Amo(P,k)[" [nrl ~/2" [mon2r[ -~-~ 
r = l  mo n=~O 

~ IAmo(P,k)l'lmol - ' - ~  
mo s q .  f r e e  

�9 ~ 1. (3.8) 

This proves the proposition when a = e. 
In order to estimate the growth of Z+(p, 8,r2, k) when Re(8)<e we shall 

apply the functional equations of section (1) to the Mellin transforms of the 
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appropriate Eisenstein series. This will give growth estimates when Re(f)= 
- R e ( p ) - l - s .  The standard Phragmen-Lindelof principle will then be applied 
to give bounds within the critical strip. 

Now, choose 
6= - p - � 8 9  

where p , e  satisfy the conditions in the statement of the proposition. 
For r odd, we rewrite (3.5) as 

()o(P, 6,r2, k)=r-2~ ~ ~*(P,  6 ;d ,k  ). 
dlr 2 u(mod d) 

(u,d) = 1 

(3.9) 

and 

p 1 k w=~+~+~+~ 
~,~ (p,,~ 

where 

.u (~_w,a k\ , a k) ,3, k ) = A ~  3, ) q ~ ( p , e + i t ; 3 ,  

- 4 a u - 1 ( m o d  d)  

Aoo (W, d,k)=(2d)k/2 2w(--2i)k/2g~k (d ). 
Now, by Proposition (1.4), we have, for 13'=s+it 

) ~ ) ck(p, ~ ) ~* p,e+it; d,k =2P-k/2+l/z(1+'k 

A,,(p,k)c,, ( p_4 + 1 k)e2~tima/a 

m>O 

Am(p,k)% 15-~+~, k e 2~im~/e 

+a-k(P'fi')m<o ~ Ira[ l+a ' 

It is easily seen by Proposition (1.4) that 

c,, ( p_4 + 1 k),~log[m]. 

So if we substitute (3.11) into (3.10) and sum over u(modd), (u,d)= 1 on the left 
(which is the same as summing over a(modd), (a ,d)=l  on the right side of 
(3.11)), we obtain 

.(moaa) 3, k ~[Gk(P's+it),,>o ~' IAm(p'k)llg(m'd)llml-1 
(u,d) = 1 

+ G_k(p,e+ it) ~ JAm(p, k)l [g(m,d)l [m[ -1 e/2qdp+~+2E 
m<O 

- e l 2  

(3.12) 

(3.10) 

(3.11) 

By the functional equation given in Proposition (1.9) it follows that for 
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where the ,~-constant is independent of d, t, and 

g(m,d)= ~, (d)e 2niam/d 
a(modd) 

is the imprimitive Gauss sum which satisfies the bound 

0 r2Xm 
m Ig(m,d)[<= rlr2 (~,r2)  r21m (3.13) 

where d = r 1 r~ and (r 1, r2) = 1. 
Now, by Proposition (2.2) it follows that for [tl sufficiently large 

p 1 k 
G +_k(p,g -}-it)~ F (~+~ + ~+e + it). (3.14) 

Combining (3.9), (3.12), (3.13) and (3.14) we obtain 

[p 1 ]k[ e+it\h2(r)) ~)o(p,b, r2, k)~r 2p '+4~ F ~+-4 +~-+ (3.15) 

where 
he(r)= ~ r~-~176 ~ [A.r2(p,k)l(n, r2)ln[ -1-~/2. (3.16) 

r l r 2 r 3 = r  ner 

In order to estimate the right side of (3.7) we use (3.14), Proposition (2.3) 
and Stirling's formula 

[t[r -(€ ( I t l ~ )  

in conjunction with (3.15) to obtain, for k>0,  the bounds 

dpo(p, 6, r z, k)G_k_4(p, fi),~rZp_ 1 +~[tl p 3/2+ 2~ h2(r), 
Dk(P, 6) 

~9o(P,~,r2, k-l-4)G_k(P,~) ~r2p_l+~,~ltlP+l/2 + 2~h2(r). 
Dk(P, fi) 

This can be put into (3.7) to yield 

Z + (p, - p - � 8 9  r2, k),~r2p-l +*~ltl~ l/2+ 2' h2(r ). (3.17) 

Since Z+ depends only on the congruence class of k(mod4) the bound (3.17) 
must hold for all k. In an identical manner, it is also easily shown that 

Z ( p , - p - l - e - i t ,  r2, k)~r 2p l+4~[tlo+�89 ). 

