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Let G be a reductive connected algebraic group over an algebraically closed 
field, and let u be a unipotent element of G. Let AG(u ) be the group of 
components of the centralizer ZG(u ). The group AG(u ) acts naturally by per- 
mutations on the set of irreducible components of the variety of Borel sub- 
groups containing u and Springer [20, 21] has shown that (with some re- 
strictions on the characteristic) the irreducible representations of AG(u ) appear- 
ing in this permutation representation, for various u (up to conjugacy), are in 1 
- 1  correspondence with the irreducible representations of the Weyl group. 
Note however that, in general, not all irreducible representations of AG(u ) 
appear in this permutation representation. Our main interest in this paper is in 
understanding the missing representations. Let P be a parabolic subgroup of G 
with Levi decomposition P=LUp,  and let v be a unipotent element in L. 
Following Springer, we consider the variety 

Yu, v= {gZ~ UpI gEG, g -1 ug~vUe}. 

Then dim Y. ,v<d=�89  (This is proved by Springer [21], 
with restrictions on characteristic; in the general case, it follows from results in 
w 1.) The group ZG(u ) acts naturally on u by left translation. This induces an 
action of the finite group Aa(u) on the finite set S., v of irreducible components 
of dimension d of Y,, v. 

When P is a Borel subgroup and v = l ,  this is just the action considered 
earlier. 

We say that an irreducible representation of AG(u ) is cuspidal if it does not 
appear in the permutation representation Su, v for any P, v as above, with P :4= G. 

It turns out that very few representations of AG(u ) are cuspidal. More 
precisely: 

I f  we f ix  a character Z of the group F of components of the centre of G, and 
if we are in good characteristic, then there is at most one pair (u,p) with u 
unipotent in G (up to conjugacy) such that p is an irreducible cuspidal repre- 
sentation of Aa(u ) on which F acts according to X. 
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If we take G to be almost simple, simply connected, the condition on G and 
Z that such a pair (u, p) exists is as follows: 

Type A.: Z is of order n + l  

Type B.: x = l ,  2 n + l E [ ]  
Z 4 : 1 , 2 n + 1 e A  

Type C.: X = 1, n~/x and n even 

Z4:1, nEA and n odd 

Type D. : Z= 1, 2n~ [] and n/2 even 

Z + I ,  Z(e)= 1, 2n~U] and n/2 odd 

Z(e) 4= 1, 2n~/x 

Type E 6 : Z �9 1 

Type E 7 : X �9 1 

Type E 8 : Z = 1 

Type F 4 : Z= 1 

TypeG  2: Z=I-  

Here, [] denotes the set {1,4,9, 16, ...}, Z~ denotes the set {1,3,6, 10, 15 . . . .  } 
and e denotes the non-trivial element in the kernel of the natural map of 
Spin2, onto S02,. 

The classification in bad characteristic is different; see w 15. 
Given a pair (u, p) where u is a unipotent element in G (up to conjugacy) 

and p is an irreducible representation of A6(u), we define in w 6 a triple (L, v, p'), 
up to G-conjugacy, where L is the Levi subgroup of a parabolic subgroup of G, 
v is a unipotent element in L and p' is a cuspidal representation of AL(v ). 
Moreover, we show (Theorem 6.5) that the set of pairs (u,p) giving rise to a 
fixed triple (L, v, p') as above, may be naturally put into 1 - 1  correspondence 
with the set of irreducible representations of the group of components of the 
normalizer of L (which is shown in w 9 to be a Coxeter group). We call this the 
generalized Springer correspondence; it reduces to the correspondence de- 
scribed originally by Springer, in the case where L is a maximal torus. In this 
way, the classification of pairs (u, p) as above is reduced to the classification of 
cuspidal pairs. 

In w167 and 13, we determine in a combinatorial way this generalized 
Springer correspondence in the case of symplectic and special orthogonal 
groups in odd characteristic; this generalizes the main result of Shoji [15] on 
the usual Springer correspondence for these groups. Our approach is based on 
a variant of the notion of symbols in [6]. Recently, together with N. Spalten- 
stein, we have extended this result to the case of classical groups in characteris- 
tic two. Using the results of this paper, Spaltenstein has determined explicitly 
the generalized Springer correspondence for exceptional groups in arbitrary 
characteristic, in almost all cases. 

In this paper we use extensively, just as in [9, 2], the intersection coho- 
mology theory of Deligne-Goresky-MacPherson, (see [4, 1]). An important 
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role in our proofs is played by a certain class of intersection cohomology 
complexes on G (see w 3). I believe that these are precisely the complexes whose 
existence was conjectured in [10, w 13]; if this is so, the further study of these 
complexes might lead to the complete computation of the character tables of 
finite Chevalley groups. 

I wish to t hank  N. Spal tens te in  for some very useful comments .  
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O. Notations 

Let ~ be an algebraic closure of the field of l-adic numbers. We shall consider 
constructible ~t-sheaves on an algebraic variety over an algebraically closed 
field k, (l is a fixed prime, invertible in k). We shall call them constructible 
sheaves; a special case of these are the local systems. We shall often make use 
of the Deligne-Goresky-MacPherson intersection cohomology complex (see [4, 
1]) of an irreducible variety X over k, with coefficients in a local system g over 
an open dense smooth subset of X; we shall denote it IC(X, ~). (It is an object 
in the bounded derived category Db(X,~) of constructible sheaves on X.) We 
normalize it in such a way that 

(0.1) its cohomology sheaves ~ i  are zero for i<0,  oug ~ extends dg and 

dim supp o~ i < dim X - i, for i > 0. 

We shall make use of the theory of perverse sheaves, for which the basic 
reference is [-1]. Let K be a perverse sheaf (possibly shifted) on X, and assume 
that X is provided with an action of a connected algebraic group G. We say 
that K is G-equivariant if the following condition is satisfied. There exists an 
isomorphism ~ in the derived category between the pull-backs p*K,p~K 
(where pl:G x X ~ X  is (g, x)~--~x and p2:G x X--*X is (g, x)~--~gx) such that the 
induced isomorphism between i*p*K and i*p*K is the identity K--,K; here, 
i : X ~ G x X  is x~--.(e,x) so that i*p*K=K, and i*p*K=K. Then e is nec- 
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essarily unique. (As Deligne told me, this follows from [1, Prop. 4.2.5].) It also 
follows that e satisfies the usual associativity condition. For a not necessarily 
perverse complex of constructible sheaves on X, the notion of G-equivariance 
is more delicate (Deligne); we shall not need it here. The notion of G- 
equivariant local system on X is obvious. If G is connected and its action on X 
is transitive, the G-equivariant local systems on X are in 1 - 1  correspondence 
with the finite dimensional representations of the finite group of components of 
the isotropy group of a point xeX.  

All representations of finite groups are assumed to be in finite dimensional 
~t-vector spaces. 

If X is an algebraic variety, X ' c X  is a locally closed subvariety of X and 
g is a constructible sheaf on X, we shall write H~(X', ~) for the cohomology 
with compact support of X' with coefficients in the restriction NIX'. If eg is a 
complex of sheaves with constructible cohomology sheaves on X, the same 
notation will be used for the hypercohomology with compact support of X' 
with respect to the restriction of that complex to X'. 

The identity component of an algebraic group H will be denoted H ~ the 
centre of H is denoted ~n ;  its identity component is y,o. If H'  is a subgroup of 
H and hell, we write Zn,(h ) for the centralizer of h in H' and N(H') or Nu(H' ) 
for the normalizer of H' in H. 

w 1. Dimension estimates 

1.1. Let G be a connected reductive algebraic group over an algebraically 
closed field k, and let N be a class of parabolic subgroups G. For PeN,  we 
denote by U e the unipotent radical of P, by P the reductive group P/U e and by 
np: P ~ P  the natural projection. We assume given a conjugacy class C of G. 
We also assume given for each P e ~ ,  a P-conjugacy class C p c P  with the 
following property: for any PI ,P2e~ and any geG with P2=gP~ g - l ,  we have 
7z~21(Cp2)=ggpll(Cp~)g -1. (Thus it is enough to specify a conjugacy class in P 
for some P and then we have automatically a conjugacy class in P' for any 
P'er 

Let 

Z =  {(g, P1, P2) eG x ~ x ~ [  gent7 1 (~f~, C~,)~n~21(~.~2 Cp2)} , 

Z ' =  {(g, P1, P2) eG x ~ x Nlgenl;x(Cpl)nne21(Cp2)}. 

We have a partition Z =  U Z~, according to the G-orbits (9 on N x N; the 
e 

piece Z~ is the subset of Z defined by the condition that (P~, P2)e(9. We define 
in the same way a partition Z~ = U Zg. A G-orbit (9 is said to be good if, for 

(P~, P2)eC, there exists a common Levi subgroup for P~ and P2; otherwise, (9 is 
said to be bad. 

We shall denote by v~ the number of positive roots of G and we set V= vp 
(Pe~) ;  we also denote ~=dimY'~,  for PeN. Let ~ = d i m C  v, for P e ~ ,  and c 
= dim C. 
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The following result is well known in the case where ~ is the set of Borel 
subgroups, (see [20], [-18, II 2.6]). Springer [21, 4.2] proved (a) and (b) also for 
arbitrary ~, but with some restrictions on the characteristic of k. 

1.2. Proposition. (a) Given P ~  and ~,~ Cr, we have dim (C c~ rib-1(~))< �89 

(b) GivengEC, we haved im{P~lgEne t (Ce) }<=(vG-2) -@-2) .  

(c) If  d = 2 v a - 2 ~ + ~ + ? ,  then dimZe<d if(9 is good, and d i m Z e < d  / f 0  is 
bad. Hence dim Z < d. 

( d ) / f  d ' = 2 v G - 2 ~ + ~  , then dimZ~v<d' for all (9. Hence dimZ'<d ' .  

Proof In the case where ~ =  {G}, the proposition is trivial. Therefore, we may 
assume that ~ is a class of proper parabolic subgroups of G and that the 
proposition is already known when G is replaced by a group of strictly smaller 
dimension. 

We can map Ze and Z~v to (9, by (g, P1, Pz)---~(P1, P2)" We see that proving (c) 
and (d) for Ze, Z' e is the same as proving that for a fixed (P', P")~(9, we have 

(c') dim {n~ 1 (~e~, C~,)c~n~,l(~,, Cp,,)} < 2 v ~ -  2~ +~ + ~ - d i m  (9 

(d') dim (rip, 1 (Ce,) c~ rip,, ~ (Ce,,)} < 2v G-  2~ +~ - dim (9 

with strict inequality in (c') if (9 is bad. 
Choose Levi subgroups E of P' and E' of P" such that L' ,E'  contain a 

common maximal torus. Then P'c~E' is a parabolic subgroup of E' with 
unipotent radical Ue, c~E' and Levi subgroup E c~E'; P"c~E is a parabolic 
subgroup of E with unipotent radical Up,,C~E and Levi subgroup Ec~E'. An 
element in P'c~P" can be written both in the form x.u (x~E, u~Up,) and in the 
form y.v (y~E', v~Ue,,). It is easy to see that there are unique elements 
zEEc~E', u"~EC~Up,,, u'~E'c~Up,, such that x=zu", y=zu'. Hence (c') is 
equivalent to 

(c") dim{(u,v,u",u',z)~Ue, xUe,,x(Ue,,c~E) x(Ue,~L")x(L'c~L")l 

u" u=u' v, zu" ~ ;  ~ c~,, zu' ~ ~  C~,,} 

<2vG-2~ + ~ + ? - d i m ( 9 ,  

(with strict inequality for bad (9) and (d') is equivalent to the inequality (d") 
obtained from (c") by dropping ~o, ~o, ,? .  (We identity L'=fi ' ,  E ' = P " ,  and 
thus we regard Ce, c E ,  C~,,cE'.) When (u',u")e(Up, C~E')x(Up,,c~L') is fixed, 
the variety {(u,v)eUe, x Ue,,lu"u=u'v} is isomorphic to Up, C~Ue,,: if we set 
=u'-tu"uu"-~eUe,,  ~=vu"-~eUe,,, this variety becomes {(fi,~)eUp, x U~,,lfi 
=~}. 

Since dim(Up, C~ Ue, , )=2va-2~-dim(9 ,  we see that (c"), (d") are equivalent 
t o :  

(c"') dim {(u", u', z)~(Up,, c~ 12) x (Up, c~ E ') x (12 c~ /2  )1 

zu" E:~ ~ C~,, z u ' ~ ~  Cp,,} <-~ +~  
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(d'") dim {(u", u', z)e(Ue,,~E ) x (Ue, c~ E' ) x (L'~E')[ 

zu" e Cp,, uu' e Cp,,} <-d 

with strict inequality in (c") for bad (9. 
Let us consider the variety in (d'"). Note that the projection ~3 of that 

variety on the z-coordinate is a union of finitely many conjugacy classes 
( ~ C 2 ~ . . . u C  . in the reductive group E~E'.  (By the finiteness of the 
number of unipotent classes in a reductive group [8], it is enough to show that 
the semisimple part z s of z can take only finitely many values up to conjugacy 
in E~E';  but zs is conjugate in EriE' to one of the elements in the finite set 
obtained by intersecting the set of semisimple parts of elements in Cp, c L' with 
a fixed maximal torus in Ec~E'.) The inverse image under % of a point zel2~ is 
a product of two varieties of the type considered in (a) but for a smaller group 
(G replaced by E or E') hence by the induction hypothesis it has dimension 
< l ( ~ - d i m C i ) + � 8 9  Hence dim~-l(121)<~. Since this is true for 
each i (1 <iNn), we see that the variety in (d'") has dimension <~. 

A similar proof applies for (c'"). We denote by ~3 the projection of the 
variety in (c'") on the z-coordinate. The image of if3 is the intersection of two 
sets: ~~ (~',) and ~~176 C,,), where C 1 . . . . .  C,, C l . . . . .  C m are 
a finite set of conjugacy classes in E~E'. (The same argument as for (c"').) 

Hence the image of ~3 is .U.(~o,~2'gc~o,,(~]). Note that y0o,~eo,, are 

contained in the centre of Ec~E'. It follows that the image of ~3 is of the form 
(~e~176 C~w...w(2~~176 for a finite set of conjugacy classes C~, ..., C, 
in EriE'. Now the same proof as in case (d'") (using (a) for a smaller group) 
shows that the variety in (c'") has dimension <~+dim(3f~176 Since 
dim(Y'~176 with strict inequality if (9 is bad, we see that (c"') is proved. 
Hence (c) and (d) are proved (assuming the induction hypothesis). 

We now show that (b) is a consequence of (d). Let Z'(C) be the subset of Z' 
defined by Z'(C)={(g, PI,Pz)eZ'IgeC }. If Z'(C) is empty then, clearly, the 
variety in (b) is empty and (b) follows. Hence, we may assume that Z'(C) is 
non-empty. From (d), we have dimZ'(C)<d'. We map Z'(C) onto C by the 
projection on the g-factor. Each fibre of this map is a product of two copies of 
the variety in (b). It follows that the variety in (b) has dimension equal to 

c 
� 89  C)<�89 and (b) is proved. 

Finally we show by a well-known argument that (a) is a consequence of (b). 
Consider the variety {(g,P)eCx3~]ger~;t(C~)}. By projecting it to the g- 

c ~' 
coordinate, and using (b), we see that it has dimension < % - ~ + ~ + ~ .  If we 

project it to the P-coordinate, each fibre will be isomorphic to the variety 
c F 

Cc~rc~l(Ct~), (PeN fixed). Hence dim(Cc~z~(Ct , ) )<v~-~+~+~-dim~ 

c+ ~  
- . Now Cc~z~l(C~) maps onto C~ (via ~ )  and each fibre is the variety 

2 < c + ~  c - ~  
in (a). Hence the variety in (a) has dimension = 2 c -  The prop- 
osition is proved. 2 
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1.3. Remarks. (i) In the case where ~0 is good, the variety in (c'") above is 
{ z e E I z ~ Y  ~ Cv, c~Y ~ Ce,, }, since L=E ' .  This variety (and hence Ze) is empty 
unless 

y o  cp, = yo, 

It this equality is satisfied, then Z e has dimension equal to d. 
(ii) The inequality in 1.2(b) can be reformulated as follows. If we fix PoeN 

and a conjugacy class C o c f i  0 of dimension ~ then, for any geC,  we have 

(1.3.1) dim {XPoEG/Polx -1 gxE7~ol( Co)} ~ (v~-2)- (v-~). 

