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Introduction 

Let ~'=l12u{oo} be the Riemann sphere and let End(~) be the space of 
analytic maps (endomorphisms) of �9 into itself with degree > 1 endowed with 
the C o topology (analytic in this paper will always mean complex analytic). It 
is well known that these maps are given by rational functions. Denote by 
A(rl, r2) the annulus 

A(rl, r2)= {ze~[rl  <]z[ <r2}. 

A Herman ring of f~End(ll~) is a connected component U of the complement 
of the Julia set J ( f )  of f homeomorphic to an annulus and such that there 
exists n > l  satisfying f " (U)=U.  In this case it can be proved that if ~0: 
A ( r t , r 2 ) ~ U  is a conformal representation, the map q~-lf"~0: A(rl,r2)*--" is a 
rotation i.e. there exists 0 s ~  such that 

(q~- l f"q))(x)=e2~~ 

for all zsA(r 1, r2). By elementary reasons, the number 0 is independent of the 
conformal representation. It is called the rotation, number of the Herman ring. 
The minimum n>  1 such that f " ( U ) =  U is called the period of U. 

Herman rings are one of the five possible dynamical behaviours in the 
complement of the Julia set (Sullivan [3]). It can be easily shown that of the 
other four, three of them don't appear for maps in an open and dense subset of 
End(~). The purpose of this paper is to prove the same property for Herman 
rings. 

Theorem. The set of maps f e E n d ( ~ )  without Herman rings contains an open and 
dense subset of End(~'). 

This result is a step in the approach proposed in [-2] to solve the funda- 
mental conjecture on the generic dynamics of rational maps. 
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Conjecture I. For a dense set of maps feEnd(ll~), the Julia set of f is hyper- 
bolic, i.e. there exist K > O, 2 > 1 such that 

I(f")'(z)l ~ KR" 

for all z s J ( f )  and n>= 1. 

The results in [2], together with the theorem above, show that this conjec- 
ture is implied by the following one: 

Conjecture II. For a dense set of  maps f~End(ll~) the Julia set of f has no 
invariant line fields. 

Recall that an invariant line field on the Julia set of f is a pair (A, L) where 
A (called the support of the line field) is an invariant Borel set (i.e. f - I ( A ) = A )  
with positive Lebesgue measure contained in J(f) ,  and L is a map that to every 
zeA associates a one dimensional subspace L ( z ) c T z ~  such that L(f(z))  
=if(z)  L(z) for a.e. zeA. In particular, if the Lebesgue measure of J ( f )  is zero, 
there are no invariant line fields on J(f) .  Since when J ( f )  is hyperbolic its 
Lebesgue measure is zero, it follows that Conjectures I and II are equivalent. 
Obviously, a proof that J ( f )  has Lebesgue measure zero for a dense set of 
maps f~End(ll;), would imply Conjecture II. However, to prove Conjecture II 
could be easier. One may start with an invariant line field (A, L) and, using 
some dense hypothesis on the map, prove that the Lebesgue measure of A is 
zero, thus reaching a contradiction. The existence of the line field should play a 
role in obtaining the distortion inequalities on which proofs that invariant sets 
have measure zero usually rely. This approach is motivated by a successful 
similar idea introduced by Sullivan to study the Ahlfors conjecture, that states 
that the limit set of a finitely generated Kleinian group has measure zero. The 
conjecture remains open but in [3] Sullivan proved that there are no invariant 
line fields on the limit set; a fact that suffices to replace the Ahlfors conjecture 
in several relevant applications. 

The results in [3], plus the theorem above, show that the following conjec- 
ture also implies Conjecture I: 

Conjecture IlL For every feEnd(ll~), either the Lebesgue measure of J ( f )  is zero 
or J ( f ) =  ~ and f is ergodic, i.e. for every Borel set A c ~ such that f - I ( A ) ~  A, 
either A or A c has measure zero. 

