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w 0. Introduction 

Axiom A systems were originally introduced by Smale in his seminal paper on 
dynamical systems [28]. One of their main purposes was to generalise Anosov 
systems (both diffeomorphisms and flows). Perhaps the most significant feature 
of this generalisation was that it further divorced the purely dynamical aspects 
of the system from the underlying geometry of the manifold. Even in such 
generality remarkably powerful results can still be obtained for Axiom A dif- 
feomorphisms. For example, the rate of mixing of an Axiom A diffeomorphism 
is always exponential ([2], p. 38) and the zeta function for the diffeomorphism 
is rational [16]. However, for Axiom A flows the corresponding results are not 
always valid. For example, the rate of mixing for Axiom A flows need not be 
exponentially fast [22] and the zeta functions for these flows need not be mero- 
morphic in the entire complex plane [12]. 

The purpose of this paper is to actually relate the rate of mixing of an 
Axiom A flow to the meromorphic domain of its zeta function. In particular, 
we shall give necessary conditions for exponential mixing (which we also refer 
to as exponential decay of correlations). We shall also exhibit examples of 
Axiom A flows for which the rate of mixing can be chosen to be arbitrarily 
slow. In particular, this answers a question of Bowen regarding the possibility 
of polynomial rates of mixing for Axiom A flows ([-3], p. 31). Following the 
program advanced by Bowen and Ruelle [6] our first step is to reduce the 
problem to the case of suspended flows using the powerful and useful symbolic 
dynamics of Bowen [4]. The rate of decay of the so-called correlation function 
is then reflected in the analytic domain of its Fourier transform. (In particular, 
for exponential decay this is governed by the Paley-Wiener theorem ([15], p. 
174)). Our approach is to relate domain of the Fourier Transform (for the case 
of the suspended flow) to the spectrum of an associated Ruelle operator acting 
on an appropriate Banach space. We then use previous work by the author to 
relate this spectrum to the domain of the zeta function for the flow (for both 
suspended flows and Axiom A flows) [-20]. 
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We should point out that Parry and the author originally studied this zeta 
function in connection with Prime Orbit Theorems for Axiom A flows [19]. 

In Sect. 1 we introduce our principle tool, the Ruelle operator. In Sect. 2 we 
recall some results on suspended flows and in Sect. 3 we introduce the zeta 
function and correlation functions for these flows. In the fourth section we 
prove our main result in the context of suspended flows. In the fifth section we 
introduce Axiom A flows and rephrase our results in this stronger setting. In 
Sect. 6 we give a simple counter-example to show that in general there is no 
order of mixing common to the class of all Axiom A flows. 

This paper was written while the author was enjoying the hospitality and financial support of 
the Institut des Hautes Etudes Scientifiques. I would like to express my gratitude to David Ruelle 
for his considerable interest in this work and for numerous valuable comments and suggestions. 

w 1. The Ruelle operator 

The most important  tool in our analysis of suspended flows (and consequently 
of Axiom A flows) will prove to be the Ruelle operator. Its usefulness in the 
study of subshifts of finite type (the discrete analogue of the suspended flows 
we shall be studying) was demonstrated by Bowen in [2]. The spectrum of this 
operator will be used in Sect. 4 as an intermediate step in relating the zeta 
function of a flow to its correlation function. 

Let A be an aperiodic k x k  matrix with entries 0 or 1 and define 2;+ 

{0 } = xe  {1,2 . . . . .  k} lA (x , , x ,+ l )= l ,  n>O . For  any 0 < 0 < 1  we can define a 

metric d + on X + by d+(x,y)=O ", where n is the largest positive integer for 
which xi-=yl, O<_i<_n. With respect to this metric 2;+ is a compact zero-dimen- 
sional space. In fact, a basis for the corresponding topology is given by cylin- 
ders of the form 

IX 0 . . . . .  Xn_l]={ZJZi=Xi, i = 0  . . . . .  n - l } .  

(This topology is exactly the induced topology on Z + from the product to- 
oo 

pology on l~{1,2 . . . .  ,k}.) The continuous map a: X+---,X + given by (ax), 
O 

= x , +  1 is called a (one-sided) subshift of finite type. In fact, o is trivially a 
bounded-one local homeomorphism. Subshifts of finite type were originally in- 
troduced by William Parry in [17]. They have proved extremely important in 
the study of Axiom A diffeomorphisms ([2], Chap. 3). 

Given a continuous function g: 2; + ~ 1 /  we can associate with it a real 
number P(g), called the pressure of g, by P(g) = sup {h(#) + ~ g d/~L/~ a-invariant 
probability measure} (where h(#) is the entropy of a: 27 + ~27+ with respect to 
/~). There are other equivalent ways of defining pressure (cf. [31]). 

The map P: C(2;+)~R is easily seen to be Lipschitz continuous (with Lip- 
schitz constant 1) and convex [32]. Those measures for which the supremum 
is attained are called the equilibrium states (or Gibbs states) for g. Let co: 
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Z + - - * ~  be cont inuous and c s ~  a constant  then P ( g + e ; r r - c o + c ) = P ( g ) + c  
and it is obvious that  g and g + o J a - ~ o + c  share the same equil ibrium states. 
For  a given g there always exists at least one equil ibrium state ([2], p. 25). If 
we further assume that  g: Z + ~ is Lipschitz (with respect to d +, for some 
0 < 0 <  1) then g has a unique equil ibrium state (1-2], p. 27). (In the special case 
g = 0 ,  P(0) is called the topological  ent ropy of a: Z + ~ Z  + and the unique 
equil ibrium state is called the measure  of  m a x i m u m  ent ropy or Parry  measure). 