We shall need also the following variant of this inequality: 

(1.3.2) dim{xPo~G/PolX-~gxen~o~(Y~oCo)}< v~-~ 2 - ~ -  . 

This follows from (1.3.1) by observing that, for given g, there exist finitely many 
conjugacy classes C 1, C 2 . . . . .  C~ in F 0, of dimension ~, such that 

x -  ~ gxenZo~(Y~o Co)=~x- ~ gxen~o~ ( C~ w. . .  u C~). 

w 2. Cuspidal local systems 

2.1. Let S be a subset of G such that S is the inverse image of a conjugacy 
class in G / Y  ~ under the natural map G ~ G / Y  ~ Then S is a locally closed 
smooth subvariety of G of dimension equal to d im(S/Y ~ +dim(Y~ 

2.2. Proposition. Let N, Cec /~  (VPeN),7,~ be as in 1.1. Let ~ be a local 
system on S. Let 3 = dim ( S /Y  ~ - dim (Cp), (PEN). 

(a) For any P e N  and any ~eCp, we have dim(g~-l(~,)c~S)<�89 hence 
H~(ne t (~,) ~ S, g) = 0 for i > 8. 

(b) 7he following conditions are equivalent: 

(2.2.1) For any P e N  and any ~,eCt,, we have H~(r~-I(~,)c~S, ~)=0.  

(2.2.2) For any PeN,  any geC t, and any irreducible component D of n~a(g)c~S 
1 

of dimensional equal to ~ 8, the restriction of g* to some (or any) smooth open 

dense subset of D has no global sections 4=0. (Here ~* is the local system dual 
to g.) 

Proof. (a) It is clear that all elements in n~(~,) have semisimple part in a fixed 
conjugacy class in G. Hence n e 1(~,) is contained in the union of finitely many 
conjugacy classes in G. It is then enough to show that for any conjugacy class 
C of G such that C o S ,  we have dim(nel(g)c~ C)<�89 This follows from 1.2(a) 
since dim C = dim (S/Y~ 

(b) Let D o be a smooth open dense subset of D. Then H~(D, N)~H~(Do, g) 
and the last space has dimension equal to the dimension of the space of global 
sections of ~* on D o (by Poincar6 duality for Do). It remains to note that (by 
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(a)) H~(n~l(~,)c~S,g) is the direct sum of the spaces H~(D,g) where D runs 
over the irreducible components of dimension �89 ~ of rc~-1 (~)ca S. 

2.3. A one dimensional local system 50 on a torus T~ is said to be tame if 
there exists an integer m >  1 such that m is invertible in k and such that the 
inverse image of 5 ~ under z-~z": T I ~ T  1 is the constant sheaf Q, on T1. 

A constructible sheaf g on G is said to admit a central character if there 
exists a one dimensional tame local system 5: on ~ 0  with the following G 
property. Let 50~ be a one-dimensional tame local system on the torus G/Gae r 
(Gder=derived group of G) such that the inverse image of ~ under the 
composition Lr~ G/Gde r is ~ Then we require that there exists a con- 
structible sheaf g~ on G / ~  ~ such that d o is isomorphic to the inverse image of 
5~1Nldoj under the natural map G--*(G/Gder)x (G/~r~ 

We say that 5: is the central character of do. It is uniquely determined by ~, 
if ~:t:0. We shall use the same terminology for a constructible sheaf on a 
locally closed subvariety X of G, stable by multiplication by ~ o :  we identify it 
with the constructible sheaf on G which extends it by 0 on G - X .  If G is 
semisimple, then any constructible sheaf on G admits a central character. 

2.4. Definition. Let S ~ G  be as in 2.1 and let do be a G-equivariant irreducible 
local system on S. We say that do is a cuspidal local system or that (S, :o) is a 
cuspidal pair for G if the conditions (a), (b) below are satisfied: 

(a) do admits a central character. 
(b) For any ~ { G }  and any C t ,~P  ( V P ~ )  as in 1.1, the pair (S, do) 

satisfies the equivalent conditibri~ (2.2.1), (2.2.2). 

2.5. Let S c G  be as in 2.1 affd. let S be the image of S i n  G / ~ .  From the 
definitions it follows easily th'at a G-equivariant irreducible local system g on S 
is cuspidal if and only if there exists a (G/Lr~ irreducible cuspidal 
local system do1 on S and a one dimensional tame local system ~ on G/Ga, ~ 
such that ~ is isomorphic to the pull back of ~ N-]g~ under the natural map 
G-~(G/G~o,) • (6/~~ 

Hence, if (S, do) is cuspidal, then do is associated to a representation of the 
fundamental group of S which factors through a finite quotient. (The anal- 
ogous property is true for ,~ since it is tame, and for g~, since G / ~  ~ acts 
transitively on S.) It follows that the dual do* is again associated to a repre- 
sentation of the fundamental group of S which factors through a finite quo- 
tient. Hence the criterion (2.2.1) for do can be reformulated as the condition 
that do* restricted to an open dense smooth subset of D has no constant direct 
summands +0. This condition is clearly self dual. It follows that (S, g*) is 
again cuspidal. 

2.6. Definition. An element g~G (or its conjugacy class) is said to be isolated if 
the connected centralizer of g~ (the semisimple part of g) is not contained in a 
Levi subgroup of a proper parabolic subgroup of  G. 

It is known [8] that G / ~  ~ contains only finitely many isolated classes. A set 
S c G  as above is said to be isolated if some (or equivalently any) of its 
elements is isolated. It follows that there are only finitely many S which are 
isolated. 
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2.7. Proposition. I f  (S, 8) is a cuspidal pair, then S is isolated. 

Proof. Let g~S and assume that Z~  where L is a Levi subgroup of a 
proper parabolic subgroup P of G. Let r Ue-~gU e be the map given by ~(v) 
=vgv -1. (We have vgv- legUe  since ne(vgv-1)=ne(g).) The map r is in- 

jective: if vgv-1 =v 'gv ' -1  then v- lv '~Za(g) ;  it follows that v-lv'~Za(g~) and, 
since v-lv '~Ue,  we have v-lv'~Z6(gs)c~ Ue=Z~ hence v 
=v'. Since dim Ue=dimgUe, it follows that dp(Ue) is dense in Ue; on the other 
hand, d;(Ue) is an orbit of the unipotent group U e acting on the affine variety 
G, hence it is closed in G. Hence ~b is a bijection of Up onto g Up. This implies 
that gU e is contained in S, hence 8 is locally constant :~0 on g Ue; moreover, 
the restriction of 8 to g U e is equivariant for the action of U e on g U e given by 
conjugation. This action of U e on g U e has trivial isotropy (since ~b is bijective) 
hence the restriction of 8 to g U e is a constant sheaf, 4:0. It follows that 
H~e(gUp, 8)4:0 where e=dim(gUe). Since the connected centralizer of gs in L 
coincides with that in G, it follows that the connected centralizer of g in L 
coincides with that in G. Hence dim(class of g in G) - dim (class of g in L) 
=dim(G)-d im(L)=2dim(Ue)=2e .  It follows that (S, 8) cannot be cuspidal. 
The proposition is proved. 

The following result gives further restrictions on S for which (S, 8) can be 
cuspidal. 

2.8. Proposition. Let (S, ~) be a euspidal pair for G, let g be an element of S 
and let H=Z~(g). Then o o H / ~  is unipotent. 

Proof. Let L be the centralizer in G of a maximal torus of H ~ and let P be a 
parabolic subgroup of G for which L is a Levi subgroup. Let D 
={vgv-l[v~Ue}.  Then, as we shall see in Lemma2.9, D is an irreducible 
component of cl 6(g) c~g Up of dimension equal to e-- �89 (dim c la(g)- dim ClL(g)). 
(Here, c/a(g), clL(g ) denote the conjugacy class of g in G, L.) The restriction of 

to D is Up-equivariant, for the (transitive) action of Up given by conjugation, 
and the isotropy group of g is Zvp(g ). According to Spaltenstein [17], the 
group Zv~(g ) is connected. This implies that 81D is a constant sheaf, ~ 0  hence 
Hffe(D, 8):~0. From the definition of a cuspidal pair, it then follows that P=G 
and the proposition follows. (In an earlier version of this paper, this pro- 
position was proved only in good characteristic. I am indebted to Spaltenstein 
for showing me his result on the connectedness of Zvp(g), which allowed me to 
drop the hypothesis of good characteristic.) 

We now state the following lemma, which has been used in the previous 
proposition. 

2.9. Lemma. Let P be a parabolic subgroup of G and let L be a Levi subgroup 
of P. Let g be an element of L and let clG(g), ClL(g ) denote the conjugacy class of 
g in G, L. Let D = {vgv- 1[ v~ Up} and let V = {xP~ G/PIx~ZG(g)}. Then 

(a) D is an irreducible component of clG(g)c~gU v of dimension equal to 
�89 (dim clG(g ) -  dim c lL(g)). 

(b) V is an irreducible variety of dimension (v6- �89 L 
- �89  dim ClL(g)). 

(c) Z~  (g) c~ P = Z~ 
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Proof (a) An element 1.veL. Up is in Zp(g) if and only if lvg=glv, i.e. if 
(lg)(g-Xvg)=(gl)v i.e. if l g = g l  and g - l v g = v .  Thus  Zp(g)=ZL(g)Zvp(g ). It  
follows that  

d im Zp(g) = d im ZL(g ) + d im Zv,,(g). 

N o w  let P '  be a parabol ic  subgroup  having L as a Levi subgroup  such that  
P'c~ P = L. Then we have also 

d im Zp, (g) = d im ZL(g ) + d im Zv,,, (g). 

Consider  the m a p  Ze~176176 defined by (gl,g2)v--~gl g2- The pairs  
(gl,g2), (g'l,g2) are m a p p e d  to the same element in Z~ if and  only if 
g ' l = g l g 0 ,  g ~ = g o l g ' l ,  where go~Z~176 Note  also that  Z~176 
c~Z~ cZL(g ). It  follows tha t  

d im  Z ~ (g) = dim Z ~ (g) + d im Z ~ (g) - dim (Z ~ c~ Ze  ~ (g)) + 8, (8 > 0) 

hence 

(2.9.1) 

d im Z~ = d im Z~ + d im Z ~ (g) - d im Z~ + 8 

= d im Z~  + dim Z ~  ,(g)+ d im Z~ + 8. 

d im Zvp(g  ) = d im U e -  dim D We have  and similarly dimZu,,(g)=dimU P, 
- d i m D ' ,  where D'={v'gv '-~lv'cUP,}. In t roducing this into (2.9.1), it follows 
that  

dim Z~ = d im Up + dim Up, + dim Z ~  d im D - d im O' + 8 
hence 

(2.9.2) d im D + d im D' = d i m  clG(g ) - d im clL(g ) + 6. 

N o w  D is conta ined in clG(g)ngU P and is closed (it is an orbit  of  a 
unipotent  group on an affine variety); by 1.2(a), any irreducible componen t  of  
cl~(g)ngU e has  d imension  <�89 It  follows tha t  
dimD<�89 and  similarly dimD' <�89 ) 
-dimclL(g)). C o m p a r i n g  with (2.9.2) it follows that 6 = 0  and that D (resp. D') 
is an irreducible componen t  of  cl G(g) ~ g U e (resp. of cla (g) c~ g Up,) of  d imension 
equal to �89 c / 6 ( g ) -  d im elL(g)). 

(b) F r o m  the p roof  of  (a) we see that dimZa(g)=dimZe(g)+dimZvp,(g ), 
hence d im V = d im (Za(g)/Zc(g) n P) = d im Z G(g) - dim Ze(g  ) = d im Zv,,, (g). 

On the o ther  hand, we have 

(v G - �89 d im clG(g)) - (v L - �89 dim elL(g)) = �89 (dim ZG(g) - d im ZL(g)) 

(2.9.3) = �89 Zv,,(g ) + dim Zv,,(g)). 

Hence to prove (b) it is enough  to p rove  the equali ty d im Zv,(g ) = d im Zv,,,(g ). 
This follows f rom the equali ty dim D = dim D' in (a) and  f rom the equali ty 

(2.9.4) dim Up = dim Up,. 

(c) Let  T =  ~ o  and let H =Z~(g) .  Then  T is a torus contained in H ~ hence 
Zno(T ) is connected.  We have  L=ZG(T ). It  follows that  L~H~ is 
connected,  hence L ~ H ~ is contained in Z~ 
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The group Ze(g)~Z~ contains Z~ as a normal subgroup of finite 
index. Let go be a fixed element of Zp(g)~Z~ From the proof of (a), we 
have 3 = 0  and hence the set A of products gl"gz (gleZ~176 is 
constructible dense in Z~ Hence the left translate g0 A of A is again 
constructible dense in Z~ and therefore it must meet A. It follows that 

t t r 0 g 0 g l g z = g l g 2  for some gl,glEZe(g), gz,g~Z~ Set ~0=g ' l - lgogl .  Then 
~oeZp(g)c~Ze,(g)c~ H ~ hence ~,oeLC~ H ~ =Z~176 Thus g'x -~ go gx eZ~ �9 
Since g ' l ,g~Z~ it follows that goeZ~ Since goeZe(g)c~Z~ was arbi- 
trary, we see that Ze(g)~Z~176 This completes the proof of (c). 

2.10. In order to classify the cuspidal pairs for G, it is sufficient to classify the 
cuspidal pairs for G/~ ~ Indeed, the cuspidal pairs for G are obtained by 
pulling back the cuspidal pairs of G/~ ~ under the natural map G--*G/~ ~ and 
then tensoring by a one dimensional local system on G obtained by pulling 
back under G--*G/Gde r a one dimensional tame local system on G/Gde r. 

Assume now that G is semisimple, and let n: G--,G be its simply connected 
covering. Assume that the cuspidal pairs for d are already classified. (There are 
only finitely many of them, by 2.7.) Let F be the kernel of r~ (a finite abelian 
group). Let (S, g) be a cuspidal pair for G. Then ~ is G-equivariant, hence in 
particular F-equivariant; F acts trivially on S, hence it acts on each stalk of ~. 
We require that F acts trivially on ~. Let S = re(S) and let g be the direct image 
of J under the finite covering S~S.  Let ~eS, g=~z(~), let /5 be the irreducible 
representation of Z~(~,)/Z~ corresponding to ~, and let p be the representa- 
tion of Zc,(g)/Z~ induced by the representation of the image of 
Ze(~,)/Z~176 defined by/5, (/5 factors through that image). Then d ~ 
is the G-equivariant local system on S corresponding to p. It decomposes as a 
direct sum of irreducible local systems in the same way as p decomposes as a 
direct sum of irreducible representations. 

If ~1 is any irreducible direct summand of d ~ then (S, g~) is a cuspidal pair 
for G, and all cuspidal pairs for G are obtained in this way. 

Hence the question of classifying the cuspidal pairs of a reductive group G 
is reduced to the case where G is semisimple, simply connected. We can further 
reduce to the case where S is a unipotent class, as follows. 

Assume that G is semisimple, simply connected, let S c G  be an isolated 
conjugacy class, (see 2.6), let geS, and o e be the G-equivariant local system on S 
corresponding to the irreducible representation p of ZG(g)/Z~ Let g=su 
=us be the Jordan decomposition of g with s semisimple and u unipotent in H 
=ZG(s )=Z~ We have a canonical isomorphism Zn(u)/Z~ ~ , 
ZG(g)/Z~ hence p may be regarded as an irreducible representation of 
Zn(u)/Z~ so that it gives rise to an irreducible H-equivariant local system g~ 
on Sa (=H-conjugacy class of u). Then 

(2.10.1). (S, g) is a cuspidal pair for G~(S1,  gl) is a cuspidal pair for H. 

The proof of this statement is based on the consideration of the map 
f: rc~ ~(g,)c~S~ne~(~,~)c~class of s, defined by taking semisimple parts, and the 
corresponding Leray spectral sequence for g. (Here P is a proper parabolic 
subgroup of G, ~, is an element of fi, ~ is its semisimple part; we assume that 
n~ ~(g,)c~S 4=0.) We omit further details. 
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w 3. Admissible local systems 

3.1. We shall define a partition of the reductive connected group G, into 
finitely many locally closed, smooth, irreducible pieces, stable by conjugation. 

