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Let G be a reductive connected algebraic group over an algebraically closed
field, and let u be a unipotent element of G. Let A;(u) be the group of
components of the centralizer Z;(u). The group A;(u) acts naturally by per-
mutations on the set of irreducible components of the variety of Borel sub-
groups containing u and Springer [20, 21] has shown that (with some re-
strictions on the characteristic) the irreducible representations of A;(u) appear-
ing in this permutation representation, for various u (up to conjugacy), are in 1
—1 correspondence with the irreducible representations of the Weyl group.
Note however that, in general, not all irreducible representations of Ag(u)
appear in this permutation representation. Our main interest in this paper is in
understanding the missing representations. Let P be a parabolic subgroup of G
with Levi decomposition P=LU,, and let v be a unipotent element in L.
Following Springer, we consider the variety

Y, ,={8Z}(v)Us|geG, g7 ugevUy}.

Then dim Y, , <d=3(dim Z;(u)—dim Z,(v)). (This is proved by Springer [21],
with restrictions on characteristic; in the general case, it follows from results in
§1.) The group Z,(u) acts naturally on Y, , by left translation. This induces an
action of the finite group A4(u) on the finite set S, , of irreducible components
of dimension d of Y, ,.

When P is a Borel subgroup and v=1, this is just the action considered
earlier.

We say that an irreducible representation of Ag;(u) is cuspidal if it does not
appear in the permutation representation S, , for any P, v as above, with P#G.

It turns out that very few representations of Ag(u) are cuspidal. More
precisely:

If we fix a character y of the group I' of components of the centre of G, and
if we are in good characteristic, then there is at most one pair (u,p) with u
unipotent in G (up to conjugacy) such that p is an irreducible cuspidal repre-
sentation of Ag(u) on which I' acts according to .
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If we take G to be almost simple, simply connected, the condition on G and
x that such a pair (i, p) exists is as follows:

Type A,: yis of order n+1
Type B,: y=1,2n+1el]
1*1, 2n+1e4d
Type C,: x=1,ne/ and n even
x+1, neA and n odd
Type D,: x=1, 2ne and n/2 even
r¥1, x(e)=1, 2red and n/2 odd
y@)£1, 2ne
Type E: y+1

Type E,: y+1
Type Eg: x=1
Type F,: y=1
Type G,: y=1.

Here, O denotes the set {1,4,9,16,...}, A denotes the set {1,3,6,10,15,...}
and ¢ denotes the non-trivial element in the kernel of the natural map of
Spin,, onto SO,,.

The classification in bad characteristic is different; see § 15.

Given a pair (4, p) where u is a unipotent element in G (up to conjugacy)
and p is an irreducible representation of A;(u), we define in §6 a triple (L, v, p"),
up to G-conjugacy, where L is the Levi subgroup of a parabolic subgroup of G,
v is a unipotent element in L and p’ is a cuspidal representation of A;(v).
Moreover, we show (Theorem 6.5) that the set of pairs (u, p) giving rise to a
fixed triple (L, v, p") as above, may be naturally put into 1—1 correspondence
with the set of irreducible representations of the group of components of the
normalizer of L (which is shown in §9 to be a Coxeter group). We call this the
generalized Springer correspondence; it reduces to the correspondence de-
scribed originally by Springer, in the case where L is a maximal torus. In this
way, the classification of pairs (u, p) as above is reduced to the classification of
cuspidal pairs.

In §§12 and 13, we determine in a combinatorial way this generalized
Springer correspondence in the case of symplectic and special orthogonal
groups in odd characteristic; this generalizes the main result of Shoji [15] on
the usual Springer correspondence for these groups. Our approach is based on
a variant of the notion of symbols in [6]. Recently, together with N. Spalten-
stein, we have extended this result to the case of classical groups in characteris-
tic two. Using the results of this paper, Spaltenstein has determined explicitly
the generalized Springer correspondence for exceptional groups in arbitrary
characteristic, in almost all cases.

In this paper we use extensively, just as in {9, 2], the intersection coho-
mology theory of Deligne-Goresky-MacPherson, (see [4, 1]). An important
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role in our proofs is played by a certain class of intersection cohomology
complexes on G (see § 3). I believe that these are precisely the complexes whose
existence was conjectured in [10, §13]; if this is so, the further study of these
complexes might lead to the complete computation of the character tables of
finite Chevalley groups.

I wish to thank N. Spaltenstein for some very useful comments.
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0. Notations

Let @, be an algebraic closure of the field of l-adic numbers. We shall consider
constructible @Q;-sheaves on an algebraic variety over an algebraically closed
field k, (I is a fixed prime, invertible in k). We shall call them constructible
sheaves; a special case of these are the local systems. We shall often make use
of the Deligne-Goresky-MacPherson intersection cohomology complex (see [4,
1]) of an irreducible variety X over k, with coefficients in a local system & over
an open dense smooth subset of X; we shall denote it IC(X, &). (It is an object
in the bounded derived category D!(X,@,) of constructible sheaves on X.) We
normalize it in such a way that

(0.1) its cohomology sheaves #* are zero for i<0, #° extends & and
dimsupp #'<dim X —i, for i>0.

We shall make use of the theory of perverse sheaves, for which the basic
reference is [1]. Let K be a perverse sheaf (possibly shifted) on X, and assume
that X is provided with an action of a connected algebraic group G. We say
that K is G-equivariant if the following condition is satisfied. There exists an
isomorphism o in the derived category between the pull-backs p¥K,ptK
(where p,: Gx X —X is (g, x)—x and p,: Gx X > X is (g, x)}—>gx) such that the
induced isomorphism between i*p*K and i*p%K is the identity K—K; here,
i1 X->GxX is xt=(e,x) so that i*p¥K=K, and i*p¥ K=K. Then « is nec-
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essarily unique. (As Deligne told me, this follows from [1, Prop. 4.2.5].) It also
follows that « satisfies the usual associativity condition. For a not necessarily
perverse complex of constructible sheaves on X, the notion of G-equivariance
is more delicate (Deligne); we shall not need it here. The notion of G-
equivariant local system on X is obvious. If G is connected and its action on X
is transitive, the G-equivariant local systems on X are in 1—1 correspondence
with the finite dimensional representations of the finite group of components of
the isotropy group of a point xeX.

All representations of finite groups are assumed to be in finite dimensional
@,-vector spaces.

If X is an algebraic variety, X’ X is a locally closed subvariety of X and
& is a constructible sheaf on X, we shall write H.(X’, &) for the cohomology
with compact support of X' with coefficients in the restriction £|X". If & is a
complex of sheaves with constructible cohomology sheaves on X, the same
notation will be used for the hypercohomology with compact support of X’
with respect to the restriction of that complex to X".

The identity component of an algebraic group H will be denoted H, the
centre of H is denoted Z; its identity component is Z. If H' is a subgroup of
H and heH, we write Z.(h) for the centralizer of h in H' and N(H') or Ny(H’)
for the normalizer of H' in H.

§ 1. Dimension estimates

1.1. Let G be a connected reductive algebraic group over an algebraically
closed field k, and let 2 be a class of parabolic subgroups G. For Pe®?, we
denote by U, the unipotent radical of P, by P the reductive group P/U, and by
np: P—P the natural projection. We assume given a conjugacy class C of G.
We also assume given for each PeZ, a P-conjugacy class C,cP with the
following property: for any P, B,e? and any geG with B,=gP, g~ !, we have
75, (Cp,)=gmp,' (Cp)g~". (Thus it is enough to specify a conjugacy class in P
for some P and then we have automatically a conjugacy class in P’ for any
Pe?)

Let

Z={(g, B, R)eGx P x P|gen; (&7, Cp) 1z (Zp, Cp)},

Z'={(g, B, B)eGx P x P|gen; (Cp )15, (Cp,)}
We have a partition Z= U Z,, according to the G-orbits @ on # x #; the
o

piece Z, is the subset of Z defined by the condition that (P, B,)e0. We define
in the same way a partition Zy,={)Z,. A G-orbit ¢ is said to be good if, for
0

(B, B)e0, there exists a common Levi subgroup for P, and P,; otherwise, O is
said to be bad.

We shall denote by v, the number of positive roots of G and we set v=v,
(Pe?); we also denote F=dim 27, for Pe#. Let ¢=dim Cp, for PeZ, and c
=dim C.
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The following result is well known in the case where # is the set of Borel
subgroups, (see [20], [18, II 2.6]). Springer [21, 4.2] proved (a) and (b) also for
arbitrary %, but with some restrictions on the characteristic of k.

1.2.  Proposition. (a) Given Pe? and ge Cp, we have dim(C iy *(g) £ 3(c—0).

(b) Given ge C, we have dim {PeP|gen; (Cp)} < (va—%) - (v—%).
(©) If d=2v;—2V+¢+7, then dimZ,<d if O is good, and dimZ,<d if O is
bad. Hence dim Z <d.

(d) If d'=2v;—2%+¢, then dimZ,<d’ for all O. Hence &imZ' <d'.

Proof. In the case where #={G}, the proposition is trivial. Therefore, we may
assume that £ is a class of proper parabolic subgroups of G and that the
proposition is already known when G is replaced by a group of strictly smaller
dimension.

We can map Z, and Z, to 0, by (g, P, B)—(F. B). We see that proving (c)
and (d) for Z,, Z, is the same as proving that for a fixed (P, P")e(), we have

(©) dim {r;.1 (20 Cp)nmp (X2 Cp)} S2v—27+C+F—dim O
(d) dim (5,1 (Cp) A5 (Cp)} S2v,— 25 +8—dim O

with strict inequality in (¢} if @ is bad.

Choose Levi subgroups L' of P’ and L’ of P” such that L, L’ contain a
common maximal torus. Then P'nL’ is a parabolic subgroup of L’ with
unipotent radical U, nL’ and Levi subgroup LnL’; P"nL is a parabolic
subgroup of L with unipotent radical Up.nL and Levi subgroup LnL’. An
element in P'n P” can be written both in the form x-u (xeL, ueUp.) and in the
form y-v (yel’, veU,.). It is easy to see that there are unique elements
zellnL', w'eLnU,., Wel’nUp, such that x=zu", y=zu'. Hence (¢') is
equivalent to

(c") dim {(u, v, u", v, 2)e Up, x Up, X (Up.. " L) x(Up. " LYy x (L " L")
wWu=u'v, zu' €% Cp,zu e Zp. Cp.}

<2y —29+E+F—dim0,

(with strict inequality for bad ) and (d') is equivalent to the inequality (d")
obtained from (¢”) by dropping 2. Z..,7. (We identity L=P, L'=P", and
thus we regard Cp <L, Cp.<L’) When (v, u")e(Up. N Ly x(Up..n L) is fixed,
the variety {(u,v)eU, x Up.|u"u=u'v} is isomorphic to Up.nUp.: if we set @
=u" W uu'"reU,, B=vu'"1eU,., this variety becomes {(iL, )eUp x Up. |ii
=}

Since dim (Up N Up.)=2v;—2¥—dim ¢, we see that (¢”), (d”) are equivalent
to:

(") dim {(u", u', 2)e{Up.. " L) x (Up. " Ly x (L " L")|

zu' ey Cp,zueZp. Cp } STHT
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d”) dim {@", , 2)e(Up. A L) x (Up. A L) x (L A L)

zu’'eCp,u'eCp.} T

with strict inequality in (¢""’) for bad 0.

Let us consider the variety in (d"’). Note that the projection n, of that
variety on the z-coordinate is a union of finitely many conjugacy classes
C,uC,u...ul, in the reductive group L'~L’ (By the finiteness of the
number of umpotent classes in a reductive group [8], it is enough to show that
the semisimple part z; of z can take only finitely many values up to conjugacy
i LnL’; but z, is conjugate in LN L’ to one of the elements in the finite set
obtained by intersecting the set of semisimple parts of elements in Cp, < L with
a fixed maximal torus in LN L") The inverse image under 7, of a point zeC, is
a product of two varieties of the type considered in (a) but for a smaller group
(G replaced by L or L’) hence by the induction hypothesis it has dimension
<i(c—dim C)+ (¢ —dim C) Hence dimnjy (Cl)fc Since this is true for
each i (1=i<n), we see that the variety in (d”') has dimension <c.

A similar proof applies for (¢'). We denote by ﬁ3 the projection of the
variety in (c’”) on the z-coordinate. The 1mage of 5 is the intersection of two
sets: Z2(Cru...uC) and Z2(Clu...u ), where Cy,....C, €y ..., Cl are
a finite set of conjugacy classes in L'n L’. (The same argument as for (c”’).)

Hence the image of #, is U (20 Cin&P. C)). Note that Z2,ZP. are

contained in the centre of LN L". It follows that the image of %, is of the form
(Z2n20) Cyu.. A Z2nZL.) C,, for a finite set of conjugacy classes C,, ..., C,
m Enl’. Now the same proof as in case (d") {using (a) for a smaller group)
shows that the variety in (¢”) has dimension <T+dim(Z2nZ0). Since
dim(ZP.nZ[.) £F, with strict inequality if @ is bad, we see that (¢) is proved.
Hence (c) and (d) are proved (assuming the induction hypothesis).

We now show that (b) is a consequence of (d). Let Z'(C) be the subset of Z’
defined by Z'(C)={(g, P, P)eZ'|geC}. If Z'(C) is empty then, clearly, the
variety in (b) is empty and (b) follows. Hence, we may assume that Z'(C) is
non-empty. From (d), we have dimZ'(C)<d’. We map Z'(C) onto C by the
projection on the g-factor. Each fibre of this map is a product of two copies of
the variety in (b). It follows that the variety in (b) has dimension equal to
1(dim Z'(C)—dim C)g%(d’—c)=vc——v+§—§ and (b) is proved.

Finally we show by a well-known argument that (a) is a consequence of (b).
Consider the variety {(g, P)eC x 2|gen;'(Cp)}. By projecting it to the g-
coordinate, and uvsing (b), we see that it has dimension §VG~V+—§+—§. If we
project it to the P-coordinate, each fibre will be isomorphic to the variety

Cony(Cp), (Pe? fixed). Hence dim(Cnn;l(cp))va—v+§+§—dimg

ﬁ_%f Now Cnny '(Cp) maps onto C, (via mp) and each fibre is the variety
PR _z
in (a). Hence the variety in (a) has dimension < 2C—E=c~2~ The prop-

osition is proved.
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1.3, Remarks. (i) In the case where 0 is good, the variety in (¢”) above is
{zeL|zeZ}. Cpn %} Cp.}, since L=I. This variety (and hence Z,) is empty
unless

ZP Cp=20 Cp...

It this equality is satisfied, then Z, has dimension equal to d.
(i) The inequality in 1.2(b) can be reformulated as follows. If we fix Fe?
and a conjugacy class C,c P, of dimension ¢ then, for any ge C, we have

(13.1) dim {xB,eG/By|x~ " gxeny, (Co)} < (VG—%) - (v—g).

We shall need also the following variant of this inequality:

¢
(132)  dim {xBeG/B|x~'gxen; (20 Co} < (vc—g) - (V“E)'
This follows from (1.3.1) by observing that, for given g, there exist finitely many
conjugacy classes C,, C,, ..., C, in F,, of dimension ¢, such that

x~gxeny (25, Co)=x""gxeny  (Ciu...uC)).

§2. Cuspidal local systems

2.1. Let S be a subset of G such that S is the inverse image of a conjugacy
class in G/Z¢ under the natural map G—G/Z2. Then S is a locally closed
smooth subvariety of G of dimension equal to dim (S/20)+dim (Z{).

2.2. Proposition. Let #, CzP (VPeP),V,C be as in 1.1. Let & be a local
system on S. Let §=dim(S/ZJ)—dim (Cp), (Pe2).

(a) For any Pe? and any geCp, we have dim(ny (§)nS)<16, hence
Hi(ny '(8)NS, &)=0 for i> 4.

(b) The following conditions are equivalent:

(22.1) For any Pe? and any ge Cp, we have HX(n; ()0 S, &)=0.

(22.2) For any Pe?, any ge Cp and any irreducible component D of n; ' (8)nS
1

of dimensional equal to 3 0, the restriction of &* to some (or any) smooth open

dense subset of D has no global sections +0. (Here &* is the local system dual
to £.)

Proof. (a) It isclear that all elements in =7 *(g) have semisimple part in a fixed
conjugacy class in G. Hence ny *(2) is contained in the union of finitely many
conjugacy classes in G. It is then enough to show that for any conjugacy class
C of G such that C<S, we have dim (n; '(g)n C) <1 6. This follows from 1.2(a)
since dim C=dim (S/Z)).

(b) Let D, be a smooth open dense subset of D. Then H2(D, &)= H?(D,, &)
and the last space has dimension equal to the dimension of the space of global
sections of €* on D, (by Poincaré duality for D,). It remains to note that (by
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(@)) H(n; (@) S, &) is the direct sum of the spaces H(D, &) where D runs
over the irreducible components of dimension 36 of ny '(g)N S.

2.3. A one dimensional local system & on a torus T, is said to be tame if
there exists an integer m=1 such that m is invertible in k and such that the
inverse image of & under z—z": T,~ T, is the constant sheaf @, on T;.

A constructible sheaf & on G is said to admit a central character if there
exists a one dimensional tame local system ¥ on % with the following
property. Let % be a one-dimensional tame local system on the torus G/G,.,
(G4, =derived group of G) such that the inverse image of .4 under the
composition ZJ<G - G/G,, is & Then we require that there exists a con-
structible sheaf &, on G/Z¢ such that & is isomorphic to the inverse image of
%, K&, under the natural map G—(G/Gy,,) x (G/ZQ).

We say that & is the central character of &. It is uniquely determined by &,
if £40. We shall use the same terminology for a constructible sheaf on a
locally closed subvariety X of G, stable by multiplication by Z2: we identify it
with the constructible sheaf on G which extends it by 0 on G—X. If G is
semisimple, then any constructible sheaf on G admits a central character.

2.4. Definition. Let S<G be as in 2.1 and let & be a G-equivariant irreducible
local system on S. We say that & is a cuspidal local system or that (S,&) is a
cuspidal pair for G if the conditions (a), (b) below are satisfied:

(a) & admits a central character.

(b) For any ?+{G} and any CpcP (YPeP) as in 1.1, the pair (S, &)
satisfies the equivalent conditions (2.2.1), (2.2.2).

25. Let ScG be as in 2.1 and. let S be the image of S in G/Z%. From the
definitions it follows easily that a G-equivariant irreducible local system & on S
is cuspidal if and only if there exists a (G/Z()-equivariant irreducible cuspidal
local system &, on S and a one dimensional tame local system &, on G/G,,,
such that & is isomorphic to the pull back of & K&, under the natural map
G—(G/Gy,) X (G/Z).

Hence, if (S, &) is cuspidal, then & is associated to a representation of the
fundamental group of § which factors through a finite quotient. (The anal-
ogous property is true for % since it is tame, and for &, since G/Z7 acts
transitively on S.) It follows that the dual &* is again associated to a repre-
sentation of the fundamental group of S which factors through a finite quo-
tient. Hence the criterion (2.2.1) for & can be reformulated as the condition
that &* restricted to an open dense smooth subset of D has no constant direct
summands #0. This condition is clearly self dual. It follows that (S, &*) is
again cuspidal.

2.6. Definition. An element geG (or its conjugacy class) is said to be isolated if
the connected centralizer of g (the semisimple part of g) is not contained in a
Levi subgroup of a proper parabolic subgroup of G.

It is known [8] that G/Z contains only finitely many isolated classes. A set
ScG as above is said to be isolated if some (or equivalently any) of its
elements is isolated. It follows that there are only finitely many S which are
isolated.
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2.7. Proposition. If (S, &) is a cuspidal pair, then S is isolated.

Proof. Let geS and assume that Z2(g)<L where L is a Levi subgroup of a
proper parabolic subgroup P of G. Let ¢: U,—gU, be the map given by ¢(v)
=vgv~'. (We have vgv~'egl, since mp(vgv~—*')=n,(g).) The map ¢ is in-
jective: if vgv~l=v'gv'~! then v~ 'v'eZ(g); it follows that v~ 'v'eZ;(g,) and,
since v~ 'v'eU,, we have v~ 'v'eZ(g)NUp=Z%(g)nUp= LA U,={e} hence v
=v'. Since dim U,=dim gU,, it follows that ¢(U,) is dense in U,; on the other
hand, ¢(U;) is an orbit of the unipotent group U, acting on the affine variety
G, hence it is closed in G. Hence ¢ is a bijection of U, onto gU,. This implies
that gU, is contained in S, hence & is locally constant +0 on gU,; moreover,
the restriction of & to gU, is equivariant for the action of U, on gU, given by
conjugation. This action of U, on gU, has trivial isotropy (since ¢ is bijective)
hence the restriction of & to gU, is a constant sheaf, +0. It follows that
HZ*(gUp, &)#0 where e=dim(gU,). Since the connected centralizer of g, in L
coincides with that in G, it follows that the connected centralizer of g in L
coincides with that in G. Hence dim(class of g in G)—dim(class of g in L)
=dim (G) —dim(L) =2 dim(U,)=2e. It follows that (S, &) cannot be cuspidal.
The proposition is proved.

The following result gives further restrictions on S for which (8, &) can be
cuspidal.

2.8. Proposition. Let (S, &) be a cuspidal pair for G, let g be an element of S
and let H=Z(g). Then H°/Z¢ is unipotent.

Proof. Let L be the centralizer in G of a maximal torus of H° and let P be a
parabolic subgroup of G for which L is a Levi subgroup. Let D
={vgv~'|veU,}. Then, as we shall see in Lemma 29, D is an irreducible
component of clz(g)ng U, of dimension equal to e=3(dimecl;(g)—dimcl,(g)).
(Here, cl;(g), ¢l (g) denote the conjugacy class of g in G, L) The restriction of
& to D is Up-equivariant, for the (transitive) action of U, given by conjugation,
and the isotropy group of g is Zy_(g). According to Spaltenstein [17], the
group Z;_(g) is connected. This implies that &|D is a constant sheaf, 0 hence
HZ**(D, &)#0. From the definition of a cuspidal pair, it then follows that P=G
and the proposition follows. (In an earlier version of this paper, this pro-
position was proved only in good characteristic. I am indebted to Spaltenstein
for showing me his result on the connectedness of Zy (g), which allowed me to
drop the hypothesis of good characteristic.)

We now state the following lemma, which has been used in the previous
proposition.

29. Lemma. Let P be a parabolic subgroup of G and let L be a Levi subgroup
of P. Let g be an element of L and let cl;(g), cl;(g) denote the conjugacy class of
gin G,L. Let D={vgv~'|veU,} and let V={xPeG/P|xeZ;(g)}. Then

(@) D is an irreducible component of cly(g)ngU, of dimension equal to
$(dim clg(g) —dim cl; (g)).