Finally, to summarize, we have obtained the growth estimates 

Z+(p,~+it, r2, k)~r-2-2~h(r) 

Z+_ (p, - p - � 8 9  r2, k)~r2p-l +4~ltf+~+ 2Eh(r) (3.18) 

where 
h(r) ~ hl (r ) + hz(r ). 
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By the Phragmen-Lindelof principle [10] if follows from (3.18) that 

Z + (p, 6 + it, r2, k ) ,~r -  Z~- 2 + z~[tl-~+~ h(r) 

which gives the first part of the proposition. 
To prove the second part of the proposition it is enough to show (in view 

of (3.8)) that 

~ h2(r)r -1-~ <~ 1. (3.19) 
r = l  

This is easily proved by substituting (3.16) into the left side of (3.19) and noting 
that 

h2(r )r - l -E< rx 0-1-2~ r3-2p-2-4e. ~ r~+~lnla+~/2 
r = l  r l = l  r 3 = 1  n4:0  r 2 = l  

~, IA.~(p, k)l(n,r) 

n:#O r = l  

= y, ~ Ia~(p,k)l(dl,dz) 
m.o a~a~=~ Iml 1+~/2 (3.20) 

Writing m = m o  nz with m o squarefree it is clear that (dl,d2)ln. Hence 

(d l ,dz)m -1-~/2 < m o  1 ~/2n-1 ~ (3.21) 

Since ~ 14.m ~/4, it follows from (3.20), (3.21) and Proposition (3.2) that 
dld2=m 

(3.19) holds. This completes the proof of Proposition (3.3) in the case that r is 
odd. 

When r is even, the proof is similar to the above, with Propositions (1.10) 
and (1.11) used in place of (1.9). We omit the details. 

w 4. Proof of main theorems 

It was shown in Proposition (3.3) that for Re(p)>�89 the function 
( (2p)Z+(p ,3 , r2 ,k )  has a meromorphic continuation to the whole complex 3- 
plane whose only singularities, for p4:�89 are simple poles at 3=0,  1 ~ - p ,  - 1 .  
For p=�89 it has a double pole at 3 = 0  and a simple pole at 3=  - 1 .  

We now give the residues at 0 and �89 The residue at - 1  is ~ 1 and is 
independent of r. 

Proposition (4.1). For r > 0  and squarefree, Re(p)>�89 p~�89 let R+(p,a,  r2, k) 
denote the residue of  ( (2p)Z+(p,  3,r2, k) at 3=a.  We have 

R+(p,O, r2,k) =, 

R + ( P , � 8 9  r2,k) = 

~ ( 2 p ) r - 2 ~ d - 2 p - ~ o ( d  2) ( r ,2)=l  
a i r  

~(2p)r -2 ~ d -2p-1 ~b(d 2) r = 2 r  o, 
alto 

2P+~n �89  dzp-3"mda~hv,~ J +w, ~ •  (r, 2 ) = l  
a i r  

1 k 23p-~n�89 2 ~ d2p-3qS(dZ)h+(P,~-P, ) r=2ro,  
d[ro 
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where 

h 1 1 -1 c k G  1 + ( p , ~ - p , k ) =  +_Dk(p,~--p) [ (p, ) _V_(k+4)(p,~--p)--c(p,k +4)G~k(P,�89 

and 
[p k 1 1,k) ik/Z~s(k)((2 p -- 1)K o ~2- -~+~,  

c(p, k)= 22p+~(1_2 29) 

= l ~ r - 2 d ~ l r d  2 q ~ ( d 2 ) ( r , 2 ) =  1 

[ rO 2o d r=2ro 
and 

fc + (k)r- 2 • d-  2 c~(d e) _ 2 r-  2 ~, d-  2(log d)~b(d z) (r, 2) = 1 
, /,2 : ~ dlr dlr 

R+( ,k) I ( c +(k ) - l~  ~ d - 2 ~ ( d 2 ) - 2 r - 2  ~ d-2(l~ r=2r~  
t - dlro dlro 

where c • (k) is given by 

gF, k 1 1 g2.k (4.1) c •  5 - ~  , 
gl ,  k gi-,k 

with 

g ~, k(p) = +_ O~(p, �89 p) -~ [G ~ (~ + ~)(p, � 89  p) - G ~ k(p, 1 _ p)] 

g~,k(P) = +-- Dk(P, �89 P)-~ [G ~ tk + 4)(P, �89 P)bk -- G -v- k(P, �89 P)bk + 4], 

' F' F' 1 k 4 ~ ( 0 ) - 1 0  ba= 2 ~F ( 1 ) - ~ -  ( ~ - ~ )  - ~ -  (~+~)  + -- log2. 

Proof of Propositions (4.1) and (4,2). Recall from (3.10) that the residues of Z+ 
can be obtained from the residues of ~b o. These in turn are given in terms of 
the residues of q~o, which are described in Propositions (1.9), (1.10) and (1.11). 
The proposition then follows after a long but routine calculation. 