For geG, we denote by gs the semisimple part of g and by HG(g ) the 
centralizer in G of the connected centre of Z~ Alternatively, HG(g ) could be 
defined as the smallest closed subgroup of G with contains o ZG(gs) and is the 
Levi subgroup of some parabolic subgroup of G. 

The pieces in our partition of G are parametrized by pairs (L, $1) (up to G- 
conjugacy) where L is a closed subgroup of G which is the Levi subgroup of 
some parabolic subgroup G and S 1 is a subset of L which is the inverse image 
of an isolated conjugacy class in L/~  ~ under the natural map L~L/~,~ ~ (It is 
clear that there are only finitely many G-conjugacy classes of such pairs.) The 
piece corresponding to (L, $1) is defined by 

Y= Y~L,s,)= union of all conjugacy classes in G which meet (S0reg, 

where (S~)rog = {g~S~ I H~(g) = L} = {g~S1 [ Z~ c L}. 

Then Y is a locally closed smooth irreducible subvariety of G, stable by 
conjugation; the map g ~ H a ( g  ) defines a locally trivial fibration Y-~variety of 
all conjugates of L, all of whose fibres are isomorphic to U n(St)reg n-l" 

n~N(L)/L 

(The last variety is a disjoint union of finitely many copies of (S~)r~g, and (S0reg 
is open dense in S~.) It follows that 

dim Y=2vG-- 2vL + dimS 1. 

It is clear that Ydepends only on the G-conjugacy class of (L, S 0. 
If g is an arbitrary element of G, then g is contained in a unique piece Y as 

above: Y is associated to (L, S1) where L=Ha(g)  and S 1 is the L-conjugacy 
class of g, times y,o. Hence the Y's form a finite partition of G. 

3.2. On each piece Y= Y(L,s,) in our partition we define a class of G-equi- 
variant local systems as follows. Let ~ be an L-equivariant irreducible local 
system on S 1 such that the pair (S~,g 0 is cuspidal for L, (see 2.4); in par- 
ticular, gl admits a central character ~ (with respect to L), where ~ is a one 
dimensional tame local system on ~o.  We consider the pull back ~ of 
gll(S1),eg to Y={(g,x)~YxGIx-lgx~(SO~J under the map f'--,(S1),~g, 
(g,x)~--*x-lgx. It is clear that ~ is an irreducible G xL-equivariant local 
system on f" for the action of G x L  on ~ given by (go,/o): 
(g,x)~-~(goggffl, goxlol). (Note tha t  gll(S0~g is irreducible since (S1)reg is 
open in S~, and ~ i s  irreducible on Ysince Yis isomorphic to (S0rog X G.) NOW 
L acts freely on Y by right multiplication on the x-coordinate and the orbit 
space Y/L is f ' =  {(g, xL)e Y x (G/L) Ix- 1 gxe(S1)~g}. Since ~ is L-equivariant, 
it is the inverse image under f ' ~  f" of a well defined, G-equivariant local system 
o~1 on Y,, which is necessarily irreducible. We now take the direct image re, dz~ of 
d~l under the map n: Y-~Y, n(g, xL)=g. This map is a finite unramified cover- 
ing which is a principal fibration with group ~s  =stabilizer of Sx in 
~W=N(L)/L. It follows that n , ~  is a local system on Y (necessarily G- 
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equivariant); the dimension of a stalk of g,o~l is equal to I~s~[ times the 
dimension of a stalk of g~. It is easy to see that ~.o~t admits a central 
character , f  (with respect to G), where 5 ~ is the restriction of ~ to the 
subgroup ~ o  of ~o.  

3.3. Definition. An irreducible local system ~ on Y=Y~L, Sl) is said to be 
admissible, if it is a direct summand of ~ , (~ )  where (S 1, jo) is a cuspidal pair 
(for L), as above. 

It follows automatically that g is G-equivariant and that g admits a central 
character. 

In the case where L=G and (S~,d~ is a cuspidal pair for G, the set $1 is 
automatically isolated in L (see 2.7) hence Y= Y~z,s~) is defined; we have Y=S~. 
Our definition for g.(g~) leads just to g~; we see that in this case, the 
admissible local systems on Y are just the o~ such that (S~, ~ )  is a cuspidal 
pair (for G). In the case where L#:G, ~.(d~) above is not necessarily irreduc- 
ible. 

3.4. Let N~I be the set of all n~N(L) such that nSln- l=S1  and such that the 
automorphism g-ongn -1 of S~ can be lifted to or1. Then N ~ L ;  we set ~ ,  
=N~,/L. Given w e ~ ,  we consider the corresponding coset N~,~ in N~. On 
the product N~l,w x S 1 we have two local systems g~, ov~ '. The first one, ov'~, is 
the inverse image of N1 under the map (n, g )~ngn-1 ;  the second one, g~', is the 
inverse image of N~ under the map (n,g)~g. Let d~,,,, be the space of all 
homomorphisms of g'~' into N~ inducing identity on the base Ne~,w x S v Then 
de~,w is a one-dimensional t~:vector space, since 8~,ov~ ' are isomorphic (use 
the L-equivariance of ~1 and the definition of N~_~) and irreducible. Let d~,  
=@s~'~,,~ (w runs over ~1) .  There is a natural Q:algebra structure on d ~  

w 

such that d ~ , w . d  ~ .... ,=d~ . . . .  ,. Indeed, an element of sr gives rise to a 
system of homomorphisms f,:  (ovl)g~(N1),~, ~ defined for each geS 1 and each 
neN~,w. ((cgOg is the stalk of ~1 at g.) This system satisfies f ,  ofl ~ = f o _ ,  of, for 
all n~N~,w and all leL, where fl~ define the L- 
equivariant structure of gl. Similarly, an element of s~'~,w, gives rise to a system 
of homomorphisms f ' :  (ovl)~(d~ (VgeS1, VneN~,,w, ) such that f~'ofl ~  
f~ for all neNe~,w, and all l~L. We now define f "=f~of~: (gOCo 
(g0.g.-, for any gES1, n~N~ ..... ,, where nleN ~ .... n2~N~,w, are such that n 
=nlnz; this is in dependent of the choice of n~,n 2 and it corresponds to a 
unique element of d~ . . . .  ,, the product of the two elements in d e .... s~,~, .  
The algebra do.~ has a unit element; it lies in de~ ' 1. 

3.5. Proposition The local system n.(or on Y is semisimple, lts endomorphism 
algebra is naturally isomorphic to the algebra ~ .  Any endomorphism of n.(~O 
is automatically G-equivariant. 

Consider the element of dg,,w corresponding to the system of homomor- 
phisms f . :  (gl)g'-~(gl)ngn-l, (VgeSI, u w),as above. For each neNr we 
consider the system of homomorphisms jr:  (g0g,~)~(~0g,~._,, (V(g, x)sY), de- 
fined as f . :  (gl)~_,g~-,(d~ (We may identify ((~)~,~=(g~)~-~x, (~)g,x.-~ 
=(gl).x-,g~.-,.) This gives rise, for each (g, xL)eY, to a homomorphism 
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f , :  (gl)g, xL--'(~ x,-IL" (We may identify @a)g, xL with the space of global sections 
of the restriction of 8~ to the fibre of Y ~ Y over (g, xL); similarly, for (~)g, x,_, L') 
The system of homomorphism f,  is clearly independent of the choice of n, 
(neNr we denote it f. Since the stalk n,(~l)g, (geY), is the direct sum 
(~)($rj)~,~L (sum over all xL such that (g, xL)e Y), it follows that f gives rise to 
x L  

an endomorphism of n.(~l)g, for each geY, and this comes from a unique 
endomorphism of the local system n.(o~0. This defines a linear map 
zgr (G-equivariant endomorphisms) hence to a linear map 
~r --*Endo(n.(gl) ) which is clearly an injective algebra homomorphism pre- 
serving the unit element. We now show that dim End (n . (g0 )<  I~r First note 
that the local system ~ is irreducible. (It is enough to show that ~x is 
irreducible; since }r~(S1)regXG and 8 ~ d ~ 1 |  it is enough to show that 
g~ ](St)~r is irreducible; but this follows from the fact that g~ is irreducible on 
S~ and (S~),~g is open in S~.) Since n: f ' ~ Y  is a principal bundle with group 
~s, ,  it follows that n.(dr0 is semisimple and that the dimension of its en- 
domorphism algebra is equal to the number of we~Uss ' such that the map f'--* f" 
defined by w can be lifted to o~a. Given such w, and a representative neN(L) 
for w, it follows that the map (g,x)~-~(g, xn-~): f'--*f" can be lifted to ~ and 
hence the map g~--~ngn-1: (S1)reg"~(S1)reg can be lifted to g~ ](Sa)reg. Since (S1)reg 
is open dense in $1 it follows that the map g~--~ngn-*: S~--*S, can be lifted to 
~,. Hence w e ~ .  Thus dimEnd(n.(~0)<l~W~l. It follows that 

s#'r ~ ~ *  Enda(n,(~O) = End(n,(~O). 

The proposition is proved. 

3.6. Remark. If we choose basis elements bw~dZl,w for each w ~ , ,  we have 
bwbw,=2w,,~,bww,, where 2w, w , ~ '  is a 2-cocycle of -/Cry,. Thus, the algebra d ~  
is the group algebra of ~ ,  twisted by a 2-cocycle. (In 9.2 it is shown that this 
cocycle is trivial in an interesting special case.) 

3.7. Let us denote by d ~  the set of isomorphism classes of irreducible d~,-  
modules. Given a semisimple object M of some abelian category such that M 
is an ~r -module, we shall write Mp=Hom~l(p,M), (p~ed~), and we have M 
= (~) (p | My) with ~r acting only on the p-factor and where Mp is again in 

our abelian category. (We assume chosen representatives for each isomorphism 
class of representations of sr162 

In particular, we have n , (~ l )=  @ p| where n,(d~Op are ad- 

missible local systems on Y, and all admissible local systems on Y are obtained 
in this way. 

w Admissible complexes 

4.1. Let g be an admissible local system on Y=Y~L, sncG, see 3.3. We 
consider the intersection cohomology complex (see [4, 1] and (0.1)), of the 
closure Y with coefficients in d?; we denote it IC(Y,,g). It is a G-equivariant 
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complex (for the action of G on Y given by conjugation) and all its coho- 
mology sheaves admit the same central character as g. The complexes 
IC(Y,r for various Y,g as above, are called the admissible complexes of G. 
Let us write ~=n,(gl )p , ,  (P '~ '~I)  as in 3.7. (Here (Sl ,g  l) is a cuspidal pair for 
L.) By the definition of intersection cohomology complexes we have 

(4.1.1.) End IC(Y, n ,  (gl)) = End n ,  (all) = ~ 1  

(the last equality follows from 3.5). Hence we have 

(4.1.2) IC(f ,n , (6~))= @ p|  o 

where IC(Y,,n,(~l))p=IC(Y,n,(~l)p) is an admissible complex. From 3.5 it 
follows that 

(4.1.3) All endomorphisms of/C(Y, n ,  (•1)) are automatically G-equivariant. 

4.2. We shall now give a construction of IC(Y,n,(o~)) which is similar to that 
in [9]. 

Choose a parabolic subgroup P ~ G having L as a Levi subgroup. Let 

x = {(g, xe)~c x ( o / p )  l x -  ~ g x E ~ l  �9 up}.  

~Here S~ denotes the closure of S~ ; note that the subset SI" Ue of P is stable by 
P-conjugacy, so that the definition makes sense.) We define a map 4~: X ~ G  by 
qb(g, xP)=g.  It is G-equivariant for the action of G on X given by 
go' (g, xP)~(g0 ggo l, go xP) and the action of G on itself, by conjugation. 

4.3. Lemma. (a) X is an irreducible variety of dimension=dim Y. 
(b) ~b is proper and 4~(X)= Y( =the closure of Y in G). 
(c) The map (g, xL)~(g, xP) is an isomorphism y" Y ~ , dp-l(Y),(see 3.2). 

Proof. (a) The second projection X--,G/P has all its fibres isomorphic 
to Si. Ue hence X is irreducible of dimension equal to dim(G/P)+dimS 1 
+ dim U e = dim Y. 

(b) The proof of this assertion is standard, but for the convenience of the 
reader we give it here. Let X ' =  {(g, xP)[x-~gxeP}. Then X ~ X'. We show that 
X is closed in X'. Note that X and X' can be regarded as sets of P-orbits on 
)( ,X'  where )~={(g ,x )eaxGlx- lgxeS1 .Ue} ,  X'={(g,x)[x- lgx~P} and P 
acts (freely) by right translation on the x-coordinate. Hence it is enough to 
show that )( is closed in Jr'. By the change of coordinates g '=x- tgx ,  the 
inclusion Jf c ~ '  becomes G x ($1 " Up) c G x P which clearly has closed image. 

Thus X is closed in X'. It is well known that the map X ' ~ G  given by 
(g, xP)~g is proper. Since q5 is the restriction of that map to a closed subset, it 
is also proper. It is clear that Yc~)(X). Since q5 is proper, 4(X) must be closed 
hence fcq~(X). We have dim Y=dim f __<dim~b(X)__<dim(X)--dim Y Since f 
and q~(X) are both irreducible and closed, it follows that Y= ~b(X). 

(c) It is easy to see that 7 maps f'injectively into qS-~(Y). We now show 
that ~(f-)=q~-t(y). Consider an element in qS-~(g) for ge(S~)~g; it is of the 
form (g, xP) where x-~gx~S~.Up. Let us identify L with P/U e and let 
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7rp: P-*L be the natural projection. If we denote z=Tze(x-lgx), we have zeS 1. 
Under the projection L---,L/~ ~ S, is mapped to a single conjugacy class C 
and $1 to the closure C of that conjugacy class. The set of elements in L / ~  ~ 
whose semisimple part is in a fixed conjugacy class is closed, hence the 
semisimple part of any element in C is equal to the semisimple part of some 
element in C. This implies that the semisimple part of any element in S, is 
equal to the semisimple part of some element in S, times an element ~e~o;  
since ~ ~  we may assume that ~=1. In particular, zs=ne(x- 'g~x ) is 
equal to g's for some g'eS 1. Since S~ is isolated in L, we have Ht (g ' )=L  for any 
g'eS,.  Since HL(g' ) depends only on g's, and since zs=g'~, it follows that Hl(z~) 
=L. Now let E be a Levi subgroup of P containing x-  lg~ x. We consider the 
isomorphism L' ~ , L  obtained as a composition E ~ P / U e ~ - ~ L .  Under 
this isomorphism, x - l g ~ x e E  corresponds to z~eL. From HL(Zs)=L, it follows 
that HL,(x-lg~x)=E, hence H~(x- '  ~ ' gsx) E, hence HG(gs)~xEx- ' .  This, 
combined with HG(g)=HG(g~)=L (since ge(S1)~,g ) implies L ~ x E x  -1. Since 
L, E have the same dimension, it follows that L = x E x - 1 .  The Levi subgroups 
L, L' of P are also conjugate by an element of P: we have L=p-~Ep,  peP. Let 
x'=xp. Then x ' - l L x ' = L  and x ' - lgx ' eS , .Up .  Since geL, we have also 
x ' - l g x ' e L  hence x ' - l g x ' e S 1  Uec~L=S t. On the other hand, from geS, ,  we 
have x'- ' gx 'ex '-  1 $1 x'. Thus, x '1S 1 x' meets $1. The image of x'- 1 $1 x' under 
L-- ,L/~ ~ is a single conjugacy class of the same dimension as the image of $l;  
it meets the image of $1 which is the union of the image of S~ with finitely 
many conjugacy classes of smaller dimension. It follows that x'- lS1 x' and S, 
have the same image in L / ~  ~ hence x ' - l S ,  x'=S1. Since x'eN(L), we must 

t - 1  ! have also x (S1)~gx=(S1)~_. From ge(S1)~,g, xt now follows that 
, - 1  , , ' - 1  , , - I  g , �9 , ~ x gx ex (S1)r,gX hence x gx ~(S1),eg. Thls means that (g,x L)eY. Since 

x'P=xP, it follows that ~b-l(g)=7(f'). Here g was an arbitrary element of 
(S0~eg. Since any element of Y is conjugate in G to an element of (S~)~,g, it 
follows that ~b- '(Y)cy(f" ). Hence Y is a bijection between Y and qS-'(Y). The 
proof of the fact that the inverse of this bijection is algebraic is easy and will 
be omitted. 