(b) V is an irreducible variety of dimension (vg—3dimeclg(g)—(v,
—4dim el (g)).

(0 ZignP=Z3(g).
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Proof. (a) An element [-veL-U, is in Zy(g) if and only if lvg=glv, ie. if
(lg)(g"vg)=(ghv ie. if Ig=gl and g~ 'vg=v. Thus Z,(g)=Z,(g) Zy,(g). It
follows that

dimZ,(g)=dim Z, (g)+dim Z, (g).

Now let P’ be a parabolic subgroup having L as a Levi subgroup such that
P'nP=L. Then we have also

dimZ;.(g)=dim Z,(g)+dim Z_, (g).

Consider the map Z%(g) x Z%.(g)—>Z2(g) defined by (gl,gz)l—»glg2 The pairs

(gl,gz) (gl,gz) are mapped to the same element in Z2(g) if and only if

gl 2180, §2=80 '8}, Where g,eZ3(g)nZp(g). Note also that Z9(g)=Z0(g)
Z%.(g)<=Z,(g). It follows that

dim Zg(g)=dim Z3(g)+dim Z3.(g) —dim (Z3(8) N Z3.(g) +6,  (620)

hence
dim Z%(g)=dim Z%(g)+dim Z}.(g) —dim Z{(g) + 6

(29.1) =dim Z{_(g)+dim Z3,,,(g)+dim Z2(g) + 0.

We have dimZ, (g)=dimU,—dimD and similarly dimZ;_(g)=dim U,
—dim D', where D'={v'gv'""'|v'eU,}. Introducing this into (2.9.1), it follows
that

dim Z2(g)=dim U, +dim Up. +dim Z%(g)—dim D —dim D’ +§
hence

(29.2) dim D +dim D' =dim cl,(g) — dim cl, (g) + 5.

Now D is contained in clz(g)ngU, and is closed (it is an orbit of a
unipotent group on an affine variety) by 1.2(a), any irreducible component of
cly(g)nglU, has dimension <i(dimclz(g)—dimel,(g). It follows that
dim D £1(dimcl4(g)~dim clL(g)) and similarly dim D' £ (dimcl(g)
—dimcl, (g)). Comparing with (2.9.2) it follows that 6 =0 and that D (resp. D)
is an irreducible component of clg(g) N gU, (resp. of clg(g)ngUp) of dimension
equal to 1(dimecl;(g)—dimecl, (g)).

)] From the proof of (a) we see that dimZ,(g)=dim Z,(g)+dimZ,_ (g),
hence dim V=dim(Z;(g)/Z;(g) " P)=dim Z;(g) —dim Z,(g)=dim Z, .(g).

On the other hand, we have

(vg—3dimeclg(g) — (v, —3dim el () =3 (dim Z 5(g) —dim Z, (g))
(29.3) =3(dimZ,(g)+dim Z,_(g)).

Hence to prove (b) it is enough to prove the equality dimZ; _(g)=dim Zy,, (g).
This follows from the equality dim D =dim D’ in (a) and from the equality

(2.9.4) dim U, =dim U,..

(c) Let T=27 and let H=Z(g). Then T is a torus contained in H° hence
Zyo(T) is connected. We have L=Z4T). It follows that LAH®=2Z,(T) is
connected, hence L H® is contained in Z9(g).
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The group Zp(g)nZ2(g) contains Z%(g) as a normal subgroup of finite
index. Let g, be a fixed element of Z,(g)nZ2%(g). From the proof of (a), we
have =0 and hence the set A4 of products g,-g, (g2,€Z5(g), g8,€Z5.(g)) is
constructible dense in Z2(g). Hence the left translate g,4 of A is again
constructible dense in Z2(g) and therefore it must meet 4. It follows that
80818,=81 g, for some g,,8,€Z3(g), 8,,8,€Zp.(g) Set g,= g’{ 208;- Then
80€Zp(8)NZp.(g)NH®, hence §,eLnH°=Z}(g)=Z3(g). Thus g7 ' g,8,€Z3(g).
Since g},2,€Z%(g), it follows that g,eZ%(g). Since g,eZp(g)NZ%(g) was arbi-
trary, we see that Zp(g)nZ2(g)=Z%g). This completes the proof of (c).

2.10. In order to classify the cuspidal pairs for G, it is sufficient to classify the
cuspidal pairs for G/ZJ. Indeed, the cuspidal pairs for G are obtained by
pulling back the cuspidal pairs of G/Z under the natural map G—G/Z¢ and
then tensoring by a one dimensional local system on G obtained by pulling
back under G- G/G,, a one dimensional tame local system on G/G,.,.

Assume now that G is semisimple, and let 7: G—G be its simply connected
covering, Assume that the cuspidal pairs for G are already classified. (There are
only finitely many of them, by 2.7.) Let I' be the kernel of = (a finite abelian
group). Let (S, &) be a cuspidal pair for G. Then & is G-equivariant, hence in
particular I'-equivariant; I" acts trivially on S, hence it acts on each stalk of &.
We require that I' acts trivially on £. Let S= n(.§) and let & be the direct image
of & under the finite covering S—S. Let ge$, g=xn(g), let j be the irreducible
representation of Z5(3)/Z%(g) corresponding to &, and let p be the representa-
tion of ZG(g)/Z?;( induced by the representation of the image of
Zé(g)/Z%(g)»ZG(g)/Zg(g) defined by g, (p factors through that image). Then &
is the G-equivariant local system on S corresponding to p. It decomposes as a
direct sum of irreducible local systems in the same way as p decomposes as a
direct sum of irreducible representations.

If & is any irreducible direct summand of &, then (S, &,) is a cuspidal pair
for G, and all cuspidal pairs for G are obtained in this way.

Hence the question of classifying the cuspidal pairs of a reductive group G
is reduced to the case where G is semisimple, simply connected. We can further
reduce to the case where S is a unipotent class, as follows.

Assume that G is semisimple, simply connected, let S=G be an isolated
conjugacy class, (see 2.6), let geS, and & be the G-equivariant local system on §
corresponding to the irreducible representation p of Z;(g)/Z2(g). Let g=su
=us be the Jordan decomposition of g with s semisimple and u unipotent in H
=Zg(s)=Z2%s). We have a canonical isomorphism Z(u)/Z5(u)——

G(g)/Z (g), hence p may be regarded as an irreducible representation of

Z 4 (w)/Z%(u) so that it gives rise to an irreducible H-equivariant local system &,

on S, (= H-conjugacy class of u). Then

(2.10.1). (S, &) is a cuspidal pair for G=(S,, &,) is a cuspidal pair for H.

The proof of this statement is based on the consideration of the map
finp ' (@nS—-n; (g )nclass of s, defined by taking semisimple parts, and the
corresponding Leray spectral sequence for &. (Here P is a proper parabolic
subgroup of G, g is an element of P, g, is its semisimple part; we assume that
np H(8)NS+0.) We omit further details.
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§ 3. Admissible local systems

3.1. We shall define a partition of the reductive connected group G, into
finitely many locally closed, smooth, irreducible pieces, stable by conjugation.

For geG, we denote by g, the semisimple part of g and by Hg(g) the
centralizer in G of the connected centre of Z2(g,). Alternatively, H(g) could be
defined as the smallest closed subgroup of G with contains Z2(g,) and is the
Levi subgroup of some parabolic subgroup of G.

The pieces in our partition of G are parametrized by pairs (L, S;) (up to G-
conjugacy) where L is a closed subgroup of G which is the Levi subgroup of
some parabolic subgroup G and S, is a subset of L which is the inverse image
of an isolated conjugacy class in L/Z} under the natural map L—L/Z}?. (It is
clear that there are only finitely many G-conjugacy classes of such pairs.) The
piece corresponding to (L, S,) is defined by

Y=Y, 5, =union of all conjugacy classes in G which meet (S)
where (S,),.,={g€eS,|H(g)=L}={geS,|Z%(g)=L}.

reg?
Teg

Then Y is a locally closed smooth irreducible subvariety of G, stable by
conjugation; the map g— H(g) defines a locally trivial fibration Y—variety of

all conjugates of L, all of whose fibres are isomorphic to | J n(Sl)regn_l
neN(LYL
(The last variety is a disjoint union of finitely many copies of (S,)

is open dense in §,.) It follows that

and (S Dreg

reg?

dim Y=2v;—2v;+dim§,.

It is clear that Y depends only on the G-conjugacy class of (L, S,).

If g is an arbitrary element of G, then g is contained in a unique piece Y as
above: Y is associated to (L, S;) where L=H;(g) and S, is the L-conjugacy
class of g, times &,. Hence the Y’s form a finite partition of G.

32. On each piece Y=Y 5, in our partition we define a class of G-equi-
variant local systems as follows. Let &, be an L-equivariant irreducible local
system on S, such that the pair (S,,¢,) is cuspidal for L, (see 2.4); in par-
ticular, &, admits a central character & (with respect to L), where % is a one
dlmensmnal tame local system on 3”0 We consider the pull back &, of
8118 1);eq to Y= {(g,x)eYxGIx“gxe(Sl),eg} under the map Y"(S1)reg>
(g, x)—x"tgx. It is clear that é’l is an irreducible G x L-equivariant local
system on Y for the action of GxL on ¥ given by (g,/,):
(8, x)—(g, 285 % goxlgl). (Note that &,((S,),., is irreducible since (S))., is
open in S, and &, is irreducible on Y since Y is isomorphic to ()., X G.) Now
L acts freely on Y by right multiplication on the x-coordinate and the orbit
space Y/L is Y={(g, xL)eY x(G/L)|x~ ' gxe(S Dreg) Since &, is L-equivariant,
it is the inverse image under ¥— Y of a well defined, G-equivariant local system
&, on Y, which is necessarily irreducible. We now take the direct image =, &, of
& under the map n: Y- Y, n(g, xL)=g. This map is a finite unramified cover-
ing which is a principal flbratlon with group ¥ =stabilizer of S, in
#=N(L)/L. 1t follows that n, &, is a local system on Y (necessarlly G-
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equivariant); the dimension of a stalk of =, &, is equal to |#5| times the
dimension of a stalk of &. It is easy to see that m,&, admits a central
character ¥ (with respect to G), where & is the restriction of & to the
subgroup Z¢ of 2.

3.3. Definition. An irreducible local system & on Y=Y, 50 is said to be
admissible, if it is a direct summand of n, (&) where (S,,8,) is a cuspidal pair
( for L), as above.

It follows automatically that & is G-equivariant and that & admits a central
character.

In the case where L=G and (S,, &,) is a cuspidal pair for G, the set S, is
automatically isolated in L (see 2.7) hence Y=Y, 5, is defined; we have Y=5,.
Our definition for n, (&) leads just to &;; we see that in this case, the
admissible local systems on Y are just the & such that (S,,&)) is a cuspidal
pair (for G). In the case where L+G, n*(ézl) above is not necessarily irreduc-
ible.

34. Let N, be the set of all ne N(L) such that nS, n~'=$, and such that the
automorphism g—ngn~' of §; can be lifted to &. Then N, >L; we set #;,
=N, /L. Given we#,, , we consider the corresponding coset N, . in N, . On
the product N, xS, we have two local systems &, &}. The first one, &7, is
the inverse image of &, under the map (n, g)—>ngn=!; the second one, &, is the
inverse image of &, under the map (n,g)—g. Let &, , be the space of all
homomorphisms of &7 into &, inducing identity on the base N ,xS,. Then
sl ,, is a one-dimensional Q-vector space, since &, &, are isomorphic (use
the L-equivariance of &; and the definition of N, ) and irreducible. Let o7,
=@, ,, (W runs over #; ). There is a natural Q,-algebra structure on .7,

such that o, -, =y .. Indeed an element of o/, ,, gives rise to a
system of homomorphisms f,: (&), —(&}),,,-: defined for each geS, and each
neNg, . (&), is the stalk of & at g) Th1s system satisfies f,of,°=f0 _,of, for
all neNy, and all leL, where f°: (61); =8 )i~ 1,(I€L), define the L-
equivariant structure of £,. Similarly, an element of o/, . gives rise to a system
of homomorphisms f: (é”) (G pgn-1> (YES,, VneN, ) such that fof%=
Sn-1ofy for all neNg . and all leL. We now define f'=f of (&)~
(€y)pgn-1+ for any geS,, neNé‘,1 ww» Where n €N, . n,eN, . are such that n
=Hn,n,; this is in dependent of the chmce of n;,n, and it corresponds to a
unique element of /s .., the product of the two elements in &, ,, s, .

The algebra @7, has a unit element; it lies in of, |

3.5. Proposition The local system n*(g) on Y is semisimple. Its endomorphism
algebra is naturally isomorphic to the algebra sf, . Any endomorphism of n*(é‘”)
is automatically G-equivariant.

Consider the element of 7, , corresponding to the system of homomor-
phisms £, 1 (8), (€ )ngn-1> (VgeSl, VneNg ), as above. For each neN,, ,, we
consider the system of homomorphisms f (&, )e. x)—-»(é" )g,xn-15 (V(g, X)E Y), de-
fined as f,:(61)- 1, (8)nx- 1gxn-1- (We may identify ((f )ox = (E1)x- 140 (€, )g xn-1
=(&,) -1 ) This gives rise, for each (g,xL)eY, to a homomorphism

nx~ lgxn
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f.(é, e, (8 Jg.xn-11- (We may identify (é” )e.x2, With the space of global sections
of the restriction of &, to the fibre of ¥ 5 ¥ over (g, xL); similarly, for (&), ,,-1.)
The system of homomorphxsm £, is clearly independent of the choice of n,
(neNy, ,); we denote it f Since the stalk = ((f )g» (g€Y), is the direct sum
(—B(é” .= (sum over all xL such that (g, xL)e Y) it follows that f gives rise to

an endomorphism of n*(é”l) for each geY, and this comes from a unique
endomorphism of the local system = (é”) This defines a linear map
Ay, w—>EndG(n*~(é"’ ) (G-equivariant endomorphlsms) hence to a linear map
oA, —»EndG(n (€,)) which is clearly an injective algebra homomorphism pre-
serving the unit element. We now show that dim End (n*(é’ )) £l ,|. First note
that the local system &, is irreducible. (It is enough to show that & is
irreducible; since Y=(S, Jreg X G and é,~& ®1, it is enough to show that
€1 1(S 1), 18 irreducible; but this follows from the fact that &, is irreducible on
§, and (S,),,, is open in S,.) Since n: Y-Y is a principal bundle with group
“/VS, it follows that n*(ca@ ) is semisimple and that the dimension of its en-
domorphism algebra is equal to the number of we#5, such that the map V-7
defined by w can be lifted to &,. Given such w, and a representative neN(L)
for w, it follows that the map (g, x)—(g,xn~1): Y- ¥ can be lifted to &, and
hence the map grongn=':(S),,,—(Sy),., can be lifted to &, |(S,),.,- Since (S Dreg
is open dense in S, it follows that the map gongn=':§, —»S can be lifted to
&,. Hence we ¥ . Thus dim End(n*(rg’ N | Tt follows that

oAy, ,—> Endg(n,(£,))=End(rn,(&)).
The proposition is proved.

3.6. Remark. If we choose basis elements b e, , for each we# , we have
b,b, =2, .. b, where 1, .€Q is a 2-cocycle of #,,. Thus, the algebra .27,
is the group algebra of #7, , twisted by a 2-cocycle. (In 9.2 it is shown that this
cocycle is trivial in an interesting special case.)

37. Let us denote by /s, the set of isomorphism classes of irreducible .27, -
modules. Given a semisimple object M of some abelian category such that M
is an &/, -module, we shall write M,=Hom,, ‘ (p, M), (peolz ), and we have M

= ® (p®M ) with o7, acting only on the p- “factor and where M, is again in

pe.ﬂgl
our abelian category. (We assume chosen representatives for each isomorphism
class of representations of <7 .)

In particular, we have n*(é” @ pRm, (é”) where =« (67 ), are ad-

missible local systems on Y, and all admlss1ble local systems on Y are obtained
in this way.

§4. Admissible complexes
4.1. Let & be an admissible local system on Y=Y, ;,=G, see 3.3. We

consider_the intersection cohomology complex (see [4, 1] and (0.1)), of the
closure Y with coefficients in &; we denote it IC(Y,&). It is a G-equivariant
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complex (for the action of G on Y given by conjugation) and all its coho-
mology sheaves admit the same central character as &. The complexes
IC(Y, &), for various Y,& as above, are called the admissible complexes of G.
Let us write £=n*(c§1)p,, (p'esZ}) as in 3.7. (Here (S, &) is a cuspidal pair for
L.) By the definition of intersection cohomology complexes we have

(4.1.1) EndIC(Y, 7, (6,)=End n (&)=<,
(the last equality follows from 3.5). Hence we have

(412 IC(Yn,(E))= @ p®IC(Y,n,(8)),

pe.gl(gfl
where IC(?,n*(g”l))p:IC(?,n*(g,)p) is an admissible complex. From 3.5 it
follows that

(4.1.3)  All endomorphisms of IC(Y, n,(&,)) are automatically G-equivariant.

4.2. We shall now give a construction of IC(Y, n*(é‘i)) which is similar to that
in [9].
Choose a parabolic subgroup P <G having L as a Levi subgroup. Let

X ={{g,xP)eG x(G/P)|x~tgxeS, - Up}.

(Here S, denotes the closure of S, ; note that the subset S, - U, of P is stable by
P-conjugacy, so that the definition makes sense.) We define a map ¢: X -G by
¢(g,xPy=g. It is G-equivariant for the action of G on X given by
2o: (g, xP)—(g,885 ' 8o xP) and the action of G on itself, by conjugation.

43. Lemma. (a) X is an irreducible variety of dimension=dim Y.
(b) ¢ is proper and ¢p(X)=Y(=the closure of Yin G).
(c) The map (g, xL)—(g, xP) is an isomorphism y: Y—=— ¢~ 1(Y),(see 3.2).

Proof. (a) The second projection X—G/P has all its fibres isomorphic
to S, U, hence X is irreducible of dimension equal to dim(G/P)+dimS,
+dim U,=dim Y.

(b) The proof of this assertion is standard, but for the convenience of the
reader we give it here. Let X' ={(g, xP)|x~*gxeP}. Then X = X'. We show that
X is closed in X'. Note that X and X’ can be regarded as sets of P-orbits on
X,X" where X={(g,x)eGxG|x 'gxeS, Uy}, X'={(g, x)x 'gxeP} and P
acts (freely) by right translation on the x-coordinate. Hence it is enough to
show that X is closed in X'. By the change of coordinates g'=x"'gx, the
inclusion X = X’ becomes G x (S, - U,) = G x P which clearly has closed image.

Thus X is closed in X'. It is well known that the map X'—G given by
(g, xP)—g is proper. Since ¢ is the restriction of that map to a closed subset, it
is also proper. It is clear that Y < ¢(X). Since ¢ is proper, ¢(X) must be closed
hence Y ¢(X). We have dim Y=dim ¥ <dim ¢(X)<dim(X)=dim Y. Since Y
and ¢(X) are both irreducible and closed, it follows that Y = ¢ (X).

(c) It is easy to see that y maps Y injectively into ¢ ~'(Y). We now show
that y(Y)=¢~'(Y). Consider an element in ¢~ '(g) for ge(S Dregs it is of the
form (g, xP) where x 'gxeS,-U,. Let us identify L with P/U, and let
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np: P—L be the natural projection. If we denote z=mn,(x"'gx), we have ze5,.
Under the projection L—L/Z?, S, is mapped to a single conjugacy class C
and S, to the closure C of that conjugacy class. The set of elements in L/%?
whose semisimple part is in a fixed conjugacy class is closed, hence the
semisimple part of any element in C is equal to the semisimple part of some
element in C. This implies that the semisimple part of any element in S, is
equal to the semisimple part of some element in §, times an element {eZ};
since ZS,;=S,, we may assume that {=1. In particular, z,=np(x~1g,x) is

equal to g, for some g'eS,. Since S, is isolated in L, we have H,(g')=L for any
g'eS,. Since H,(g) depends only on g;, and since z,=g,, it follows that H,(z)
=L, Now let L be a Levi subgroup of P containing x~'g_x. We consider the
isomorphism L-=~- L obtained as a composition L —=— P/Up«=—L. Under
this isomorphism, x~'g xeL corresponds to z,e L. From H,(z,)=L, it follows
that H,.(x"'g,x)=L, hence H;(x"'g,x)oL, hence Hg(g)>xLx~'. This,
combined with H;(g)=H;(g,)=L (since ge(S,),.,) implies LoxLx~'. Since
L,L have the same dimension, it follows that L=xLx~'. The Levi subgroups
L,L of P are also conjugate by an element of P: we have L=p~'Lp, peP. Let
x'=xp. Then x'"'Lx'=L and x'~'gx'eS, -U,. Since geL, we have also
x'~'gx'eL hence x'~!gx'eS, U,nL=S,. On the other hand, from geS,, we
have x'~'gx'ex'~'S, x". Thus, x'*S, X' meets S,. The image of x'~'S, x’ under
L—L/%7} is a single conjugacy class of the same dimension as the image of S, ;
it meets the image of S, which is the union of the image of S, with finitely
many conjugacy classes of smaller dimension. It follows that x'~'S, x’ and §,
have the same image in L/%)?, hence x'~!S x'=S,. Since x'eN(L), we must
have also x'~'(S 1)reg =(S)ee- From ge( l)mg, it now follows that
x'“tgxex (S, )reg X' hence x'~7 gx'e(S),,,- This means that (g, x’ L)eY. Since
x'P=xP, it follows that ¢~ 1(g)=y(Y). Here g was an arbitrary element of
(S1)reg- Since any element of Y is conjugate in G to an element of (S,),.,, it
follows that ¢='(Y)<y(¥). Hence y is a bijection between ¥ and qﬁ‘l(Y The
proof of the fact that the inverse of this bijection is algebraic is easy and will
be omitted.

44. The variety S, is statified into finitely many smooth strata: the orbits of
2 x L with 2} acting by translation and L by conjugation. There is a unique
open stratum: S,. Taking the inverse images of these strata under the map
X-5,, (g, x)r——»(pro;ecnon of x~'gxeS, - U, onto the S,-factor), we get a strati-
fication X = UX of X into smooth strata (x runs through the strata of S,).

The stratum X s (%o =stratum §,) is open dense. The strata X, are P-invariant
for the (free) P action on X given by right translation on the x-coordinate.
Hence their images X, in X = X/P form a stratification of X into finitely many
smooth strata, with X open dense. We consider the L-equivariant local
system &; on S,; we take its inverse 1mage under X ,~S, and we get a G x P-
equlvarlant local system on X , which is necessarlly the inverse image under
X, —+X JP=X,, of a G- equlvcmant local system on X, , which will be de-
noted &, (&, extends to X, the local system on ¢~ '(Y)~ Y which was denoted
as &, in 3.2.) Similarly, the L-equivariant complex I C(5,,&,) on §, gives rise
by taking inverse image under X —S, to a G x P-equivariant complex on X,
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which is the inverse image under X »X/P=X of a well defined G-equivariant
complex on X, which is just 1C(X, &,).