For  a fixed 0 < 0 <  1, let F o denote the space of complex-valued Lipschitz 
functions and define a no rm on this space by IIg[I = IIgll~+ IIgLIo, where tl hi+ is 

fig(x) d ; ~  -g(Y)l I t the usual sup remum norm on C ( S + , r  and Iqglt0=sup) - x ~ : y  i.e. 

Ilgll0 is the smallest possible Lipschitz constant  for g. With respect to this 
norm (F o, 1[ II) is a Banach space ([23], p. 87). 

Not ice  that  we have a "f i l t ra t ion" of spaces F o indexed by 0 < 0 < 1, in the 
sense that  for 0 < 0 < 0 ' <  1, Ilgq[0,< Ilgll0 (if g~Fo) and FoC__Fo,. 

We define the Ruelle operator Ly: F o--* F o (f~Fo) by (Lyg)(x) 
= y,  g (y )exp f (y ) ,  where the summat ion  is over the finite set of y s Z +  for 

O'y=X 

which a y =  x. 
We summar ize  in the following proposi t ion the main  features of the spec- 

t rum of L f: F o ~ F o that  we will need later. 

Proposition 1. (i) (Ruelle). / f  u c F  o is real-valued then expP(u)  is a simple eigen- 
value of  L,:  F o--* F o. Furthermore, exp P(u) is the unique eigenvalue of  maximum 
modulus and the corresponding eigenfunction h > 0  is strictly positive. In addition 
there exists a unique probability measure p such that L * p = e x p P ( u ) p  and the 
a-invariant probability measure I~ given by d lz/d p = h is the unique equilibrium state 
for J: (Here L* can be interpreted by ~ g d(L* p)=~ L ,  g dp, g~C(X+))  [3, 23, 33]. 

(ii) (Pollicott). I f  f = u + i v ~ F  o is complex-valued then the spectrum of  LI :  
F o--* F o consists of  two components: 

(a) The disc {zl [zl <OexpP(u)} ;  
(b) lsolated eigenvalues in the annulus 0 exp P(u) < Izl < exp P(u) [20]. 

(The type of spectrum described in (ii) is often called quasi-compact). 
If we assume that  u: 2; + --,I1 + satisfies u~F o and P ( u ) = 0  then by par t  (i) of 

the p ropor t ion  L,  h = h, for some h > 0. Thus if we write ~o = log h then we have 
the following 

Proposition 2. For a real-valued function u6Fo, P(u)=0 ,  there exists a continuous 
function 09: S, + --*R such that for u ' = u + e ) - c o a  we have u ' < 0 ,  L , , t t = t t  (where 
t~ is the unique equilibrium state for u and u') (cf. [33]). 

Remark. If we look at the larger space C(S +) then the spectrum of Lu: 
C(S +) --. C(2; +) consists of  the entire disc ]zl < e x p  P(u) (cf. [29]). By considering 
a case with more  stringent condit ions Ruelle has shown an analogous opera to r  
to be nuclear [24]. 
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w 2. Suspended flows 

Suspended flows are simply constructed cont inuous flows which will later 
prove to be useful models of  Axiom A flows which embody  much of  the dy- 
namics of the original system. In this section we recall some of the principal 
results on suspended flows. We first need to replace our  endomorphism or: 
Z + ~  27 + of  Sect. 1 by a homeomorph i sm (in some sense its "natural  extension" 
(cf. [10], p. 239)). As before we assume that A is a k x k aperiodic matrix with 

entries 0 or 1 and define 2 ;=  x e [ I  {1,2 . . . . .  k} lA(x , , x ,§  n~Z . For  this 
- - O 9  

space we define a metric d (for a given 0 < 0 <  1) by d(x,y)=O 2", where n is the 
largest positive integer for which x i = yi, - n _< i _< n. 

The homeomorph i sm a:  N ~ N  defined by ( a x ) , = x , +  1 is called the (the 
two-sided) subshift of finite type (we have now used a to denote both the two- 
sided subshift and the one-sided subshift). 

We can define the pressure and equilibrium states for a continuous function 
g: 2 7 ~ N  in complete analogy with the case of the one-sided subshift as fol- 
lows. We define the pressure of g by P(g)=sup{h(m)+Sgdmlm a-invariant  
probabil i ty measure} (where h(m) is the entropy of  or: 2; ~ 2; with respect to the 
invariant measure m). These measures for which the supremum is attained are 
called equilibrium states for g. As before, the addit ion of co cr -co  + c to g (where 
o9: 27~F,. is cont inuous and c constant) changes the pressure by c and does not 
change the equilibrium states. Also, if g is Lipshitz with respect to the d-metric 
then g has a unique equilibrium state ([2], p. 25). 

For  a strictly positive Lipschitz function r: N ~ l ~  + we define a new space 
St= {(x,q)eZ x ~  + IO<q<r(x)} where we identify (x,r(x)) and (ax, O). We then 
define the suspended flow at: Sr~27 r locally by ~(x,q)=(x,q+t) ,  taking into 
account  the identifications. This can be interpreted intuitively as flowing verti- 
cally under the graph of r over I2. 