4.4. The variety $1 is statified into finitely many smooth strata: the orbits of 
y,o x L with ~ o  acting by translation and L by conjugation. There is a unique 
o pens t ra tum:  S,. Taking the inverse images of these strata under the map 
X..--~S1, (g, x)~-,(projection of x - l g x e S , .  U e onto the S~-factor), we get a strati- 
fication ) ( =  ~ ) ( ,  of J( into smooth strata (a runs through the strata of $1). 

The stratum X,o (% =stra tum Sx) is open dense. The strata )(~ are P-invariant 
for the (free) P action on )( given by right translation on the x-coordinate. 
Hence their images X,  in X = X/P form a stratification of X into finitely many 
smooth strata, with X,o open dense. We consider the L-equivariant local 
system o ~, on $1; we take its inverse image under )(~o--*$1 and we get a G x P- 
equivariant local system on )(,o, which is necessarily the inverse image under 
)~o--* Jf ,o/P=X,o of a G-equivariant local system on X~o, which will be de- 
noted ~1. (~1 extends to X~o the local system on q~-l (y)~ ~- which was denoted 
as gt in 3.2.) Similarly, the L-equivariant complex IC(S~, ~1) on S, gives rise 
by taking inverse image under Jf--*S1 to a G x P-equivariant complex on )(, 
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which is the inverse image under X ~ X / P = X  of a well defined G-equivariant  
complex on X, which is just 1C(X, ~a)- 

Let  us denote K=IC(X,  ~1). We consider the complex 4)~ K on Y,, where ~b 
is as in 4.2. 

4.5. Proposition. 4)!K is canonically isomorphic to IC(Y,n, gl). 

Using 4.3(c) and the fact that K]dp-l(Y)~llc~-l(Y)_~l ,  we see that the 
restriction of qS~ K to Y is just n ,  if1. Since ~b is proper  (4.3 (b)), it is enough to 
prove the following assertion, (see [4] and (0.1)): 

(4.5.1) For  any i>0 ,  we have dimsuppJt~i(~b!K)<dim Y - i  
(where ovf i denotes the i-th cohomology  sheaf of ~b~ K) 

and also the analogous assertion in which K is replaced by K*=IC(X,~I*), 
with g~ '= loca l  system dual to gl. (Note that (Sl,g~') is again a cuspidal pair 
for L). We shall only prove the assertion (4.5.1) for K;  the proof  for K* is 
identical. 

If g ~ E  the stalk jfgi(q~ K) at g is equal to Hi(dp - l(g), K) (hypercohomology 
of q~-~(g) with coefficients in the restriction of K to ~b-l(g)). We can stratify 
(b-l(g) by ~b-l(g)~=~b-t(g)c~X~. If Hi(dp-l(g),K)4=O, then there exists ~ such 
that i - Hc(q~ ( g ) , , K ) , 0 .  Hence  it is enough to prove:  

(4.5.2) For  any i > 0  and any ~, we have 

dim {ge Y I H~(~b- ~ (g),, K) 4= 0} < dim Y -  i. 

Assume first that  c~+c% and let S~.~ be the s t ra tum of S~ corresponding to ~. If 
H~(~b-l(g),, K)=t=0, we see from the hypercohomology  spectral sequence for K 
on q~-l(g),, that  we can write i=jl+j2 where jz=<2dim~b-l(g)~ and 
~fh(KIq~-~(g)~) =gO. The last condit ion implies that the ja- th cohomology  sheaf 
on K (on X) is non-zero on X,.  F r o m  (0.I) it follows that  j ~ < d i m X - d i m X ,  
= dim S 1 - dim S 1, ~. Therefore  we have i < 2 dim qS- 1 (g)~ + dim S ~ - dim S 1, ~ and 
hence it is enough to show that  dim{gsYIdimO-~(g),>(i/2)-((dimSt 
-dimS~,~)/2)} < d i m  Y - i .  If this is violated for some i > 0 ,  it would follow that  
the set of triples 

{(g, xP, x'P)e f • (G/P) x (G/P)]x- 1 g X ~.$1,or Up, x ' -  1 g xteSl,~t Up} 

has dimension > d i m  Y-i+i- (d imS~-dimSl ,~)=2va-2vr+dimS~,  ~. This 
contradicts 1.2(c). 

Next ,  we assume that ~ = %. If H~(~b- l(g)=o, K) 4= 0, then i < 2 dim ~b- 1 (g)=o 
since K restricted to q~-~(g)=o is just a local system. Hence it is enough to show 
that d im {ge Y~ ]dim qS- ~ (g)=o > i/2} < dim Y -  i, (i > 0). If this is violated for some 
i>0,  it would follow that the space of  triples 

(4.5.3) {(g, xP, x 'P)e f  x(G/P)x(G/P)[x-~gxeS, Uv, x'-~gx'eg,up} 

has some irreducible component  of dimension > 2 v o - 2 v r + d i m S  ~, whose 
projection to Y, has dimension < d i m  Y. 

F r o m  1.2(c) it follows that  this component  contains the subset of (4.5.3) 
defined by the condit ion x -~ x'ePnP where n is a fixed element of N(L); 
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moreover,  the remark in 1.3(i) shows that n must satisfy n S l n - l = S 1  (other- 
wise, the component  is empty). If ge(gl)reg , then (g,P, nP) belongs to our 
component  hence g belongs to its projection to Y Since this projection is G- 
equivariant and Y= ~) go(S0r~ggo a, it follows that the projection of our 

go~=G 

component  to Y contains all of Y and hence it has dimension equal to dim Y. 
This is a contradiction. The proposit ion is proved. 

w 5. Sheaves on the variety of  semisimple classes 

5.1. Let a: G---,A be the Steinberg map  [23], where A is the affine variety 
whose points are the semisimple classes of G and a is the morphism which 
attaches to geG the conjugacy class of g~. (A may be identified with the 
quotient of a maximal torus by the corresponding Weyl group.) Let 

Ar  = a ( Y ) = a ( S  1 Up)=(r(S1)=~r(S1)=A. 
(We have used the fact that the semisimple part (lu)~ of l .u  (/eL, UeUp) is 
conjugate under an element in U~ to l~. This can be seen as follows. Consider a 
Levi subgroup L of P containing (lu)~. Then L is conjugate to L under an 
element ve U e. Thus v(lu)s v-  i eL. Under ztv: P~P/Up,  the elements v(lu)~ v-  1, 
ls are mapped to the same element. Since u v restricted to L is injective, we 
have v(lu)~ v- 1 --~ Is ' as asserted.) 

Let (Ar)reg=a((S0reg). Then A r is an irreducible closed subvariety of A of 
dimension equal to dim (~o), and (Ar)reg is an open dense subset of At.  

5.2. In addition to S I C L C P  and 5~1 on S 1, we consider another set of data 
S' 1 c E ~ P ' ,  g~ on S'1, of the same kind. In particular, (S'1, ~ )  is a cuspidal pair 
for E. We shall denote the various objects associated to S'I, E, P', #'~ by a prime 
attached to the notation for the corresponding object for S1, L,P,d~. For 
example, we have ~b': X'--*Y', K ' = I C ( X ' ,  g~). 

Consider the fibre product Z = X x ~ X' = {((g, xP), (g', x'P'))~ X • X'I  g = g'} ; 
we assume that Yc~ Y'#O, for otherwise Z is empty. Let 5: Z-~Arc~A r, be the 
composition of the map  X x ~ X ' ~ Y n  Y' defined by 4) on the first coordinate 
or 4)' on the second coordinate, with the restriction of a to Yc~ Y'. We form the 
external tensor product K ~ K '  (a complex of sheaves on Z). Let 

d o = 2v~ - v L - v L, + �89 (S 1 / ~  ~ ) -~- dim (Si/2s176 

For  aeArc'~Ar,, we set Z " = f - a ( a ) c Z .  Given a stratum c~ of S~ and a stratum 
--t  a' of Sa, we set Z ~ , , , = Z " ~ ( X ,  xoX',,  ) where X,  are as in 4.4. Then the Z~,,, 

form a partition of Z ~ into locally closed pieces with Z~,o,~b open in Z ", (%, ~0 
are the open strata in S 1, S'~). 

5.3. Lemma.  (a) dim Z~, ~, < d o - �89 (S ff~r ~ - dim (S 1, JLr~ 
- �89 (dim (S'~/~o) _ dim (S'a,,,/~~ 

(b) dim Z" __< d o 
(c) The natural map 

~"  a 

H~ ( Z ,  ' ~' " KNIK')=H~' (Z~o ,a,~N]g;)  K ~ K  ),-H~ (Z,o,,b, 
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is an isomorphism for 6'> 2d0, and is surjective for 5'= 2d o. It is an isomorphism 
for 5'=2do, if L = E ,  S 1 =S '  1 and ira is such that Z~,~, is empty whenever exactly 
one of ~, s' is equal to ~o. 

Proof. (a) We have a natural map defined by ~b or ~b' from Z~,~, to ~-l(a) .  
Since a - t ( a )  is a union of finitely many conjugacy classes it is enough to 
estimate the dimension of the subset of Z~.~, lying over a fixed conjugacy class 
C in a-1  (a), Consider the natural map of this subset to C. All fibres of this 
map are isomorphic to a product of two varieties of the kind appearing in 
1.2 (b). Hence, by 1.2 (b), each of these fibres has dimension at most 

(v G-�89 dim (C) ) - (v  L- �89  d i m  (Sl,J~~ --�89 dim (C)) 

- ( v  L, - �89  dim (S'1,~,/~~ 
and (a) follows. 

(b) follows immediately from (a). To prove (c), it is enough to show that for 
any (s, s ) 4= (So, So), we have ~' " ' ' H~ (Z~,~,, K [] K )= 0) for 6' > 2d o and (under the 
assumptions in the last sentence of the lemma) even for 6 '=2d  o -  1. Assume 
that this cohomology group is non-zero, under our assumptions. 

From the hypercohomology spectral sequence for the restriction of K[]K'  
a " " a 

to Z,,~,, we see that we can write 6 '=i+j+j ' ,  where ~<2dlmZ~,, ,  and where 
both restrictions Yf~J(K)[X~,WS'(K')IX,, are not identically zero. From (a) it 
follows that 

i =< 2d o + dim (S L J ~ o  ~ - dim (S t / ~  ~ + dim (S' L ~,/~o,) _ dim (S'~/:~~ 

Moreover, by the definition of K, K', we must have 

j <_ dim (X) - dim (X~) = dim (S 1/~ ~ - dim (S 1, J ~ L  ~ 
(5.3.1) 

j '  __< dim (X') - dim (X:,) = dim (S'1/=~~ - dim (S;, ~,/:~o,) 

and at least one of these inequalities must be strict since (a, cc')4=(s0, c%); it 
follows that 6 ' = i + j + j ' < 2 d  0. Under the assumptions in the last sentence of 
the lemma, both inequalities (5.3.1) are strict and it follows that 6 ' = i + j  
+j '  =< 2d o - 2. This proves (c). 

5.4. Let ~ (resp. ,~') be the variety of all conjugates of P (resp. of P'). For  
each locally closed G-invariant subset E of ~ x ~', (G acts diagonally), we 

E i consider the subset Z~o,~ of X~o xGX~b consisting of all pairs (g, xP), (g' ,x'P') 
in X~oXX'~, such that g=g ' ,  ( x P x - l , x ' P ' x ' - l ) e E .  Let ~ be the (2d0}-th 
cohomology sheaf of the direct image with compact support of K r~K'IZ~o,~ 6 
(=~lr~ ~;i Z~o,~) under the restriction of t7 to ZE~o,~,' it is a constructible sheaf 
on A r. 

Let E<_~ (resp. E~) be the union of all G-orbits on ~ x ~ '  of dimension ____i 
(resp. =i). From 5.3(b) and the cohomology exact sequence associated to the 
partition of a space into an open and a closed subspace we get an exact 
sequence of sheaves 

(5.4.1)~ 0 ~ - - + ~ ,  , - ->~ ~ ,- ,-+0. 
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We also see that 

(5.4.2) ~e, = @ ~  

where (9 runs through the set of G-orbits (9 c ~ x ~ '  of dimension i. 
When E = N  x Y", we shall set ~ =  J .  We have .Y-= ~ , ,  for large i. Let J -  

be the (2d0)-th cohomology sheaf of ~ ( K N K ' ) ,  (~ is defined in 5.2). It is a 
constructible sheaf on A r ~ At,. 

The imbedding of X~o x GX'~b into Z (as an open subset) gives rise to a 
natural map of sheaves J- - -*J-  over Arc~Ar,. At level of stalks, it is the map 
in 5.3(c) for 6 ' = 2 d  o. F rom 5.3(c) we see that 

(5.4.3) The natural map of sheaves Y ~ J -  is surjective. 

(5.4.4) Definition. A constructible sheaf E on an irreducible variety V is said to 
be perfect if (a) there exists an open dense smooth subset V o c V such that g l Vo is 
locally constant and g=IC(V,,81Vo), and (b) the support of any nonzero con- 
structible subsheaf of g is dense in V. 

(In particular, the complex IC(V,g] Vo) is reduced to a single sheaf.) For  
example, if n: V ' ~ V i s  a finite morphism with V' smooth and if g '  is a locally 
constant sheaf on V', then 8 = r e ,  o ~' is a perfect sheaf on V. Also, 

(5.4.5) if 0 ~ 8 1 ~ 2 - - * ~ 3 - - , 0  is an exact sequence of constructible sheaves on V, 
with gl and g3 perfect, then d" 2 is perfect. 

5.5. Theorem. (a) I f  the pairs (L, $1), (E, S' 0 are not conjugate under an element 
in G, then ~-=0. 

(b) I f  L = E ,  S 1 =S' 1 so that Y= Y', A r = A  r, then : -  is a perfect sheaf on Ay. 
(c) The natural map of sheaves Y ' ~ g -  (see (5.4.3)) is an isomorphism. 

Before starting the proof, we shall need some preliminary results. 

5.6. Lemma.  Assume that ( 9 c r  ~ x ~ '  is a G-orbit with following property: for 
some (or any) (/5,/5')e(9,/5 and/5' do not have a common Levi subgroup. Then 
= 0 .  

Proof We must prove that, for any aEArc~Ay,, we have 

Hz~Ot:,~ c~7~ ~ N ~ ) = 0 .  

Using the inequality dim(Z~nZ~o,~)<do (5.4(a)) and the fibration Z ~ 
nZ~r we see that it is enough to show that for any a ~ A r n A  r, and any 
x,x'EG such that (xPx -1, x'P'x'-l)~(9, we have /4"2d~ va j *[Aca~ r  

~ * c  - -  ~ ' ~ l  V - Y ~ l l l  - 

where 

V"= {gecr- l(a)lx-~ gxeS1Ul , ,X ' - l  gx" eS'l Up. } 

and j:  V"---,S 1 x S' 1 is defined by j ( g ) = ( S : c o m p o n e n t  of x -1 gx, S'l-component 
of x'-Xg'x'). Let / 5=xPx  -1, /5 '=x'P'x '-1. Choose Levi subgroups L of 15 and 
L' o f /5 '  such that L,L' contain a common maximal toms.  We have gePc~P'. 
As in the proof of 1.2, we write uniquely g=za'u=zav, where zeLnL ' ,  ~'eL 
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c'~Up,, (~eL' c~Up, ueU~, veUp,. Let S~ be the image of x-1S1x~P u n d e r  P--*L 
and let S'~ be the image of x ' -~S ' lX 'CP ' under P'~L' .  Then V" can be 
described as 

{(u, v, a', a, z)eUp x Up, x (Lc~ Up,) x (~2a Up) x ( L a  L')I 

a'u = av, za'  e ~  m ~ -  ~(a), z as~'~ c~ a -  1 (a)}. 