Let us denote K=I1C(X, &). We consider the complex ¢,K on Y, where ¢
is as in 4.2.

4.5. Proposition. ¢, K is canonically isomorphic to 1C(Y, é).

Using 4.3(c) and the fact that Igd)“(Y)gElld)“(Y);é‘i, we see that the
restriction of ¢, K to Yis just 7, &;. Since ¢ is proper (4.3 (b)), it is enough to
prove the following assertion, (see [4] and (0.1)):

(4.5.1) For any i>0, we have dimsupp #'(¢, K)<dim Y —i
(where #" denotes the i-th cohomology sheaf of ¢, K)

and also the analogous assertion in which K is replaced by K*=IC(X, &¥),
with & =local system dual to &,. (Note that (S, &) is again a cuspidal pair
for L). We shall only prove the assertion (4.5.1) for K; the proof for K* is
identical.

If ge¥, the stalk #,(¢,K) at g is equal to H'(¢~'(g), K) (hypercohomology
of ¢~'(g) with coefficients in the restriction of K to ¢~ '(g)). We can stratify
$*(g) by ¢~ (), =0 "N X,. If H(¢p~'(g), K)+0, then there exists « such
that H (¢~ *(g),, K)%0. Hence it is enough to prove:

(4.5.2) For any i>0 and any «, we have
dim {ge Y| H!(¢~'(g),, K) 0} <dim Y —i.

Assume first that a+a, and let S, , be the stratum of S, corresponding to o. If
Hi(¢~'(g),, K)+0, we see from the hypercohomology spectral sequence for K
on ¢~'(g), that we can write i=j,+j, where j,<2dim¢~!(g), and
H(K|d~'(g),)#+0. The last condition implies that the j,-th cohomology sheaf
on K (on X) is non-zero on X,. From (0.1) it follows that j, <dim X —dim X,
=dim S, —dimS, ,. Therefore we have i<2dim¢~'(g),+dimS, —dim$, , and
hence it is enough to show that dim{geY|dim¢~'(g),>(i/2)—(dimS,
—dim § ,)/2)} <dim Y —i. If this is violated for some i>0, it would follow that
the set of triples

{(g,xP,x'P)eY x(G/P)x(G/P)lx~'gx€S, , Up,x"1gxeS, Uy

has dimension >dimY—i+i~(dimS,~dimS, ,)=2v;—2v, +dimS, ,. This
contradicts 1.2(c).

Next, we assume that a=a,. If Hi{(¢~(g),,, K)+0, then i<2dim¢~'(g),,
since K restricted to ¢~ 1(g)Ulo is just a local system. Hence it is enough to show
that dim{geY'|dim ¢~ '(g),, =i/2} <dim ¥ —i, (i>0). If this is violated for some
i>0, it would follow that the space of triples

453) {(g xP,x'P)eY x(G/P)x(G/P)|x~'gxeS,Up,x' "' gx'eS, Uy}

has some irreducible component of dimension =2v;—2v,+dimS,, whose
projection to Y, has dimension <dim Y.

From 1.2(c) it follows that this component contains the subset of (4.5.3)
defined by the condition x~'x'ePnP where n is a fixed element of N(L);
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moreover, the remark in 1.3(i) shows that n must satisfy nS,n='=S§, (other-
wise, the component is empty). If ge(S,),.,, then (g, P,nP) belongs to our
component hence g belongs to its projection to Y. Since this projection is G-
equivariant and Y= U gO(Sl)regggl, it follows that the projection of our

— goeG _
component to Y contains all of Y and hence it has dimension equal to dim Y.
This is a contradiction. The proposition is proved.

§ 5. Sheaves on the variety of semisimple classes

51. Let 0: G—A be the Steinberg map [23], where 4 is the affine variety
whose points are the semisimple classes of G and ¢ is the morphism which
attaches to geG the conjugacy class of g,. (4 may be identified with the
quotient of a maximal torus by the corresponding Weyl group.) Let

Ay=0(Y)=0(S, Up)=0(S,)=0(S,)c A.

(We have used the fact that the semisimple part (lu), of I-u (leL, ueU,) is
conjugate under an element in U, to [,. This can be seen as follows. Consider a
Levi subgroup L of P containing (lu),. Then L is conjugate to L under an
element veUp,. Thus v(lu),v~'eL. Under np: P—P/U,, the elements v(lu),v™?,
[, are mapped to the same element. Since 7, restricted to L is injective, we
have v(lu),v=' =1, as asserted.)

Let (Ay),eg=0((S1).)- Then Ay is an irreducible closed subvariety of 4 of
dimension equal to dim(Z7), and (4y),., is an open dense subset of A, .

5.2. In addition to S,cLc P and &, on S,, we consider another set of data
SicLcP, & on §), of the same kind. In particular, (S}, &) is a cuspidal pair
for L. We shall denote the various objects associated to S}, L, P’, §; by a prime
attached to the notation for the corresponding object for §,,L, P, &,. For
example, we have ¢': X'»Y', K'=IC(X', &).

Consider the fibre product Z=X x. X' ={((g, xP), (g, x' P)eX x X'|g=g'};
we assume that Y Y’ #0, for otherwise Z is empty. Let 6: Z— A4, Ay. be the
composition of the map X x5 X'—> YN Y’ defined by ¢ on the first coordinate
or ¢’ on the second coordinate, with the restriction of ¢ to YnY'. We form the
external tensor product KXK' (a complex of sheaves on Z). Let

do=2v;—v,— vy +3(dim(S,/2Z0)+dim (S, /Z2)).

For aeAyn Ay, we set Z°=6""(a)= Z. Given a stratum « of S, and a stratum
o of Sy, we set Z; , =2Nn(X, xz X)) where X, are as in 4.4. Then the Z ,
form a partition of Z° into locally closed pieces with Z7 . open in Z° (o, o
are the open strata in S, 5)).

5.3. Lemma. (a) dim Z¢ , <d,—3(dim (S,/27)—dim (S, ,/Z7))
—3(dim (8}/27) —dim (S} ,/2Z7)
(b) dimZ°<d,
(c) The natural map
H? (2%, KKK')«H? (Z¢ . KKK)=H?Z° .. & X&)

ap, 2b> ag,ah?
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is an isomorphism for &' >2d,, and is surjective for & =2d,. It is an isomorphism
for '=2d,, if L=L,S, =S| and if a is such that Zj ,, is empty whenever exactly
one of a, o’ is equal to o,.

Proof. (a) We have a natural map defined by ¢ or ¢’ from ZZ . to ¢~ '(a).
Since ¢~ '(a) is a union of finitely many conjugacy classes it is enough to
estimate the dimension of the subset of Z .. lying over a fixed conjugacy class
C in ¢~ !(a). Consider the natural map of this subset to C. All fibres of this
map are isomorphic to a product of two varieties of the kind appearing in
1.2 (b). Hence, by 1.2(b), each of these fibres has dimension at most

(v —3 dim () — (v, — 7 dim (S ,/27) +(v —3 dim(C))
— (v, —3dim (S} ,/27)
and (a) follows.

(b) follows immediately from (a). To prove (c), it is enough to show that for
any (o, o) = (0, o), we have HY(Z% ., KK K")=0) for 8 22d, and (under the
assumptions in the last sentence of the lemma) even for ¢'=2d,—1. Assume
that this cohomology group is non-zero, under our assumptions.

From the hypercohomology spectral sequence for the restriction of KKK’
to Zj ., we see that we can write ¢'=i+j+j’, where i<2dim Zf ,. and where
both restrictions #7(K)| X,, #7(K')| X, are not identically zero. From (a) it
follows that

i<2d,+dim (Sl.a/fz”g)—dim(sl/ﬁ”f)—i—dim (S’m,/%,?,)—dim(S’,/Q”f,).
Moreover, by the definition of K, K’, we must have

jSdim (X)—dim (X,)=dim (S,/20) —dim (S, ,/27)

(5.3.1) 1 . . . ,
j sdim(X")—dim (X} )=dim (S;/27) ~ dim (S] */27)

and at least one of these inequalities must be strict since (a, a)= (o, ®); it

follows that 0'=i+j+j <2d,. Under the assumptions in the last sentence of

the lemma, both inequalities (5.3.1) are strict and it follows that §' =i+

+j'<2d,—2. This proves (c).

54. Let 2 (resp. #) be the variety of all conjugates of P (resp. of P'). For
each locally closed G-invariant subset E of #x %, (G acts diagonally), we
consider the subset wa,u of X, x¢X,, consisting of all pairs (g, xP), (g, x'P")
in X, x X, such that g=g¢/ (xPx~',x'P'x'~")eE. Let J; be the (2d,)-th
cohomology sheaf of the direct image with compact support of KK’|Zfo,a6
(=&, & |Z% ,.) under the restriction of & to Z% ,.; it is a constructible sheaf
on Ay.

Let E_; (resp. E;) be the union of all G-orbits on # x# of dimension <i
(resp. =i). From 5.3(b) and the cohomology exact sequence associated to the
partition of a space into an open and a closed subspace we get an exact
sequence of sheaves

(5.4.1). 0> > >, 0
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We also see that
(5.42) %,=€g)%

where @ runs through the set of G-orbits ¢ =2 x &' of dimension i.

When E=2 x #', we shall set 7;=9. We have 7 =5, for large i. Let
be the (2d,)-th cohomology sheaf of ¢,(KKIK"), (¢ is defined in 5.2). It is a
constructible sheaf on 4, A4y..

The imbedding of X, x; X, into Z (as an open subset) gives rise to a
natural map of sheaves 7 —»J over A, Ay.. At level of stalks, it is the map
in 5.3(c) for &' =2d,. From 5.3(c) we see that

(5.4.3) The natural map of sheaves T —J is surjective.

(5.4.4) Definition. A constructible sheaf & on an irreducible variety V is said to
be perfect if (a) there exists an open dense smooth subset V<V such that &1V, is
locally constant and &=1C(V,&|V,), and (b) the support of any nonzero con-
structible subsheaf of & is dense in V.

(In particular, the complex IC(V,&|V,) is reduced to a single sheaf) For
example, if n: V'—>V is a finite morphism with V' smooth and if &’ is a locally
constant sheaf on V', then & =n_ & is a perfect sheaf on V. Also,

(54.5) if 0-& —&,—&,—0 is an exact sequence of constructible sheaves on V,
with &, and &; perfect, then &, is perfect.

5.5. Theorem. (a) If the pairs (L,S,), (L, S") are not conjugate under an element
in G, then 7 =0.
(b) If L=L,S;=8)sothat Y=Y, Ay=Ay then T is a perfect sheaf on Ay.
(¢} The natural map of sheaves T—F (see (5.4.3)) is an isomorphism.

Before starting the proof, we shall need some preliminary results.

5.6. Lemma. Assume that O 2 x %' is a G-orbit with following property: for
some (or any) (P, PYeO, P and P’ do not have a common Levi subgroup. Then 7,
=0,

Proof. We must prove that, for any acA,nA4,., we have

H2%(Z°Z¢ ., & X&) =0.

a0, %0°

Using the inequality dim(Z°nZ¢ ,)<d, (5.4(a)) and the fibration Z*

X0, au

ngo >0, we see that it is enough to show that for any ae 4y Ay, and any

x,x'€G such that (xPx~!,x'P'x'~")e(, we have H?%-24m0(ye j*x(g ® &;))=0
where

Ve={geo a)|x 'gxeS, Up,x' " 1gx'eS| Up}

and ] V"—»S 1 X 87 is defined by j(g)=(S,-component of x“1gx, § j-component
of x'~1g'x"). Let P=xPx~!, PP=x'P'x'~'. Choose Levi subgroups L of P and

L of P’ such that L, [’ contain a common maximal torus. We have gerP
As in the proof of 1.2, we write uniquely g=zii'u=ziv, where zeLnI, welL
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NUp, d€L N Up, ueUp, veUp,. Let S, be the image of x~'S, x= P under P—L
and let S| be the image of x'~!S|x'<P’ under P'-»L. Then V* can be
described as

{(u, v,@, 1, 2)eUs x Up, x (L Up) x (£~ Up) x (LA L)

du=iv, zi'eS, no~Ya), zdeS, no " (a)}.
This if fibred over

Ve={(@,d, 2)e(LnUs) x (L nUp) x (LA L),

zi'eS, no~(a), ziieS, no ' (a)}

with all fibres ~ Uz Us., (see the proof of 1.2); note that dim (Usn Us)=2v,
—vy—v.—dim @. We reduced to showing that ‘

H{(Ve, * (1, ® #,)=0

where r=dim(S,/2Z0)+dim(S,/Z0), j: V-8, xS, is defined by (i, d,z)
=(z#', z@l), &, is the local system on §, obtained from &, via the isomorphism
stopri(x~sx): S,—»S, and # is the local system on §, obtained in a
similar way from &;. Let n,: V“>LnL be the projection of ¥V* on the z-
coordinate. The image n,(V9 is a union of finitely many conjugacy classes
C..C,,...,C, in LnL (compare the proof of 1.2), and, since dim Vel it is
enough to show that for any zeC,, we have H'~23mC(z1(2), ]*(./f1 ® 7,)=0.
Now 73 '(z) is a product D x D' where D is the set of all Te(LnP)nS,

whose image under LnP'-LAL is equal to z and D’ is the set of all f'e(f,’
nP)nS, whose image under I nP—»LnL is equal to z. Moreover, j*(Z,
® #,) on 13 '(z) corresponds to the tensor product of #,|D with #/|D'. Since
2dim D £d, =dim(S,/%?)—dim(C), 2dim D' <d, =dim (S,/2>)—dim(C). (see
1.2(a)), and d, +d, =r —2 dim C,, we are reduced to showing that

H*(D, #,)® H (D', #/)=0.

We now make use of our assumption on @. It implies that either LnP is a
proper parabolic subgroup of L or that NP is a proper parabolic subgroup
of L. In the first case, we have H%(D, #,)=0, since (5'1,971) is a cuspidal pair
for L; in the second case, we have H% (D', #/)=0, since (S|, #) is a cuspidal
pair for I. (See 2.2 (b).) The lemma is proved.

5.7. We next consider the sheaf 7, in the case where 0P x P has the
following property: for some (or any) (P, P')e®, P and P’ have a common Levi
subgroup. In this case, we may assume that L=L. We can find ne N(L) such
that (P,nP'n~')e@. In the case where S,,nS, n~* are disjoint, the argument in
the previous lemma shows that 7, =0. (Indeed, if we carry out that argument
with x=1, x'=n"!, we see that n; !(z) is empty for any ze C;.) We assume now
that S,,nS, n~! are not disjoint. It follows that S, =nS,n"!, and hence Y=Y"
and A,=A, . In this case, the proof of the previous lemma shows that 7,
=R"5,(6, ®n*(&))(—r) where &:S,—-Ay is the restriction of o, r
=2dim(S,/Z7), (—r) denotes Tate twist by —r' = —(vz—v,), and n*(&;) is the
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inverse image of &, (onS,)under the map gron~'gn: S, -S). (We take in the
proof of the previous lemma: x=1, X' =n"!, P=P, P=nP'n~', L=L =L; then
Ve=S,no"a))

Let [S,] be the set of L-conjugacy classes of elements which are semisimple
parts of elements in S,. It is a homogeneous ZP-space (%, acts by left
multiplication) with finite isotropy group. We can hence regard [S,] as a
smooth algebraic variety and we can factorize §=6-n where n: S, —>[S,] is the
obvious map, in such a way that = and &:[S,]—A4, are morphisms. Let %
=&, ®@n*(6;) and let [F]=R"n,(F), (a constructible sheaf on [S,]). We show
that [#] is a local system on [S,]. Since &, n*(&;) admit a central character
(with respect to L), it follows that there exists an integer m (invertible in k)
such that & is %, -equivariant for the action of & on S, given by z: grz"g.
This action of %, induces an action of & on [S,] such that n:S,—[S,] is
ZP-equivariant. It follows that [#] is 2 -equivariant. Since this action of %}
on [S,] (which depends on m) is transitive, it follows that [#] is a local
system, as asserted. Now ¢ is a finite (ramified) covering and .7,=6,[# ]. Since
[#] is a local system on [S,] and [S,] is smooth it follows that (see 5.2.1):

(5.7.1) F,is a perfect sheaf on A4,.

5.8. Proof of Theorem 5.5(a) and (b). We have =9, for large i. With the
assumptions of (a), we have seen that Z,=0 for all G-orbits on #Zx Z’; from
(5.4.1), (5.4.2) it follows then by induction on i that % =0 for all i, and in
particular, that 9 =0. With the assumption (b), we see from (5.7.1), (5.4.1),
(5.4.2), (5.4.5), by induction on i that g, is perfect on A4y for all i. Since T =7,
for large i, it follows that 7 is a perfect sheaf on A,.

Before proving 5.5(c), we prove a lemma.

59. Lemma. Let g&(S,),.,. heS, Up be two elements such that hszx:lgsx for
some xeG. Then h is conjugate under an element in P to an element heS, such
that Hg(h)=L, (see 3.1).

Proof. Much of the argument is the same as that in the proof of 4.3(c). We
identify L with P/U, and let np: P—»L be the natural projection. Let z
=n,(h)eS,. As in loc. cit. we see that H,(z,)=L. Let L be a Levi subgroup of
P containing h,., Then H,.(h)=L, hence Hg;(h)>L hence Hg(g,)
=xHgh)x '>xLx~'. This combined with Hg;(g)=H;(g)=L implies
LoxLx~ ', hence L=xLx~'. The Levi subgroups L, L of P are also conjugate
by an element of P: we have L=p~!Lp, peP. Let x'=xp. Then x'~"'Lx'=L
and x'~'g,x'=p~th,p=Ah, where h=p~'hpeS, U,.

Let §=x'"'gx". Then Hg(g)=L and §,=h,.

We have heZl(h)=2%(g)cH(g)=L, hence heLnS, U,=S,. We have
Hg(h)y=Hg(h)=H;()=L. The lemma is proved.

5.10. Proof of Theorem 5.5(c). In case (a), we have J =0, hence, by (5.4.3), we
have also 7=0. In case (b), by (5.4.3), it is enough to show that the kernel of
J—J is zero; if we show that the stalks of that kernel are zero at any point in
(Ay).q> then the fact that J is perfect and part (b) of the definition of
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perfectness (5.4.4) would imply that the stalks of that kernel are zero every-
where.

Therefore, by 5.3(c), it is enough to prove that, for any ae(4y).,, the
variety Z; ,. is empty whenever exactly one of «, &' is equal to a,. Thus, we must
prove the following statement. If h, x, x" are elements of G such that h, is conjugate
to g, for some g&(S,),.,» X~ 'hxeS, Up, X'~ 'hx'eS, Up., then x™ "hxeS, Up.

Let hy=x"'hx, hy=x"""hx". By 59, we can find peP, p'eP’ such that h,
=p~lh peS,, W,= ’ YWop'eS,, Hglh,)=L, Hgz(h)=L. We have h,eS, U
nS,=5,. The elements h,,h, are conjugate under an element neG whlch
necessarily normalizes L: we have hy=nh,n=', nLn~'=L. Then n='S,n
meets S, and an argument in the proof of 4.3(c) shows that n=*'S,;n must be
equal to S,. It follows that h,eS,, hence h,epS,p~'<=S, Up, as desired. This
completes the proof of Theorem 5.5.

5.11. Proposition. With the assumption of 5.5(b), and assuming P=P' we have a
canonical isomorphism of sheaves over A, ~® Tgw)» here w runs over Wy, and

O(w) is the G-orbit on P x P which contains (P nP'n=3%) where neN(L) repre-
sents w.

Proof. We have J =R*¥(6,),(&, KI€;) where &, is the restriction of 6: Z— A4y to
the open subset Z,=X, x;X, of Z. The inverse image (<70)“1(AY)reg is the set

{(g, xP, x P)er(G/P)x(G/P)lx‘lgxeS Up, X' “'gx'eS, Up, 6(2)e0((S 1))}
From lemma 5.9, we see that this set is the same as

{(g,xP,x' P)eY x(G/P)x (G/P)|x 'gxeS, Up, x' " 'gx'eS, Up}

which, by 4.3(c) is the same as the fibre product ¥ x, ¥. Hence the restriction

of 7 10 (Ay),,, is the same as R*%(G,),(§, ®I&]) where ¢,: ¥ x, Y—(4 Y)reg I8 the

projection to Y, followed by the restriction of ¢ to Y. Consider the partition Z,,

=|JZ§ where O runs over all G-orbits on #xZ'. (Here Z} consists of all
[

pairs (g, xP), (g',x'P) in X, x X, such that g=g’, (xPx~',x’Px'"")e0.) Then
the pieces Z7 are locally closed in Z,. However, the intersections (6o) ™! (Ay),e,
N Z§ are both open and closed in (6,)” (AY)reg and are empty unless ¢ =0 (w)
for some we¥j,. (This follows from the fact that ¥ is a principal Ws,-bundle
over Y and “/// is finite.) The direct image with compact support of &, ®éE,
under the restriction of 6, to one of the pieces (6o) ™" (4,),,, N Z] is easﬂy seen
to be just the restriction of J, to (4y),.,. It follows that we have a canonical
isomorphism ~@J@M over the open set (Ay),,. Since J and @me) are

perfect sheaves, th1s isomorphism extends uniquely to an 1somorph1sm over the
entire A,.

5.12. We preserve the assumptions of 5.11. The sheaf J =R?% ¢,(K ®K') can
be also regarded as R*% ¢,(¢(K) ® ¢;(K")), since & factorizes as Z BLULANG LN

Ay. The complex ¢,(K)® ¢(K’') on Y has a natural structure of a module over
the algebra o/, ® /. It follows that 4, which is R*®¢, of this complex,
inherits a natural action of &/, ® o/,,. This action has the following property.
Consider the summand &/, .., (w,e¥#,), of « , the summand s .,
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(W e#,) of o, and the summand F,,, of T =7 (see 5.11), weW; . Then

(5121) (’dé,‘l w1®"dé"1 wl) r/(D(W) '/@(wlwwl 1y

(By 5.5(b), it is enough to prove this for the restriction to (4,)., where it
follows from definitions.)

5.13. Proposition. Consider two sets of data (S, cLcP,&,) and (S;cLcP, &)
as above. Assume that S;=%0-C,, S;=27-C, where C, (resp. C}) is a
unipotent class of L (resp. L'), and that &, (resp. &;) has as central character the
constant sheaf @, on % (resp. on ZP). Let T=9 be the corresponding sheaf
(5.5(c)) on Ayn Ay and let 7, —3’ be its stalk at ay,=conjugacy class of 1€G.
We regard 7 (and in partlcular g, ) as a g, @ olg -modules, as above.