The flow a[: 27"~2Y is called (topologically) weak-mixing if there is no non- 
trivial solution to F a~=e~atF, with Fe C(S ~) and a >0.  An equivalent condit ion 
is that  closed orbit  periods should not  be integer multiples of  a single constant  
value [5]. We shall restrict our  at tention to weak-mixing flows. The case of not  
weak-mixing flows essentially reduces to that  for Axiom A diffeomorphisms 
[5]. 

The a ' - invariant  probabil i ty measures on 27~ all take the form # x l/Srd#, 
where l is Lebesgue measure on the real line and # is a a-invariant  probabil i ty 
measure on 27. We define the metric on 27~ locally as the product  of d and the 
usual metric on ~ (cf. [7]). 

We can now introduce pressure and equilibrium states for flows. Let F :  
Z ' ~ l l  be cont inuous then by analogy with the case in Sect. 1 we define the 
pressure of F by P(F) = sup {h(m) + ~ F dmLm a ' - invariant  probabil i ty measure} 
(where h(m) is the entropy of a~: 27'--,S ~ with respect to m). If F is H61der 
continuous then the above supremum is at tained at exactly one measure m, 
called the equilibrium measure (or Gibbs measure) for F [6]. In the special case 
F = 0 ,  P(0) is called the (topological) entropy of a',  which is denoted h(a~), and 
m is called the measure of  maximal  entropy. 
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There is a simple relationship between pressure and equilibrium states de- 
fined for the two systems a~: I7- - . I7  and ~r: 2:--.Z which was developed by 
Bowen and Ruelle [6]. Given a H61der continuous function F: 1 ; ' ~  we can 

r(x) 

define f:  Z - ~  by f ( x ) =  ~ F(x,t)dt. The unique equilibrium state m for F 
0 

then takes the form m =/~ x l/~ r dp where # is the unique equilibrium state for 
f - P ( F ) r ~ F  o (For an appropriate choice of 0 < 0 < l )  [6]. Furthermore P ( f  
-P(F)  r )=  0 [6]. The topological entropy of the flow h(a ~) occurs as the unique 
zero of the homeomorphism R ~ R,  t-~ P ( - t  r). Having related the suspended 
flow to the two-sided shift we can now relate the two-sided shift to the one- 
sided shift. Let ~z: Z ~ Z  + be the continuous surjection defined by Oz(x)),=x,, 
n => 0. Sinai proved the following [27]. 

Proposition3. Given a Lipschitz function go: Z - ~  (with respect to d) there 
exists O~o6C(,~ ) and g6F o such that go=g~z+COoa-~Oo [27](cf. [2], p. 10). 

In particular, g and go have the same pressure and equilibrium state. By 
Proposition 2 we can replace g by g' such that Lg, 1 = 1. Thus for our H61der 
continuous function F: Z~-~R if we take g o = f - P ( F ) r  then L*,#=I~, where m 
=/~ • l/~r d# is the unique equilibrium state for F. (Here we have made use of 
the obvious one-one correspondence between a-invariant measures on 2J and 
1:+). 

w 3. Zetafunctions and correlation functions for suspended flows 

We now recall the definitions of zeta functions and correlation functions and 
summarise their properties in preparation for the theorem in the next section. 

Let a[: 27--.27 be a suspended flow. It follows from the definitions that a 
closed a-orbit  {x, ax  . . . . .  a " - i x }  corresponds to a closed at-orbit of period 
r"(x)=r(x)+r(ax)+ ... +r(a "-1 x) i.e. the sums of the heights of r above points 
in the a-orbit. Let F: 27--,11 be a H61der continuous function following Ruelle 
([23], p. 173) we define a zeta function for t :  and F by 

( ~(~ ) - 1  
~(s ,F)= l -  I 1 - e x p  S (V(4),x~)-s)dt 

0 

where the Euler product is over all t:-closed orbits z of least period 2(v), where 
x~ez. The product converges and ~(s,F) is well-defined for Jl(s)>P(F). If f (x )  

r(x) ~ 1 
= ~ F(x, t )dt  then C(s,F) can be rewritten as C ( s , F ) = e x p -  ~ ~ ~ exp(f"  

0 n = l  '~ ~'"x = x 

-sr")(x) ([23], p. 173). By Proposition 2 we can associate with the H61der 
continuous functions r,f:  Z ~ IR functions r ' , f ' eF o for which r = r' rc + ~o 1 a - ~o 1 
and f = f ' r c + ~ % a - c o  2. The main results on ~(s,F) we shall need are con- 
tained in the following proposition (cf. [20]). 

Proposition 4. Let F: Zr-~P, be H61der continuous then ~(s,F) can be extended 
meromorphically to the strip P ( F ) > N ( s ) >  P ( F ) - 6  where: (a) the constant 6 > 0  
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satisfies P ( f ' - ( P ( F ) - 6 ) r ' ) =  C(O,h(a))>O; (b) the poles s, in this strip corre- 
spond to 1 being an eigenvalue for Lf, s,,,: Fo~F. 