This if fibred over 

V" = {(~7', v/, z )e (L~  Up,) x (L' c~ up) x ( L ~  E)I 

zff 'eS 1 n a -  1 (a), z ~/eS' 1 c~ a -  l(a)} 

with all fibres ,,~Up~Up,, (see the proof  of 1.2); note that d im(UpmU~,)=2v  G 
- v  L -  v L, - d i m  (9. We reduced to showing that  

H;(Va,. j*(~ | , ~ ' ) )=0  

where r=dim(S1/~LY~176 j : V " - - , S 1 x ~  i is defined by j(c,',a,z) 
=(zl/ ' ,  zt/), ~'~a is the local system o n  Xl obtained from 4~ via the isomorphism 
s~-*PrL(x-lsx): $1 ~ '$1 and ,~]' is the local system on S'I obtained in a 
similar way from g~. Let  •3" 9~ be the project ion of 9 a on the z- 
coordinate.  The  image rc3(wV ") is a union of finitely many conjugacy classes 
C t, C 2 . . . .  , (~, in Lc~E (compare the proof  of 1.2), and, since dim f~<__�89 it is 
enough to show that for any zeCi,  we have H~ -2dimc'[TC-liZ]\ 3 ~,],,l~*[~t 1 | ~#1)) = 0 " ~ - '  

NOW rc3~(z) is a product  D x D '  where D is the set of all fe(LnP')~Ri 
Lc~P --*Lc~E is equal to z and D' is the set of all Ps(I2 whose image under ~ ' ~ ~' 

c~P)c~S' 1 whose image under  L'c~P--*L~[s is equal to z. Moreover ,  j*(~,~ 
|  on n3~(z) corresponds to the tensor product  of ~ I ] D  with ~,,' rv Since 
2 dim D __< d~ = dim (S 1 /~~ _ dim ((~), 2 dim D' < d'~ = dim ($1/~~ - dim (12~), (see 
1.2(a)), and d~ +d '  1 = r - 2  dim (~, we are reduced to showing that  

/4~,(D, ~ ~ ' ~ ; ) = 0 .  ~)|  H~ (D, 
~ ~ 

We now make use of our  assumption on (9. It implies that either Lc~P' is a 
proper  parabolic subgroup of L or that IJc~P is a proper  parabolic  subgroup 
of L'. In the first case, we have H ~ ' ( D , ~ ) = 0 ,  since ($1, ~-~) is a cuspidal pair 
for L; in the second case, we haveH~ '~ (D, ,~*~ ) -- 0, since ($1 ,~ ' )  is a cuspidal 
pair for I2. (See 2.2 (b).) The lemma is proved. 

5.7. We next consider the sheaf ,~  in the case where ( g c ~ x ~ '  has the 
following proper ty :  for some (or any) ~ ~' P'  (P, P )e(9, P and have a common  Levi 
subgroup. In this case, we may assume that  L = E .  We can find neN(L)  such 
that  (P, n u n - 1 ) e C  In the case where $l, nS' 1 n - t  are disjoint, the argument  in 
the previous lemma shows that  ~'%=0. (Indeed, if we carry out  that argument  
with x = 1, x ' =  n-1,  we see that rc3~(z) is empty for any ze  C~.) We assume now 
that Sa,nS' 1 n -1 are not  disjoint. It follows that  S 1 =nS'ln -~, and hence Y =  Y' 
and A t = A t , .  In this case, the p roo f  of the previous lemma shows that  
= R " ~ ( g l |  ') where ff:S1--,Ay is the restriction of ~, r 
= 2 d i m ( S ~ / ~ ~  ( - r ' )  denotes Tate  twist by - r ' = - ( v a - v ~ ) ,  and n*(g'  0 is the 
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inverse image of 6~ (onS'l) under the map g~--*n-lgn: S ~ S '  1. (We take in the 
proof of the previous lemma: x = 1, x' =n-1, ff,=p, p, =nP'n-1, L=f2  = L; then 
Fa=Sl m~r- l(a).) 

Let [$1] be the set of L-conjugacy classes of elements which are semisimple 
parts of elements in S 1. It is a homogeneous ~~ ( y o  acts by left 
multiplication) with finite isotropy group. We can hence regard [$1] as a 
smooth algebraic variety and we can factorize 6 = 6 .  rc where 7t: S ~ [ S I ]  is the 
obvious map, in such a way that n and 6: [S1]~A r are morphisms. Let ~,~ 
=~l@n*(d'~) and let [ ~ ]  =Rrrt~(~), (a constructible sheaf on [$1] ). We show 

:g t that [o ~ ]  is a local system on [S~]. Since gl, n (~1) admit a central character 
(with respect to L), it follows that there exists an integer m (invertible in k) 
such that ~ is Lr~ for the action of ~eo on S~ given by z: gv--,z"g. 
This action of Lr ~ induces an action of ~ o  on [$1] such that re" S I~ [S~]  is 
~e~ It follows that [ Y ]  is ~e~ Since this action of ~eo 
on [S~] (which depends on m) is transitive, it follows that [~-] is a local 
system, as asserted. Now 6 is a finite (ramified) covering and ,~ = 6 ,  [ ~ ] .  Since 
[o~] is a local system on [S~] and [$1] is smooth it follows that (see 5.2.1): 

(5.7.1) ~ is a perfect sheaf on A r. 

5.8. Proof of Theorem 5.5(a) and (b). We have 5 - - 5 ;  for large i. With the 
- -  E l  

assumptions of (a), we have seen that 4 = 0  for all G-orbits on ~ x  ~ ' ;  from 
(5.4.1), (5.4.2) it follows then by induction on i that 3-~e=0 for all i, and in 
particular, that : - = 0 .  With the assumption (b), we see from (5.7.1), (5.4.1), 
(5.4.2), (5.4.5), by induction on i that ~ ,  is perfect on A r for all i. Since Y-- 
for large i, it follows that Y- is a perfect sheaf on Ay. 

Before proving 5.5 (c), we prove a lemma. 

5.9. Lemma. Let ge(S1)~,g, heS 1 Up be two elements such that h~=x-lg~x for 
~ - -  

some xeG. Then h is conjugate under an element in P to an element h~S~ such 
that HG(/~)=L, (see 3.1). 

Proof Much of the argument is the same as that in the proof of 4.3(c). We 
identify L with P/Up and let rcp:P~L be the natural projection. Let z 
=rce(h)eS ~. As in loc. cir. we see that HL(z~)=L. Let L' be a Levi subgroup of 
P containing h~. Then H L,(h~)=E, hence H~(h~)~E hence H~(g~) 
=xHG(h~)x- l~xEx  -1. This combined with HG(g)=HG(g~)=L implies 
L ~ x E x  -~, hence L = x E x  -~. The Levi subgroups L, E of P are also conjugate 
by an element of P: we have L=p-~Ep,  peP. Let x'=xp. Then x ' -~Lx '=L 
and x ' - l  g~x'=p-l  h~p=fi~, where /~=p-1  hpe-~l Up. 

Let ~,=x'-~gx '. Then H6(~,s)=L and ff~=/~. 
We have heZ~176 hence heL~Sa Up=S 1. We have 

HG(~i ) = Ha(f~) = Ha(~,~) = L. The lemma is proved. 

5.10. Proof of Theorem 5.5(c). In case (a), we have 5 = 0 ,  hence, by (5.4.3), we 
have also 5"=0.  In case (b), by (5.4.3), it is enough to show that the kernel of 
: - - - , : -  is zero; if we show that the stalks of that kernel are zero at any point in 
(Ar)~g , then the fact that 5- is perfect and part (b) of the definition of 
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perfectness (5.4.4) would imply that the stalks of that kernel are zero every- 
where. 

Therefore, by 5.3(c), it is enough to prove that, for any ae(Ar),:eg, the 
variety Z~,~, is empty whenever exactly one of e, e' is equal to Co. Thus, we must 
prove the following statement. If h, x, x' are elements of G such that h s is conjugate 
to gs for some ge(S1)reg, x - l h x e S i U v ,  x'-thx'eS1Ue,, then x-lhxeSIUe. 

Let h l = x - l h x ,  h'l=x '-1 hx'. By 5.9, we can find peP, p'eP' such that h 2 
= p - l h l p e S  1, h2=p'-lh'lp'eS~, Ha(h2)=L, H6(h'2)=L. We have h2eS1U v, 
c~SI=S 1. The elements h2, h' 2 are conjugate under an element neG, which 
necessarily normalizes L: we have h2=nh2 n-l ,  nLn-~=L.  Then n - l S t n  
meets S~, and an argument in the proof of 4.3(c) shows that n-*S1 n must be 
equal to $1. It follows that h2eS1, hence h~epS~p -1 cS~ Up, as desired. This 
completes the proof of Theorem 5.5. 

5.11. Proposition. With the assumption of 5.5 (b), and assuming P =P', we have a 
canonical isomorphism of sheaves over Ay : ~ @ . ~ t w ) ;  here w runs over ~trs, and 

w 

(9(w) is the G-orbit on ~ x ~  which contains (P, nP'n -1) where neN(L) repre- 
sents W .  

Proof. We have ~-=R2d~162 ~ )  where ~ is the restriction of ~: Z ~ A  r to 
the open subset Zo=X~o xoX~o of Z. The inverse image (~o)-~(Ag)~g is the set 
{(g, xP, x'P')eY • (G/P) x (G/P')I x - l gxeS1  Up, x ' - l g x ' e S 1  Up, 6(g)etr((S1)reg)}. 
From lemma 5.9, we see that this set is the same as 

{(g, xP, x' P)e Y • (G/P) • (G/P')I x - lgxeS1  Up, x '-  ~ gx' eS1 Up} 

which, by 4.3 (c) is the same as the fibre product Y •  ~ Hence the restriction 
of J -  to (Ar)~eg is the same as R2d~ Ik--l~) where 51: ~" x r Y--,"(Ay)reg is the 
projection to Y,, followed by the restriction of a to Y. Consider the partition Z 0 
= U Z~ where (9 runs over all G-orbits on ~ • ~ ' .  (Here Z~ consists of all 

r 
pairs (g, xP), (g', x'P') in X,o • X,o such that g =g',  (xPx-", x'Px'-~)e(9.) Then 
the pieces Z~ are locally closed in Z o. However, the intersections (~o)-l(Ay)reg 
~Z~  are both open and closed in (5o)-l(Ar)~g and are empty unless (9=(9(w) 
for some we~ss~. (This follows from the fact that Y is a principal qCs -bundle 
over ~" and qUss ' is finite.) The direct image with compact support of ~t I ~  
under the restriction of 50 to one of the pieces (5o)-l(Ay)r,gC',Z~ is easily seen 
to be just the restriction of ~ to (Ar)~r It follows that we have a canonical 
isomorphism J-~(~)~-~(w) over the open set (Ay)reg. Since J -  and Q~(w)  are 

w w 

perfect sheaves, this isomorphism extends uniquely to an isomorphism over the 
entire A r. 

5.12. We preserve the assumptions of 5.11. The sheaf ?f-=RZd~ ~]K') can 

be also regarded as R 2a~ o!((~!(K)| r since 5 factorizes as Z co. ~ ~_ ~_ _ ~  
A~. The complex O~(K)| on Y has a natural structure of a module over 
the algebra ~ ,  |  It follows that ~,, which is R2a~ of this complex, 
inherits a natural action of ~g~ |  This action has the following property. 
Consider the summand ~'~. ,~,  (w~e~ , ) ,  of ~ ,  the summand ~8i.~i, 
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(w'le'W~) of de,  ~ and the summand ~tw~ of : - = ~  (see 5.11), we~s , .  Then 

(5.12.1) (d~ . . . .  | d ~ ,  ~4)" ~eCw)= Yet . . . . .  ;-,). 

(By 5.5(b), it is enough to prove this for the restriction to (Ar)reg where it 
follows from definitions.) 

5.13. Proposition. Consider two sets of data (S 1 = L ~ P, ~1) and (S' 1 ~ E ~ P', 8~) 
as above. Assume that S l=~r~  S'1=:~~ �9 C' 1 where C 1 (resp. C'1) is a 
unipotent class of L (resp. E ), and that ~1 (resp. ~ )  has as central character the 
constant sheaf ~l  on ~ o  (resp. on ~fo,). Let J-= J- be the corresponding sheaf 
(5.5(c)) on A y n A  r, and let ~-~o=~o be its stalk at ao=conjugacy class of leG. 
We regard J- (and in particular 3-~o) as a ~ | ~4e,:modules, as above. 

(a) I f  the pairs ($1, L, gl), (S], E, d'~*) are not conjugate by an element of G, 
then ~ o  = O. 

(b) Assume that SI=S'x, L = E ,  P=P', 8'1=d~. Then the d ~ |  
~o  is isomorphic to the d~, | s~'~ de , ,  (the module structure is given by 
left and right multiplication). Here d ~  is the algebra opposed to s#~; we 
identify dg~ with ~ o  in a natural way by taking transpose maps. 

Proof We may assume that L = E ,  SI=S'  x, (see 5.7), hence CI=C'  ~. For 
| nw(80)(-r'),  (notations as in 5.7); we~Us,, the stalk of ~(w) at a o is H~(C1, 81 * ' 

since r=2 dim(C0,  this is a one dimensional (~rvector space if nw(g~)~g* (as 
local systems on Sa, or equivalently, as local systems on C1) and is zero 
otherwise. (Here n~ is a representative for w in N(L).) 

�9 , ~ * W ~ / S ~  From 5.7, it now follows that ~ o = 0  unless n ~ ( r  ~ for some 
and (a) follows. 

With the assumption of (b), we see that the stalk of ~w)  at a o is one 
dimensional if w ~ ,  and is zero otherwise. We denote ~o,w the stalk of ~eetw) 
at ao, for we~r . Then, by 5.11, we have a direct sum decomposition 

4o= |  o,w 

into one dimensional Qrvector spaces. From (5.12.1) it follows that the ~e ,  
| ~ - m o d u l e  structure of ~-a,o satisfies 

. . . .  | w = w , w , , , ; - , ,  

(Vw, w~, W'xe'W~, ) and (b) follows from this. 

w 6. A generalization of Springer's correspondence 

6.1. With the notations in 1.1 we consider the diagram 

D'={(g ,P)~Cx~[~e(g)~Cp}  f '  ~C 

D = {(~,, P)] Pe~ ,  ~,eCp} 
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where fl(g, P)=g ,  fz(g, P)=(rcv(g),P). The group G acts naturally on all three 
varieties in the diagram and its action is transitive on C and D. Let dl=(v  G 
- � 8 9  C) - (V- �89  d2=�89 Then all fibres of f~ have dimension 
< d  a and all fibres o f f2  have dimension <d 2 (see 1.2(a), (b)). Moreover some 
(or all) fibres of./'1 have dimension equal to d I if and only if some (or all) fibres 
of f2 have dimension equal to d 2. (Both conditions are equivalent to the 
condition that the space D' has dimension equal to d o = (v G -  V) + 1(dim C + ?).) 
Now let do" be an irreducible G-equivariant local system on C and do" an 
irreducible G-equivariant local system on D. We shall need the following result. 

(6.1.1) The multiplicity of do" in the G-equivariant local system d 1 
=R2al(fO~(f~do" ) on C is equal to the multiplicity of do" in the G-equivariant 
local system d2  = RZa2(f z)!(f ~ do') on D. 

It is enough to show that both multiplicities are equal to the dimension of 
the space of homomorphisms between the local systems f 'do' ,  f 'do"  restricted 
to D0, where D 0 is an open smooth G-invariant subset of D' which meets 
exactly those irreducible components of D' which have dimension d o. We may 
assume that D o is nonempty. Let D0,i, 1 <iNn,  be its connected components. 
Choose a point x'isD'o, i for each i and let x i denote fl(x'i). The local system do" 
on C corresponds to an irreducible representation 7 of the fundamental group 
rc I (C) at x i, which factors through a finite quotient. The local system f ' d o "  on 
D o corresponds to a representation 6 i of the fundamental group rc I(D0,i) at x'i, 
which factors through a finite quotient, for each i. 

Consider the natural homomorphism hi: ZCl(D0,i) rcl(C ) induced by fl .  Its 
kernel may be identified with the image in lri(Do,i) of the fundamental group at 
x' i of the fibre Do, i~ f c l ( x l )  and rcl(C)/im(hl) may be identified with the set of 
connected components of this fibre. Let h* 7 be the representation of tel(D0,1) 
obtained by composing h i and 7. Let hi,~5 i be the representation of Zrl(C ) 
obtained by taking the coinvariants of 6 i with respect to the action of kerh~, 
regarding it as a representation of n l(Do,i)/ker hi---ira (hi) and then inducing it 
from im(hi) to zcl(C ). Then h* 7 corresponds to the local system f 'do"  on D~, i 
and it factors through a finite quotient; the direct sum of the hl, ~h i (over i) 
corresponds to the local system sJ~ over C and it also factors through a finite 
quotient. 