However this conjecture is stronger than the first one and has an intrinsic 
interest that goes far beyond its application to prove Conjecture I. 

There also exists a more direct approach to prove Conjecture I. It is based 
on the fact that when every periodic orbit is hyperbolic and there are no 
critical points in the Julia set, then this set is hyperbolic. Since the hyper- 
bolicity of the periodic orbits is a generic property, it remains to prove that the 
absence of critical points in the Julia set is also a generic property. Suppose 
that J ( f )  contains a critical point p. By elementary properties of J(f) ,  the set 
U f-"({P}) is dense in J(f) .  In particular, it accumulates at p. Then one could 

n>O 

try to find geEnd(ll~) arbitrarily near to f, such that p is a critical point of g 
and pc U g-"({P}). This means that p is a critical periodic point of g. In 

n>O 
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particular it is an attractive periodic point. Since the attractive periodic points 
of f survive the perturbation and appear (moving its positions a little) as 
attractive periodic points of g, the net result of the perturbation is to increase 
the number of attractive periodic points. However, in an open and dense 
subset of End(C), this number is locally constant [2]. Then, the conclusion 
would be that elements of this open and dense set cannot have critical points 
in the Julia set. 

The proof of the theorem is given in the next section. It is based on the fact 
that an open and dense set of maps f 6 E n d ( ~ )  is structurally stable [2, 3]. We 
shall show that the structural stability of f implies that f has a certain 
property that we shall call infinitesimal stability. This means that given an 
infinitesimal variation G of f (i.e. G is the derivative at w = 0  of a map H: D 
x l l ; ~ ; ,  where D is the unit disk, such that H ( O , z ) = f ( z )  for all zell~) there 

exists a continuous vectorfield V on I~ such that 

f ' ( z )  V (z) - V ( f  (z))= G(z) (1) 

for all ze~2. What we shall do is to prove that a map with a Herman ring is 
not structurally stable. As an example of the method we shall use, consider a 
map feEnd(~2) with a fixed Herman ring U that contains the unit circle S x 
= {z~ll21lz I = 1} as an invariant circle where f acts as the rotation z--*ei~ Such 
a behaviour is impossible because it would force f to be a rotation but it is a 
good heuristical example. Then, at points of S 1 Eq. (1) becomes: 

e i~ V(z)  - V(e i~ z) = G (z). (2) 

Now take J : D x ~  defined by H ( w , z ) = ( l + w ) f ( z ) .  Then G ( z ) = f ( z )  is an 
infinitesimal variation of f .  Since f ( z ) = e i ~  Eq. (2) implies that there exists a 
continuous vectorfield V on ~; such that for all z e S  1 

e i~ V(z)  - V(ei~ = e~~ (3) 

However it is quite easy to show (intergrating this equation on S 1) that there is 
no continuous V: $1~1I; satisfying (3). Then, the map f is not infinitesimally 
stable. In the general case the basic idea is the same but first we have to 
transform the map, using a special change of coordinates, in a map that has a 
Herman ring that contains an invariant circle that almost coincides with the 
unit circle and where f acts almost as a rotation. More precisely, if feEnd(~;)  
has a Herman ring U that contains an invariant circle 7, we shall construct a 
quasiconformal homeomorphism g:l12,--, such that gfg-l~End(ff2) and g(Y), 
which is an invariant circle of gfg-1, is near to S 1. By a result of Sullivan [3], 
i f f  is structurally stable, then gfg-~ is structurally stable. Using the invariant 
circle g(7) we shall prove that g f g - ~  is not infinitesimally stable. Hence it is 
not structurally stable and then f is not structurally stable. 