(a) If the pairs (S,, L, &,), (S}, L’ &1¥) are not conjugate by an element of G,
thene/~ =0.

(b) Assume that S, =S,, L=L, P=P, & =4&}. Then the <, \ ® oy -module
3; is isomorphic to the Ay @ A -module o, (the module structure is given by
left and right multzpllcatzon) Here dg is the algebra opposed to g ;
identify sy with <9 in a natural way by taking transpose maps.

Proof. We may assume that L=L, §,=87, (see 5.7), hence C,=C|. For
we#s,, the stalk of J@(w) at a, is HL.(C,, & ®@n¥(&,))(—r), (notations as in 5.7);
since r=2dim(C,), this is a one dimensional Q-vector space if n*(&,)~&F (as
local systems on S,, or equivalently, as local systems on C,) and is zero
otherwise. (Here n,, is a representative for w in N(L).)

From 5.7, it now follows that 9~;O=0 unless ni(&)~ & for some we#g
and (a) follows.

With the assumption of (b), we see that the stalk of 7, at a, is one
dimensional if we ¥ and is zero otherwise. We denote 7, the stalk of 7,
at q,, for we#,, . Then, by 5.11, we have a direct sum decomposition

Te= D Tagm
weW g,
into one dimensional @Q,-vector spaces. From (5.12.1) it follows that the .o,
® gy -module structure of 7, satisfies

— g
( &1, W1®"Q{5’f W1) ao, w_'/ao,mwwa"’

(Yw,w,, w e¥#, ) and (b) follows from this.

§6. A generalization of Springer’s correspondence
P p

6.1. With the notations in 1.1 we consider the diagram

D'={(g, P)e Cx 2| mp(g)e Cp} —— C

J2

D={(g, P)|Pe#, geCp}
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where f,(g, P)=g, f,(g, P)=(np(g), P). The group G acts naturally on all three
varieties in the diagram and its action is transitive on C and D. Let d,=(vq
—1dim C)—(3-3%7), d,=3(dim(C)—72). Then all fibres of f, have dimension
<d, and all fibres of f, have dimension =d, (see 1.2(a), (b)). Moreover some
(or all) fibres of f, have dimension equal to d, if and only if some (or all) fibres
of f, have dimension equal to d,. (Both conditions are equivalent to the
condition that the space D' has dimension equal to d,=(v;—7)+1(dim C+7).)
Now let & be an irreducible G-equivariant local system on C and & an
irreducible G-equivariant local system on D. We shall need the following result.

(6.1.1) The multiplicity of & in the G-equivariant local system s,
=R (fW(f5*&) on C is equal to the multiplicity of & in the G-equivariant
local system of,=R**(f,),(f*&") on D.

It is enough to show that both multiplicities are equal to the dimension of
the space of homomorphisms between the local systems f*&", f*&" restricted
to Dy, where D is an open smooth G-invariant subset of D' which meets
exactly those irreducible components of D’ which have dimension d,. We may
assume that Dj is nonempty. Let D ;, 1<i<n, be its connected components.
Choose a point x;eDj ; for each i and let x; denote f,(x;). The local system &°
on C corresponds to an irreducible representation y of the fundamental group
7,(C) at x;, which factors through a finite quotient. The local system f;f&” on
Dy corresponds to a representation §; of the fundamental group =n,(Dy ) at x,
which factors through a finite quotient, for each i.

Consider the natural homomorphism h;: 7, (D} ;)—7,(C) induced by f,. Its
kernel may be identified with the image in 7,(D; ;) of the fundamental group at
x; of the fibre Dy ;nf"'(x;) and 7, (C)/im (h;) may be identified with the set of
connected components of this fibre. Let h¥y be the representation of n (Dyj ;)
obtained by composing h; and y. Let h; 6, be the representation of 7,(C)
obtained by taking the coinvariants of J; with respect to the action of kerh;,
regarding it as a representation of n,(Dj ;)/ker h;~im(h) and then inducing it
from im(h;) to m,(C). Then hfy corresponds to the local system f* & on Dy ;
and it factors through a finite quotient; the direct sum of the h;,d; (over i)
corresponds to the local system .7, over C and it also factors through a finite
quotient.

By the Frobenius reciprocity formula for representations of finite groups,
the multiplicity of y in the n,(C)-module h; , §, is equal to the dimension of the
space of m,(D; )-homomorphisms between hfy and §,. It follows that the
multiplicity of £° in the local system ., is equal to the dimension of the space
of homomorphisms between the local systems f¥&°, f;*6” on Dj. An entirely
similar argument shows that the multiplicity of £” in the local system ., on D
is equal to the dimension of the space of homomorphisms between the local
systems f*&", f¥ & on Dy, and hence it is equal to the dimension of the space
of homomorphisms between the local systems f*&", f;*&” on Dy (since these
local systems are semisimple). This completes the proof of (6.1.1).

6.2. Let A (or Ag) be the set of all pairs (C,&7) where C is a unipotent class
in G and &” is an irreducible G-equivariant local system on C.
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Let A (or A4Z?) be the subset of 4 consisting of those (C, &) for which
(Z¢-C,1K&") is a cuspidal pair (see 2.4); here 1[Kl&" is the inverse image of "
under Z¢-C-C.

From the definition of a cuspidal pair (2.4) we see that a pair (C,&")e.A" is
in A if and only for any parabolic subgroup P+ G and any unipotent class
C'< P/U,, the following condition is satisfied:

HImO—dmCY 2V H~C,E)=0, for all geC".

Now let (C,&7) be an arbitrary element of A4". We can find a parabolic
subgroup P <G with the following two properties:

(a) For some unipotent element geP/U, we have
Hm O Emz {@)N C, )+,

(here C, is the conjugacy class of g in P/U,).
(b) P is a minimal parabolic subgroup satisfying (a). (Indeed, property (a) is
always satisfied for P=G, geC.)

Choose C, and geC, such that (a) above is satisfied, and let &; be an
irreducible P/Up-equivariant local system on C, which is a direct summand of
the local system Rm©O-dimC(£) (&Y on C,,

(f2: 5 HCHNC—Cy, f(g) =mp(2))

Choose a Levi subgroup L of P and identify L with P/U, via np; we then
regard C, as a unipotent class in L and & as an L-equivalent local system on
C,.

6.3. Proposition. The triple (L, C,,&;) above the uniquely determined (up to G-
conjugacy) by (C, &). Moreover, (C,, &;) is necessarily in N}©.

Proof. 1f (C,, &;) is not in A®, then there would exist a parabolic subgroup P
of G such that PSP and a unipotent element geP/Us such that
HEm(C) —dim(C2)(q = 1(g)r\ C,,&)*0, where C, is the conjugacy class of § in
P/U;. It would follow that

HEm(@=dim @z (@) C, RIWO-EmEN( ), (6)) 40,

Using the Leray spectral sequence for the map f,: n5 () nC-np ' (§)nC, (the
restriction of ), whose fibres have dimension £3(dim(C)—dim(C,)), it fol-
lows that H4m©O-dimC(n 21~ C,E7)+0 so that P satisfies (a) in 6.2, con-
tradicting the minimality of P. We have, therefore, proved that (C,,4;) is in
N

Let S, =%7-C,, & =1K&, =inverse image of &, under - C,~C,. Let Y
=Y. s, (se€ 3.1) and let ¢: X —Y (see 4.2) be defined with respect to P. From
(6.1.1) and the definition of (C,, &) it follows that &" is a direct summand of
R*f,(&)) restricted to C, where f: X, ={(g,xP)eY xG/P|x~ ' gxeS Up}>Y is
the projection on the g-coordinate, a‘f is defined as in 4.4 and d=(v;—3$dimC)
—(v,—3dimC,).
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Now let P’ be another parabolic subgroup of G satisfying (a), (b) in 6.2 for
(C,&"), let L be a Levi subgroup of P’ and let C, <L and &, (on C)) be chosen
in the same way as (C,, &) was chosen starting from P. We must show that
(L,,C|, &) is G-conjugate to (L, C,, &)

Just as before, we see that & is a direct summand of the local system
R*f/(&))|C where f', d', S,,8;, &,, are defined just as f, d, S,, &,, &,, using P,
L, C,, & instead of P, L, C,, &;. It follows that the local system R?!f(&,)
®R* f(&£,*)|C (* stands for dual) contains the constant sheaf @, on C as a
direct summand, and hence

6.3.1) H29m©O(C R £(6,)® R* f(&*)C) 0.
From the Leray spectral sequence of the map
Z .0 =18 xP,x' P)eC x(G/P)x (G/P)x "' gxeS, Up,x' "' gx'eS) Up} = C

(projection to g-coordinate) all of whose fibres have dimension <d+d' and
from (6.3.1) it follows that

(6.3.2) HY(Z, w.cr 61 KIE*)%0.

where d,=d+d’ +dim C. Now let Z;° . be defined in the same way as Z, ..
except that now g is allowed to be any umpotent element of G, (see 5.2). Then,
when C varies, the Z, .. . form a partition of Z;° . into locally closed pieces
of dimension =d,, (5.3(b)); this, together with (6.3.2) shows that

H?%o(Z% . & RIE*)+0.

ag,ap?

This means that 7, +0 where 7 is defined in 5.4 (in terms of (S, &), (S}, &}))
and 7, is deflned in 5.13. From 5.13(a), it now follows that (L,S,,&,) and
(L, S, &) are G-conjugate. Hence (L, C,,&)), (L, C},&;) are G-conjugate and
the proposition is proved.

6.4. The previous proposition shows that the construction in 6.2 gives a well
defined map @:(C,&Ww—(L, C,&;) from the set A; (see 6.2) to the set 4
consisting of all triples (L,C,,&;) (up to G-conjugacy) where L is a Levi
subgroup of a parabolic subgroup of G, C, is a unipotent conjugacy class of L
and &, is an irreducible L-equivariant local system on C, such that
(Cy,EDeN°. As we have seen in the proof of 6.3, if (C,&") is mapped by & to
(L, C, &)), then (with the notations in that proof), C must be contained in

= Y, 5, and & must be a direct summand of R*f(&)|C, (f. &, are deﬁned in
terms of some parabolic subgroup P« G having L as a Levi subgroup). Con-
versely, if C is a unipotent class of G contained in ¥ and & is an irreducible
G-equivariant local system on C, which is a direct summand of R*£,(£))|C, d
=(vg—3dim C)—(v,~3dim C)) then, from (6.1.1) we see that n; }(C,)nC is
non-empty and that & is a direct summand of RM©O-dmC(f) (£ where
frimp (CINC—C, is defined by np: P—L. In particular, P satisfies condition
(a) of 6.2 with respect to (C,&") and geC,. If P contained strictly a parabolic
subgroup P which still satisfies condition (a) of 6.2, we would get (by reversing
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an argument in the proof of 6.3) a contradiction with the fact that
(C,, &e NP, 1t follows that (L, C,, &)=D(C, &)

We can now state the main result of this chapter; it generalizes results of
Springer {20] and Borho-MacPherson [2].

6.5. Theorem. Let (L,C,,&)eMg, let (S,,8,)=(Z)-C,,1K&;) be the cor-
responding cuspidal pair for L, let P be a parabolic subgroup of G having L as a

Levi subgroup, let ¢,K be the corresponding complex on Y=Y g ,.

(@) For (C,&)e N, we have &(C,&")=(L, C,, &) if and only if CcY and &
is a direct summand of R**¢ f(&)|C, where [ is the restriction of ¢ to X, =X, &,
is defined as in 4.4, and d.=(v; —%dim(C))— (v, —3dim(C,)).

(b) With notations in (a), the natural homomorphism
RZdCf!(gl)lC_*%uc(‘ﬁz(K)lc

(given by the imbedding of X, into X as an open subset) is an isomorphism.
(c) For any pesdy, let (¢, K) be defined by ¢, K = @ p®(¢, K),, (see 3.7).

ped
Let Y be the variety of unipotent elements in Y. There lS a unique (C,&)e N

with the following property: C<Y and the restriction of ¢, K to Y™ is isomor-
phic to the complex IC(C,&") shifted by 2d. and extended by 0 on Y% —C. In
particular, & =#>*((¢, K) )N C. The map pr—(C,&") just defined is a bijection
between the set <y, and the set

{(C,8)eN|D(C,67)=(L, Cy, 67}

Part (a) of the Theorem is already contained in 6.4. The rest of this chapter
will be devoted to the proof of parts (b) and (c).

6.6. In this section, the notations are those of §4 and §5. For any acA,, let
Y°=Yno Ya), X*=¢ (V") = X, ¢ =restriction of ¢ to X?; thus, ¢?: X*>Y°
Let $%=S,no"!(a), S“=§1mo—‘1(a), a=ano~*(a), (for a stratum o of S,, see
4.4), é”"—.restnctlon of &, to S%, &2 =restriction of &, to XG=X"nX, . Let S,
be the set of semisimple parts of elements in S, and let §4=S 1r\a‘l(a) Note
that S, is a smooth, closed subvariety of L, and $eis a smooth subvariety of
S,. Note also that §¢ is the inverse image of Y under the natural locally trivial
ﬁbratxon S, -8, 1t follows that 1C(5%, &%) is the restriction of I1C(S,, &,) to 4.
It follows also that the restriction of K=I1C(X,&,) to X is K*=1C(X*, &%), and
that the restriction of ¢,K to Y* is (%), K° The following result was noticed
by Borho-MacPherson [2], in a special case.

(6.6.1) (pLKIY":((p“), K® is (up to a shift by dim Y® degrees) a pure perverse
sheaf on Y* (in the sense of [1]).

Since ¢ is proper, and K*=IC(X*% &Y), it suffices to prove the following
assertion,

(6.6.2) For any i=0, we have dimsupp #'((¢”), K*)<dim Y,

and also the analogous assertion in which K® is replaced by K**=IC(X, &*9);
note also that Y* has pure dimension given by 7.2(a). We shall only prove the



Intersection cohomology on a reductive group 233

statement (6.6.2) for K?; the proof for K*“ is the same. The proof is similar to
that of (4.5.1). With notations in that proof, we see that it is enough to prove:

(6.6.3) For any i =0 and any stratum «, we have

_ i dimsS, —di _
dim{gemdimq)-1(g)a;%—£1—zm}§dimYa—i.

If this is violated for some i20, it would follow that the set of triples
{(g,xP,x' P)e Y x(G/P)x (G/P)x "' gxea Uy, x' "' gx'eal,}

has dimension >dim Y*—(dim S, —dima). This set of triples is contained in
the set of triples

{(g,xP,x' P)eG x (G/P)x (G/P)|x ' gxeaUp,x' "' gx'€a Up}.

But o is a union of finitely many L-conjugacy classes in a (each of dimension
equal to dim(o/Z7)), hence, by using twice 1.2(b), we see that the last space of
triples has dimension <2v;—2v,+dim(¢/Z)=dim Y*—(dim S, —dima), (see
7.2(a)). Thus, (6.6.3), and hence also (6.6.1), are proved.

Returning to the setup of 6.5, we now take a=a,; in this case, Y% is
irreducible, (see 7.2(b)). From (6.6.1) and the decomposition theorem of Beil-
inson, Bernstein, Deligne and Gabber [1] it now follows, just as in [2], that
¢, K|Y* is a direct sum of complexes of the form K(&)=I1C(C,&)[2d,]
(extended by 0 on Y*— C), where (C,&")eA" are such that C< Y%, (Note that
2d.=dim Y*—dim C; [2d.] stands for a shift of a complex by 2d. degrees, as
in [1].) We have dim(Y*)=d,=2v;—2v; +dim C, (see 7.2(a)).

6.7. Lemma. Given (C,&") and (C', &) in & with CcY®, C'< Y4 we have

I, ifC=C and *=8&”

. 2do (a0 : N=
dim HZ“(Y*, K(¢")Q K(£™)) {(), otherwise.

Proof. Let C” be a unipotent class contained in CnC! We first show that
(6.7.1) HX(C" K(E€V®K(E™)=0 if C'+C or C'#C.

From the hypercohomology spectral sequence, we see that it is enough to
prove:

(6.7.2) H{(C", #K(ENQ AT (K(E)£0=i+j+j <2d,

The hypothesis of (6.7.2) implies: i £2dim(C"), j<dim(C)—dim(C")+2d,,
j £dim(C)~dim(C")+2d.., and at least one of the last two inequalities is
strict, since C”+ C or C”" 3+ C'. It follows that i+j+j <dim(C)+dim(C)+24d.
+2d. =2d,. Thus, (6.7.2) and hence (6.7.1) are proved. From (6.7.1) it follows
immediately that H2%(| ) C", K(6)® K(€"))=0, where the union is taken over
all ¢"=CnAC such that C"+C or C”+C’. Hence, the conclusion of the
lemma holds if C+ C’; in the case where C= C’, it follows that

H2%(7%, K(¢")@K(&™")~ H2(C, K(& )R K(E")).
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The last space is H24™(C,£'® &™) and this is one dimensional if £*~&"
and is zero otherwise. The lemma is proved.

6.8. For (C,&")e A such that C<Y, we denote n,. the multiplicity with which
K(&) appears as a summand of ¢, K|Y?%, (see 6.6). This is the same as the
multiplicity with which K(&*) appears as a summand of ¢,K*|Y", where K*
=1C(X,&¥). From 6.7 it follows immediately that

(6.8.1) dim H%(Y*, (¢, K|Y*)®(p, K*|Y*)= ¥ n2.

(C.é)

The left hand side of (6.8.1) is just dim ,9200, (see 5.13) and hence it is equal to
dim.«/, (see loc. cit), the right hand side of (6.8.1) is equal to
dim End (g, K| Y?). It follows that

(6.8.2) dim End(p, K|7%)=dim ;.

For each pes/,, the restriction of (¢, K), to Y9 is non-zero, since even the
p-isotypic part of J, =H?*(Y*, (¢, K|Y*)® (¢, K*|Y%)) is non-zero (see 5.13).
Since (¢, K),|Y® is a direct summand of ¢, K|Y*, it follows that it is a direct
sum of complexes K(&"), with at least one summand. It follows that the natural
map

(6.8.3) End (e, K)—End(p, K| %)

is injective, and due to (4.1.1) and (6.8.2), it is in fact an isomorphism. This
implies that the restri_ction ((p!K)pI_Y“" is of the form K(&"), for a well defined
(C,&)e N, with CcY and this gives a 1 —1 correspondence between .2, and
the set of pairs (C, &) such that K(&") is a summand of ¢, K| Y.

6.9. Proof of 6.5(b), (c). We first show that the map in 6.5(b) is surjective. For
this, it is enough to show that, for any geC, we have H2“(¢p~'(g)— ¢ ~'(g),,, K)
=0, and this would follow from the equality HZ2%<(p~'(g),,K)=0, for
any stratum a+a, of §,, (with notations in 4.5). The hypercohomology spectral
sequence reduces us to proving: Hi(p ~'(g),, #/(K))+0=i+j<2d.. If the last
group is non-zero, then we must have i £2dim ¢ ~'(g), £2d,.—(dim S, —dim a),
(by 1.2(b)), and j<dim X —dim X,=dim S, —dim¢, (since a=ny); it follows
that i+j<2d., as desired. Thus, the map in 6.5(b) is surjective. If " is an
irreducible, G-equivariant local system on C, we denote by m,. its multiplicity
in R24< f{(&,)|C and by r,. its multiplicity in #29¢(¢,K)| C. The proof so far shows
that m,. = m,., It is easy to see that, with notations in 6.8, we have fi,. = n,. ; from the
results in 6.8, it then follows that

(69.1) Y w2 =dim.o, .
(C, &)

We shall now prove that

(69.2) Y m2=dim .,

(C,é9)

From the definition of m,., we see that

dim ch dimC(C’ R2dcf!(é'51)®R2dcf;(é—5;k))=Zm§‘
g.
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(sum over all & such that (C,&7eA"). Let Z, . . and Z;° ~ be defined just as
in 6.3. From the Leray spectral sequence of the natural mapZ, , .—C, all of
whose fibres have dimension <24, it follows that

HXAZ, . oo o6, RIEN A HIE™C(C, R¥< f,(&) @ R*< £(&})).

If we sum the dimensions of these vector spaces over all Cc Y, we find the
dimension of H}*(Z% , . & KI&}); indeed, the Z, , . form a partition of

Z2 into locally closed pieces of dimension <d,. Hence, we have

*0, x0

Y, mp=dim H**(ZP & KéF)=dim T, =dim s, ,
(€, &)
(see 5.13) and (6.9.2) is proved. From (6.9.1) and (6.9.2) and from the inequality
M. Z Wi, it follows that m,. =i, for all (C, £7). This means that the surjective
map in 6.5(b) must be an isomorphism.

From 6.5(a) it follows that (C,&”) is in the set @~ (L, C,,&;) if and only if
mg.+0. As we have seen this is equivalent to the condition that i, =n,. 40,
ie. to the condition that K(&) is a direct summand of ¢, K|Y?. This completes
the proof of Theorem 6.5.

§ 7. Induced unipotent classes

7.1. We again fix S, cL<P and &, on S,, with (S,8,) a cuspidal pair for L.
Let 6: G—A be the Steinberg map, see 5.1. For each aeAy, we define Y=Y
noYa), X*=¢ (Y X.

7.2. Proposition. (a) For any acAy, both X* and Y* have pure dimension 2v,
—2v, +dim(S,/Z7).

(b) If S, contains some unipotent element, then Ay contains ay=class of the
identity element in G and X*™, Y are irreducible.

Proof. (a) We have X*={(g,xP)eG x (G/P)jx "' g xeS, Upno~1(a)}. All fibres of
the map (g xP)—>xP:X*>G/P are isomorphic to S, Upnc~Ya)=(S,
no~1(a) Up, (see 5.1). Let C,,..., C, be the L-conjugacy classes in S,na~*(a).
Then §,no~*(a)=C,u...uC,. We have dim C;=dim(S,/Z7) for i=1,...,r. It
follows that X° has pure dimension as stated. We know that ¢(X)=V¥ it
follows that ¢(X%)=Y" hence dim Y*<dim X“ Assume that Y° has some
irreducible component D of dimension §<dim X“ Then there exists an open
dense set D, in D such that dim ¢~ '(g)=dim(X“)—4 for all geD,. The fibre
product X*xy, X contains the fibre product ¢~ '(Dg) x p ¢~ (D) hence it has
dimension >dimD,+2(dim(X?)—d)=2dim(X*)—4J. By 5.3(b), (with L=L, S}
=§,) the fibre product X9x¢.X? (=2% has dimension =2v;—2v,
+dim(S,/Z0)=dim(X?). It follows that dim(X*=2dim(X%)—3 hence
d2dim(X?). This contradicts § <dim(X*“) and proves (a).