By the Frobenius reciprocity formula for representations of finite groups, 
the multiplicity of 7 in the rra(C)-module hl, ~ 6 i is equal to the dimension of the 
space of rc~(Do,i)-homomorphisms between h*? and 6~. It follows that the 
multiplicity of do" in the local system s~' 1 is equal to the dimension of the space 
of homomorphisms between the local systems fit ~', f *  do" on D 0. An entirely 
similar argument shows that the multiplicity of d o.' in the local system sJ 2 on D 
is equal to the dimension of the space of homomorphisms between the local 
systems f2* d~ f *  do" on DO, and hence it is equal to the dimension of the space 
of homomorphisms between the local systems f *  do', f *  do" on D; (since these 
local systems are semisimple). This completes the proof of (6.1.1). 

6.2. Let ~ (or YG) be the set of all pairs (C, do') where C is a unipotent class 
in G and do" is an irreducible G-equivariant local system on C. 
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Let JV t~ (or XG (~ be the subset of JV consisting of those (C, g') for which 
(~o.  C, 1 [~g') is a cuspidal pair (see 2.4); here 1 [~do" is the inverse image of d ~ 
under ~eo. C--, C. 

From the definition of a cuspidal pair (2.4) we see that a pair (C, g ' )e , /~ is 
in JV ~~ if and only for any parabolic subgroup P 4= G and any unipotent class 
C' c P/Uv, the following condition is satisfied: 

Hdim(C)-dim(C')(I~-l(~)oC, do')=O, for all ~,EC'. c P 

Now let (C, do') be an arbitrary element of JV. We can find a parabolic 
subgroup P ~ G with the following two properties: 

(a) For  some unipotent element ~,6P/U e we have 

Hdim(C)- dim(Cl)/,rr - 1 i ~  r"~ C, do') =~= 0, 
c \J~p ~!,/' 

(here C 1 is the conjugacy class of ~ in P/Up). 
(b) P is a minimal parabolic subgroup satisfying (a). (Indeed, property (a) is 

always satisfied for P = G, ~,e C.) 

Choose C 1 and ~,eC1 such that (a) above is satisfied, and let dol be an 
irreducible P/Up-equivariant local system on C~ which is a direct summand of 
the local system Raim(C)-aim(Cl)(fz)~(do" ) on C1, 

(f2: ~z~- 1(C 1)u'l C--~ C 1 ,f(g) = rc~,(g)). 

Choose a Levi subgroup L of P and identify L with P/Up via 7:y; we then 
regard C 1 as a unipotent class in L and do~ as an L-equivalent local system on 
C 1 �9 

6.3. Proposition. The triple (L, Ca, do~) above the uniquely determined (up to G- 
conjugacy) by (C, do). Moreover, (C1, dol) is necessarily in JVL (~ 

Proof If (C1, do~) is not in JVL (~ then there would exist a parabolic subgroup 0 
of G such that / ~ P  and a unipotent element (,cO~Up such that 
Hdim(Cl)-dim(C2)(x~i(~,)nCl,do;):4:O, w h e r e  C 2 is the conjugacy class of g in 
O/Up. It would follow that 

Hdim(Cl)- dim(C2)(I~p l (g)(~ C1 ' Rdim(C)- dim(CD(f2) t (do')) :~: 0. 

Using the Leray spectral sequence for the map f2: n~ 1(~)c~ C ~ rc~ ~ (g~) c~ C1 (the 
restriction of uP), whose fibres have dimension <�89 it fol- 
lows that 11 cLlrdim(C)-dim(C2)g'r-l(g)C~C,do')dt=0~,~/~ SO that O satisfies (a) in 6.2, con- 
tradicting the minimality of P. We have, therefore, proved that (C~,dol) is in 
~L(0). 

Let S~ =y ,o .  C1 ' do~ = 1 ~g~ =inverse image of do~ under ~eo. C ~ C ~ .  Let Y 
= Y(~,s,), (see 3.1) and let ~b: X ~ Y  (see 4.2) be defined with respect to P. From 
(6.1.1) and the definition of (CI,do~) it follows that do" is a direct summand of 
R2af.,(~ 0 restricted to C, where f :  X,o = {(g, xP)~ Y • G/PIx- 1 g x~S~ Up} ~ Y is 
the projection on the g-coordinate, doa is defined as in 4.4 and d=(v~-�89 
- ( v r - � 8 9  0. 
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Now let P' be another parabolic subgroup of G satisfying (a), (b) in 6.2 for 
(C, ~'), let E be a Levi subgroup of P' and let C' 1 ~/2 and g; '  (on C'I) be chosen 
in the same way as (Ca,d~) was chosen starting from P. We must show that 
(/21 , C'1, g;') is G-conjugate to (L, C1, g;). 

Just as before, we see that ~" is a direct summand of the local system 
R2af'(~'l)[C where f ' ,  d', S'1,~' 1, if'l, are defined just as f, d, $1, g l ,  ffl, using P', 
E, C'~, d~ ' instead of P, L, C~, g;. It follows that the local system R2af,(gl) 
| (* stands for dual) contains the constant sheaf Ql on C as a 
direct summand, and hence 

(6.3.1) 2 dim(C) H. (C, R2ef,.(g,)| 

From the Leray spectral sequence of the map 

Z . . . .  b,c = {(g, xP, x' P')e C x (G/P) x (O/P')lx- 1 g xeS1 lie, x '-  1 g x, eS,  1 Up,} --* C 

(projection to g-coordinate) all of whose fibres have dimension <d+d' and 
from (6.3.1) it follows that 

(6.3.2) 2d -- --t* Hc ~ Z . . . .  6,c, gl lk---ld~l )4:0. 

where do =d +d' +dim C. Now let Z~"~ be defined in the same way as Z,o,,~, c 
except that now g is allowed to be any unipotent element of G, (see 5.2). Then, 
when C varies, the Z . . . .  6.c form a partition of Z~~ into locally closed pieces 
of dimension <d  o (5.3(b)); this, together with (6.3.2) shows that 

H2a~176 ~1 ~ ] ~ t l * )  * O. c ~ ~to,~, 

This means that ,~o4:0 where J -  is defined in 5.4 (in terms of (Sl,d~l), (S'1,~'1)) 
and ~ o  is defined in 5.13. F rom 5.13(a), it now follows that (L, SI,o* 0 and 
(/2,S'1,g'1) are G-conjugate. Hence (L, Cx,g~), (/2, C'I,N~' ) are G-conjugate and 
the proposition is proved. 

6.4. The previous proposition shows that the construction in 6.2 gives a well 
defined map ~:(C,N')~--~(L, CI,N~) from the set . ~  (see 6.2) to the set ~/~ 
consisting of all triples (L, C 1 , ~ )  (up to G-conjugacy) where L is a Levi 
subgroup of a parabolic subgroup of G, C 1 is a unipotent conjugacy class of L 
and ~ is an irreducible L-equivariant local system on C 1 such that 
(Cl,d~)e,Wr ~ As we have seen in the proof of 6.3, if (C,g ')  is mapped by �9 to 
(L, Ct,g~), then (with the notations in that proof), C must be contained in 
= ~r,s,) and ~" must be a direct summand of RZaf.,(~l) IC, (f,~l are defined in 
terms of some parabolic subgroup P c G  having L as a Levi subgroup). Con- 
versely, if C is a unipotent class of G contained in Y and g" is an irreducible 
G-equivariant local system on C, which is a direct summand of R2ef,(~O[C, d 
=(va- �89189  0 then, from (6.1.1) we see that n~(Ca)c~C is 
non-empty and that ~; is a direct summand of Raim~C)-aim(C~)(f2)~(r where 
f2: n~I(C~)c~C~C~ is defined by np: P~L.  In particular, P satisfies condition 
(a) of 6.2 with respect to (C,g ')  and gs  C~. If P contained strictly a parabolic 
subgroup 13 which still satisfies condition (a) of 6.2, we would get (by reversing 
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an argument in the proof of 6.3) a contradiction with the fact that 
(C1, g~)e~Ar~ ~ It follows that (L, C 1, 8~)= ~(C, d~'). 

We can now state the main result of this chapter; it generalizes results of 
Springer [20] and Borho-MacPherson [2]. 

6.5. Theorem. Let (L, CI,g~)eJ/IG, let ( S ~ , g 0 = ( ~ ~  be the cor- 
responding cuspidal pair for L, let P be a parabolic subgroup of G having L as a 
Levi subgroup, let ~):K be the corresponding complex on Y = Y~L, sl). 

(a) For (C,g ' )sJV ~, we have q~(C, 8")=(L, CI,gl )  if and only if C c  Y and g" 
is a direct summand of R2dc f,.(~l)tC , where f is the restriction of (o to X~oCX, ~1 
is defined as in 4.4, and d c = (Vc,-�89 dim(C))-(v  L- �89 

(b) With notations in (a), the natural homomorphism 

R 2"c f., (o~1)1C ~ ~f  2d%;b,(K)l C 

(given by the imbedding of X,o into X as an open subset) is an isomorphism. 

(c) For any p ~ g ~ ,  let (~!K)p be definedby (9 !K=o@ p(~(~)!K)p (see 3.7). 

Let ~,o be the variety of unipotent elements in E There is a unique (C, 8")eJV 
with the following property: C c  Y and the restriction of 4o~ K to ~,o is isomor- 
phic to the complex IC(ff, g') shifted by 2d c and extended by 0 on Y " ~  In 
particular, 8"=Jf2d~((ch~K)0)lC. The map pw-~(C,g') just defined is a bijection 
between the set sr and the set 

{(C, 8")eWI ~(C, ~ ' )=  (L, C~, g;)}. 

Part (a) of the Theorem is already contained in 6.4. The rest of this chapter 
will be devoted to the proof of parts (b) and (c). 

6.6. In this section, the notations are those of w and w For any a~Ar,  let 
Y"= Yc~a-l(a), X~=~0-1(Y")~X, r =restriction of ~0 to xa; thus, r  X ~ Y  ~. 
Let S] =Slc~a-l(a),  S"a=Slc~a-l(a), c~"=c~a-l(a), (for a stratum c~ of S~, see 
4.4), g~=restriction of g~ to S], 8~=restriction of ~ to X"~o=X"c~X,o. Let Sa 
be the set of semisimple parts of elements in $1, and let S] =S~c~a-a(a). Note 
that S~ is a smooth, closed subvariety of L, and S~ is a smooth subvariety of 
;~. Note also that S~ is the inverse image of SS~ under the natural locally trivial 
fibration S~ ~$1.  It follows that IC(S~, g~) is the restriction of I C(S~, g~) to S~. 
It follows also that the restriction of K =IC(X,  ~ )  to X" is K~= I C(X ~, ~ ) ,  and 
that the restriction of q~ K to Y" is (r  K". The following result was noticed 
by Borho-MacPherson [2], in a special case. 

(6.6.1) q), .KIY~=(r is (up to a shift by dim Y" degrees) a pure perverse 
sheaf on Y" (in the sense of [1]). 

Since ~o" is proper, and K"=IC(X",~';) ,  it suffices to prove the following 
assertion. 

(6.6.2) For any i > 0, we have dim supp Jgi((q~")! K a) <= dim Y" - i, 

and also the analogous assertion in which K" is replaced by K*"=IC(X,~*") ;  
note also that Y" has pure dimension given by 7.2(a). We shall only prove the 
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statement (6.6.2) for K~; the proof for K *" is the same. The proof is similar to 
that of (4.5.1). With notations in that proof, we see that it is enough to prove: 

(6.6.3) For any i > 0  and any stratum c~, we have 

i dimS 1 - d i m c ~ ] l  . .  ~,  
dim gsY"[d imq)- t (g ) ,>  2 ~ ~ u l m l - i .  

If this is violated for some i>0 ,  it would follow that the set of triples 

{(g, x P, x' P)e fa x (G/P) x (G/P)lx - ' g xe~ U e, x ' -  1 g x' e~ Up} 

has dimension >d im  f a - ( d i m S  1 - d i m  c0. This set of triples is contained in 
the set of triples 

{(g, x P, x 'P)eG x (G/P) x (G/P)Ix -1 gxe~"  Ue, x '-1 g x' e~Up} .  

But e" is a union of finitely many L-conjugacy classes in e (each of dimension 
equal to dim(e/~~ hence, by using twice 1.2(b), we see that the last space of 
triples has dimension __< 2 vo - 2 v L + dim(~/~ ~176 = dim f~ - (dim S 1 - dim e), (see 
7.2(a)). Thus, (6.6.3), and hence also (6.6.1), are proved. 

Returning to the setup of 6.5, we now take a = a o ;  in this case, f~o is 
irreducible, (see 7.2(b)). From (6.6.1) and the decomposition theorem of Beil- 
inson, Bernstein, Deligne and Gabber [1] it now follows, just as in [2], that 
q~KI f  "~ is a direct sum of complexes of the form K(g ' )=IC(C,g ' ) [2dc]  
(extended by 0 on ya- -c ) ,  where (C,g')e.Ar are such that C c  Y"~ (Note that 
2dc= d im  Y " - d i m  C; [2dc] stands for a shift of a complex by 2d c degrees, as 
in [1].) We have d i m ( f " ~  C 1, (see 7.2(a)). 

6.7. Lemma. Given (C, g') and (C', ~") in ~ with C ~ f~o, C' ~ ~o,  we have 

1, if C = C' and g'* ~ g"  
dim H~a~ a~ K(~ ' ) |  K(g")) = O, otherwise. 

Proof Let C" be a unipotent class contained in C',c~ C'! We first show that 

(6.7.1) 2dO " H~ ( C , K ( g ' ) |  if C " # C  or C" # C ' .  

From the hypercohomology spectral sequence, we see that it is enough to 
prove: 

(6.7.2) H~(C", ~J (K(d  ~')) | ~ ' ( K ( g " ) ) )  # 0 ~ i + j  +j '  < 2d 0 

The hypothesis of (6.7.2) implies: i<2dim(C") ,  j < d i m ( C ) - d i m ( C " ) + 2 d  c, 
j ' < d i m ( C ' ) - d i m ( C " ) + 2 d c , ,  and at least one of the last two inequalities is 
strict, since C " #  C or C " #  C'. It follows that i + j + j ' < d i m ( C ) + d i m ( C ' ) + 2 d  c 
+2dc ,=2d  o. Thus, (6.7.2) and hence (6.7.1) are proved. From (6.7.1) it follows 
immediately that Hze~ C" ,K($ ' ) |  where the union is taken over 
all C"cCc~C'  such that C " #  C or C " #  C'. Hence, the conclusion of the 
lemma holds if C # C'; in the case where C = C', it follows that 

H2aO( ~.o, K(g') | K(o ~'') .w HZcaO( C, K(o ~') | K(o v'')). 
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The last space is H2cdimC(c, 8" |  "') and this is one dimensional if W'*~6 ~ 
and is zero otherwise. The lemma is proved. 

6.8. For (C,8")eJV such that C c Y ,  we denote ng. the multiplicity with which 
K(g') appears as a summand of ~p~KIY "~ (see 6.6). This is the same as the 
multiplicity with which K(6 ~ appears as a summand of q~K*[Y a, where K* 
=IC(X,~*). From 6.7 it follows immediately that 

(6.8.1) dim Hza~ a~ (~p~ KI ]7"~174 K*] ~,o)) = ~ n2.. 
(c,8.) 

The left hand side of (6.8.1) is just dim0~o , (see 5.13) and hence it is equal to 
dimS'g, (see loc. cit.); the right hand side of (6.8.1) is equal to 
dim End(c& KI F~~ It follows that 

(6.8.2) dim End(q~ KI f~o) = dim d e .  