This idea seems essentially analytical. However it evolved from a formally 
different geometric idea that can be used to prove the theorem for f i x e d  
Herman rings (i.e. having period n = l )  but that we couldn't extend to the 
general case. Since this geometric approach throws light on the nature of the 
proof of the theorem, we shall now briefly explain it. Suppose that feEnd(~; )  
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has a H e r m a n  ring U with period n > l  and let ~0: A(ra,rz)--*U be a conformal  
representat ion.  It is easy to prove that  the curves ~ = ~o({ztlz I = r}), for r 1 < r<r 2 
are invariant  under  f "  and independent  of  the conformal  representation.  This 
family of  curves is called the canonical  foliation of U. Moreove r  observe that  if 
c~ is a simple closed curve contained in U, then f,(~)c~c~:t=0. N o w  we claim that  
a structurally stable feEnd(ff2)  cannot  have a H e r m a n  ring whose canonical  
foliation contains a convex curve 7 ~ C .  In fact, i f f  is s tructurally stable every 
nearby  geEnd(~2) contains a fixed H e r m a n  ring Ug satisfying 7tUg (but ob- 
viously ~ doesn' t  need to belong to the canonical  foliation of Ug). Without  lose 
of generali ty we can suppose that  the origin of  II; is in the interior of 7. Take  g 
= ( 1 - e ) f w i t h  0 < e <  1. Then  g ( 7 ) = ( 1 - e ) f ( 7 ) = ( 1 - e ) 7 .  Then, since 7 is convex 
and contains the origin in its interior, we obta in  7c~g(7)=0 contradict ing the 
intersection p roper ty  stated above. Since g can be taken arbitrari ly near to f, 
taking e small, this proves that  f is not s tructural ly stable thus complet ing a 
p roof  by contradict ion of our claim. However  this p roof  is not  immediat ly  
extendable  to rings with period n > l  because the calculation of g"(7) is not  
s t ra ightforward as in the previous case. Anyhow,  in the case of a fixed H e r m a n  
ring, the assumpt ion  of the existence of a convex closed curve 7 in its canonical  
foliation can be avoided. The  idea is to produce  a quas iconformal  h o m e o m o r -  
phism h=~*--" such hfh -1 is a rat ional  m a p  and the ring h(U) has large 
modulus.  This means  that  there is a conformal  representat ion 
q~: A(r~, r2)~h(U ) with r a very small and r 2 very large. Wi thout  lose of generali- 
ty we can assume that  ~o(1)= 1 and that  0 and oo belong to different connected 
componen t s  of the complemen t  of  h(U). According to Theo rem 1.6, that  we 
shall prove  in Section II, such a conformal  representa t ion is very near to the 
identity m a p  or the inversion z ~ z -  1 in the annulus A(1/2, 2) if r I is very small  
and r 2 very large. Then ~o({zllzl= 1}) is convex. Hence hfh -1 is not  structurally 
stable and then f is not s tructural ly stable. 

Proof of the theorem. First  we shall recall some basic results abou t  quasiconfor-  
mal  structures and mappings ,  analytic motions,  structural stability and quasi- 
conformal  conjugacies necessary for the p roof  of the theorem. 

If  U c ~ ;  is an open set, a quasiconformal structural on U is a function 
~t: U--,tE with 

II~l[o~< 1. 

Associated to p we have a field of  ellipses that  to a.e. z e U  associates the 
ellipse 

E~,(z) = {e go + #e -i~ [ O~R}. 

The  set of  quas iconformal  structures on U is denoted Qc(U). 
If  U c ~  and V c ~  are open sets, we say that  a cont inuous  m a p  f :  U-~Vis 

quasiconJormal if it satisfies the following condit ions:  
a) Fo r  a.e. z~U, f is differentiable at z and its derivative is an or ienta t ion 

preserving i somorphism.  
b) The  function K ( z ) =  Ilf'(z)l[" I I ( f ' ) -  l(z)l[ satisfies IIKII oo < + oo. 
c) f is absolutely cont inuous  on lines, i.e. the real and imaginary  parts  of 

the restriction o f f  to a line parallel to the real or imaginary  axis are absolutely 
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continuous. This, together with (a) and (b), implies that the Lebesgue measure 
of a Borel set A c U is zero if and only if the measure of f (A)  is zero [1]. 