(The map R ~ N ,  t ~ P ( f ' - ( P ( F ) - t ) r ' )  is a homeomorphism.) Thus this prop- 
osition describes the poles for the zeta function in terms of the corresponding 
Ruelle operator (at least in a strip P(F)>N(s )>P(F) -3 ) .  If a[: U ~ U  is a 
weak-mixing flow then ((s,F) has exactly one (simple) pole on N(s)=P(F),  at s 
=P(F) (This was a simple argument involving the spectrum of the Ruelle oper- 
ator (cf. [19])). 

We now turn to 
ed flows. Given two 
rium state m on U 
U - - , N ,  say) it is 
~ A a ~ ' B d m ~ A d m  
mixing with respect 
correlation function 

the idea of the "rate of mixing" for weak-mixing suspend- 
HSlder continuous functions A, B: U-- . IR and an equilib- 
(corresponding to a third HSlder continuous function F: 
known that if a ~ is (topologically) weak-mixing then 
�9 ~Bdm as t ~  + oe [6]. This simply means that at: S,r--'27 is 
to m [5]. Given a ~, A and B we define the corresponding 
by p A , , ( t ) = ~ A a ~ . B d m - ~ A d m . ~ B d m .  We will be pri- 

marily interested in relating the speed with which Pa,B(t) tends to zero to the 
analytic domain of ~(s, F). 

w 4. Exponential decay of the correlation function for suspended flows 

In this section we shall relate the decay of correlations PA,B(t) to the zeta func- 
tion for the flow. We shall achieve this by relating the poles of the Fourier 

1 + ~  
transform r R(S)= ~ ~ eiStpa,B(t) dt to the spectrum of the corresponding 

- c o  

Ruelle operator and then invoking Proposition 4. Our main result is the fol- 
lowing 

Theorem 1. Let a': Xr ~ Z "  be a weak-mixing flow and m the unique equilibrium 
state for a Hdlder continuous function F: X'--*~ then of the Jollowing state- 
ments (b) is a necessary condition for (a) 

a) pa .B( t )~0 exponentially fast for every H61der continuous A,B: Z r ~ N  

b) ~(s,F) has an analytic extension to a domain N(s)> P ( F ) - ~  (Jor some 
e>0),  except for a simple pole at s=P(F). 

Proof. The main idea is to relate the poles for the zeta function ~(s,F) and the 
Fourier transform ~A,n(S) and to use the Paley and Wiener Theorem ([15], p. 
174). For a" we have 

Aa~(x,u)= S" A ( a " x , v ) 3 ( u + t - v - r " ( x ) ) d v .  
n=0  I 0 + 

(All but one term in the summation will be zero. However, this will prove to 
be a useful representation for reasons of "book-keeping").  By replacing A by A 

- f A dm we can assume ~ A dm = 0. Thus, 

p a,~(t) = ~ A a" t �9 B dm 

--r~fi-5_f I B(x,u) A ( a " x , v ) 6 ( u + t - v - r " ( x ) ) d v  du d#, t>O, 
n 0 + L 0 + 
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where we have assumed m=/~ x l/S rd#. The next few steps have much in com- 
mon with [22]. We can take the Fourier  t ransform of pA.R(t) (where we can 
assume J ( s ) > 0  if necessary to guarantee existence) and write the following: 

1 + ;  eiSt 
r = ~  -o0 PA,~(t) dt 

2 ~ S r d #  n=o 

(For simplicity we take pA, B(t)=O, t <0.) 
fix) 

For  convenience we denote /~(s,x)= ~ B(x,u)e-i"Sdu, and A(s,x) 
r(x) 0 

= J A(x, v) e ivs dr. 
o 
We can legitimately make two simplifying assumptions: 

(i) We can replace r: Z - ~ N  + by r': N+-- ,N,  where r=r 'n+coa-co  as in 
Proposi t ion 3 (and the ensueing comment),  since the corresponding flows a r 
and a r'~ conjugate. 

(ii) We can assume that A,B: s are independent  of x i, i<0 ,  by first 
approximating by functions depending on only finitely many ~ co-ordinates. 

If go = f o - P ( F )  r' then we can construct  g' = f ' - P ( F )  r 'sF o by Proposi t ion 2 
and Proposi t ion 3 satisfying L*, p =~t. We can therefore write 

t3 (s )=2~rrd#j  = jI2"~,{ei*r'"~X~B(s,x)'A(s,a"x)} d#(x) 

c o  

- n _ 1 f o ~ A ( s , x ) ( I Z , + ~ , S _ ) ( s , x ) d ~ ( x )  
2~z~rd# _ 

k 

By Proposi t ion 1 we can write I2"g,+i~,= 2 2~.Pj+ U~ where Pj: Fo~F o is the 
j = l  

eigenprojection correspond to the eigenvalue ~v and lim [I U, III/~ < 0' exp P(g' 
- J ( s )  r') for a given 0 < 0'< 1. Therefore, 