For each p e d s  the restriction of (q~ K)p to yao is non-zero, since even the 
p-isotypic part of ~o=H2~~176176174176 is non-zero (see 5.13). 
Since (~o, g)ol ~o is a direct summand of ~0~ KI f,o, it follows that it is a direct 
sum of complexes K(N'), with at least one summand. It follows that the natural 
map 

(6.8.3) End(t& K)--*End(q h K[ f,o) 

is injective, and due to (4.1.1) and (6.8.2), it is in fact an isomorphism. This 
implies that the restriction (qhK)pl yao is of the form K(g'), for a well defined 
(C,g')e.W, with C c  Y and this gives a 1 - t  correspondence between ~ ' "  and g,  
the set of pairs (C, g') such that K(g') is a summand of q~ K I ~,o. 

6.9. Proof of 6.5(b), (c). We first show that the map in 6.5(b) is surjective. For 
this, it is enough to show that, for any g~C, we have H2aC(q~ - l(g)-cp-l(g)~o, K) 
=0, and this would follow from the equality HZac(q~-~(g),,K)=O, for 
any stratum ~ 4= ~o of $1, (with notations in 4.5). The hypercohomology spectral 
sequence reduces us to proving: H~(q~-l(g)~, ~J(K))4:O~i+j<2d c. If the last 
group is non-zero, then we must have i<2dim~p-l(g),<2dc-(dimSl-dim~), 
(by 1.2(b)), and j<dimX-d imX,=dimSl -d imo~,  (since a4:~o); it follows 
that i+j<2d o as desired. Thus, the map in 6.5(b) is surjective. If g" is an 
irreducible, G-equivariant local system on C, we denote by mr its multiplicity 
in R2aCf.,(~0l C and by rh~. its multiplicity in ~r dt;,(~o!K)[ C. The proof so far shows 
that rn,. > rh,., It is easy to see that, with notations in 6.8, we have the. = ne~. ; from the 
results in 6.8, it then follows that 

(6.9.1) E rfi2. = dim ~r �9 
(C,#.) 

We shall now prove that 

(6.9.2) ~ rnt 2. = dim zaCt. 
(C,#.) 

From the definition of mg., we see that 

dim 2 d i m C  2 d c  - 2 d e  - ,  _ 2 H~ (C,R f,.(ex)| f~(oa,))-~mg. 
g. 
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(sum over all ~" such that (C, 8")e.AQ. Let Z . . . .  o,C and Z~~ o be defined just as 
in 6.3. From the Leray spectral sequence of the natural m a p Z  ... . . .  c~C,  all of 
whose fibres have dimension <2d~, it follows that 

n 2 c l o ( Z a o , a o , C , ~ l  - *  ~ 2dimC 2de - 2dc - *  ~gt)..~H~ (C,R f, .(e0@R f.,(ex)). 

If we sum the dimensions of these vector spaces over all C c  Y, we find the 
dimension of 2ao .o - , , H~ (Z . . . . .  , g l ~ * ) ;  indeed, the Z.o~o c form a partition of 
Z~~ o into locally closed pieces of dimension <d  o. Hence, we have 

m 2. =dimH2a~176 ~ ~ ' )  = dim 3"-~o = dim ~1~, , 
(C,g.) 

(see 5.13) and (6.9.2) is proved. From (6.9.1) and (6.9.2) and from the inequality 
me. >rile., it follows that m~. = n~., for all (C, g'). This means that the surjective 
map in 6.5(b) must be an isomorphism. 

From 6.5(a) it follows that (C,g ')  is in the set q~-a(L, Ct ,g ; )  if and only if 
m~.#0. As we have seen this is equivalent to the condition that rfi~.=n~.#0, 
i.e. to the condition that K(g') is a direct summand of ~o~ KIY ~~ This completes 
the proof of Theorem 6.5. 

w 7. Induced unipotent c lasses  

7.1. We again fix S 1 c L c P  and o~l on S 1, with (St,gt)  a cuspidal pair for L. 
Let a: G ~ A  be the Steinberg map, see 5.1. For  each aeAr, we define Y"= 
c~a-l(a), X " =  qS- t (P~)=X. 

7.2. Proposition. (a) For any a~Ar, 
- 2 v L + dim (S t /~o).  

(b) I f  S 1 contains some unipotent 
identity element in G and X "~ Y"~ are 

Proof (a) We have X" = {(g, xP)~G • 
the map (g, xP)~--~xP: X"--*G/P 

both X" and Y" have pure dimension 2v~ 

element, then A r contains ao=class of the 
irreducible. 

(G/P)Ix -~ g xEg t Uena-l(a)}. All fibres of 
are isomorphic to St Uv~o-t(a)=(Sl  

~a-l(a))Uv, (see 5.1). Let C 1 ,  . . . ,  C r be the L-conjugacy classes in Sl~a- l (a) .  
Then S l ~ o - l ( a ) = C l ~ . . . u C , .  We have dim Ci=dim(Sl /N ~ for i=1  . . . .  ,r. It 
follows that X" has pure dimension as stated. We know that qS(X)=Y, it 
follows that qS(X")=Y a, hence d i m Y " < d i m X  a. Assume that ~a has some 
irreducible component D of dimension 6 < dim X". Then there exists an open 
dense set D O in D such that d im4~- t (g )=d im(X") -3  for all geD o. The fibre 
product X"x  r-X" contains the fibre product qS-1(Do)x oo qS-t(Do) hence it has 
dimension >dimDo+2(d im(Xa) -6 )=2dim(X") -6 .  By 5.3(b), (with E=L,S '  t 
=St )  the fibre product X " x r o X  a ( = Z  a) has dimension <2vG-2v  z 
+ d i m(S1 /~  ~ It follows that dim(X")=>2dim(X a ) - 6  hence 
6 > dim(Xa). This contradicts 6 < dim(X") and proves (a). 

(b) With the assumption in (b), S 1 contains a unique unipotent conjugacy 
class of L. Let us denote it C t. We have Slc~o-l(a0)=12t  hence X "~ 
={(g, xP)eGx(G/P) lx-agxeC1.Uv} .  This is clearly an irreducible variety 
(since C t. U v and G/P are irreducible). Since Y"~176 Y"~ must be also 
irreducible. 
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The following result is proved in [11]; unlike the proof there, the proof 
given below will not make use of the rather delicate "property A" of [11] for 
C 1 . 

7.3. Corollary. Assume that S 1 contains the unipotent L-conjugacy class C 1 and 
that ~l]~~ is constant. 

(a) Let C be the unique unipotent conjugacy class in G such that C 1 Upc~C is 
dense in C 1 Up. Then C is the unique unipotent class which is open, dense in ~o.  

(b) G acts transitively on 4'-1(C). 
(c) P acts transitively on C 1 Upr~C. 
(d) Let g~C 1 Upc~C and let g=Zre(g)~L. The natural map 

~;: Zp(g) /Z~ ZG(g)/Z~ is injective and the natural map 

Zdg)/ZO(g) ~', z~(D/zo(~) 
is surjective. 

Proof. (a) We have C 1 U e c C. As Y"~ is the union of the G-conjugates of 

C1 Up, it is contained in C. Since C c Y  ~~ we have Ya~  Hence C is open 
dense in pao. The uniqueness of such C follows from the irreducibility of ~ao, 
(7.2(b)). 

(b) As we have seen in the proof of 7.2, the map 4': X " ~  "~ is surjective 
and X ~~ ~ao are irreducible of the same dimension. It follows that all fibres of 
4': 4 ' -1(C)-~C are finite. Any G-orbit on 4'-1(C) maps onto C since G is 
transitive on C; hence any G-orbits on 4'-~(C) must have dimension equal to 
that of 4 ' - l (C)  hence it is dense in 4'-1(C), as 4'-1(C) is irreducible. It follows 
that any two G-orbits on 4'-~(C) must intersect each other, so that there is 
only one G-orbit on q5-1(C) and (b) follows. 

(c) Let g,g' be two elements of C1Upc~C. Then g ' = x - l g x  for some x~G. 
Since g'~Ci Up, it follows that (g, xP)~4 ' - l (C) .  By (b), (g, xP)  must be in the 
same G-orbit as (g,P)E4'-~(C). Hence there exists y~G such that y-1 g y = g ,  
y P = x P .  Then y = x z ,  z~P and g = y - l  g y = z - l  x - ~  g x z = z - ~  g' z. Thus, g,g' 
are conjugate under z~P and (c) is proved. 

(d) The isotropy group (in G) of g is ZG(g); it must have the same dimen- 
sion as the isotropy group (in G) of (g,P)~4'-I(C), which is Ze(g), since the G- 
orbit of g has the same dimension as the G-orbit of (g,P), (see b). From the 
equality dim Zp(g)= dim ZG(g ) it follows that Z~ Z~ hence 7 is injective. 

We now prove following [11, 1.5] that 7' is surjective. By (a), g U e ~ C  is 
dense in g U e and from (c) it follows that ZL(~)U e acts transitively (by con- 
jugation) on g Uec~C. Since g Up is irreducible it follows that Z~ e must 
also act transitively on g Uec~C. Hence for any element z~ZL(~) there exists 
z~ . v~Z~ �9 U e such that z g z - ~ = z 1 v g v - ~ z {  ~ so that v -1 z{  1 zeZe(g  ). Under 
the map ~', the coset of v- 1 z~- ~ z is mapped to the coset of z ? ~ z which is the 
same as the coset of z. Thus, 7' is surjective. 

7.4. Corollary. With the notations of  7.3, we have d c =0 (d c as in 6.5). The G- 
equivariant local system Jf~ corresponds to the representation of 
ZG(g)/Z~ induced by the representation of  Zp(g)/Z~ obtained by composing 
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7' and the irreducible representation of ZL(~,)/Z~ corresponding to the L- 
equivariant local system ~1 C1 on C a. 

Proof. The equality dc=O follows from dim C=dimP"~ 
(see 7.2(a)). The map qS:~b-a(C)~C can be identified with the natural 
map G/Ze(g )--* G/Z G (g). 

The restriction of K to qS-~(C)~ G/Zp(g) is a G-equivariant local system; it 
is the same as the restriction of ~ since dp-~(C)CX,o, (see 4.4). It corresponds 
to a representation of Ze(g)/Z~ hence it is determined by its restriction to 
P/Ze(g ) ~ G/Zp(g). That restriction is the inverse image under 
P/Ze(g)~(L/ZL(~, ) ~ C 1 of the local system ga[ C1 on C 1. The Corollary follows 
from these remarks. 

w 8. Restriction to a parabolic subgroup 

8.1. In [21, 4.4], Springer gave a description of the restriction of an irreduc- 
ible representation of the Weyl group in G to a parabolic subgroup, in 
geometric terms, involving unipotent elements and Borel subgroups containing 
them; his proof was subject to certain restrictions on the characteristic of k. In 
[15, w Shoji proved a closely related result. In [3, 3.1], Borho-MacPherson 
found another approach to Springer's result, but their formulation is less 
convenient for applications than Springer's, in that they formulate the answer 
in terms of an unknown intersection cohomology space. In this chapter, we 
shall give a proof of Springer's result valid in any characteristic and which 
applies also to the more general situation considered in w 6. 

8.2. Let P c P' be two parabolic subgroups of G with Levi subgroups L,/2 
respectively, such that L~/2.  Let C 1CL be a unipotent class and let g; be an 
L-equivariant local system on C 1 such that (C I, g ~ ) e ~  ~~ Let S a = 5  e~ C1, and 
let g~ be the local system 1 Nleg; on $1. Let d~l be the algebra associated in 
3.4 to (L, Sa,g~) and G. Let d~l be the algebra defined in the same way but 
replacing G by /2. Then ~r is in a natural way a subalgebra of rig1. Let 
(C',~")~ ,/gs be an element in @-I(L, C~,g~), (@ defined with respect to /2, see 
6.4) and let p' be the corresponding irreducible representation of d ) , ,  (see 
6.5(c)). 

Let (C, g ' )e  ~Vs Define the integer m~., e. to be the multiplicity of g"  in the 
local system Rzac, c'(fc, c,)(g" ) o n  C', where fc.c,:n~?(C')c~C--*C' is the re- 
striction of np,: P'--*/2 and dc. c. =�89 

8.3. Theorem. (a) I f  me.,,e, is non-zero, then (C,g ' )e@-I (L ,  C1,~), (~ defined 
with respect to G, see 6.4). 

(b) Assume that (C,or Ca,Fo~) and let p be the corresponding irre- 
ducible representation of d~,, (see 6.5(c)). Let (p': p) be the multiplicity of p' in 
the restriction of p to sJ) . Then m~., g.=(p':  p). 

8.4. For the proof of 8.3 we shall consider the set (Sa)~g defined as in 3.1 
(with respect to G); we have a commutative diagram 
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.?~ Jo ' i * ' ~  

where Y= ~) x(S1)regX -1, (see 3.1), Y= ~ x(S 1 Up)x -1 
x~G xeG 

y , =  ~ y(S1)~gy-1, ~,= ~ y~l(Uec~L,)y 1, 
yeL" y~L' 

~" = {(g, xL) ~ G x (G/L) I x -  ~ gx ~ (S 1)~g}, 

gl = {(g, x C ) e G  • ( G / E ) I x -  l g x f f  Y'}, 

X = {(g, xe)eG x (G/P)I x -  ~ gxeS~ Ue}, 

xl = {g, xP')eG x (G/P')I x- 1 gxe ~F' Up,}. 

The map q~' is (g, xP)~--~(g, xP'), the map c/)" is (g, xP')~--,g and 4=4"4'.  The 
map rE' is (g, xL)~-~(g, xE), the map rE" is (g, xE)~--,g, and lr=r('Tr'. The m a p j  o 
is (g, xL)~-,(g, xP), the map j I is (g, xL~--~(g, xP') and the map J2 is g~-~g; the 
maps Jo,Jl,J2 define imbeddings of Y, 111, Y as open smooth dense subvarieties 
of X, X1, Y respectively. 

The map ~r: t ' ~  Yis a finite covering and a principal bundle with group f s ,  
=stabilizer of S 1 in NG(L)/L, see 3.2. The map 7r': Y~Y1 is a finite covering 
and a principal covering with group ~Ks' ' =stabilizer of S l in NL,(L)/L. 

Let ~ be the G-equivariant local system on Y defined in 3.2 in terms of 
$1, r Then we have 

(8.4.1) ~r = End r~, ($1). 

This can be seen as follows. In the diagram 

f - l={(g ,x)~GxGix_lgx~r ,}~{(g ,y , )~Gx Y,} pr2 ~ y, 

(~(g,x)=(g, xE)), the local system fl*rc'.(~l) on Y1 is the inverse image under 
pr* of an E-equivariant local system ~ on Y'; ~ is the restriction of zr.(d~l)' 
to Y; identified with a subset of Y~, via y'~--~(y',E). By 3.5 applied to E instead 
of G, we have d ~ - - E n d  (o~). As Y1 is the space of E-orbits on f] for a free 
action of E on I11, we have End (o~ )=Endpr~ (~ ) = En d ( r r , ( N  0) and (8.4.1) 
follows. (Compare with the proof of 3.5.) 
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It follows that we have a canonical  decomposi t ion 

(8.4.2) ~ ; ( d l ) =  @ (10'1 |  

where ,(81)o; are irreducible, G-equivariant, local systems on YI. 
By 3.5, 3.7, we have d~ ,  ~ E n d  (rc,(dl)) and a canonical decomposi t ion 

~ , (d l )  = @ (P~| 
P ~ GH~ 

Since taking direct image of a local system under  a finite unramified 
covering is essentially the same as taking an induced representat ion of the 
fundamental  group we see that  for any p'les~')'~ we have 

(8.4.3) " ' " ~.(~.(~,)M = @ (~.(dlb, | 

We now consider the complex of sheaves K=IC(X,~I) on X, defined in 4.4. 
(Recall that ~1 is a local system on {(g, xP)~G• 
From 4.1 and 4.5 we see that 

4~(K)= @ (p~| and 4)t(K)o=IC(Y, rc*(gl)o, ). 
PI6H~ I 

From 4.5 applied to E instcad of G, we sce that 

(8.4.4) ~b'~(K) [ Y' =IC(Y', J~t) 

and from this it follows that 

(8.4.5) 0'~ (K) = I C (X 1 , ~ ,  (d~)). 

(Note that  X~ has the same singularities as Y', in the following sense: X~ is the 
space of  F -o rb i t s  for the free P ' -act ion on Jr1 = {(g, x)eG x Glx-lgxeY' Up,}, 
(g,x)~--~(g, xp') and we have 3;1~ Y' x Up, xG.) 