Every quasiconformal map f :  U ~ V  induces a map f , :  Qc(V)~Qe(U) de- 
fined as follows. Suppose that gEQc(V). Using (a), (b) and (c) it is easy to prove 
that there exists a unique veQc(U) such that the ellipse f ' ( z )E  (z) is homo- 
thetic to Eu(f(z)). Define f . (p)  = v. 

The following is the well known measurable Riemann mapping theorem 
due to Morrey. For a proof see [1]. 

Theorem 1.1. [1] For every pEQc(~) there exists a quasiconformal homeomor- 
phism g: ~*--" such that g.(k0=0. 

An analytic motion of �9 is a map (p: W x C ~ C ,  where W is a connected 
complex manifold, such that, denoting ~o:.(.)=~0(2,-), the following properties 
are satisfied: 

a) ~oz: ~ -~  is injective for all 2EW. 
b) For all z~C, the map W~w~q~z(w)e~ is analytic. 
c) There exists 2oeWsuch that ~PXo is the identity. 
The next theorem is the 2-1emma of [2]: 

Theorem 1.2. If(p: W x ~-- .~  is an analytic motion, then r is continuous and for 
all 2~ W, q~ x : ~*--~ is a quasiconformal homeomorphism. 

We shall also need the following easy corollary: 

Corollary. I f  ~p: W x ~  is an analytic motion, then, jot every 2t~W, the 
vectorfield - Oq~ 

r  ~ ( 2 1 ,  z)~T~ ~ 

Proof Take 21sW and consider the vectorfield V(z)=(Ocp/O2)()L 1, z). To prove 
the continuity of V take a point z e ~  and a sequence z ,~z .  Define a sequence 
of analytic functions F,: W ~  by F,(2)=~oa(z,) and define F: W ~  by F(z) 
=opt(z). By 1.2 q) is continuous. This obviously implies that F,-~F when n ~  + 
uniformely on compact sets. Then F ' ( 2 0 =  lira F'(21). Since F'(21)= V(z) and 

n ~ + o o  

F,~(21) = V(z,) this concludes the proof of the corollary. 
We say that f E E n d ( ~ )  is structurally stable if there exists a neighborhood 

W o f f a n d  an analytic motion ~o: Wx  ~ C  such that 

~of = Identity 
and 

~g lf~g_____g 

for all g~W. 
A variation of f ~ E n d ( ~ )  is an analytic map F:DxC- -*~ ,  where D 

={z~C[lz[<l}  and 
V(O, z) = f(z)  

for all zeD. The analytic map G: ~ T ~  defined as 

0F z) (1) 6(z) =-b~-(0, 
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is called an infinitesimal variation o f f  We say that f e E n d ( ~ )  is infinitesimally 
stable if for every infinitesimal variation G of f there exists a continuous 
vectorfield Von ~ such that: 

f '  (z) V ( z ) -  V ( f  (z))= G(z). (2) 

Theorem 1.3. Structurally stable maps are infinitesimally stable. 

To prove this theorem take a structurally stable feEnd(~2) and a variation 
F: D x II~112 of the map f as above. By the definition of structural stability 
there exists an analytic motion ~o: D x ~ ; ~  such that: 

Cp~o = Identity 
and 

q)z(f (z)) = V(2, ~o~(z)) (3) 

for all )~sD and z ~ ; .  Defining the vectorfield Von ~? as 

v(z)  = U ( , ~  o, z) (4) 

and derivating (3) with respect to 2 at 2=20,  we obtain: 

0 F ~  
f ' ( z )  V(z) V(z)= V(f (z)) + ~ ( , t o ,  z). 

Then, if G is the infinitesimal variation given by (1), it follows that Eq. (2) is 
satisfied by Vgiven by (4), which by Theorem 1.2 is continuous. 

Theorem 1.4. [2, 3] The set of structurally stable maps f e E n d ( ~ )  is an open and 
dense subset of End (ll~). 