r  ~ Iil(s,x)'PjB(s,x)d# 2~. 
j = l  n 

oc 

1 .--~o S A(s, x)' U. B(s, x). -t 2 ~ r d / ~  = 

If the condit ion P(f-(P(F)+J(s))r)<C(O',h(a))  is satisfied then the second 
part  converges to an analytic function. If 2~ is an isolated simple eigenvalue 
then s --, 2j, Pj are both analytic and the first part  of the above expression con- 
verges to a finite sum of meromorphic  functions with poles whenever s--,)~j = 1. 
(For repeated eigenvalues the sum of terms corresponding to the multiple ei- 
genvalues combine to give a meromorphic  function). We know from Proposi- 
t ion4  that  this is exactly the condit ion that  P(F) - i s  should give rise to a pole 
for ~(s,F). Thus fiA,~(s) has an analytic extension to a strip IJ(s)[ _-<~ if and only 
if ((s,F) has an analytic extension to the domain N ( s ) > P ( F ) - e ,  except for a 
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simple pole at s=P(F). (The pole at s = 0  for ~(s), corresponding to P(F)--*21 
=1 ,  vanishes since the corresponding " res idue"  is zero under  the assumpt ion  
~Adm=O.) The theorem then follows f rom the Paley and Wiener theorem 
([15], p. 174) relating the exponent ia l  decay of a function to the analytic con- 
t inuat ion of its Four ier  t ransform. 

Remark. For  specific choices of A and B residues calculated for the poles of the 
zeta function may  in fact be zero (the trivial examples  are A = 0  or B =0 ,  or s 
= P ( F )  if ~Adm=O, etc.). However ,  this will not  be the general case. 

Corol lary 1.1. PA, B(s) always has a meromorphic extension to some strip [J(s)[ < e. 
Furthermore, if cry: Zr--*Z" is weak-mixing then r ) is analytic on the line 
J(s)=0. 

Remark. The above  theorem gives that  the poles for ~A,B(S) generally occur as 
poles for ~(s,F) (under t ranslat ion by P(F) and ro ta t ion  by i). Consider  the 
special case when there are only finitely m a n y  poles s 1 . . . .  , s ,  with 
P(F) > N ( s l ) >  P(F)-e. Then these can be interpreted as " resonances"  against  a 
background  of otherwise exponential  decay of order e -~t i.e. there exist 

C 1 . . . . .  C, such that  pA.~(t)= ~" Cje-~'tcostj, where sj=P(F)-ej+itj, j 
j = l  

= 1  . . . .  ,n. (Here we have made  use of the symmet ry  ((s,F)=((-~,F) which 
makes  s,~ poles.) 

Remark. The shift ~: 22+~2;  + induces a m a p  U: Fo-~F o by Uf=f~. If L:  
Fo~F o satisfies L*~t=#  then L: L2 (#) --. L2 (#) is the dual of U: Lz(#)~L2(#)  and 

by Proposi t ion 1 L~g = --Pj(g)  + U~g, where pj is a pole for the zetafunction 
j=l  P~ 

~ 

~ ( z ) = e x p -  --Card{xla"x=x} and Pj: Fo--,F o is an eigenproject ion as- 
n = l  n 

sociated with 1/pj(llg.N1/"<_l-e, for some ~>0,  all large n). 
The flow q~: 2;'--,22' induces a m a p  ur: ~ - - ' ~  for which the L2(m) dual 

is given by 
~!f'~x) G(x,u) e-iusJdu } 

ei~J PJ- ~ + ( e r r o r  t e rm)  
k 

(EG)(x,v)= j=IZ 2~2)(s)exp(P(F)-sj)t 

when there are only finitely m a n y  poles for ((s,F) with P(F)-e<N(s)<P(F). 
(Here o~" are H61der cont inuous functions with exponent  e >0).  

Remark. Using Bochner 's  t heorem [18], the group  of uni tary  opera tors  U,: 
I~(m)~l_?(m) define a spectral  measure  on R by p(t)=~Fa~'Fdm 

+ o r  

= ~ e it cleF(2), -- oe < t < + or. Therefore,  we can formally write 

~ (s )=  p(t)ei~tdt= ~ ei"a+~)dtdav(2)= 
-0o o _ i(2+cr)" 

Since this flow is bernoulli  it has countable  Lebesgue spect rum and in part icu- 
lar a F has no a toms on R. 
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w 5. Axiom A flows 

Let M be a compac t  manifold and let 05,: M - - , M  be a Cl-flow. A compac t  
invariant  set A containing no fixed points  is called hyperbolic if the tangent  
bundle restricted to A can be written as the Whi tney sum of three D05- 
invariant  cont inuous sub-bundles  T a M = E + E~ + E u, where E is the one-dimen-  
sional bundle tangent to the flow and there are constants  C, 2 > 0  such that  

(a) IlD05,(v)[I < Ce -z '  ]lvl] for v~E S, t>O 

(b) IIO05_Av)ll < Ce -~t livl[ for v~E", t>O. 

A hyperbolic set A is called basic if 

(i) the periodic orbits of 05,1A are dense in A 
(ii) 05tlA is topological ly transitive 

+ ~  

(iii) there is an open set U ~ A  with ~ 05tU. 
l =  - - o o  

The non-wandering set f2 is defined by f 2 = { x E M l f o r  all ne ighbourhoods  
V~x, all t o>0 ,  exists t > t  o with 05t(V)c~V4=05}. 

The flow 05 is called Axiom A if s is a disjoint union of a finite number  of 
basic sets and hyperbol ic  fixed points. We shall always consider 05 to be re- 
stricted to a basic set A containing more  than one closed orbit. 