(b) With the assumption in (b), S; contains a unique unipotent conjugacy
class of L. Let us denote it C,. We have §,no”'(a;)=C, hence X%
={(g,xP)eG x(G/P)|x~'gxeC,-Uy}. This is clearly an irreducible variety
(since C,-U, and G/P are irreducible). Since Y% =¢(X%), Y% must be also
irreducible.
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The following result is proved in [11]; unlike the proof there, the proof
given below will not make use of the rather delicate “property 4” of [11] for
C,.

7.3. Corollary. Assume that S, contains the unipotent L-conjugacy class C, and
that &%) is constant.

(a) Let C be the unique unipotent conjugacy class in G such that C, UpnC is
dense in C, U,. Then C is the unique unipotent class which is open, dense in Y,

(b) G acts transitively on ¢~'(C).

{c) P acts transitively on C, UpnC.

(d) Let geC,UpnC and let g=mnp(glel. The natural map
v: Zp(8)/Z3(8) = Z(2)/Z2(g) is injective and the natural map

Zp(@)Z%g) > Z,@)/Z2(&)
IS surjective.

Proof. (a) We have C,Up,<C. As Y* is the union of the G-conjugates of
C, U,, it is contained in C. Since C<=Y*, we have Y*=C. Hence C is open
dense in Y. The uniqueness of such C follows from the irreducibility of Y,
(7.2(b)). 3

(b) As we have seen in the proof of 7.2, the map ¢: X% —Y is surjective
and X%, Y% are irreducible of the same dimension. It follows that all fibres of
¢: ¢~ Y(C)— C are finite. Any G-orbit on ¢ ~'(C) maps onto C since G is
transitive on C; hence any G-orbits on ¢~ !(C) must have dimension equal to
that of ¢ ~!(C) hence it is dense in ¢ ~'(C), as ¢ ~*(C) is irreducible. It follows
that any two G-orbits on ¢ ~*(C) must intersect each other, so that there is
only one G-orbit on ¢ ~*(C) and (b) follows.

(c) Let g,g’ be two elements of C, U,nC. Then g'=x"!gx for some xeG.
Since g'eC, U,, it follows that (g,xP)e¢~'(C). By (b), (g, xP) must be in the
same G-orbit as (g, P)e¢~!(C). Hence there exists yeG such that y~lgy=g,
yP=xP. Then y=xz, zeP and g=y 'gy=z"'x"'gxz=z"'gz Thus, g,¢
are conjugate under zeP and (c) is proved.

(d) The isotropy group (in G) of g is Z;(g); it must have the same dimen-
sion as the isotropy group (in G) of (g, P)e¢ ~*(C), which is Z,(g), since the G-
orbit of g has the same dimension as the G-orbit of (g, P), (see b). From the
equality dim Z ,(g)=dim Z ;(g) it follows that Z3(g)=Z2(g), hence y is injective.

We now prove following [11, 1.5] that ¢’ is surjective. By (a), gUpnC is
dense in gU, and from (c) it follows that Z,(g) U, acts transitively (by con-
jugation) on g UpnC. Since g U, is irreducible it follows that Z9(g) U, must
also act transitively on g U,nC. Hence for any element zeZ,(g) there exists
z,-ve€Z(8)- Up such that zgz~'=z,vgv~'z; ! so that v~ 'z ' zeZ,(g). Under
the map 7/, the coset of v~!z7 'z is mapped to the coset of z7 !z which is the
same as the coset of z. Thus, y" is surjective.

74. Corollary. With the notations of 1.3, we have d.=0 (d. as in 6.5). The G-
equivariant local system #°(¢,K)|C corresponds to the representation of
Z(8)/Z2(g) induced by the representation of Z,(g)/Z%(g) obtained by composing
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7" and the irreducible representation of Z,(8)/Z%(g) corresponding to the L-
equivariant local system &,|C, on C,.

Proof. The equality d.=0 follows from dim C=dim Y*=2v;—2v, +dim C,
(see 7.2(a)). The map ¢:¢ '(C)-»C can be identified with the natural
map G/Z(8)~G/Z(g).

The restriction of K to ¢ ~(C)~G/Zp(g) is a G-equivariant local system; it
is the same as the restriction of &, since ¢ ~(C)= X > (5€€ 4.4). It corresponds
to a representation of Z,(g)/Z%g), hence it is determined by its restriction to
P/Z.(g)=G/Zy(g). That restriction is the inverse image under
P/Z(g)—=(L/Z,(8)= C, of the local system &,|C, on C,. The Corollary follows
from these remarks.

§ 8. Restriction to a parabelic subgroup

8.1. In [21, 44], Springer gave a description of the restriction of an irreduc-
ible representation of the Weyl group in G to a parabolic subgroup, in
geometric terms, involving unipotent elements and Borel subgroups containing
them; his proof was subject to certain restrictions on the characteristic of k. In
[15,§17, Shoji proved a closely related result. In [3,3.1], Borho-MacPherson
found another approach to Springer’s result, but their formulation is less
convenient for applications than Springer’s, in that they formulate the answer
in terms of an unknown intersection cohomology space. In this chapter, we
shall give a proof of Springer’s result valid in any characteristic and which
applies also to the more general situation considered in §6.

8.2. Let Pc P’ be two parabolic subgroups of G with Levi subgroups L,L
respectively, such that Lc L. Let C, <L be a unipotent class and let &; be an
L-equivariant local system on C, such that (C,, &)e #{?. Let §,=27C,, and
let &, be the local system 1[x]&, on S,. Let </, be the algebra associated in
34 to (L,S,,6,) and G. Let o/; be the algebra defined in the same way but
replacing G by L. Then </ is in a natural way a subalgebra of o/, . Let
(C',6"e A be an element in &~ (L, C,,&;), (@ defined with respect to L, see
6.4) and let p’ be the corresponding irreducible representation of ./ , (see
6.5(c)).

Let (C,&)e A;. Define the integer my. ,. to be the multiplicity of &” in the
local system R*<(f. )(&7) on C', where fooinp'(C)nC—C is the re-
striction of np.: P'—L and d_ .. =3(dim(C)—dim(C")).

8.3. Theorem. (a) If my.. 4. is non-zero, then (C,&)e® (L, C,, &}), (P defined
with respect to G, see 6.4).

(b) Assume that (C,&)ed (L, C,,&;) and let p be the corresponding irre-
ducible representation of < , (see 6.5(c)). Let (p': p) be the multiplicity of p" in
the restriction of p to s, . Then mg. o.=(p": p).

84. For the proof of 8.3 we shall consider the set (S,),., defined as in 3.1

(with respect to G); we have a commutative diagram

reg
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— X

X,
Y

where Y= ) x(5,),,,x ", (see 3.1), Y= x(S; Up)x~!

xeG xeG

=y eyl Y= ¥5,(UpnL)y "
yel’ yel’

Y: {(g, XL)EG X (G/L)lx— ! gxe(Sl)reg}:
¥, ={(g. xL)eG x (G/L)|x~ ' gxe Y},

X ={(g,xP)eGx(G/P)|x~ " gxeS, Up},
={g,xP)eG x(G/P)|x ' gxeY Up}.

The map ¢’ is (g, x P)r—(g, xP'), the map ¢” is (g,xP')—g and ¢=¢"¢". The
map ' is (g, xL)-(g, xL), the map =" is (g, xL)—g, and n=n"7". The map j,
is (g, xL)— (g, xP), the map j, is (g, xLyW—(g, xP’) and the map j, is gr—g; the
maps j,,j,,j, define imbeddings of ¥, ¥;, Y as open smooth dense subvarieties
of X, X,, Y respectively.

The map n: Y- Yis a finite covering and a pr1nc1pal bundle with group "WSI
=stabilizer of S, in N(L)/L, see 3.2. The map n': Y- ¥, is a finite covering
and a principal covering with group #;, =stabilizer of S, in N;.(L)/L.

Let £ be the G-equivariant local system on Ydefmed in 3.2 in terms of
S.,&,. Then we have

(8.4.1) oy =End m,(£)).
This can be seen as follows. In the diagram
Y, ={g x)eGxG|x 'gxeY}={(g,y)eGx Y} -2 Y
B
?1

(B(g, x)=(g,xL)), the local system B*n, (8,) on Y, is the inverse image under
pr3 of an L-equivariant local system #; on Y'; #, is the restriction of 7/ (é”)
to Y, identified with a subset of Yl, via y'+—(y, L). By 3.5 applied to L 1nstead
of G, we have «/; ~End(#). As Y, is the space of L-orbits on Y, for a free
action of L' on Y;, we have End(ﬁl)=End pr3(#;)=End (7, (&,)) and (8.4.1)
follows. (Compare with the proof of 3.5.)
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It follows that we have a canonical decomposition

(8.4.2) *(é”)— @ (p1®n*(£’ )or)
plest {"l

where 7, (£)),, are irreducible, G- equlvarlant local systems on Y,.
By 3. 5 3. 7 we have .o/, =~End (n*(é )) and a canonical decomposition

”*(6)1) @ (p1®7[ (‘5 )pl)
p;e;z//l
Since taking direct image of a local system under a finite unramified
covering is essentially the same as taking an induced representation of the
fundamental group we see that for any p\es/,’ we have

(8.4.3) 7y (1 ( @&, AN @ (7t (&, )m@(])(m pv),

precdg

We now consider the complex of sheaves K=I1C(X, &) on X, defined in 4.4.
(Recall that &, is a local system on {(g, xP)eG x(G/P)|x 'gxeS, Uy} =X
From 4.1 and 4.5 we see that

¢(K)= @ (0, ®¢i(K),) and  $(K), =IC(Y,n*(4)),,)

P §
From 4.5 applied to L instead of G, we see that
(8.44) $I(K)| V' =IC(Y, #)
and from this it follows that

(8.4.5) UK =1C(X,, 7, (&)

(Note that X, has the same singularities as Y’, in the following sense: X, is the
space of P-orbits for the free P'-action on X, ={(g,x)eGxG|x 'gxe¥’ Uat,
(g, x)— (g, xp') and we have X, Y'x Up. x G.)

From (8.4.1) it now follows that

End(¢i(K))=.o;, and ¢i(K)= @ (Pl®¢(K)p,)

pred
where

(8.4.6) 1K), =1C(X,,m, (&)),,).
Next, we show that
(84.7) ¢ (1K), =T C(Y, 7y (m, (&) )

for any pied,”.

From (846) we see that the restriction of ¢(¢)(K),) to Y is the local
system 7 {7, (&, ),-)- Since ¢” is proper, (8.4.7) is a consequence of (8.4.6), of the
assertion (848) below and of the analogous assertion with K replaced by K*
=1C(X,&F):
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(84.8) For any i>0, we have dim supp #(¢}($1(K),,))<dim (¥)—1i.

This is checked as follows. We Thave supp#' (¢, (d1(K))p))
csupp #'(d) (¢,(K)))=supp #(¢,(K)) hence (8.4.8) is a consequence of (4.5.1).
Thus, (8.4.7) is verified. Combining {8.4.7) with (8.4.3) we see that, for any
Py’ , we have

(8.49) V(1K) )= @V (9.(K),, @ @t *Y).
pied g
For p,edl  let(C, , &) be the element of &~ (L, C,, &)= A, correspond-
ing to p,, by 6.5. From 6.5, it follows that #>*CevV(¢,(K), )| C,, is &, if p,
=p, and is O if p,+p,. (Here d(C,,C,)=(vs—3dim C,)—(v,—3dim C,).)
Hence, from (8.4.9), it follows that

p1’

(8.4.10) (p}: p,)=multiplicity of &, in the local system

H 2o (G ($K) NI C,p,-
Now let (C.,,&..) be the element of @~ (L, C,, &)< A, (¢ defined with

p1° ot
respect to L) co;responding to p}, by 6.5. From 6.5 it follows that

supp $(K),, = D= {(g, xP)eG x(G/P')|x~ Tgxe C",i Up.}.
Hence
(8.4.11) (p}: py)=multiplicity of &, in the local system
H 2o ((¢"| D), ($1(K),, I D)I C,y,.

Let D°®={(g,xP)eG x (G/P)|x ‘gxe C,, Up-}, (an open subset of D). We now
show that

(8.4.12) the natural map
Ao CO (| DP)(;(K) 4D C,,
—>]f2d(cpl’c')((¢” | D)! (b;(K)p'l ID))l C‘“

is surjective.
This will imply that

(8.4.13) (1P =Xy,
where

(8.4.14) x,, , =multiplicity of &, in the local system
H 2o O((§"| D), (1K), I D®YI C,,,.
To prove (8.4.12) it is clearly enough to prove that
H2UCor ("] D~ D) (¢1(K),4 | D— D) C,, =0,
or, equivalently, that for any geC, , we have

H2%Cor (¢~ (g) N (D — D), ¢(K),;)=0.
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Since D— D can be partitioned into the locally closed pieces
(8.4.15) D¢ ={(g, xP)eG x(G/P)|x " tgxe C' Up.},

7

for the various L-unipotent classes C'< E;ﬁ— Cli»

show that for every such C’, we have

we see that it is enough to

H2Cou ("~ (g) M D, $4(K) ) =0.

The hypercohomology spectral sequence shows that the last equality is a
consequence of the following statement:

H{(¢"~ ' (8) "D, H($1(K),,))F0=i+]<2d(C,,, C)).

p1’
The hypothesis of this statement implies i<2dim (¢~ '(g)De)<2vq
—dim C, )—(2v, —dim(), (see 1.2(b)) and #7(¢}(K),,)|Ds+0, hence j<(2v,.
—dim C')—(2v,—dim C,), (by 6.5); it follows that i+j<2d(C, , C,), as desired.
Thus, (8.4.12) and hence (8.4.13), are proved.
We want to show that

(8.4.16) (L P)=%X -

In view of (8.4.13) and the equality Y dim(p})(p):p,)=dim(p,), it is
enough to prove the equality ol

(8.4.17) Y. dim (p;) X, ,, =dim (p,).
PA

pL?

We first compute the sum %z =} dim(p})x,, , , summation over all pe.a/
such that C}, is a fixed L-unipotent class C'=Y". From (8.4.14), and 6.5, we see
that, if we set d=(v,, —} dim C}))— (v, —3dim C,), we have

(8.4.18) Xz =multiplicity of &, in the local system
H2CorO=2(¢"| D (A (UK DI €y,

(Note that the definition of D¢ in (8.4.15) makes sense for any unipotent class
C' < L)) From 6.5 (b) it follows that

HP(GUKNI Do = R (¢'] X, )(61)| De:
where X, ={(g, xP)eG x(G/P)|x~'gxeS, Up}, hence (8.4.18) becomes
(8.4.19) X =multiplicity of &, in the local system

H2HCor 02 (" | De ) (R | X, W (EDIDe)I C, -

By the spectral sequence of the composition ¢ o ¢, the last local system is the
same as the local system

H o ("0 ¢'| XN (E)IC,,
where X ={(g, xP)e X, |$'(g xP)eDs}.
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The Xfo form a partition of X, into locally closed pieces of dimension
<d(C,,, C)). It follows that ) Xs=multiplicity of &, in the local system
6:

HHCor (] X, ) (ENIC, .

By 6.5(b), the last local system is the same as #>%Cor (¢, K)|C, , and from
6.5, it follows that this local system contains &, with multiplicity dim(p,).
Thus, we have } %z =dim(p,).

&

Thus, (8.4.17) and hence (8.4.16) are proved.

8.5. We can now prove Theorem 8.3. With the notations of that theorem, we
consider the variety V={(g, xP)eCx(G/P)|x~'gxeC'U,}. This is a sub-
variety of X, since C’ must be contained in Y’. The L-equivariant local system
&" on C' gives rise to a G-equivariant local system &” on V as follows. We pull
back €” to V={(g, x)eCxG|x ' gxeC Uy} by the map (g, x)— C'-component
of x~! gx; we obtain a G x L-equivariant local system on ¥ which must be the
inverse image under V- V: (g, x)—(g, xP’) of a well-defined G-equivariant local
system &” on V.
Let f: V- C be the projection on the g-coordinate. According to (6.1.1),

(8.5.1) my. 4 is equal to the multiplicity of 6" in the local system R**£,” (on
C), where d=(v;—%dim C)—(v,, —3dim C'). From the definition of p’ (see 8.2),
it follows that & is the local system #2°(¢}(K),)|¥, where 6 =(v,. —%dim C')
—(v,—3dim C,), hence m,. . is equal to the multiplicity of & in the local
system R24(¢"|V),(#>°($/(K),)|V) on C.

With the assumption of 83(b) it now follows that my. ,=x
(8.4.14)) and, by (8.4.16), the conclusion of 8.3(b) follows.

With the assumption of 8.3(a), (m,. ,+0), it follows that & appears with
+0 multiplicity in the local system R*!(¢"|V),(R*(¢'|X5),(E)IV) on C, or
equivalently, in the local system R**2%(¢]XC),(6))| C, (see 8.4). It also follows
that & appears with non-zero multiplicity in R***2%(¢|X, ),(6))I C. (Indeed,
when C’ varies, the X, form a partition of X, into locally closed pieces whose
intersections with ¢~ '(g), (geC) have dimension £d+4§.) From 6.4, it now
follows that (C, &)e®~ (L, C,, &;) and 8.3(a) is proved.

.0 (5€€

§9. On the structure of the algebra .o/,

9.1. In this chapter we fix (L, C,, &;)e.#; and a parabolic subgroup PS G
having L as a Levi subgroup. Let S, =27 C, and let & be the local system
1®é& onS,. Let ¢: X > Y=Y, g, ¢(K)be defined in terms of L, S, &,, P as in
42, 44 and let o, be the algebra defined as in 3.4. Let P, P, ..., F be the
parabolic subgroups of G which are minimal with the property that they
contain strictly P. Let L',I?, ..., I be the corresponding Levi subgroups of
P! P%, ..., P’ containing L. We shall denote by C the unipotent class in G such
that Cn C, U, is dense in C, U, and by C' the unipotent class in L' such that
C'nCyUp,,. is dense in C,Up.p;, (1Si<r). We shall denote by C the
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unipotent class in G which contains C, and by C' the unipotent class in L
which contains C,.
With these notations we can state

9.2. Theorem. a) N;(L)/L is a Coxeter group with simple reflections s,s,, ..., s,,
where s, is the unique element of order 2 of Ny (L)/L.

b) W, =No(L)/L.

c) The local system #°(¢,K)|C is +0, irreducible. Hence there is a unique
pedy such that #°(d,K)| C=#"°(¢,K),| C; moreover, dim (p)=1.

d) There is a unique isomorphism of algebras Ay, —=> Q,[#,,] which maps
Ay, , onto Q,w (Ywe¥, ) and is such that it makes p(in (c)) correspond to the
unit representation of Wy .

For the proof, we shall need the following

9.3. Lemma. Let P be a proper parabolic subgroup of G and let L be a Levi
subgroup of P. Let g be a unipotent element in L, and let cl;(g), ¢l (g) denote the
conjugacy class of g in G and L respectively. Then (vg—3dimclg(g))—(v,
—3dimel;(g))=dim Z,_(g)>0.

Proof. Fix a maximal torus T, <L and consider the subgroup U of U,
generated by all root subgroups of U, (with respect to T;) corresponding to
roots a with the following property: the sum of coefficients in o of the simple
roots of G which are not roots of L is maximum possible. Then U is
isomorphic as a group to k", for some n>0. It is normalized by L, and the
action of L on it corresponds to a linear action of L on k". A unipotent linear
transformation of k" (n>0) must have a fixed point set of dimension >0, It
follows that dim Z (g)>0 hence dimZ; (g)>0. The equality in the lemma
follows from (2.9.3), (2.9.4). The lemma is proved

9.4.  Proof of Theorem 9.2. We first show that
(94.1) #*¢(p,K)|C+0, where dg=(vs—1dimC)—(v,~LdimC)).

By 6.5, it is enough to show that H2*(¢~'(g)n X, , &,)+0 where geC, and
,é, are as in 4.4. The variety V={xPeG/P|xeZ2(g)} is contained in
¢ 1(g)r\X 2 (by xPr>(g,xP)), and is non-empty, irreducible of dimension d,
(see 2.9(b)).
Hence to prove {9.4.1) it is enough to show that the restriction of &, to Vis
constant. Consider the commutative diagram

Z%(g)—— X, ={(g.0)eG x G|x g xeZ? C, Up}— 1 C,
i j

V —t s X, ={g,xP)eGx(G/P)|x~ 1 g'xeZP C, Uy}

P

Here f(x)=(g, x), i(xP)=(gxP), j(x)=xP, j(g,x)=(g,xP), y(g,%)
=pre (x~'g' x). By definition we have (j')* &, y*éal Smce yi maps Z2(g) to
a point, the local system i*y*(&;) on Z%(g) is constant. This is the same as the
local system j*i*&,. Now V is the orbit space Z%(g)/Z%(g)nP; by 2.9(c), the
group Z%(g)n P is connected. Since j*i*&, is constant, it follows that i*&, is
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constant, ie. the restriction of & to V is constant and (9.4.1) is proved. From
9.3 it follows that ds>0. On the other hand, by 7.4, we have d.=(v;—3dim C)
—(v,—%dim C,)=0. It follows that C=* C. By 74, we have #°(¢p,K)|C+0.
This and (9.4.1) imply that the algebra .o/, has at least two non-isomorphic
representations, (see 6.5 (c)). Hence

9.4.2) 19, 122.

Applying this to L' instead of G, we see that #; ~(N,.(L)/L) has at least two
elements. On the other hand, N, (L)/L has at most two elements (it acts
faithfully on the one dimensional torus 22/Z%). It follows that N,.(L)/L has
order 2 and it is contained in #, , for any i, i<i<r. Hence the Coxeter graph
of L is stable under the opposition involution of the Coxeter graph of L,
(1=i<r). This implies (see for example [7, 5.9]) that N;(L)/L is a Coxeter
group with simple reflections s, s,, ...,s,, where s; is the non-trivial element of
Np:«(L)/L. Hence (a) holds. Since s,e #;, and the s; generate Ni(L)/L, it follows
that #, = N;(L)/L, hence (b) holds.

We consider the 2-dimensional subalgebra o} of o/, spanned by <7, | and
Ay, .- This algebra has at most two irreducible representations. Hence the set
@~ (L, Cy,E) = A, (@ defined with respect to L) has at most two elements.
Note that C'+ C'. Indeed, from 9.3, applied to L instead of G, we see that (v,
—4dim €%)>(v, —1dim C,). On the other hand, from 7.4 applied to I instead
of G, we see that v,,—idim C'=v, —1dim C,. It follows that dim C'<dim C'
hence Ci+ €', as asserted.