Theorem 1.5. [3] I f  f 6 E n d ( C )  is structurally stable and geEnd(~2) is quasicon- 
formally equivalent to f (i.e. there exists a quasiconformal homeomorphism h: ~2.--~ 
such that h - l f h = g )  then g is structurally stable. 

The following theorem will be proved in the next section. 

Theorem 1.6. Given two sequences: 

. . .r2<r 1 <1 <R 1 <R2 < . . .  

such that R , ~ + o o  and r.~O and a sequence of injective analytic maps 
q~.: A (r,, R.)--* tI~ such that: 

a) ~o,(1)=l for all n; 
b) For all n, the origin is contained in the bounded connected component of 

the complement of ~o,(A(r., R,)); 
c) For all n, the winding number with respect to the origin of the curve 

O--*~p,(e i~ is 1, then {~o.} converges uniformely to the identity on compact subsets 
of ~U - {0}. 

To prove the theorem, we shall show that i f f s E n d ( ~ )  has a Herman ring, 
then there exists geEnd (if2) quasiconformally equivalent to f, such that g is not 
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infinitesimally stable. By Theorem 1.3, g is not structurally stable. Hence, by 
1.5, f is not structurally stable. Therefore structurally stable maps don't have 
Herman rings. By 1.4, this proves the theorem. 

Suppose that f e E n d ( ~ )  has a Herman ring U with period m and rotation 
number 0. Denote: 

c = ~ u j ,  u~=fJIv),j=0 ..... , ,  
j o 

Observe that U o = U m= U. The property stated in the next lemma is technical 
but will play a fundamental role at the end of the proof. However it is 
unnecessary when m =  1. Given a point x e ~  and O<j<m define the number 
zj(x) as 1 or - 1  according to whether the m a p f l  Uj: Uj~Ui+ 1 preserves or 
reverses orientation of the invariant ourves of the annulus Uj in the plane 
-{x}, i.e., whether the clockwise orientation of the invariant curves in Uj in 
the plane ~ - { x }  is mapped in the clockwise orientation or not. Define 

m ~ l  

vj(x)---  I ]  ~, (x ) .  
i=j 

m 1 

Lemma 1.7. There exists x e ~ -  C such that ~ vj(x)=#O. 
j - O  

Proof We say that two points x' and x" in ~ ? - C  are related by a j-crossing if 
x' and x" are in different connected components of ~ - U j  but in the same 
connected component  of @ - U  i for all i+j, O<i<m. Suppose that x' and x" 
are in this situation and fix in each U i an invariant curve 7i endowed with the 
clockwise orientation of the plane ~ ; -{x '} .  Then in the plane ~ - { x " }  all the 
curves 7~, i+j are clockwise oriented and 7j is oriented counterclockwise. Using 
this remark, it follows that, if 0 < j  < m - 1 ,  we have: 

~ j ( x ' ) =  - z j (x " )  

~j 1 (x ')  = - ~ j (x")  

zi(x')=zi(x"), O<_i<_rn--1, i+j, i=t=j-1. 

This condition and the definition of the vj's imply: 

v ~ x ' )  = - v j ( x " )  

vi(x')=vi(x" ) O<_i<_m--1, i+j. 

Now choose two points x'  and x" in ~ - C  related by a 1-crossing and suppose 
that x' doesn't satisfy the required condition, i.e.: 

m--1  

Z vj(x')=0. 
j = 0  

By the relations above 

m - - 1  

Y v~(x")=vl(x")+ Z vJix")=-v~(x')+ Z v~Ix') 
j = O  j:~ l j *  l 

m--1 

= - 2 v l ( x ' ) +  ~ vj(x')=-2vl(x')#:0. 
j=0 
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This completes the proof of the lemma. Using it, choose x in the complement 
of C such that rrt--i 

y~ vj(x):~O. 
j=0 

Without loss of generality we can suppose that x = ~ .  Hence: 

m 1 

j=o 

Take a conformal representation: 

(p: A ( r , R ) ~ U  

that maps clockwise oriented circles centered at the origin onto clockwise 
oriented invariant curves of U. We can suppose 

l e U  
and 

~p(1)= 1. 