By analogy with the suspended flow we define a zeta function for 05,: A ~ A  
and a H61der cont inuous function F: A--,R, by 

~(~) \ - t 
ff(s,F)=I~I 1 - -exp  o ~ (F(05txO-s)dt)  ' 

where the product  is over  all closed @orbi ts  z of least per iod 2(z), and x ~ r .  
Let F: A- -*R be cont inuous then as for crr we define the pressure of F by 

P ( F ) = s u p  {h(m)+~Fdmlm 05-invariant probabi l i ty  measure} (where h(m) is the 
ent ropy of 05 a : A ~ A with respect to m). The  measures  where this sup remum is 
at tained are again called the Equilibrium states for F. If  F is H61der cont inuous 
then there is exactly one equil ibrium state for F [6]. If F = 0  then h(05)=P(0) is 
called the (topological) ent ropy of 05 and the unique equil ibrium state is called 
the measure  of maximal  entropy. 

Let A,B: A ~ R  be H61der cont inuous then we can define Pa,e(t) 
= ~ A 0 5 , . B d m - ~ A d m . ~ B d m  to be the correlation fimction for 05, m,A and B. 
As for a ~ we call 05o: A ~ A  weak-mixing if there is no non-trivial  solution to 
F05t=ei~tF, F~C(A), a > 0 .  If 05 is weak-mixing then pA, n(t)~O as t ~  +oo .  

The connect ion between Axiom A flows and suspended flows is the follow- 
ing powerful result of  Bowen [4, 5]. 

Proposit ion 5 (Bowen). Let 05 be an Axiom A flow (restricted to a basic set) oj 
entropy h(05). 

(i) There exists a suspended flow a~t:s,r~z ~ and a Lipschitz, surjective, 
bounded-one map p: S"--* A such that p~r~=05tp. Furthermore, if m is an equilib- 
rium state for Fp: Z,"--, R then p*m is an equilibrium state for F: A--* R and p is 
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an isomorphism with respect to these two measures. (In particular, 4) and G ~ have 
the same entropy and 4) is weak-mixing if and only if c~ r is weak-mixing.) 

(ii) There exists % > 0  and a function O(s) which is non-zero and analytic for 
~(s) > P(F) - %  and satisfies ~(s, Fp) = O(s) ((s, F). 

Using the above proposition, Theorem 1 takes the following form for Axiom A 
j~OWS. 

Theorem 2. Let 4)t: A ~ A be a weak-mixing Axiom A flow (restricted to a basic 
set) then the Fourier transform ~A,B(S) has a meromorphic extension to a strip 
[J(s)l__<e, which is analytic on the real line. Furthermore pa,8(t) tends to zero 
exponentially fast (for all H61der continuous functions A ,B :A- -*N)  only if 
~(s,F) has an analytic extension to some strip R(s)> P(F) -e ,  except Jor the sim- 
ple pole at s = P(F). 

If  we write ~(s )=~(s ,O)=[I (1-exp-sA(z ) )  -1 (cf. [3], p. 31) then a special 

case of the theorem is the following 

Corollary 2.1. I f  m is the measure of maximal entropy Jor the weak-mixing flow 
4) then pA,B(t) tends to zero exponentially fast as t increases (for all H6lder 
continuous A ,B:  A ~ R )  only if ~(s) has an analytic extension to a strip h(4)) 
- e  < N ( s )  < h (4)). 

Remark. We now know f rom Theo rem 2 and [20] that  of the following three 
condit ions (iii) is implied by either (i) or (ii). 

(i) Correla t ions  decay exponential ly fast (with respect to the measure  of 
m a x i m u m  entropy). 

(ii) Pr ime Orbi t  theorems have exponential  error  terms. 
(iii) ~(s) has an analytic extension to a strip. 

w 6. Geodesic flows 

A special case of an Axiom A flow is a geodesic flow on (the unit tangent) 
bundle  of a) compac t  surface of constant  negative curvature  [1]. This special 
class of flows have been studied at length [-11, 14, 30]. In this section we relate 
our  results to existing knowledge on geodesic flows. 

Let F be a discrete subgroup  of PSL(2, R)=SL(2,  R)/{+_I} such that  
PSL(2, N) /F is compact .  We then define the flow on the compac t  manifold M 

(o 0) =PSL(2 ,N) /F  by 4)t: M ~ M ,  4 h ( g F ) = g t g F  where gt = e -  t . The flow is 

(topologically) weak-mixing and of ent ropy 1 and the measure  of m a x i m u m  
ent ropy  is precisely the R iemann  measure  [10]. For  these geodesic flows the 
zeta function ~(s )= l - I (1 -exp - s2 ( z ) )  -1 is known to have a non-zero mero-  

z 

morph ic  extension to the enitire complex plane with the only possible poles in 
~ ( s ) >  1/2 lying at points  1 > s  x > . . .  >s k on the real line [14]. This analysis is 
based on the impor tan t  Selberg trace formula.  
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Collet, Epstein, and Gallavott i  have obtained the result that  the decay of 
the correlation function on a surface of curvature - 1  is of order t b e x p - t / 2  
[9]. In particular, this means that our  analysis relating ((s) to ~A.B(S) is invalid 
for ~ ( s ) < s  1, else we would be unable to have a pole at s=s  1, for the zeta 
function. In principle, therefore, we can expect to get an upper bound on s 1. 
However,  in the Selberg approach  s 1 has a simple geometric interpretation. Let 
H + be the Lobachevsky upper  half plane with the Poincar6 metric dsZ=(dx 2 
+dyZ)/y z. (This is the usual metric giving the space curvature t o = - 1 ) .  The 
subgroup F~PSL(2,1R) defines isometries of H + as linear fractional transfor- 

mations i.e. for (a b ~  F then g: H + ~ H  + by g(z)=(az+b) / (ez+d)  and 
lc d!  