Using (9.4.1) for L instead of G and C' instead of C and 7.4 for L instead
of G, it now follows that @~ (L, C,, &)< 4 has exactly two elements; one is
supported by C,, the other is supported by C'; they correspond by 6.5 to
irreducible representation p', o of . .

The local system #°(¢, K)|C is non-zero, by 7.4. Let pesdy be such that
H O((,b!K)p[C#O. We now show that the restriction of p to the subalgebra o/
does not contain the representation 5' of that subalgebra. By 8.3 and (8.5.1) it
is enough to show that (v4~4dim C)— (v~ dim C)<0. From 7.4 we see that
vg—3dim C=v, —4dim C,=v,;—4dim C}, and it remains to use the inequality
dim €' <dim C' which has been already noted. It follows that the restriction of
p to of; is a direct sum of copies of the representation p'. Hence, if b, is a
basis element of .o/, ., then b, acts on p as a scalar times the identity. Since
the b, (1<i<r) generate o, as an algebra, it follows that any element of .o/
acts on p as a scalar times the identity. Since p is irreducible, it must be one-
dimensional, and it is uniquely determined by the property that pldg;l:p".
Hence, (c) is proved.

Using the one dimensional ./, -module p, we can define an isomorphism of
slg, with the group algebra of #; as follows. In each summand </, , (we#;,
we choose as basis element b, the unique element which acts as the identity
map on the &/, -module p. It is clear that b, b, must be equal to b, so that
the basis (b,) provides the required isomorphism ﬂglﬁa@,[%l]. This com-
pletes the proof of the theorem.
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9.5. Proposition. With the assumptions in 9.1, the local system # %% (¢, K)|C in
(94.1) is +0, irreducible and the unique pesdy, such that #*¢(¢$,K)|C
=H1C(¢p, K); |C corresponds under 9.2(d) to the sign representation of We,
=Ng(L)/L.

We first show that the proposition is a consequence of the following
statement.

(9.5.1) For each i, 1Si<r, we have C'Up.n C=0.

If we assume (9.5.1) then the variety Vin 8.5 (defined for C, C, P, instead of
C, C, P’} is empty; hence from (8.5. 1) and 8.3 it follows that the restriction of p
to ﬂ,@ does not contain p'. (Here p is any irreducible representation of 7,
such that #29 (g, K) |C+0.) It follows that p|.eZ} is a direct sum of copies of
the representation p'. If we identify </, with Q, [#;] as in 9.2(d) then <7,
becomes the subalgebra of @, [#,] spanned by 1 and s; and p' is the one-
dimensional representation of that subalgebra on which s; acts as —1. Hence s;
= —1 on p for any i, 1 £i<d. Since p is irreducible, it follows that p must be
the sign representation of % and, in particular, it is uniquely determined and
the proposition is proved (assuming (9.5.1).

We now show that (9.5.1) is a consequence of the following statement:

(9.5.2) Let P’ be a parabolic subgroup of G with Levi subgroup L and let
ueL, veU, be unipotent elements. Then cl;(u)cclgz(uv). (Here cl; denotes
conjugacy class in G).

We take L=1I, P'=P', ucC', ve U, and assume that uve €. From (9.5.2) it
follows that dimcl;(u) < dim C hence dim Zs;w)yzdim Z ;(g) where geC,. From
9.3, we have dlmZ ¢ =dimZ;;(u)+2dimZy  (u), and dimZ;(g)=dimZ.(g)
+2dimZy, (g). Moreover, from 9.3 (for L 1nstead of G) we have dim Z,,(u)
=dim Z,(g)<dim Z,.(g). It follows that dimZ, p)>dimZy (g). The last in-
equality is impossible for the following reason. Consider the action of L' on
Upi, by conjugation. The fixed point set of an element in C' has constant
dimension (=dimZy,(u)); hence the fixed point set of an element in the
closure C' must have dimension >dim Zyp(u). Since geC', we find a con-
tradiction. Thus, we have proved that (9.5.2) implies (9.5.1).

It remains to prove (9.5.2). It is easy to see that the action of Z on U,. (by
conjugation) has the property that the closure of any Z[-orbit contains the
unit element. It follows that u belongs to the closure of the set {zuvz '|ze 2]}
and (9.5.2) follows. This completes the proof of the proposition.

§10. Examples in the classical groups

10.1. We wish to describe the set .#. (Recall (cf. 6.4) that .# consists of all
G-conjugacy classes of triples (L, C,,&;) where L is a Levi subgroup of a
parabolic subgroup of G, C, is a unipotent conjugacy class of L and & is an
irreducible L-equivariant local system on C, such that (C,,&;)e A,?.) Our
description will be in the form of a list of elements of .#; and for each me.#,,
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we will indicate the number of elements in &~ !(m), (see 6.4). For this, we can
reduce ourselves to the case where G is almost simple and simply connected.
Indeed, let n: G—>G/Z? be the natural homomorphism. Then 7 induces a
bijection between the sets A, (resp. AG”, .#;) and the corresponding sets for
G/2Z?, which is compatible with the map @. Thus, we are reduced to the case
where G is semisimple. In that case, let #: G—G be the simply connected
covering of G. Then # induces a bijection between the sets A; (resp. A, 4;)
and the subsets of the corresponding sets for G, defined by the condition that
the kernel of 7 acts trivially; this is again compatible with &. Thus, we are
reduced to the case where G is semisimple and simply connected. In that case,
there is a natural bijection between the sets 4 (resp. A5°, #;;) and the product
of the corresponding sets for the various almost simple factors of G. Thus, we
are reduced to the case where G is almost simple and simply connected.

10.2. We shall use the following method. We assume that the set 4;‘” has
been already determined for all Levi subgroups L of proper parabolic sub-
groups of G. Hence we can list all elements of .#,; corresponding to L+G. For
each such element m=(L, C, &), we know from 9.2 that #; =N(L)/L and that
Ag %(1—),[%1]. By 6.5, the set ®~!(m) has then exactly as many elements as the
set of irreducible representations of N(L)/L. Taking the sum over m of the
integers |®~ }(m)|, we get the number of elements in A;— A¢®. The number of
elements in ¢ is equal to the sum over a set of representatives g for the
unipotent classes in G of the numbers of irreducible representations of the
finite groups Z;(g)/Z%(g). Hence the number of elements in .4; can be de-
termined in each case, (see [18, 16, 12-14]). Therefore the numbers of elements
in A can be determined as the difference between the number of elements in
A and in AG— GO

10.3. In this section we shall use the method in 10.2 in the case where G
=SL, (k). The unipotent classes in G are completely described by the sizes of
the Jordan blocks of their elements hence correspond to partitions of n. (Thus
the unit element corresponds to the partition 14+14...4+1 and a regular
unipotent element corresponds to the partition n.) If g is a unipotent element
such that the corresponding partition is o, + o, +... +a,=n, then Z;(g)/Z2(g) is
a cyclic group of order g.cd. (2,0,,...,%,n') where n’ is the part of n prime to
the characteristic exponent of k. Hence

| AN = Y ged. (0,0, n 0, 1)
OgarSarS...Sar
ay+ar+...=n

It is easy to see that the last expression can be rewritten as follows:

(10.3.1) | A |= ) ¢(@)p(n/x)  (sum over all divisors o of n')

where ¢ is the Euler function and p(n/o) is the number of partitions of n/o.
We shall prove by induction on n, that:

(103.2) A © (for SL (k) consists of the pairs (C,&)e N where C is the class of
a regular unipotent element g and & corresponds to an irreducible representation
Z:(8)/Z2%@g)= Z;—>QF whose image has exactly n elements.
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We may assume that n=>1 and that the statement (10.3.2) is known for
fi<n. Let (L, Cy,6,)e.#;. We may assume that

L=S(GL, xGL,,x...xGL,)=G, a;+o,+..+a=n

Assume also that L+ G, ie. that all «, are strictly less than n. By the induction
hypothesis, C, is the class of a regular unipotent element g,eL and &
corresponds to a representation 0:Z,(g,)/Z%(g,)—~>®QF with the following
property: for each ie[l,t]. the restricion of 6 to the image of
P51, 00~ 21(8: /ZL(gl) maps that image onto a subgroup of order «, of QF.
Now Z,(g,)/Z%g,) is a cyclic group of order g.c.d. (ocl,ocz,. A n)<o< It
follows that o, =a,=...=a,=o where o is a divisor of n' and that there are
exactly ¢ (o) possibilities for 0. It is clear that N(L)/L is naturally isomorphic to
the symmetric group S,. Let &, be the local system 1 K&; on &7 C

From 9.2, it follows that .7, ~Q,[S,], hence (L, C,,&;) consists of p(t)
= p(r/a) elements, (see 6.5).

It follows that

| A=A O\ = $(a) pln/o),

sum over all divisors a of n’ such that a#n. Comparing with (10.3.1) it follows
that

¢(n), if nis invertible in k
0, otherwise.

(103.3) | onu:{

In particular, 479 is empty, unless |Z;|=n. Assume now that |Z;|=n. Then n’
=n.

Let us consider again the triple (L, C,, & )e.#; where L corresponds, as
above, to the partition o, +a,+...+o,=n, and o, =0, =...=0,=a is a divisor
of n, a%n. The group #, <L acts on & by scalar multiplication on each stalk
via a character of order a. From the definition of @, it follows that, for any
(C,6)ed (L, C,,8;), the group Z,<=G acts on & by scalar multiplication on
each stalk via a character of order a. Hence, if (C,#) is such that C is the class
of a regular unipotent element g and & corresponds to a character of order n
of Zy(8)/Z%(g)=2, then (C,&) cannot be in &~ (L, C,,&)), and therefore
(C,&) is in 49, Moreover, (10.3.3) shows that all elements of A4 are
obtained in this way. This completes the proof of (10.3.2). This proof shows
also that two elements (C, &), (C',&’) of 4 are in the same fibre of &: /.4,
if and only if % acts on & and on &’ via the same character; thus, .#; is in 1
—1 correspondence with the set of characters of Z;.

10.4. 1In this section, we assume that G=Sp,,(k) and that char(k)+2. Let x,
be the number of elements in 4" In this case the unipotent classes in G are in
1—1 correspondence with the partitions 2n=1-i;+2-i,+3-i3+... where
i,15,13,...20 and i,,iy,is,... are even. (i, is the number of Jordan blocks of
size a of a unipotent element.) The group of components of the centralizer of a
unipotent element corresponding to such a partition is an elementary abelian
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2-group of order 2 *@evenlia>0i Tt follows that

Z xnt"= Z 2#{aeven|ia>0§t(1i1+2i2+3i3+‘..)/2

nz0 i1,i2,...20
iy,i3,i5...even

=( Z £1)( Z t3i'3)( z t5‘"5)...><(1+ Z Zti'z)(l‘*'_‘ZthZ“‘)...

120 320 i5z0 izz1 iaz
14t 14122
(1A= 01 __#3y=1(1 45\ 1 .
== =) A=) g
[T+
i21
—n(l—t")ﬂ(l—tz"”l)
iz1 iz1

H (1 . tZi)

1 iz1
—n (l—ti)z n (1—t2"‘1)
iz1 izl
1 .
— . Z t1(1+1)/2

[Ta-1)? i

1

i

1\

the last step being an identity of Gauss [5, Th. 354], (z is an indeterminate). If
we define p,(j) by the identity

[1a-6)2=%p, )¢

i1

it follows that

(104.1) x,= Y po(n—(1+2+ ... +))).
iz0

We shall prove by induction on n that

(1042) ¥ © (for Sp,,(k)) has exactly one element, if 2n=2+4+...+2j for
some j=0 and is empty otherwise.

We may assume that n=2 and that the statement (10.4.2) is known for
ii<n. Let (L, C,,&])e.M; be such that L+G. Then L must be a product GL, (k)
X GL,,(k)x ... x GL, (k) X Sp,,(k), a;+a,+...+o,+r=n, r<na. It follows from
(10.3.2) that each o; must be equal to 1 and from the induction hypothesis that
r=j(j+1) for some j=1 and that (C,,&;) is uniquely determined by L. The
group N(L)/L is easily seen to be a Coxeter group of type B, _,. Hence, if &, is
the local system 1Xé&; on 27 - C,, it follows from 9.2 that o, ~@Q,[¥; ]
=Q,(N(L)/L) has exactly p,(n—r) irreducible representations hence
&~ !(L, C,,&;) consists of p,(n—r) elements. It follows that

| N = A0 = E pa(n—(1+2+...4+j).
%jdfgkn

Comparing with (10.4.1), it follows that
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L/V-(O)[: 15 1fn:1+2++],f0r some j
0, otherwise
and (10.4.2) is proved.

10.5. In this section, we assume that G=G, is either Sp,,(k) or a simply
connected group of type B, and that char(k)=2. Note that | 4| is equal to the
number of unipotent conjugacy classes in the finite group Sp,,(F,) where q is
any power of 2, hence it is also equal to the number of unipotent repre-
sentations of Sp,,(F,) (see [10,9.8]). We find that

V1= Y pa(n=2(1+2+ ... +)).

jz0

Just as in 10.4, we see that

1, if n=2(1+2+...4j) for some j=0

(10.5.1) W {o, otherwise.

The elements of .# are the triples (L, C,, &]) where L is a product

GL (k)x...xGL,(k)xG,, (n=t+r)

—— e
t factors

and r=j(j+1) for some j=0; (C,, ;) is uniquely determined by L. N(L)/L is a
Coxeter group of type B, ,. The number of elements in @~ Y(L,C,,4&;) is
py(n—r).

10.6. In this section, we assume that G=S0,(k), (N = 1), and that char(k)=+2.
In this case, the unipotent classes in G correspond to partitions N=1i, +2i,
+3i;+... where i;,i,,i;...20 and i,,i,,is,... are even. (i, is the number of
Jordan cells of size a of a unipotent element.) This correspondence is 1—1
except that there are two unipotent classes (said to be degenerate) correspond-
ing to any partition such that i; =i;=i,=...=0. The group of components of
the centralizer of a non-degenerate unipotent element corresponding to the
partition N=1i +2i,+3i;+... is an eclementary abelian 2-group of order
2#{acdd.la>01=1. the group of components of the centralizer of a degenerate
unipotent element is trivial. Let x, be the number of elements in 4" of form
(C,&) with C non-degenerate and let xj; be the number of elements in A" of
form (C, &) with C degenerate. If ¢t is an indeterminate, we have

1+ (2x3v+x—N) V= F 2#oddin>0)yline dia izt

nx1 2 i1,i2,...20
12,14,...€ven

=1+ Y 261+ Y 26835) . x (Y 4 (Y (Y 1)L

i1z1 i3zl i220 i220 520
1+t 1+
=T—tl——t3— X(l*—tl‘)_l(l—ts)_l

o

(1_t2i)—2_ 1"[ (1+t2i—1)2 ﬁ (l_tZi)

i=1

1

]
-

13

(T pl)*) 3 o

m= — 00

1
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the last step being an identity of Jacobi [5, 19.9(i)]. It follows that

X, (N N m?
10.6.1 x4 N (4) 2 (h——),
( ) xN+2 p2 2 + m§0p2 2 2

(we agree to set p,(j)=p(j)=0 if j is not an integer =0). Note that

N
(10.6.2) X4y=2p (Z)’
hence

’ " 1 N N N N m2
1063) x=xi+xi=3 (pa (5) -2 (3)) +20 (§) + £ (-5 )

We shall prove by induction on N that

(10.6.4) If N=3 then MO for SO (k) has exactly one element if N is a square,
and is empty otherwise.

For N<4 this follows from (10.3.2). We now assume that Nz 5 and that
the statement (10.6.4) is known for N<N. Let (L, C,,&])e.#, be such that
L+ G. Then as in the proof of (10.4.2), L must be a product GL, (k) x ... x GL (k)

t factors

xSO,_,where N—2¢t is a square =4 and (C,, ;) is uniquely determined by
L, or else L is a maximal torus and again (C,, &]) is uniquely determined by L.
In the first case, N(L)/L is a Coxeter group of type B,; from 9.2, we see that the
number of elements in @~ (L, C,,&;) is p,(t). In the second case (L a maximal
torus), N(L)/L is a Coxeter group of type By_,,, il N is odd and of type Dy,

N-1 . .
if N is even; we see again that &~ '(L,C,,&;) has p, (T) elements if N is

2 4
pression is the number of irreducible representations of a Coxeter group of
type Dy,.)
Thus, we get an explicit formula for | A~ 4719, which when combined with
(10.6.3), yields (10.6.4).

10.7. In this section, we assume that G=S50,,(k), (n=2) and that char(k)=2.
(Analogous results will hold for the simply connected group of type D, over k,
since it maps bijectively onto G.)

In this case, |.47] can be computed as in 10.5 and it is given by

1 N N N
odd and E(p2 (—)—p(—>)+2p (Z) elements if N is even. (The last ex-

n

Mfl% (pz(n)—p (g)) +2p (5) +m§2 py(n—m?).

Just as in 10.4, we see that

WO 1, if nis an even square,
0, otherwise.
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The elements of .#,, are the triples (L, C,, ;) where L is a product

GL(k)x ... x GL,(k)x 80,,:, (m22, m even, m*+t=n),

t factors

or a maximal torus; (C,, &) is uniquely determined by L. N(L)/L is a Coxeter
group of type B, (if L is not a torus) and D, (if L is a torus). The number of
elements in the corresponding fibre @~ (L, C,, &) is the number of irreducible
representations of the Coxeter group N(L)/L.

§ 11. Some combinatorics

11.1. We now introduce some combinatorial objects which will be used to
parametrize the set 7 in the case where G is a symplectic or special orthog-
onal group and char(k)#2. The following discussion was suggested by the
discussion of symbols in [6,§3].

11.2. The unipotent classes in G=S5p,,(k), are in 1—1 correspondence with
the set

X ,,={partitions 2n=1-i, +2-i,+3-i;+... with

iy,iy,ig,...20,1,,i5,05,... €ven};

i, is the number of Jordan cells of size a of a unipotent element.

If u is a unipotent element of G, the group Z;(u)/Z2(u) (and hence also its
dual Hom(Z;(u)/Z%(u),Q,) is identified in [18,129] with the F,-vector space
with basis indexed by the set A4,={a evenli,=1} where 1 is the partition
attached to u. It follows that we have a natural bijection:

(11.2.1) Ao 11 B4,
AeX2p

Here F,[4,] means: F, vector space with basis indexed by 4,.

11.3. The unipotent classes in G=S0y(k), char(k)=2, are in 1 —1 correspon-
dence (as in 11.2) with the set

Xy={partitions N=1-i,+2-i,+3-i,+... with

i, iy,igs .. 20, iy,i,,0, ... even),

except that to any partition in Xy such that i, =iy=is=...=0, there cor-
respond two (degenerate) unipotent classes in SOy (k).

If u is a non-degenerate unipotent element of G, the group Zg(u)/Z2(u) is
identified in [18,12.9] with the subspace of F,[4,], (4, ={aodd|i,z1}) defined
by the single equation: the sum of coordinates equals 0. Here A is the partition
attached to u. Hence Hom(Z4(1)/Z2(u), QF) may be canonically identified with
the quotient m of F,[4,] by the line spanned by the sum of all vectors in
the canonical basis.

If u is degenerate, then Hom(Z ;(u)/Z2(u), Q;") has a single element. It may
be identified with the O-dimensional F,-vector space F,[4,] where A is the
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partition in X corresponding to u. (Such a partition is said to be degenerate;
the partition corresponding to a non-degenerate unipotent class is said to be
non-degenerate). Thus, we have a natural bijection

(11.3.1) %Hlnﬁg’ig. E[4,] H(ﬁgg (B[4,1]] E[4,D).

(Note that there are two degenerate unipotent classes corresponding to a
given degenerate partition.)

114, Let 'I7N, (N even, =2), be the set of all ordered pairs (A, B) where A4 is a
finite subset of {0,1,2,...}, B is a finite subset of {1,2,3,...}, which are subject
to the following three requirements

(11.4.1) Ifiis any integer then {i,i+ 1} is not contained in 4 nor in B.
(11.4.2) |A]+|B| is odd, (JA]=number of elements in A).
(1143) Y a+) b=3N-+3(lAl+|B|)(4l+|B|—-1).

acA beB
Let ¥, be the set of equivalence classes on ¥, for the equivalence relation
generated by

(11.4.4) (4, B)~({0}U(4+2), {1}U(B +2)).

We shall denote the equivalence class of the pair (4, B) under (11.4.4) again
by (4, B).

Let %, (N integer, =3) be the set of all unordered pairs (4, B) where A,B
are finite subsets of {0,1,2,...} which are subject to the requirement (11.4.1)
and to the requirement

(11.4.5) Y a+ Y b=3N+3((A4]+|B|—1)>—1)
acA beB
(which implies that |4|+[B|= N(mod 2)). N
Let ¥, be the set of equivalence classes on ¥ for the equivalence relation
generated by

(11.4.6) (4, B) ~ ({0} U(4 +2), {0}U(B +2)).

We shall denote the equivalence class of (4,B) under (11.4.6) again by
(4,B).

The sets ¥y, ¥y are finite. An element of ¥y of form (4, A4) is said to be
degenerate; the other elements are said to be non-degenerate.

11.5. Two elements of ¥, (or ¥y) are said to be similar if they can be
represented in the form (A4, B), (4,B) with AUB=A4'UB', AnB=A4'nB". In
each similarity class in ¥, (or in ¥y) there is a unique element which can be
represented by (4,B) with A={a, <a,<...<q,}, B={b, <b,<...<b,} such
that the following holds: m'=m+1 (for ¥, any N, and for ¥, N odd), m'=m
(for ¥, N even), a, <b,2a,<bh,<...£a,=<bh,, and moreover b,=<a,  , (for
Y, any N, and for ¥, N odd).
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Such an element is said to be distinguished.

The set of elements in a fixed similarity class may be organized as an F,-
vector space, as follows. Let (A, B) be distinguished in our class, (see above); we
assume that 4+ B, so that C=(4uB)—(AnB) is non-empty.

A non-empty subset I of C is said to be an interval if it is of the form
{i,i+1,i+2, ..., j} withi—1¢C, j+1¢ C and, if moreover (in the case of ¥y), we
have i+=0. Let .# be the set of intervals of C. It is non-empty. We denote by I,
the set of elements of C which do not belong to any interval. Then I, is empty
or of the form {0,1,2,...,h}; the latter possibility can only arise for ¥,. For
each subset a < .#, set o/ =.# —a and we consider

A, :(Iké}z (ImA))u(IkEJa’ (InB)uI ;nA)U(ANB)

B,=({) UnB)n(|) InA)u(I;nB)u(ANB).
Iea Tea'

Then (A4,,B,) is similar to (A4,B) and the map a—(4,,B, is a bijection
between the set 2(F) of subsets of # (resp. #(F) modulo the equivalence
relation a~a') and the set of elements in the similarity class of (4, B), in the
case of Py (resp. the case of ¥y). Now £(F) is an F,-vector space with respect
to symmetric difference; it has as canonical basis the one-element subsets of .#.