Take a sequence of quasiconformal homeomorphisms: 

kn: A(r/n, R n ) ~  A (r, R) 
satisfying: 

k,(1)= 1 

and commuting with the rotation of angle 0, i.e. 

k n (e iO z)  = e iO k n (z) .  

Now define a sequence of quasiconformal structures 

~.eQc(r 
by: 

# n / U  = ((r k n 1 ) ,  (0)  

#, I f  J(U)= (fJ),(#,), j>--0 

#,(z)=0,  z(~ U f J(U). 
j>0 

It is easy to check (using that k, commutes with the rotation zoe i ' z )  that #, is 
f-invariant, i.e.: 

f , ( # , ) = # , .  (1) 

Now take a quasiconformal homeomorphism h,: ~*--L whose existence is grant- 
ed by Theorem 1.1, such that 

(h,),(0)=/G (2) 

h,(0)=0 (3) 

h.(1) = 1 (4) 

h.(m) = ~ .  (5) 
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Then, defining g. = hnfh . 1 we have 

(g.),(0)=0 (6) 

because, by (1) and (2): 

(g.), (0) = (h~- 1), f ,  (h.), (0) = (h~- 1), f ,  (#.) 

= (h n 1 ) , ( # n )  = 0 .  

But (6) implies that g.: ~+--~ is analytic [1]. Then, to complete the proof of the 
theorem, it suffices to show that g. is not infinitesimally stable for large values 
of n. Observe that U.=h.(U) is a Herman ring of g, with period m and 
rotation number 0. Moreover, by (5), the annuli g~(U.), j = 0 , 1  . . . . .  m - l ,  are 
contained in •. Suppose that G is an infinitesimal variation of g. and consider 
the infinitesimal stability equation: 

g'n(Z) V(z)-- V(g.(z))= G(z). (7) 

m--1 
We shall work with this equation restricted to C .=  U g~(U.), and restricted to 

)=0 
this set, g. is invertible. D e n o t e  g n a :  Cn~ -'~ the inverse of g./C,: C,~ -~. Define 
the vectorfield G on C. by: 

(~ = Gg~ 1 . 

Then, on C., Eq. (7) can be written as: 

g'. (g. l(z)) V(g. 1 (z))- V(z) = G(z). 

From this equation follows that 

m--1 
(g~)'(g;"(z)) V(g. "(z))-  V(z)= ~ (g~)'(g;J(z))(~(g~-J(z)). (8) 

j=0 

Now consider the map 

~9 .=h.  ~pk.: A(r/n, Rn)~ U,. 

This map is a bijection. Moreover it is analytic because 

(q,.), (0) = (~ k.), (h,), (0) 

and, by (2) and the definition of #. on U: 

(q,.), (0) = (~0 k.), (#.) = 0. 

Now define the vectorfield Von A(r/n, Rn) by 

~'(z)=(0.1)'(~.(z)) v(q,.(z)) 

and the conformal representation: 

cb?): A(r/n, Rn)~g;  J(U,) 
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a s :  
e~) = g ;  J 0.. 