We now give the proofs for Theorems (1) and (2) of the introduction. 
Firstly, asymptotics are obtained for sums of type 

Z Am(p, 1) 
0 < •  

m~- 0(mod r 2 ) 

by use of the analytic properties of the function Z• as given in 
section (3). The reduction to sums over squareffee m 

Am(P, 1) 
0< •  

Proposition (4.2). For r>O and squarefree and p=�89 let R+(r2, k), R'• k) 
denote the coefficients of ~-2 and 6 - t  of the Laurent expansion of 
~(2p)Z+(p,&r2, k) about 6=0.  We have 
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is a consequence of the simple linear sieve 

Am(p, 1)= ~ Am(p, 1) Z /x(r) 
O< •  O< •  relm 

m squarefree 

where p(r) is the MSbius function. We, of course, use the fact that for m 
squarefree, Am(p, l) is essentially a Dirichlet L-series. 

Proposition (4.3). Let p=fl+it~=�89 with fl>�89 Let e > 0  be fixed. 7hen jbr x > r  2 
with r squarefree 

((2p) ~ Am(p, 1) = R+_ (p, 0, r 2, 1)x+R+(p, �89  2, 1)x ~-p 
O < + m < x  

m --- O(mod r 2) -}- 0 ( ( x / r 2 )  g(//) +~ X e h(r)) 

where R+_(p,a, r2,1) is given in Proposition (4.1) and h(r) is given in Proposi- 
tion (3.4). Moreover, 

J'(fl _1_ 3 ) -  1(~6 _1_ 1~6 fl 3 f12 ) 1<::/]_____ 1 
g(fl)  m~ ( ( f l  -~- 3)--1 fl > 1. 

7he function g(fl) is monotonically decreasing with g(�89 19 = ~  and g(cr189 with cr 

_ - 5 +  1 ~ 0 . 7 4 .  
12 

Proposition (4.4). Let e > 0 be fixed. 7hen for x > r 2 with r squarefree, we have 

lira ((2p) ~ Am(p, 1)= R _+ (r 2, 1)xlogx+(R'+(r 2, 1 ) - R  _+ (r 2, 1))x 
P~�89 O < + m < x  

m=-O(modr 2) 19 
+ O((x/r2)g2 +`x ~ h (r)) 

where R+(r2,1) and R'+(r2,1) are given in Proposition (4.2) and h(r) is given in 
Proposition (3.4). 

Proof We now prove Propositions (4.3) and (4.4). Let, for e > 0  and 1 __< T<x / r  2 

1 =  1 X 1+~ 
((2p)Z+_ (p, 6, r 2, 1) 1 ~ 6  d6 

2zri 

where ~ is the rectangle with corners e-t-iT and - f i - l -e++_iT,  fl=Re(p), 
traversed in a counter clockwise direction. By Cauchy's theorem, I can be 
computed by summing the residues of Z_+. It then follows from Propositions 
(4.1) and (4.2) that 

~R+(p,O, rZ, 1)x+R+}p, �89 r2,1)x ~-~ p4:�89 (4.2) 
I=(R-+_(r2, 1)xlogx+(R• 2, 1)-R_+ (r 2, 1))x, p=�89 

On the other hand, the contribution to I from each of the sides of N can be 
computed in a manner similar to [4], p. 104. Using the estimates of Pro- 
positions (3.4) and (3.2) together with Burgess' estimate I-3], L(p,)~m)~ Iml a(p)+~, 
fl(p)=-~(1- Rep), and setting 
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IX ~(�89 + #(P) + Re(p))/(-~ + Re(p)) 
T-- ~ ]  

the propositions follow. 

Proof of Theorems (1) and (2). Recall that 

~(2p) ~, Am(p, 1)= ~ #(r) }-" 
O < + m < x  r < V ~  O < + m < x  

m squarefree m =- O(mod r 2) 

By Proposition (4.1) (i.e. P4=�89 

~(2p) ~, 
O < •  

msquarefree 

~(2p)Am(p, 1). 

A,,(p, 1)= ~ #(r)[R+(p,O, r2,1)x+R+_(p,�89 r2,1)x ~ P] 
r < l / ~  

( <~1/~[ [X 'g(~)+e ] \  
+0 t~)  x~h(r)])" 

r 

[ x ]gq3)+~ h(r) W]  x~h(r)~x~+2~ ~ ~ ~x~+2~ 
r < V ~  

If g(fl)<�89 then 

E 
r < l / ~  

by Proposition (3.4). 
On the other hand, if g(fi)>�89 

( x ]g(#)+ ~ h(r) 
r < l / ~  r < l / ~  r2g( f l )+  2e " 

c~• ~ #(r)R+(p,a,r 2, 1) 
r = l  

Letting 

it is easy to verify by Proposition (4.1) that 

c~• (p, 0)= 3 ~(2p)2- 2P(2p + 1) 
c~ 1 =n~-p(2~+p_ �89 1)P(3-2p), +(p,~-p) 23p-~)h• (p, 

where 
P(w)= [I ( 1 - p - Z - p - W + p - W - 1 ) .  