Hence #(S)=F,[#] and ﬂ(f)/(omoz’)zl/’zTﬂd;sz[f]/line spanned by the
sum of the standard basis elements. Thus, we have a bijection between the
elements in the similarity class of (4, B) and the F,-vector space F,[.#] (in case

of ¥,) and Fm (in case of ¥y).

11.6. Start with a partition A=(1i;+2i,+3i3+...) in X, N even. We as-
sociate to 4 an element in ¥, as follows. Let 2m be an even integer, 2m=i, +1,
+...,and let z, £z,<... £z,, be the sequence containing the number j exactly
i; times (Vjz1) and the number O exactly 2m—(i;+i,+...) times. Let
7| <7, <... <2}, be the sequence defined by z;=2z,+(i—1). This sequence con-
tains m even numbers 2y, <2y, <...<2y, and m odd numbers 2y, +1<2y),
+1<...<2y, +1. (This is seen easily by induction on N.)
Again, by induction on N, we see that

08y +1Sy, 425y, 428y, 43S .. Sy, +mSy, +{m+1).
Hence, if we set
Az{O,y'1+2,y,2+3,‘,Y;,‘*’(m‘i'l)}, Bz{)’1+1a)’2+2,---,ym+m},

then (4,B) is a distinguished element of ¥,. Its similarity class remains un-
changed when m is increased by 1, hence it depznds only on A, not on m. This
process can be reversed so that it gives a bijection between X and the set of
similarity classes in ¥y. Let 4, m, A, B be as above. Let C=(AnB)—(AnB). We
have a bijection between the set 4, (see 11.2) and the set £, of intervals of C,
defined as follows. If we arrange the intervals in .4, in increasing order
I,,1,,....1, (any element in I is smaller than any element in I,, etc)) and if
we arrange the elements of A,={aevenii,21} in increasing order
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a,<a,<...<a;, then f=f" and we make I, correspond to a,, (1sh<f); we
have |I,| =1, . (This is also checked by induction on N).

Hence we get an isomorphism F,{4,]=F,[.4,]; the last space has been
identified in 11.5 with the set of elements in the similarity class on ¥, cor-
responding to A. Hence, we obtain a bijection

¥, F,[4,].

NHALJN 2[4,]
Composing it with the bijection (11.2.1) we obtain a bijection
(11.6.1) AWy, where G=Spy(k), chark+2

In the following table we describe, as an example, the correspondence
between similarity classes in ¥ and elements of X.

Elements of ¥. Elements of X ;.
({33,0),0,{3}) 6

({04}, {2}),({0, 2}, {4}). ({0}, {2,4}),({0, 2,4}, 0) 2+4

({1, 4}, {1}), ({1}, {1,4}) 1+1+4

(10,3}, {3}) 343

({1,3},{2}), ({12}, {1,3}) 24242
({0,2,5},{2,4}),(10,2,4}, {2,5}) 1+1+2+2
({1,3,5},{1,3}),({1,3},{1,3,5}) 1+1+1+142
(10,2,4,6},{2,4,6}) I+14+1+141+1

11.7. We now start with a partition A=(1i, +2i,+...) in X;. We associate to
A an element in ¥ as follows. Let M be an integer, M 2i, +i,+i;+..., M=N
(mod?2), and let z,<z,<...<z, be the sequence containing the number j
exactly i; times (j=1) and the number O exactly M —(i,+i,+...) times. Let
7\ <z, <... <z} be the sequence defined by z;=z;+(i—1). This sequence con-
tains [M/2] even numbers 2y, <2y, <... <2y, and [(M +1)/2] odd number
2y +1<2y, +1<... <2y 4 1y2+ 1. Here [x] denotes the largest integer <x.
This is seen by induction on N; in the same way we see that

ViEy, §y’2+1§)’2+1é---§YEM/2]+[M/2]_1§Y[M/2]+[M/2]"1,

and y%(M_1)+%(M— 1)—1§y;(M“)+%(M+1)~—1 if M is odd).
Hence, if we set

A={, 2+ L Vs iy H M +1)/2] =13,
B={y1>y2+17"~’y[M/2]+[M/2]_1}

then (4,B) is a distinguished element of ¥. Its similarity class remains un-
changed when M is increased by 2, hence it depends only on A, not on M. This
process can be reversed so that it gives a bijection between X and the set of
similarity classes in Py.

Let 2, M, A, B be as above. Assume that i,,i;,is ... are not all zero. Then 4
#*B, i.e. C=(AUB)—(ANB) is non-empty. We have a bijection between 4, (see
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11.3) and the set #, of intervals of C, defined in essentially the same way as in
11.6. Hence we get an isomorphism F,[4,]=F,[.#,] carrying the line spanned
by the sum of the basis elements in F,[4,] to the analogous line in F,[.4,].

Taking quotients by these lines, we have an induced isomorphismm
~F,[.#,]. The last space has been identified in 11.5 with the set of elements in
the similarity class in ¥y corresponding to A. Hence we obtain a bijection

(11.7.1) {non degenerate elements in lp&}“qu[Aﬂ

(union over all nondegencrate partitions 4 in X}.)
Our bijection ¥, (mod similarity)«> X gives rise to a bijection

(11.7.2) {degenerate elements in ¥y} ~+[X[ F,[4,]

(union over all degenerate partitions 4 in X.) Note that a degenerate element
in ¥ is alone in its similarity class and F,[4,] has a single element for 4

degenerate.

Combining (11.7.1), (11.7.2) and (11.3.1) we obtain a map

(11.7.3) HM—W,  (G=S0y(k), char (k) +2)

which is bijective over the set of non-degenerate elements of ¥y, and is such
that for each degenerate element in ¥, its fibre has 2 elements (corresponding

to degenerate unipotent classes with a constant local system.)

In the following tables, we describe as an example, the correspondence

between similarity classes in ¥, and elements in X, for N=7 and 8.

Elements of ¥,

Elements of X',

({310 7

({0,4}, {1}), ({1,4}, {O}) 1+1+5

(11,3}, {1} 24+2+3

(10,3}, {2}), ({0, 2}, {3} 1+3+3
({0,2, 5%, {1,3}), ({1, 3,5}, {0,2}) 1+1+1+143
({0,2,4}, {1,4}) 1+1+1+2+42
({0,2,4,6}, {1,3,5}) T4+1+14+1+1+141

Elements of ¥

Elements of X

({0}, {4}), ({0,4},0) 1+7

({13, {3, ({1,3}, ) 3+5

(10,2}, {1,5}), ({0,2,53, {1}) 14+1+145

({2}, {2} 4+4

(10,3}, {1,4}), ({0,4}, {1,3}) 1414343
({0,2}, {2,4}), ({0,2,4}, {2}) 1424243
({0,2,4}, {1,3,6}), ({0,2,4,6}, {1,3}) 141+14+14+143
({1,3},{1,3}) 2424242

({0,2,5}, {1,3,5})
({0,2,4,6}, {1,3,5,7})

1+1+14+14242
I+1+1+14+14+14+1+41
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§12. A generalization of a result of T. Shoji for symplectic groups

12.1.  In this chapter (except in 14.5) we assume that G=Sp(V), where Vis a
2n-dimensional vector space with a non-singular symplectic form ( , ) over k of
odd characteristic. The set .4 has a natural partition given by the fibres of @,
(see 6.5, 10.4):

(12.1.1) L]O ylmziien)

where AP is the fibre of ® over (L, C,, &;)e. M, with L=L,of type GL, x ... x GL,
| DU —
i factors

X SPan_ ;- Moreover, from 6.5(c) and 9.2(d) we get a canonical bijection
(12.1.2) N (N(L)/Ly) "

(where ¥ denotes the set of isomorphism classes of irreducible representations
of a finite group).

Let W, be the group of permutations of the set {1,2,....,n,n,...,2,17}
which commute with the involution j—j, j/—j. Then we can identify

(12.1.3) N(L)/Li=W,

as follows. Consider a basis ey, ..., e,, €, ..., €; of Vsuch that (¢;,e})=1 (¢}, e)=
—1 and all other scalar products equal to zero. We assume that L, is the set of
geG which map each of the vectors ey, ..., e, e}, ..., €] into a scalar multiple of

itself. Then each element of N(L,)/L, deﬁneé a! permutation of the set of lines
{ey,...,{e»,{ey,...,{e}y and this gives the isomorphism (12.1.3). Combining
(12.1.1), (12.1.2), (12.1.3) we get a bijection

(12.1.4) /%HjIEIO(VK-ﬂuH))V'

12.2. The purpose of this chapter is to give an explicit (combinatorial) de-
scription of the bijection (12.1.4).
To do this, we shall define an explicit bijection

(1221) TlnHU(VV"—%J'(J"F 1))Va
union over all >0 such that 1j(j+ 1) <n). We define the defect of (4, B)e'F,, to
be d =|A|—|B|; it is an odd integer. We have a partition
(12.2.2) Y= 11 Pona
dodd

where ¥, , is the set of elements of defect d in ¥,,.
We have a canonical bijection
Vw1 = Paw yata—1,0» (d 0dd),
defined by
(4,B)—({0,2,4,...,2d—4} u(A+2d—2),B), ifdz1
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and by
(4, B)—(4,{1,3,5,...,1-2d} U(B+2—2d)), ifd<-1.

This, together with (12.2.2) give us a bijection

(12.2.3) ‘Pz,.""dlald lPZn—-d(d—l), 1= I_[ 'PZn-j(j+ 1), 1

Jjz0

(The last equality is given by the change of variable j=d—1 ifd=1, j=—d
if d < —1.). We make here the convention that %,, is empty if n’ <0.
The bijection (12.2.1) is the composition of (12.2.3) with the bijections

‘—’(W;,_%j(ﬂl))vs (z0).

which are a special case of the bijection

‘I’2n—j(j+ 1)1

(12.2.4) P, oW

defined as follows. We parametrize the elements of W, by ordered pairs of
partitions 0<o, La,<... Lo, 0SB, <B,... <P, with Y o0, +) B,=n. (Such a
correspondence is described, for example, in [6, 2.7(i)]; in particular, the unit
representation corresponds to the pair of partition n,@. The sign representation
corresponds to @, 1+1+...+1. The one dimensional representation of W, de-
fined by z(w)=(—1)"", where [I'(w)=number of ie{l,2,...,n} such that
w(i)e{n',...,2',1'}, corresponds to the pair of partitions @, n.) Here m’,m" can be
chosen arbitrarily large, by adding zeros to the parts of our partitions. We
shall choose them so that m'=m"+1. We set

A={o, <o, +2<oy+4<...<a,, +2m =2},
B={B, +1<B,+3<p+5<...<B, . +2m"'—1}.

Then (4, B)e ¥,, ; and this gives the required bijection (12.2.4).
Composing the bijections (12.1.4) and (12.2.1) we get a bijection

(12.2.5) N B,

We can now state the main result of this chapter.

12.3. Theorem. The bijections (12.2.5) and (11.6.1), (with N =2n) coincide.

Our bijections restrict to bijections A;™« ¥,, , (here A™ is as in 12.1).

The fact that these restrictions coincide is essentially equivalent to the main
result of T. Shoji in [15]. Note however, that the combinatorics used by Shoji
is more complicated (in the author’s opinion) than the one used here.

The proof is based on Theorem 8.3 and on the following observation of
Shoji: if =3, an irreducible representation of W, is completely determined by
its restriction to W, . (We regard here W,_, as the subgroup of W, which
stabilizes 1€{l,...,n, n" ..., 1'}.) Assume now that n= 1. Consider the parabolic
subgroup P'=G which is the stabilizer of a line D in V] and let L be a Levi
subgroup of P. Then L'=GL,(k)xSp,,_,(k). We may assume the theorem
proved for Sp,,_,(k). For each (C,&)eAg, (C', ") A, the multiplicity my..
(see 8.2) can be determined explicity in a geometrical way (see 12.5), by a
computation which is almost the same as a computation contained in
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Spaltenstein’s work [18, II]. (This multiplicity is O or 1.) Using this infor-
mation, 8.3(a) and the induction hypothesis, we can check that any element of
A which is mapped by (11.6.1) to an element of ¥,, , (d(d—1)<2n), must be
also mapped by (12.2.5) to an element of ¥, ,. We can also check immediately
that the inverse images of ¥,,, under (11.6.1) and (12.2.5) have the same
number of elements. Hence these inverse images coincide, (if d(d—1)<2n).
They must also coincide for d(d—1)=2n since d must satisfy d(d—1)<2n.
Thus, the fibres AP of @: A;—.#, are identified in a combinatorial way.
From the knowledge of multiplicities my.. ,. and from 8.3(b) we see that the
irreducible representation of W, (iz1), corresponding to any element of A
are known after restriction to W,_,. Hence they are known as representations
of W,, provided that i=3. When i=2, this method doesn’t quite identify the
correspondence between A;® and the representations of W;: there are two one-
dimensional representations of W, which restrict to the unit representation of
W, and there are two one-dimensional representations of W, which restrict to
the sign representation of W,. However, from 9.5, we know explicitly which
elements of A, correspond to the unit and sign representation of W, and this
provides the missing information. When i=1, we use again 9.5 which tells us
which elements of A" correspond to the unit and sign representation of W,.
(These are the only irreducible representations of W,.) For i=0, the cor-
respondence between A, (if non-empty) and W, is obvious since both sets
have just one element. This completes our sketch of proof of Theorem 12.3.

12.4. Corollary. (a) Two elements of A; are in the same fibre of @ (see 6.5) if
and only if the corresponding elements of W,, (under (12.2.5)) have the same
defect.

(b) A is non-empty if and only if n=%1d(d—1) for some odd (possibly
negative) integer d, (see (10.4.2)). If n=1d(d—1), (d odd) the unique element of
AG° corresponds under (12.2.5) to the element ({0,2,4,...,2d—2},0)e'P,, 4, if
d=1, and to the element (§,{1,3,5,...,1-2d})e¥,, , if d<—1; hence this
element of NG is of form (C, &) where ge C has Jordan blocks of sizes given by
the partition 2n=2+4+6+....

(c) Two elements (C,8°), (C,&7) of A; satisfy C=C if and only if the
corresponding elements of ¥,, (under (12.2.5)) are similar.

12.5. Let V be an N-dimensional vector space (N=2) over k (of characteristic
#+2) with a given non-singular bilinear form ( , ) such that there exist ee{1, — 1}
with (v, v)=¢(v', v) for all v,v'eV.

Let e,¢ be two isotropic vectors in ¥ such that (e,¢)=1 and let V be the
subspace of vectors in ¥ orthogonal to e, e".

The results in this section are concerned with a comparison between uni-
potent classes in the isometry group Is(V) of V and the corresponding group
Is(V) for V. It will be however more convenient to formulate them in terms of
the set Nil(V) of nilpotent elements in the Lie algebra of Is(V), that is, in
terms of nilpotent maps v: V— ¥ such that (vo, v')+(v, vv')=0 for all v, v". (Since
char(k)#2, one can pass freely between unipotent and nilpotent elements)

The results in this section are essentially variations on results of Spalten-
stein in [18, I1.6]. They are needed in the proof of Theorem 12.3. Spaltenstein’s
results have also played a key role in Shoji’s proofs in [15].

Let veNil(V). We denote by cl(7) its conjugacy class under Is(¥). We have
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(see [22, 2.28, 2.251):

iz1

(125.1) dim cl(H)=3(N?—eN)—% 5 (41, + ...)2+§ Y
odd

where r, is the number of Jordan cells of size i of v: ¥ > V. Note that r, is even
if i=4(e—1)(mod 2).

Let X, be the variety of all elements v in Nil{V) such that v(¢')=0 and v(v)
—~¥(v)ek - ¢ for all ve¥ (In other words, v induces 7 on (¢’ /{e/>=V)

We identify

Pxk i e=—
(12.5.2) XV;{ <k ile=—1

Vx{0}, ife=1

by ver(x,c)eV xk, v(v+Ae)=V(0)+ Ax +(Ac—(x,v) € (VEV, A€k).
We have a partition

szXg,luX\Iz.iHX3,2UX\}',2HX3,3UX3',3U"'

X0, ={veX leev= (V) ¢v(V), (¢, v "~ Ve)=0}
X! ={veX,leev= (V) e¢v'(V), (e, v "V e)+0}

where

We define a sequence of vector spaces V,, ¥;,V,, ... by
V=3V, V, =V +ker V)3V, V,=(FV +ker v})/(3V + ker ¥), etc.
Then dim ¥,=r, and ¥, has a natural quadratic form Q, defined by
Q0,(va+b)=(b,v"'h), (acV,beker?), (izl) Q,(va)=(Va,aq).

If e=—1, then Q,=Q,=...=0 and Q,,0,,0,, ... are non-singular. If ¢=1,
then Qy=0Q,=0,=...=0and Q,,Q;,Q;, ... are non-singular.

In terms of the (x, ¢) coordinates (12.5.2), X 9,,. and X}, can be described as
follows.

X9, ={(x, 0)lxeT7, Qx)= —cy =k I
Xé,xz(b
X%, ={(x,c)|xeVV +kerv"!, image X of x in V_,
satisfies X+0, Q;_,(X)=0}
xfN- L (=92 (B ()

Jjze-1

(125.3)

*ng *
KOS

] if e=1
X! ={(x,c)|xeVV +kerv¥ 2 image X of x in

V,_, satisfies Q;_,(X)=+0}
:kN“ Y on+(l-g)2 % (kri—Z__B)

Jjzi-2

where B is the quadric Q,_,=0in V_,, (iZ2)

Xio={(x,0)|xeVV,Qo(x)=* —c};{

where B is the quadric Q; ,=01n V,_,, (i23).
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The sizes of Jordan cells of an element veX, are constant when v runs
through one of the pieces X2, X, Let r; be the number of Jordan cells of

v, i

size i of an element v in one of these pieces. Then r are given as follows.

o . ;o e .
VeXS i n=n+2 0 =r_ -2 =i i—1, (i22)

veX{ in=r+2,r=r, (j¥1).
veX, r=n+1,r_,=n_,—1r=rn, (j%i,i-2), (iZ3)

L

veX; i rn=r+Lr=r, (j*2)

J

From these formulas, and from (12.5.1), (12.5.3), we see that, for veX?, w
have
, , dim(X?)), if veX?,
1(dim CI(V)_dlmCl(v)):{dimixézi;*’%ﬁ_p I veX%ﬁi
where cl(v) is the conjugacy class of v under Is(V).

For the proof of Theorem 12.3 we must compute the multiplicities mg. 4.
(see 8.2) where & (resp. £”) is a 1-dimensional local system on cl(v) (resp. cl(V))
and veX,. This computation is done using the explicit description of the pieces
X9, X 5: given in (12.5.3). We may disregard the pieces X!, for which
1(dim cl(v)—dim c/(¥)) > dim X} o (veX, ), i.e. we must consider only the pieces
X, , for which r,_, =0 and the pieces X3, 0 for all i. We omit further details.

§13. A generalization of a result of T. Shoji for special orthogonal groups

13.1. In this chapter, we assume that G=SO(V) where V is an N-dimensional
vector space with a non-singular bilinear form ( , ) over k of odd characteris-
tic, (N = 3). The set ¢ has a natural partition given by the fibres of @ (see 6.5,
10.6):

(13.1.1) HNo= ]_I NN =12)

where A% is the fibre of @ over (L, C,, §;)e.#; with L=L; of type GL x...x GL,
. . . e e e
x SOy _,; if N=2iand L=L;=maximal torus if N=2i, i factors
Moreover, from 6.5(c) and 9.2(d) we get a canonical bijection

(13.1.2) M (N(Ly/Ly)".
If N >2i, we can identify, just as in (12.1.3),
(13.1.3) N(L)/L,=W,

If N=2iz2, we can identify in the same way N(L;/L; with the Weyl group
W, of G. This, together with (13.1.1), (13.1.2), (13.1.3) gives rise to a bijection

(13.1.4) N> Wy I_I( I‘Ix (Win_jpy2)”

J=N2)
2N
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13.2. In this chapter we shall give an explicit (combinatorial) description of
the bijection (13.1.4). To do this we shall define an explicit map

(13.2.1) we 11 .LI1 (Wi _j2y2) ")~ Py

.J>
J=N(2)
J2EN

We define the defect of (4, B)e ¥y to be the absolute value of |4]—|B|. It is
an integer =0, of the same parity as N. We have a partition
(13.2.2) Y= algjo Ye.a

d=N(2)
where ¥y, is the set of elements of defect d in ¥,;. We have a canonical
bijection
Wﬁ',l_:*q«l'wz—l,dv (dz1),
defined by
(4,B)—({0,2,4, ...,2d —4} u(A+2d —2), B), |A| >|B|.
This together with (13.2.2) gives us a bijection

le(J“"’dL[l YN_se1,1> (N odd)
odd

lPI‘;HTI‘Il,OH(J_{z TI\,I_,jZ‘;_ 1‘1), (N eVen).

€

(13.2.3)

b1

en

We make here the convention that ¥, is empty if N’ <O0.
The map (13.2.1) is the composition of (13.2.3) with certain maps

(13.2.4) (‘/t/(N—dz)/Z)v = lPI’V—d2+1y1’ (dgl)
(13.2.5) Wg' - WPy o, (N even).

(If N is odd, Ws=Wy_,,3)
The maps (13.2.4) are a special case of the bijection

(13.2.6) WY oW,

defined as follows. We associate to an element of W,¥ the ordered pair of
partitions 0<o; Sa,<...<at,,, 0SB, <P, <... B, with Y a,+) f,=n, (as in
12.2). We choose m'=m"+1. We set

A={a, <o, +2<oy+4<...<0,, +2m —2
(13.2.7) { <y ° )

B={B, <P, +2<Py+4<...<P. +2m"'—2}.

Then (A, B)e'P),, 1., and this gives the required bijection (13.2.6).

The map (13.2.5) is defined as follows. (Recall that we now have N even)
We associate to an element of Wy the unordered pair of partitions
050, <...2a,, 0SB, <B,<... LB, with N2=Y o, +Y B;, as in [6, 2.7(ii)].
We choose m'=m". We define A, B by (13.2.7). Then (4, B)e ¥, , and this gives
the required map (13.2.5).
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Thus, the map (13.2.1) is defined, Composing (13.1.4) and (13.2.1) we get a
map

(132.8) s

The following results is a generalization of Shoji’s main result in [15] for
SO, in the same way as 12.3 generalized Shoji’s main result in [15] for Sp,,.

13.3. Theorem, The maps (13.2.8) and (11.7.3) coincide.
The proof is analogous to that of 12.3.

13.4. Corollary. (a) Two elements of A are in the same fibre of & (see 6.5) if
and only if their images in Wy under (13.2.8) have the same defect.