Then, applying (021)'(O,(z)) to Eq. (8) evaluated at the point  O.(z), we obtain:  

1 . ,  , _ 1  _ . ~  z ~ - 1  - m  z ~ z  (~O~-g,~k.)((0n g. 0 , ) ( ) )  ((0, g. 0 . ) (  ) ) -  ( )  
m - - 1  

= 2 ((l~(nJ))-- 1)'(t~(nJ)(z)) G((f~J)(Z)). (9) 
j=0  

Recalling that  (~21 g~9.)  (z) = ei~ for zeA(r/n, Rn), Eq. (9) becomes:  

m - - |  

e '~ (/(e-'~ - l?(z) = Z ((q~i))- 1),(4~?~(z)) d ( ~ ) ( z ) )  (10) 
j = o  

for all zeA(r/n, Rn). It is easy to see, using Fourier  series, that:  

~s, ~ (ei~ H (e-i~ z) - H (z)) dz =O 

for every cont inuous function H:  $1-~11~. Hence, for all n: 

os~ ((O~)) l(O~)(z))d(~)(z))dz=O. (11) 

Now observe that the functions ~ ) ,  after being composed with suitable affine 
maps z ~ a z + b  and inversions z--,z -1, satisfy the hypothesis of 1.6. More  
precisely, we can choose numbers  ~ ) ,  r and maps Lc, j) that  are either the 
identity or inversions z-~z-1, such that for all j the sequence 

= 2 ,  I2, (q), + A(r/n, Rn)~C 

satisfies the hypothesis of  1.6. Then,  for all j :  

~o.(J)--* I (12) 

when n ~  + o% uniformely on compact  subsets of 112-{0}. Setting ~(J)-(f~Jh 1 ' n  - -  v - n  J 

L( j? = (/2~))-1 and 7~ ) = (L(. ~')- 1( _ ~j)/~j)), we can write: 

(J)- (J)(J) (J) (J~ (13) 4~, - 2. /2. ~0, + 7. . 

Using (12) and (13), we can compute  ((~))-l(r  and show it can be 
written in a ne ighborhood N of S 1 in the form: 

8 ( J )  

((q,~))- l ~ ' t ~ ) t ~  = ~" ,~)tz~ z ~(~,"> 

where for all j :  

S.(J)~ 1 (14) 
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uniformely on N when n ~  + oe, and e~ ) and 6(j, n) are respectively - 1  and 2 
or 1 and 0 according to whe the r /2 .  ~) is an inversion or the identity. Then each 
term of (11) is 

= ~.(j) ~ 17 "5751 ~,'g(J) ,-,(7~ z a(j, ") 8 ,,-(~(J) . . . . . . .  L u) ,o(J) (z~ -4- ?~J)) d z. (15) 

N o w  take the variat ion F:  D x 112~112, where D is the unit disk, defined by: 

f (w,  z)=(1 + w) g,(z). 

The corresponding infinitesimal variat ion is: 

6 (z) = ~ (o, z) = g. (z) 

and then 

~(z)=z. 

Replacing this G in (15) we obtain:  

1 . u )  
- -  s(J~ ~ z~ z ~(~' "~ { l~J~ ,~V~ ~ z~ . Y"" ~ d z. ~;~J) f 2 n ', ,' I ~ n  "t~n t l - - q ( j ) l  

St Z \ s n / 

By (14), when n--, + oo, this integral is approx imated  by: 

/ . @J) \ 
1 z O V , . , t t ~ , z + ~ ) d z  

1 ~J(J) 

S~ ~n 

When /2. j) is the identity, 6(j, n) and e~) are 0 and 1 and the value of this 
expression is 2rci. When L(, ~) is an inversion, 61j, n) and d, j~ are 2 and - 1  and 
then the value is -2rci .  N o w  observe that  L~, ~) is the identity or  an inversion 
according to whether  

gJ: gfJ(u.)-*U. 

preserves or reverses or ientat ion of the invar iant  curves of the H e r m a n  ring (in 
the sense of the s ta tement  of L e m m a  1.7), and then L~. ~) is the identity or  an 
inversion according to whether  the number  vj(oe) (defined as in the s ta tement  
of 1.7) is 1 or - 1. Therefore  the sum at left in (11) is 

m--I  

2xi ~ vj(oo), 
j = o  

which it is 4:0 by the way we placed the point  oe. Therefore  the sum at left in 
(11) converges to a number  4:0 when n ~  + oe thus contradict ing (11). 
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Proof of Theorem 1.6. Given two points p and q in ~, we say that an analytic 
map q~:(A(r,R)~C separates p and q if they belong to different connected 
components of the complement of q)(A(r, R)). The proof of 1.6 is an application 
of the following lemma. 