H+/F becomes a compact  Riemann surface with universal covering space H + 
and covering group F. Let m be the Riemann measure on H+/F and let - A  be 
the Laplace-Beltrani operator  acting on L2(H+/F) (which is itself determined 
by the Poincar6 metric). The spectrum of A is unbounded  and takes the form 
0 < 2 1  < ... < 2 k <  1/4<2k+ 1 < .... The poles sl . . . . .  s k for ~(s) and the eigenvalues 
21 . . . . .  ,i k for - A  are related by 2 j = s j ( 1 - s j ) ,  j = l  . . . . .  k. 

It has been shown by Schoen, Wolpert  and Yau [26] that for any compact  
surface of genus g and curvature to= - 1  there exists a "universal"  constant  C 
= C(g) such that 2~ > Cl 1 where l~ is the length of the shortest geodesic on the 
surface. 

We show below how this relates to our estimates. 

Proposition 6. Let 11,12 be the shortest and longest distances respectively accross 
the Jundamental domain for F then 2t > ~ ( 1 - c  0 where ~ = l l / l  2 �9 [ll/(ll +log4g)] 

Sketch proof (1) Following Bowen and Series [8, 25] we can construct an ex- 
panding endomorphism T: S 1 -~S 1 from the action of the generators of F on 
the Poincar6 disc. The geodesic flow can be represented as a suspended (semi) 
flow over this transformation, where we take the suspending function to be r 
= l o g I T ' l :  $ 1 ~  +. 

(2) There exists a markov  partit ion for T: S 1--,S 1 which enables it to be 
modeled by a (one-sided) subshift of finite type. Furthermore,  r becomes Lip- 
schitz provided 0 > e x p - l ~ ,  and also I rl <12. The hypothesis in Proposi t ion 4 

t1~ where s = a + i t .  Since ~ r ~ P ( - a r )  is con- require that  P( - cr r) ~, ]log 0] + h ( r ) '  

dP ( 
vex and ~ -crr)] . . . .  = - ~ r d / t  (where /~ is the unique equilibrium state for 

-o-0r)  ([23], p. 99) this is certainly satisfied if Ih(cr~)-a[<c~ i.e. a>Cra=  1-c~. 
(3) The zeta functions for the geodesic flow 0 and the suspended (semi)-flow 

~r ~ satisfy: ~+(s)/~(s) is non-zero and analytic for ~ ' ( s )>0  (cf. [21]). Thus re- 
calling the result of Collet, Epstein and Gallavott i  [9] and Theorem 2 we see 
that  we must  have al __>s~ to avoid an error term of order  e - (~ -~ t .  Therefore 
s l < l  - ~ .  

(4) F r o m  the Selberg theory we can relate s 1 to 21 and finally deduce that 
;~ >~(1 -~) .  
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w 7. Other rates of decay of correlations 

In [22] Ruelle produced an example of a flow for which the correlation func- 
t ion does not  decay exponentially. The author  produced the same example to 
show that ~(s) cannot  always be extended analytically to a strip h - e ~ < ~ ( s ) < h ,  
for some e > 0 .  (The connect ion between the two is now obvious from Theo- 
rem 1 and Theorem 2. In fact no flow formed by suspending a locally constant  
function r: S--- ,N will have exponential  decay [-20]). In this section we show 
that  by refining this simple example flows can be constructed which decay 
slower than any predetermined rate. In particular, Axiom A flows need not 
mix at a polynomial  rate, answering a question of Bowen ([3], p. 31). 

+ c ~  

Example. Let 2;= 1~ {0,1} and r: 2 ; ~ I R  + by 
--0(3 

r(x) = 1 if x o = 0 

c~ if x o = 1. 

Let 0 < / ~ < 1  be a "badly  approximable"  number  in the sense that there exists 

6 > 0  such that Ifl-p/ql>=c~/q 2 for all p, qeZ +. (For '  example, /~=l/F/2) [-13]. 
Define F=zx• and G=)~•  ' 1/2] and consider p(t)=SFa ~. G dm, where m is 
equilibrium state. (Strictly speaking F is not  H61der continuous but this can be 
easily overcome.) For  clarity we initially assume that q is even and e=p/q. 

r Consider the case where t=k/q, keZ +, then F o - , - Z , ,  where U is a union of 
[a/q, a+ l] 

sets of the form C x  or  C x  [,a/q, a/q+~] (where ~=b/q+e with 
k q .1 

6/q2<e< 1/q--5/q 2 and C is a cylinder in 2;). 

1 

q - 1  

-C-  
1 

7 - -  

1 N I 
Fig. 1 

In particular, for a given k we can assume that  there are sufficiently many 
elements of  U of the second form (i.e. the propor t ion  of  sets of the form C 
x [a/q,a/q+~]>> 1/q) that Ip(k/q)-p(k/q-~)l>>fi/q~5/q3~ 1 (as k increases). 