p:~2 

In view of (4.3) it is necessary to estimate 

#(r)R• r2,1) "~ ~ r - 2 + ' ~ x  -~+ '  
r>V~ r>_-V~ 

~, #(r)R+(P,�89 r2,1)4. ~ r2#-3+e~.X// 1+e/2 
and 

since fl = Re(p) < 1 - e. 
Consequently, it follows from (4.3), (4.7), (4.9) and (4.10) that 

(Re(p) < 1) 

~ (2 p)Am(p, 1)=a+ (p, O)x + c~ + (P, �89 P)X~-P + g(x) 
O < _ + m < x  

m squarefree 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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where 
(x �89 <=,6 

~(x)~x~+~, ~<# 

and e = (  1Vq~-5) /12~0.74 ,  and moreover, the term ~•189 ~-~ must be 
omitted when Re(p) = fl > 1. 

In the case when p=�89 we obtain, in a similar manner using Proposi- 
tion (4.2) 

1 9  

lim ~ ~(2p)Am(p, 1) = ~• x logx +(c(• -o~•163 (4.12) 
p ~ r  0 <  •  

m s q u a r e f r e e  

where 

~• = ~ #(r)R• P(2) 
r = l  

G = r:, 1) 
r = l  

r3 1 1 3 = P ( 2 ) [ ~ c •  ) + ~ l o g 2 + ~  

Recall that (see 3.2) if m is squarefree 

V (log p ) ( p -  1) ] 
(4.13) 

p.z~ 2 p 3 - - 2 p + i  ]" 

~(2 p)Am(p, 1 ) = ( 1 - 2 - 2 0  -1 L2(p,x.,). 

Thus to obtain Theorem (1) with L(p, Z) replaced by L2( p, Z) we simply multiply 
(4.11) and (4.12) by 1 - 2  -2p. In the special case p = l  it is also necessary to 
remove the term corresponding to m = 1. 

We then obtain 

c(p) x + O(x ~+ ~), if Re(p) > 1 

L2(p,x,,)=~c(p)x+c*(p)x~-P+O(x~ if p4:�89 �89  E / 

2squ+rm f<reXe It�89 X log X + (C'~ + C*'~ -- C}) X + O(X~ + ~), (4.14) 

where 
c*(p)=(1-2-2P)~•189 (p4=�89 (4.15) 

c'~ + c*~-c~= �89 -c%), (4.16) 

and c(p), O, are given in the statement of Theorem(l).  Here e•189 and 
c(~, a• are given in (4.7), (4.13). 

We now indicate how the proof of (4.14) can be modified to yield Theo- 
rem (1) proper; that is to say, to obtain asymptotics for 

Z L(p, zm). 
l < •  

m s q u a r e f r e e  
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Firstly, 

~'  L2(p,•,,) = ~ (1 -Zm(2)2-~ Zm) 
1 < •  1 < •  < x  

m s q u a r e f r e e  m s q u a r e f r e e  

l < •  + 1 <  < x  l < •  
m s q u a r e f r e e  / -  m ~- 1 ( rnod 8) • m ~ 5 ( rood  8)  

L m s q u a r e f r e e  m s q u a r e f r e e  

since 

L(p, Zm)] (4.17) 

+ 0  if m ~  1 (mod4)  

Xm(2) = 1 if m = 1 (mod 8) 

1 if rn - 5 ( m o d  8). 

Let S denote the bracketed difference of two sums above (coefficient of  2-P). 
To complete the proof, it is enough to show that  for Re p < 1, 0 as above, 

S = ~• ~(p) x ~- p + O(x ~ ~), (4.18) 

for some constant  c%~(p). 
In order to show (4.18) we consider 

It can then be shown that E*(z,s) satisfies the t ransformation formula (for (r,2) 
= 1, - 4 a u = 1 (mod r)) 

/r--2u\k 1 
E~(O~,,, Z,Z,S)=i-k/2(rz) k/2 G l-~--r ) E~176 (4.19) 

which is analogous to Proposi t ions (1.6), (1.7), (1.8). 
Now, taking Mellin transforms and using Proposi t ion (1.5) it can be shown 

that the same procedures used previously yield (4.18) when applied to E*(z,s). 
Also, note that there is no main term corresponding to x in (4.18). This is due 
to the fact that  by (4.19) E* transforms to E 0 and not  E~.  

Finally, Theorem(2)  follows immediately from Proposi t ion (3.4) and (4.11), 
(4.12) together with the above remarks. Q.E.D. 
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