Lemma.  For all 0 < r < R < ~  and p ~ ,  q ~ ,  the Jamily oJ' analytic injective 
maps qg: A(r, R ) ~  that separate p and q is normal. 

Proof We can suppose that p = 0  and q =  ~ .  Let ~0n: A(r, R ) ~  be a sequence 
of analytic injective maps separating 0 and ~ .  Take 

q < r < R < R  1. (1) 

Then qg,(A(r,R)) cannot contain A(q,Rx) because this would imply that 
r a/A(q, R1) is an analytic injective map of A(q, R1) into A(r, R) such that the 
bounded connected component  of the complement of r contains 
the disk {z[[zl<r}, and it is well known that this is impossible under Con- 
dition (1). Then for all n there exists a ,~C  with 

]%[=q  or [%[=R 1 (2) 
and 

~,r R)). (3) 

Then, by (3), the sequence of functions 

~2 1 q~ : A(r,  R)--*~ 

doesn't take the value 1 and, since q~, doesn't take the value 0, the same 
property holds for c~21 q~.. Therefore there exists a subsequence {c~21q~,j} that 
converges uniformely on compacts sets of A(r, R) either to oo or to an analytic 
map q~: A(r,R)-,~.  In the first case, since [e , l>q  by (2), it follows that q~ ~ o o  
on compact subsets of A(r, R). In the second case, since by (2) we can suppose 
that the sequence {~,,} converges to some eelE, it follows that ~o, ~c~q). 

Now let us prove Theorem 1.6. Let {q~,} be a sequence satisfying its 
hypothesis. Suppose that it is not true that q~,~Identity uniformely on com- 
pact subsets of IE-{0}.  Then there exist ml <m2<m3<...  such that for all mi 
the sequence 

~o,: A(rm,,R,,)~ff~ , n>mi, 

doesn't converge uniformely on compact subsets of A(rm.,R,,,) to the identity. 
But by the hypothesis of 1.6 every ~o, separates 0 and ~ .  By the lemma this is 
a normal sequence for each m i. Therefore, using the normality of these se- 
quences and a standard diagonal procedure, there exists an analytic function 

~o: r - {0}  = ~ A(r.,. R...)-.r 

and a subsequence {q~,j} such that for all i 

~o,jA (r~,, Rm, ) ~ q~ 
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when  j ~  + oc, u n i f o r m e l y  on  c o m p a c t  subse ts  of  A(r,,,, Rm). Since  ~0,(1)= 1 for 
all  n it  fo l lows tha t  ~o(1)= 1, a n d  since q~, is in jec t ive  for al l  n, the  func t ion  ~p is 
a l so  in jec t ive  or  it is cons tan t .  Bu t  q) c a n n o t  be  c o n s t a n t  because  by  h y p o t h e s i s  
(c) of  T h e o r e m  1.6 the w i n d i n g  n u m b e r  wi th  respec t  to ze ro  of  the  arc  0 - ~ 0 ( e  i~ 
is :t:0. H e n c e  ~0 is in ject ive .  T h e n  the o r ig in  a n d  oe c a n n o t  be essent ia l  
s ingular i t ies .  H e n c e  ~0 is a r a t i o n a l  in jec t ive  func t ion  wi th  ~p( l )=  1. Th is  m e a n s  
tha t  ~o is e i ther  the  i d e n t i t y  or  z ~ z  -1. But  h y p o the s i s  (c) of  T h e o r e m  1,6 
impl ies  t ha t  the  w i n d i n g  n u m b e r  wi th  respec t  to the  o r ig in  of the  are  0 ~ o ( e  i~ 
is one.  The re fo re  q) is the  ident i ty .  
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