Otherwise we need only change k by at most  q for this condit ions to hold. In 
practice we have to take e irrational in order  to get a weak-mixing flow. How- 
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ever, we can choose c~ to be "well-approximable" in the sense that for a mo- 
notonically increasing function f: 7/+ --*~,.+ we choose c~ such that there is an 
infinite sequence of rational approximates Pk/qk with Ic~--pk/qk[< 1/f(qk ) [13]. 
In particular we can make p(t), with er r defined with either c~ or Pk/qk, close for 
long initial periods depending on the closeness of the approximation. Thus we 
can choose c~ so that p(t) contradicts any prescribed rate of  decay. 

Bowen has shown that any suspended flow is conjugate to some Axiom A 
flow restricted to a basic set. (In fact, in this case the flow could be chosen to 
be C~.) 

Remark. It is interesting to ask what estimates on p(s) can be obtained from 
less information on ~(s). By generalising the above example we can constuct 
flows with poles a , +  it, satisfying 1 - a , > >  1/t~, (0<  6 < 1). In this case it is possi- 

t 

ble to show that ~p(u)du/t=O(exp-rl loglogt) ,  for some r/>0. However,  such 
0 

averages yield little useful information. 

References 

1. Arnold, V.I., Avez, A.: Ergodic problems of classical mechanics. New York: Benjamin 1968 
2. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. S.L.N. 

470. Berlin-Heidelberg-New York: Springer 1975 
3. Bowen, R.: On Axiom A diffeomorphisms. Am. Math. Soc. Regional Conf. Proc. No. 35, Pro- 

vidence 1978 
4. Bowen, R.: Symbolic dynamics for hyperbolic flows. Am. J. Math. 95, 429-459 (1973) 
5. Bowen, R.: Periodic orbits for hyperbolic flows. Am. J. Math. 94, 1 30 (1972) 
6. Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181 202 (1975) 
7. Bowen, R., Waiters, P.: Expansive one-parameter flows. J. Differ. Equations 12, 180-193 (1972) 
8. Bowen, R., Series, C.: Markov maps associated with Fuchsian groups. Publ. Math. Inst. Hautes 

Etud. Sci. 50, 153--170 (1979) 
9. Collet, P., Epstein, H., Gallavotti, G.: Perturbations of geodesic flows on surfaces of constant 

negative curvature and their mixing properties. Commun. Math. Phys. 95, 61-112 (1984) 
10. Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic Theory. Berlin-Heidelberg-New York: Sprin- 

ger 1982 
11. Fomin, S.V., Gelfand, I.M.: Geodesic flows on manifolds of constant negative curvature. Transl. 

Am. Math. Soc. 1, 49-65 (1955) 
12. Gallavotti, G.: Funzioni zeta ed insiemi basilar. Accad. Lincei. Rend. Sc. fismat, e mat. 61, 

309-317 (1976) 
13. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Oxford: O.U.P. 1983 
14. Hejhal, D.A.: The Selberg trace formula and the Riemann zeta function. Duke Math. J. 43, 

441--482 (1976) 
15. Katznelson, Y.: An introduction to harmonic analysis. Dover: New York 1976 
16. Manning, A.: Axiom A diffeomorphisms have rational zeta functions. Bull. London Math. Soc. 

3, 215 220 (1971) 
17. Parry, W.: Intrinsic Markov Chains. Trans. Am. Math. Soc., 112, 55-65 (1964) 
18. Parry, W.: Topics in Ergodic theory. Cambridge: C.U.P. 1981 
19. Parry, W,  Pollicott, M.: An analogue of the prime number theorem for closed orbits of Axiom 

A flows. Ann. Math. 118, 573--591 (1983) 
20. Pollicott, M.: Meromorphic extensions of generalised zeta functions. (Preprint) 
21. Pollicott, M.: Asymptotic distribution of closed geodesics. (To appear in Isr. J. Math.) 
22. Ruelle, D.: Flows which do not exponentially mix. C.R. Acad. Sci. Paris, 296, 191-194 (1983) 
23. Ruelle, D.: Thermodynamic formalism. Reading: Addison-Weley 1978 



426 M. Pollicott 

24. Ruelle, D.: Zeta functions for expanding maps and Anosov flows. Invent. Math. 34, 23L 242 
(1976) 

25. Series, C.: Symbolic dynamics for geodesic flows. Acta Math. 146, 103 128 (198t) 
26. Schoen, R., Wolpert, S., Yau, S.T.: Geometric bounds on the low eigenvalues of a compact 

surface. In: Proc. Symp. Pure Math. 36, (1980) 
27. Sinai, Y.G.: Gibbs measures in ergodic, theory. Russ. Math. Surv. 27, 21--69 (1972) 
28. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747 817 (1967) 
29. Tuncel, S.: Conditional pressure and coding, lsr. J. Math. 39, 101~112 (198l) 
30. Venkov, A.B.: Spectral theory of automorphic functions, the Selberg zeta function, and some 

problems of analytic number theory and mathematical physics. Russ. Math. Surv. 34, 79 153 
(1979) 

31. Walters, P.: A variational principle for the pressure of continuous transformations. Am. J. 
Math. 97, 937 97t (1976) 

32. Waiters, P.: An introduction to ergodic theory. G.T.M. 79, Berlin-Heidelberg-New York: 
Springer 1981 

33. Waiters, P.: Ruelle's operator theorem and g-measures. Trans. Am. Math. Soc. 214, 375 387 
(1975) 

Oblatum 13-II-1985 