(b) A Dis non-empty if and only if N is a square, (see (10.6.4)). If N =d?, the
unique element of NG® is mapped by (13.2.8) to the element ({0,2,4,...,2d
-2},0)e ‘I’,(;,d; hence this element of AG? is of form (C,&") where geC has
Jordan blocks of sizes given by the partition N=1+3+5....

(c) Two elements (C, &), (C, &)e A with C, C non-degenerate satisfy C=C
if and only if the corresponding elements in Wy, (under (13.2.8)) are similar.

§ 14. Examples in the spin-groups

14.1. Let Vbe a vector space of dimension N =3 over k (of characteristic +2)
with a given non-singular symmetric bilinear form (, ). Let C(V) be the
corresponding Clifford algebra; it is provided with an imbedding V = C(V) and
the product v-v of two elements in V satisfies v-v'+ v -v=2(v,v). Let C* (V)
be the subalgebra of C(V) spanned by products of an even number of elements
in V. The spin-group Spin(V) is the subgroup of the group of units of C* (V)
consisting of all products v, v, ... v, (a even) where the v,eV satisfy (v, v;)=1. This
is a closed subgroup of the group of units of C*(V). If xeSpin(V), then v>xvx~!
leaves V invariant and defines an element B(x) of SO(V); if x=v,v,...v, (as
above) then f(x)=p(v,) f(v,) ... B(v,) where B(v,) ()= —v+2(v,0) v; is (—1) times
the reflection with respect tov;. Thus we havea homomorphism f: Spin(V)—- SO(V);
it is the simply connected covering of SO(V). If N is odd, the centre of Spin(V)
has order 2; it is generated by (—1) times the unit element of C(V). If N is even,
the centre of Spin(V) has order 4; it is generated by e=(—1) times the unit
element of C(V) and by w=v,v,...vy where v,,...,vy is an orthogonal basis
such that (v;,v)=1 for all i. We have w?=¢"'? hence the centre of SpinV is
cyclic of order 4 if N=2(mod4) and it is a product of two cyclic groups of
order 2 if N=0(mod 4). In any case, the kernel of § consists of 1, &.
We shall also denote Spin (V) as G and SO(V) as SOy (k) or as G.

14.2. We want to describe the sets A4, A, # for G. Each of these sets can be
partitioned into pieces corresponding to the one-dimensional representations
%,-@QF. This decomposition into pieces is compatible with the map . Let us
denote 4, 4°, .4, the pieces corresponding to y: Z;—>Qf. (For (C,&8)e A, or
MO, Z; acts on & according to y; for (L, C,,&;)eM,, Z; acts on & according
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to x.) The pieces corresponding to the y which are trivial on the kernel of
B: G—G, are essentially the same as the analogous pieces for the special
orthogonal group G, (see 10.6).

We shall therefore concentrate on the pieces corresponding to the y which
are non-trivial on the kernel of §: G—G, i.e. such that y(e)= —1.

14.3. The unipotent classes in G and G are in 1—1 correspondence by B. Let
g€G be a unipotent element in G, and let = p(g)eG. Let i, be the number of
Jordan cells of g: V-V of size a, so that N=1-i;+2-i,+3-i,+.... Then
iy,i4,1¢, ... are even. It is well known that Z;(g) is a semidirect product of a
unipotent group and a reductive group isomorphic to S(O(i,) x O(i3) x O(is)
x .. )x(Sp(i,) x Spliy) x Sp(ig) x ...). (We write O(r) for the orthogonal group
O0,(k), Sp(2r) for the symplectic group Sp,(k).) It is clear that
Zg(8)=B~'(Zs(®). If g'ef~'(Zs(g) then g'gg'~'=g or e¢g. Now &g is not
unipotent and g'gg’ "' is, hence g'gg ~'=g. Hence Z;(g)=F"'(Z4(8)). There
are two possibilities: (a) seZ2(g) and then Z%(g)=p"'(Z%(®) and
Zo(@)Z%8)—— Z6®)/Z3@). or (b) 4Z%(g) and then B-Z3(@) has two
connected components, and Z;(g)/Z5(g) — Z;(8)/Z&(2) is a central extension with
a kernel of order 2.

Assume first that i,=2 for some odd a. Then there exist two g-stable non-
singular subspaces V', V" of V both of dimension a, which are orthogonal to
each other and an isometry y: V'—— V" commuting with the restriction of g to
V', V. Let v, ..., v, be an orthogonal basis of V' such that (v}, v)=1 for all i,
and let v7, ..., v} be the orthogonal basis of V" defined by v{ =7y(v). It is clear
that for any A, uek such that A2+ u? =1, the vectors Av, + pvy, A, + uvy, ..., Av,
+pv, form an orthogonal basis for the subspace V, , they generate and that
subspace is g-stable and non-singular. Consider the element

g, =) V5 ) (A0 + pv)) .. (A0, + o) (V) V. 00 (AD) + po)...
(Av, + pv)) eSpin(V).

The image g, , of g, , in SO(V) commutes with g. Indeed, the product of the
reflections with respect to v/, v,,...,v, is equal to —1 on V" and +1 on (V')*
(hence commutes with g) and similarly, the product of the reflections with
respect to Av|+pvy, ..., Av,+pv, is equal to —1 on ¥, , and +1 on (V, )*
(hence again commutes with g). Hence g, ,€ B~'Z (8)=Z;(g). The map
{(, wek x k| 2+ p*> =1} >Z(g) defined by 4, p—g, , must have as image an
irreducible subset of Z;(g). Since g, ,=1, it follows that g, ,€ZZ(g) for all 4, u.
We have g, ;= —1 (since a is odd). It follows that —1eZZ(g) hence we are in
case (a) above.

Next, assume that i,<1 for all odd a. Then the identity component of
S(0(i,) x O(i) x O(is) x ...) x(Spliy) x Sp(i,) % ...) is simply connected. It follows
that B~'(Z2(g)) is disconnected and hence we are in case (b) above. In this
case, we can describe the group Z;(g)/Z2(g), as follows. Let I={aodd|i,=1}.
We can write V=(@ V,)® V, (orthogonal direct sum of g-stable subspaces, with

ael
dim V,=a for ael). Assume that I is non empty.
For each ael we consider an orthogonal basis v{,v%,...,v; of ¥, such that
(v vY)=1 for all q,i. Let x,=v§v5...0v5c C(V), and let I' be the subgroup of the
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group of units of C(V) generated by the x, (acl). (The generators x, satisfy the
relations x2 =2~ 12 x x =¢x, x,) Let I' be the subgroup of I consisting of
elements which are products of an even number of generators x,. Then
I'=Spin(V)=@G; it is easy to see that I’ Z,(g) and that the natural map I'-
Z5(8)/Z%g) is an isomorphism. The central extension Zy(g)/Z2(g)—~Z(g8)/Z%(®)
can then be described as I'—I'/{1,¢}. Consider the group algebra of I
modulo the ideal generated by e+ 1. It is clear that this algebra is just the
+ part of the Clifford algebra of the quadratic form ) (—1)**~Y/2X? in the |I|

ael

variables X . By [N. Bourbaki, Algébre, IX §9 n° 4], this algebra is simple if |I|
is odd and it has exactly two simple components of equal dimension if |I} is
even. It follows that, if |I| is odd, I' has exactly one irreducible representation
on which ¢ acts as —1 (its dimension is 2471=Y/2); if |I| is even and >0, then I
has exactly two irreducible representations on which ¢ acts as —1 (they both
have dimension 2071~ 2)2),

If I is empty, then N is divisible by 4 and it is clear that Z,(g)/Z2(g) is of
order 2 hence this group has a unique irreducible representation on which ¢
acts as —1. In this case, f(g) is a degenerate unipotent element in G=SO0(V).
Let g’ be a unipotent element in G such that {g) is degenerate, with the same
kind of Jordan cells as f(g), but not conjugate to f(g). Then g,g" can be
distinguished as follows. The image of weZ; in one of the groups Z;(g)/Z2(g),
Z;(g)/Z2(g) is trivial and its image in the other is non-trivial. This follows
from the fact that there is an outer automophism of G taking the class of g to
the class of g" and interchanging @ and zw.

The previous arguments give the following result.

14.4. Proposition. Let G=Spin(V), dimV=N23 and let y: Z;~Q} be a

character such that y(¢)= — 1. Then there is a 1 —1 correspondence between the
set AN, (see 142) and the set of partitions N=1i;+2i,+3i3+... such that
iyip,05,...20, iy,1,,i0c,... even, iy,is,is,...€{0,1}. The correspondence is ob-

tained by attaching to (C,&)e A, the partition for which i, is the number of
Jordan cells of size a of p(g), (geC). If N=1i, +2i,+3i,+... corresponds in this
way to (C,&)e A/, then & is a local system of dimension 2" on C, where r is
defined as follows. Let 1={a odd|i,=1}. Then

(Il—-1)/2  if |I] is odd
r={(ID=2)/2 if |I| is even, >0
0 if |1=0.

In particular, for a given unipotent class C in G, there is at most one G-
equivariant irreducible local system & on C such that (C, &)ef}.

14.5. Corollary.
(N —(2t%— t))

*mzzpl 4

tel

(As p,(j) is taken to be zero unless j is an integer =0, we may as well restrict
the sum to those ¢ for which N=(2¢2—t)(mod4) i.e. N=t(mod4).)
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Proof. For each integer ¢, we consider the set %, , consisting of all partitions of
N such that

{a) each odd part appears at most once

(b) each even part appears an even number of times

(c) the number of parts equal to 1 (mod4) minus the number of parts equal
to 3(mod 4) is equal to t.

It is clear that #, , is empty unless =N (mod4). From 14.5, we have |4/

=312, . It is therefore enough to prove the following result
t

N2 —
(145.1) Ped=p (G —2);

we now show that this formula is equivalent to Jacobti’s triple product formula
[5, Th.352].
Let Z,,Z, be two indeterminates. We have

(14.5.2)
Nt __ P14+ 3034 585+ ...)+2(2j2+4ja+..)) 701 —063+5—67+...
z |Pyol 21 25 = Z Zy Z5
NZzO 81,83, ...€{0, 1}
teZ J2,Ja....20

=(1-ZH" ' (1-Z) "' (1-Z1) " .1+ 2, Z) 1+ 2323 )
A+Z3Z)A+Z7Z7Y ...
On the other hand

N—Qt*— 2
NZO 123 (—(;—t)) Z’;’ Z‘2: Z pz(m) Z‘ltm+(2r —t)Z;
teZ m,t
_(Z p,(m) Z4m) Z (ZZ)‘Z ( )
teZ

L Z
=[Ta-zH2TTa-zH ] (1+z4' z ) I1 (1+Z‘;'—2—l)
izl izt izl iz z,
(by Jacobi’s formula); this is clearly equal to (14.5.2). Thus, (14.5.1) and hence
the Corollary are proved.
We shall prove the following result

14.6. Proposition. If y is as in 14.4, we have

Mfl(o)l:{l, if N=].(‘}+1)/2 for some j=2
0, otherwise.
The proof will follow along the same lines as the proofs in § 10.

The desired result is true for N=3 or 4, by the known results for SL,(k),
SL,(k) x SL,(k), see (10.3.2). We assume now that N5 and that the result is
already proved for N<N. Using the known results for smaller groups we
classify the triples (L, C,,&))e.#, with L+G, up to conjugacy. (#, is as in
14.2.) We see that there are the following possibilities.
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(@) L corresponds to a diagram

mi+m

A x...xA; xDp21meD, (where N=2n,n=2r+

R Ry — 4

, m=3, rgl)
r factors

represented by black dots:

O @O OO oo——<:

v

2r (m*+m)/4

(b) L corresponds to exactly one of the following two diagrams
A, xA;x...xA, =D, (where N=2n, n=2r) represented by black dots:

r factors

(The diagram which actually appears depends on y.)
(c) L corresponds to a diagram A4, X ... x 4, X Bm? +:—2 «B,

2 —2 r factors
(where N=2n+1, n=2r+m—+:—1——~, mz2,r= 1) represented by black dots:

[ 4 O L 4 O ... O L 4 Oo—e ... 00—« ®»
;r (m*4m-2)/d
(d) L corresponds to a diagram A4, x... x A, < B, (where N=2n+1, n=2r)
represented by black dots:

r factors

® @- O ... ® —O €«—_—0.

In each case, (C,, &;) is uniquely determined by L and N(L)/L is a Coxeter
group of type B,.

If & is the local system 1X& on ZP-C,, we have o, ~Q[#; ]
=@Q,[N(L)/L], (by 9.2), so that &~ '(L,C,,&;) consists of p,(r) elements. It
foliows that

N —(m2 +m)2

D M L)
mz0
(m?2+m)/ <N

On the other hand, Corollary 14.5 can be rewritten as

(N——(m2 +m)/2)

| A l= Z 1) 4

mz0
and the desired formula for | 4| follows.
It is likely that, if (C,&)e A, and geC, then the sizes of the Jordan cells
B(g)eSO(V) give the partition N=14+5+94+134+... or N=3+7+11+15+...



Intersection cohomology on a reductive group 267
§ 15. Examples in the exceptional groups

15.1. In this section, we assume that G is simply connected, almost simple of
type E¢. From [12], we see that

39, if char(k)+2,3
(15.1.1) | #=127, if char(k)=3
44, if char(k)=2.

We now classify the triples (L, C,, 8;)e.#, with L+ G (up to conjugacy) using
the already known results for smaller groups. We see that there are the
following possibilities:

a) L=maximal torus; then (C,, &;) is uniquely determined by L.

b) L corresponds to the diagram of type A, xA,cE, (when char(k)=3);
then L/%~SL,(k)x SL;(k) modulo a cyclic group of order 3 imbedded diag-
onally in the centre. Hence, there are two possibilities for (C,,48;) (see
(10.3.2)); the group Z; (of order 3) acts on one of them by one of its non trivial
characters and on the other by its other non-trivial character.

¢) L corresponds to the diagram of type D, cE. (when char(k)=2); then
(C,,&;) is uniquely determined (see 10.7).

In each case, N(L)/L is a Coxeter group (of type E, in (a), of type G, in (b),
of type A, in (c)).

Hence we can compute the number of elements in the fiber of @ over any
of the elements in a), b), ¢). (It is the number of irreducible representations of a
Coxeter group of type E,, G, or 4,). Hence we can determine | 4/ — A" ©)]. We
find:

25+64+6=37, if char(k)+2,3
| N = A O =125 if char(k)=3
254+6+6+3=40, if char(k)=2.

Comparing with (15.1.1), it follows that

2, if chark#+2

(O} =
(15.1.2) A {4, if chark=2.

In the case where char(k)+2,3, we denote by (C, &), (C', &) the two elements of
A0 The centre & (of order 3) acts non trivially on the two local systems
&,&'. This follows from the fact that A" (for the adjoint group G,,) has 25
elements, hence by arguments similar to those above, #? (for G,,) is empty.
By 2.5, (C,&*) is an element of A4"®. (£* is the dual of &; it is necessarily
distinct from &, since a non-trivial character of %; cannot be equal to its
inverse.) Thus, we have C'=C, §'=§% and 4,4’ are non-constant. One can
show that C is the unique unipotent class of dimension 66.

15.2. 1In this section, we assume that G is simply connected, almost simple of
type E,. From [13], we see that
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86, if char(k)+2,3
(15.2.1) A'=192, if char(k)=3
72, if char(k)=2.

We now classify the triples (L, C,, & )e.#;, with L+G, (up to conjugacy)
using the already known results for smaller groups. We find the following
possibilities:

(a) L=maximal torus; then (C,, &;) is uniquely determined by L.

(b) L corresponds to the following diagram of type A, x4, xA,cE,,
represented by black dots:

o700 L 2 A

l

(when char(k)%2). Then L/%?~SL,(k)xSL,(k)xSL,(k) modulo the unique
central subgroup of order 4 which is invariant by all permutations of the three
factors. In this case (C,, &;) is uniquely determined by L, (see (10.3.2)).

(c) L corresponds to the diagram E < E.,, (when char(k)=3). In this case,
there are two possibilities for (C |, &)), (see (15.1.2)).

(d) L corresponds to the diagram D,c E, (when char(k)=2). In this case,
(C,,&)) is uniquely determined by L, (see 10.7).

In each case, N(L)/L is a Coxeter group (of type E, in (a), of type F, in (b),
of type A, in (c), of type B, in (d)).

Hence we can compute the number of elements in the fibre of ¢ over any
of the elements in (a), (b), (c), (d). (It is the number of irreducible repre-
sentations of a Coxeter group of type E,, F,, A, or B;) Hence we can
determine | /"— A9 We find

60 +25=85, if char(k)+2,3
| A= O = 60+25+2+2=89, if char(k)=3
60+ 10="70, if char(k)=2.

Comparing with (15.2.1) it follows that

1, if char(k)+2,3
(15.2.2) | A @) =13, if char(k)=3

2, if char(k)=2.
By entirely similar arguments, we see that, if char(k)#+2, 3, then A4"? (for the
adjoint group G,,) is empty. It follows that
(15.2.3) If char(k)=2, 3, then the unique element (C, &)e /"9 is such that Z (of
order 2) acts non-trivially on &.

One can show that, if char(k)#2,3, C in (15.2.3) is the unique unipotent
class in G of dimension 112, satisfying |Z;(g)/Z%(g)| =12 for ge C.
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15.3. In this section, we assume that G is simple of type E,. From [13], we
see that

113, if char(k)%2,3,5
117, if char(k)=5
15.3.1 N =
(153.1) ] 127, if char(k)=3
146, if char(k)=2.

We now classify the triples (L, C,,&;)e.#; with L+G (up to conjugacy)
using the already known results for smaller groups. We find the following
possibilities:

(a) L=maximal torus; then (C,, &) is uniquely determined by L.

(b) L corresponds to the diagram E, < E,, (when char(k)=3). In this case,
there are two possibilities for (C,, &;), (see (15.1.2)).

(c) L corresponds to the diagram E, < Eg, (when char(k)=2). In this case,
there are two possibilities for (C,, &), (see (15.2.2)).

(d) L corresponds to the diagram D, Eg, (when char(k)=2). In this case,
(C,,&)) is uniquely determined by L.

In each case, N(L)/L is a Coxeter group (of type E; in case (a), of type G,
in case (b), of type A, in case (c), of type F, in case (d)).

Hence we can compute the number of elements in the fibre of ¢ over any
of the elements in (a), (b), (c), (d). (It is the number of irreducible repre-
sentations of a Coxeter group of type E;, G,, A, or F,) Hence we can
determine | /— A9, We find

112, if char(k)#2,3

| N = N O =] 1124+ 6+6=124, if char(k)=3
112+25+2+2=141, if char(k)=2.

Comparing with (15.3.1), it follows

, if char(k)=*2,3,5
, 1f char(k)=5 or 2
, if char(k)=3.

Ve

W L =

From the results in [19] it follows that, when char(k)+2,3,5, the unique ele-
ment of 4% is (C,&), where C is the unique unipotent class such that for
geG, we have Z;(g)/Z%(g)~ S, and & corresponds to the sign character of
S,.

15.4. 1In this section, we assume that G is simple of type F;. From [14, 16], we
see that

26, if char(k)#2,3
(154.1) | A =428, if char(k)=3

35, if char(k)=2.

The triples (L, C,,&,)e M, with L+G can be classified as follows (up to
conjugacy).
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(a) L may be a maximal torus; then (C,, &) is uniquely determined by L.

(b) L may correspond to the diagram B,cF,, (when char(k)=2); then
(C,,&;) is uniquely determined by L.

N(L)/L is a Coxeter group of type F, in case (a) and of type B, in case (b); the
fibres of @ over one of the elements (a), (b) of .#; have a number of elements
equal to the number of irreducible representations of the corresponding Co-
xeter group. From this, we get

|/V'—¢V“”I={2i if char(k)fi

30, if char(k)
and hence
1, if char(k)£2,3
IO =13, if char(k)=3
5, if char(k)=2.
From [16] it follows that, if char(k)+2,3, the unique element of A"? is

(C,&) where C is the unique unipotent class such that for geC, we have
Z:(8)/Z2(g)~ S, and & corresponds to the sign character of &,,.

15.5. In this section, we assume that G is simple of type G,. It is known that
, if char(k)%2,3

, if char(k)=3
, if char(k)=2.

| |=

o0 \NO =]

There is a unique triple (L, C,,&;)e #; with L+G (up to conjugacy): L is a
maximal torus and (C,, &) is uniquely determined by L. It follows that

| A — A4 =6=number of irreducible representations of the Weyl group.

Hence,
1, if char(k)%2,3
(15.5.1) O =23 if char(k)=3
2, if char(k)=2.

The elements of 47 can be described as follows. Let C be the subregular
unipotent class in G. There is a unique one-dimensional non-constant G-
equivariant local system & on C and we have (C,8)e 479, Let C, be the
regular unipotent class in G. If char(k)=3, then (C,, &)e 4@ where & is any of
the two one-dimensional non-constant G-equivariant local systems on C,. If
char(k)=2, then (C,,&)e 4@ where & is the unique one-dimensional non-
constant G-equivariant local system on C,.

15.6. Using the results in § 10, 14, 15 and (2.10.1) we obtain a classification of
all cuspidal pairs (S,4&) of any simply connected almost simple group G. We
shall make this explicit in the case where G is of type E4. In this case there are
exactly 13 cuspidal pairs for G (in any characteristic).

In the case where dim(k)+2, 3,5, they can be described in a concise way by



Intersection cohomology on a reductive group 271

the following diagram:

2 6 5 4 3 2 1

* i

This is interpreted as follows. Each vertex of the diagram corresponds, as it
is well known, to an isolated semisimple conjugacy class. Only those vertices
which are marked by a number will play a role. Consider one of the marked
vertices and let i be the corresponding mark (1<i<6). Let s be a semisimple
element in the corresponding conjugacy class. Then the centre of Z(s) is a
cyclic group of order i. Let 6 be any one dimensional faithful representation of
the centre of Z(s). Given s, 6, there is a unique cuspidal pair (S, &) for G with
the following properties:

~0—

—O—
—o—
e
-0
O

(a) & is one dimensional
(b) there is an element geS with semisimple part s
(c) the centre of Z4(s) acts on the stalk of & at g by the character 6.

The 13=¢{1)+2¢(2)+ d(3)+ P(4) + H(5) + $(6) cuspidal pairs thus obtained
exhaust all cuspidal pairs of G. (¢ is the Euler function.)

The classification of the cuspidal pairs of the simply connected groups of
type E., Eq for chark+2 3 can be described in an entirely similar way, in
terms of digrams as above:

2 6 4 6 2 3 6 3 6 3

E.: E.:

3

Thus we have 8 (resp. 14) cuspidal pairs for G of type E, (resp. E).
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