F r o m  (8.4.1) it now follows that 

End (01 (K ) )~ ,~ ) ,  and qS't(K)= @ (p'l| 
where ~ 

(8.4.6) ' ' d  ff)!(K)p, = IC(Xa ,  7c,(1)pl). 

Next, we show that 

(8.4.7) 4 , ' , ' ( ~ ; ( K ) M = I C ( f  , ~"r r ~ ~ We', *', lYp~JJ, 

for any p i e d ) [ .  
F rom (8.4.6) we see that the restriction of 4>'~'(4~(K)p~) to Y is the local 

system r~,(~,(d~ .). Since c~" is proper ,  (8.4.7) is a consequence of (8.4.6), of  the 
assertion (8.4.8) below and of the analogous assertion with K replaced by K* 
= I c ( x , ~ ; q :  
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(8.4.8) For  any i>0 ,  we have dimsupp~Cfi((Y((4'~(K)o;))<dim(Y)-i. 
This is checked as follows. We  have supp,yfi((Y!'((o'!(K))p'O 

c supporfi(O':'(4)'!(K)))=supp~i(Ot(K)) hence (8.4.8) is a consequence of (4.5.1). 
Thus, (8.4.7) is verified. Combining (8.4.7) with (8.4.3) we see that, for any 
p'~Esr we have 

(8.4.9) O,:,(O,(K)ol)~_ @ (dp!(K)p I @~p~:pD). 

For  p 1 ~ ' ~ , ,  let (Cp,, g'p,) be the element of q)- ~(L, C 1, g ] ) c  ~ correspond- 
ing to PI, by 6.5. F r o m  6.5, it follows that ~t~z't(cm'c~)((9!(K)~)[ C m is gj~ if ~ 
= P l  and is 0 if ~31#pl.  (Here d ( C p , , C O = ( v G - � 8 9 1 8 9  
Hence, from (8.4.9), it follows that 

(8.4.10) (p'~: p 0 = m u l t i p l i c i t y  of g0, in the local system 

~2atc,,'c')((Y( (O':(K)e;))l C , . 
N o w  let (C'o~,gjl) be the element of eb-a(L, C l , g ; ) c  YVL~), (Cb defined with 

respect to L') corresponding to p'~, by 6.5. F r o m  6.5 it follows that 

supp ~b'!(K)p I c D  = {(g, xP')~G • (G/P')] x -  ~ gxe  C'ol Up,}. 
Hence 

(8.4.1.1) (P'I: P l ) =  multiplicity of gO, in the local system 

3(( 2a(cm' c,)((O,, I D), (~'! (K),~ I O)) I C , .  

Let D ~ = {(g, xP')eG x (G/P')Ix l gx~  C'p; Up.}, (an open subset of D). We now 
show that 

(8.4.12) the natural  map  

o~2a(Cp,'C~ D~176 C p, 

~Yfzd(cv"c')(((o"lD), r I D))I Cp, 

is surjective. 
This will imply that 

(8.4.13) (P'a: Pl)<xo;,o, 

where 

(8.4.14) xoi,p ~ = multiplicity of  gj ,  in the local system 

~2a(r  c,)((~b,, i DOV)~ (r (K).~ i DOp))] Cp.  

To prove (8.4.12) it is clearly enough to prove that 

~2dtc  m, c,)((~b" ] D - D~ (~b'~ (K)p~ [ D - D~ ] C m = 0, 

or. equivalently, that for any ge  C,1. we have 

H~a(Cp,, c,)((a,,-1 (g) c~ (D - D~ ~b'! (K)p~) = 0. 
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Since D - D  ~ can be part i t ioned into the locally closed pieces 

(8.4.15) De, = {(g, xP ' )eG x (G /P')I x -  1 g x e  C' Ue, }, 

for the various E-unipoten t  classes C ' ~  C 'p ; -C '  o~, we see that it is enough to 
show that for every such C', we have 

H 2a (cm" q)(c~" - '  (g) n De,, (o':(K)p;) = O. 

The hypercohomology  spectral sequence shows that the last equality is a 
consequence of the following statement:  

H~ (qT'- ~ (g) n De, , .YfJ (qS', (K)p~)) 4:0 ~ i + j  < 2d(Cp,, C~). 

The hypothesis of this s tatement implies i<2dim(~b"-~(g)  nDe ,  )<(2v  a 
- d i m  Cp,)--(2vL,--dim(~' ), (see 1.2(b)) and ~J(c/Y~(K)p;)IDe,4:0, hence j < ( 2 v  L, 
- d i m  C') -- (2VL -- dim CO, (by 6.5); it follows that  i + j < 2 d ( C o , ,  C~), as desired. 

Thus, (8.4.12) and hence (8.4.13), are proved. 
We want to show that 

(8.4.16) (P'I : Pl) = xo;,o,- 

In view of (8.4.13) and the equality ~ d i m ( p ' O ( p ' t : p O = d i m ( p l ) ,  it is 
enough to prove the equality o; 

(8.4.17) ~ dim (P'I) xpl, p, = dim (p 1). 

J ~ ~ ' r v  We first compute  the sum ~e,=~dim(p'l)_xp~.o ~, summat ion over all Pl ~ ,  
such that C'ol is a fixed E-unipo ten t  class C' c Y'. F rom (8.4.14), and 6.5, we see 
that, if we set/~=(VL,--�89 ' 1 . C o l ) - ( V L - ~ d l m  C1), we have 

(8.4.18) 2e ,=mul t ip l ic i ty  of Ns in the local system 

2d(co,, C,~- 2~ ((~b" I Dc,)s (j~(f 2 ~ (qT! (K))IDc.)) I Co.  

(Note that the definition of D e, in (8.4.15) makes sense for any unipotent  class 
~ ' c  E.) F rom 6.5 (b) it follows that 

.~r 2 ~ (q~; (K))I D e . ~ R a~(q71X~o), (21)I D e, 

where X~o= {(g, x P ) e G  x (G /P) l x -  ~gxeS  1 Up}, hence (8.4.18) becomes 

(8.4.19) ~c .=mul t ip l ic i ty  of d's in the local system 

~ 2 ~ c , , , c , ) -  2~((O,, I Dc,),(R2~(O, I X~o)~(~,) I De,))I C , . 

By the spectral sequence of the composi t ion qS"o (b', the last local system is the 
same as the local system 

~2~c,, ,  c,~((q~,,o r xe~),(~,))l c0,, 

where XC'=~o _ {(g, xP)eX~o I ~b'(g, xP)eDe'}" 
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The X e" form a partition of X~o into locally closed pieces of dimension ~o 

<d(Co~, C O. It follows that ~2c,=mult ipl ic i ty  of gs in the local system 
C" 

~2ar l X~,o),(~O)l Co. 

By 6.5(b), the last local system is the same as Jt~2a~cp~'c~)((~K)lCp~, and from 
6.5, it follows that this local system contains g~ with multiplicity dim(p 0. 
Thus, we have ~]~e,=dim(pl).  

C" 

Thus, (8.4.17) and hence (8.4.16) are proved. 

8.5. We can now prove Theorem 8.3. With the notations of that theorem, we 
consider the variety V={(g, xP')~Cx(G/P')Ix-lgx~C'Up,}. This is a sub- 
variety of X~ since C' must be contained in Y'. The E-equivariant local system 
o ~'' on C' gives rise to a G-equivariant local system ~"  on V as follows. We pull 
back E" to P'= {(g, x)~ C x G Ix- 1 gx~ C' lie,} by the map (g, x)w-~ C'-component 
of x - l g x ;  we obtain a G x E-equivariant local system on Vwhich must be the 
inverse image under ~'~ V: (g, x)~--~(g, xP') of a well-defined G-equivariant local 
system ~"  on V. 

Let f :  V~ C be the projection on the g-coordinate. According to (6.1.1), 

(8.5.1) mr is equal to the multiplicity of ~o. in the local system R2aji~" (on 
C), where d = ( v ~ - � 8 9  C) - (vL, - �89  C'). From the definition of p' (see 8.2), 
it follows that o ~'' is the local system Jt~2a(qT~(K)p,)lV, where 6=(vL,- �89  C') 
-(VL-�89 hence me., ~. is equal to the multiplicity of g" in the local 
system R2a(O"I V)!(~ut~2~(0'!(K)o,)l V) on C. 

With the assumption of 8.3(b) it now follows that m~.,.e.=Xo, o, (see 
(8.4.14)) and, by (8.4.16), the conclusion of 8.3(b) follows. 

With the assumption of 8.3 (a), (me.,e.+O), it follows that g" appears with 
4:0 multiplicity in the local system R2a(c~"IV)~(R20((YIXC~)~(~a)IV ) on C, or 
equivalently, in the local system R 2a+2'~t,~ x c ' v ~  ~1 C, (see 8.4). It also follows \"U ~O ! ~, 111 

that g" appears with non-zero multiplicity in Rza+2~(OJX~,o)~(~l)lC. (Indeed, 
when C' varies, the xC',o form a partition of X,o into locally closed pieces whose 
intersections with qS-~(g), (g6C) have dimension <d+6.) From 6.4, it now 
follows that (C, g ' ) 6 0 - I ( L ,  C~, g~) and 8.3 (a) is proved. 

w 9. On the structure of the algebra d ~  

9.1. In this chapter we fix (L, CI,g~)E.~I G and a parabolic subgroup P E G  
having L as a Levi subgroup. Let S I = ~ ~  and let gl be the local system 
1 Nlg; on S r Let ~b: X--* Y= Y~L,s~), qS!(K) be defined in terms of L, $1, d~ P as in 
4.2, 4.4 and let dr be the algebra defined as in 3.4. Let P~, P2 . . . . .  P~ be the 
parabolic subgroups of G which are minimal with the property that they 
contain strictly P. Let L 1, L 2 . . . . .  L' be the corresponding Levi subgroups of 
p1, p2 . . . . .  P~, containing L. We shall denote by C the unipotent class in G such 
that Cc~ C 1 U e is dense in C 1 Up and by C i the unipotent class in L i such that 
c i (~CiUpc~L , is dense in C1Ue~L, , ( l < i < r ) .  We shall denote by C the 
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unipotent class in G which contains C~ and by C~ the unipotent class in L ~ 
which contains C~. 

With these notations we can state 

9.2. Theorem. a) NG(L)/L is a Coxeter group with simple reflections s, s 2 . . . . .  St, 
where s i is the unique element of order 2 of NL,(L)/L 

b) ~I~g -= N~(L)/L. 
c) The local system ~~ C is #0,  irreducible. Hence there is a unique 

p~d~,  such that 3tf~ K)I C = Jf~ K)o I C; moreover, dim(p)= 1. 
d) There is a unique isomorphism of algebras ag~, ~ ~ ~z[~//:~,] which maps 

zaC&, w onto ~ l w  ( V w e ~ l )  and is such that it makes p(in (c)) correspond to the 
unit representation of ~ . 

For the proof, we shall need the following 

9.3. Lemma. Let P be a proper parabolic subgroup of G and let L be a Levi 
subgroup of P. Let g be a unipotent element in L, and let clG(g), ClL(g ) denote the 
conjugacy class of g in G and L respectively. Then (va- �89 L 

- �89 dim c l L (g)) = dim Z UP (g) > O. 

Proof. Fix a maximal torus T 1 e L  and consider the subgroup Up tm of U e 
generated by all root subgroups of Up (with respect to T 0 corresponding to 
roots ~ with the following property: the sum of coefficients in ~ of the simple 
roots of G which are not roots of L is maximum possible. Then U~ ~ is 
isomorphic as a group to k", for some n>0.  It is normalized by L, and the 
action of L on it corresponds to a linear action of L on k". A unipotent linear 
transformation of k" (n>0)  must have a fixed point set of dimension >0. It 
follows that dim Zv~oj(g)>0 hence dim Zv,,(g)>O. The equality in the lemma 
follows from (2.9.3), ('2.9.4). The lemma is proved. 

9.4. Proof of Theorem 9.2. We first show that 

(9.4.1) ,~2de(4~K)LC~0, where de= ( v a - l  dim C) -- (vL - - l  dim C1). 

By 6.5, it is enough to show that H2de(q~ l(g)c~X=o, f f l ) , 0  where g eC  1 and 
X=o,$1 are as in 4.4. The variety V={xPeG/P[xeZ~ is contained in 
~-~(g)c~X~o (by xP~+(g, xP)), and is non-empty, irreducible of dimension d e, 
(see 2.9 (b)). 

Hence to prove (9.4.1) it is enough to show that the restriction of 8~ to V is 
constant. Consider the commutative diagram 

Z~ - i - - ,J(=o={(g' ,x)eGxGlx lg 'xc:~~ ~'--+C 1 

V ~ ,X=o={(g ' ,xP)eGx(G/P)lx-~g'xeLr~ Up}. 

Here {'(x) = (g, x), i(xP)=(g, xP), j (x )=  xP, j'(g', x)= (g', xP), 7(g', x) 
=prc,(X -1 g'x). By definition, we have ( j ' ) , ~ l = y * r  Since 71"maps Z~ to 
a point, the local system /'*y*(r on Z~ is constant. This is the same as the 
local system j* i*~ r Now V is the orbit space Z~176 by 2.9(c), the 
group Z~ is connected. Since j*i*~, is constant, it follows that i*~ 1 is 
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constant, i.e. the restriction of ~1 to Vis constant and (9.4.1) is proved. From 
9.3 it follows that de>O. On the other hand, by 7.4, we have dc=(Va-�89 C) 
-(vL-�89 It follows that C:I:C. By 7.4, we have ~'~~ 
This and (9.4.1) imply that the algebra de ,  has at least two non-isomorphic 
representations, (see 6.5 (c)). Hence 

(9.4.2) I~W~[ > 2. 

Applying this to L i instead of G, we see that ~#/ec~(NL,(L)/L) has at least two 
elements. On the other hand, NL,(L)/L has at most two elements (it acts 
faithfully on the one dimensional torus ~eo/~eo). It follows that NL,(L)/L has 
order 2 and it is contained in ~/r for any i, i<_i<r. Hence the Coxeter graph 
of L is stable under the opposition involution of the Coxeter graph of L ~, 
( l < i < r ) .  This implies (see for example [7, 5.9]) that NG(L)/L is a Coxeter 
group with simple reflections sl, s 2 . . . . .  s~, where s i is the non-trivial element of 
NL,(L)/L. Hence (a) holds. Since sie~C/~e ~ and the s i generate N,(L)/L, it follows 
that ~/r = NG(L)/L, hence (b) holds. 

We consider the 2-dimensional subalgebra d~,  of d e ,  spanned by ~r 1 and 
d e .... . This algebra has at most two irreducible representations. Hence the set 
~b-X(L, C 1, g~)c  JV~L,, (4 defined with respect to U) has at most two elements. 
Note that C~+ C~. Indeed, from 9.3, applied t o / J  instead of G, we see that (v L, 
- � 89  C~)>(VL--�89 Ca). On the other hand, from 7.4 applied to /J instead 
of G, we see that VL,--�89 Ci=VL-�89 C 1. It follows that dim C/<dim C i 
hence C~fi: C ~, as asserted. 

Using (9.4.1) for /J instead of G and C~ instead of C and 7.4 for L i instead 
of G, it now follows that 4 -~(L ,  C 1, r  ~IL ~, has exactly two elements; one is 
supported by C~, the other is supported by C~; they correspond by 6.5 to 
irreducible representation p~, ~ of sr 

The local system Jt~~ K)IC is non-zero, by 7.4. Let P ~ ' e~  be such that 
o~~ K)p[ C+0.  We now show that the restriction of p to the subalgebra ~'~. 
does not contain the representation fii of that subalgebra. By 8.3 and (8.5.1) it 
is enough to show that (vG--�89 C)- (VL,- �89  Ci)<0. From 7.4 we see that 
v~- �89  C=VL- �89  C~=VL,--�89 C ~, and it remains to use the inequality 
dim C~< dim C ~ which has been already noted. It follows that the restriction of 
p to ~r is a direct sum of copies of the representation p~. Hence, if b~, is a 
basis element of .~r .... , then b~, acts on p as a scalar times the identity. Since 
the b~, (1 <i<r) generate ~162 as an algebra, it follows that any element of ,~r 
acts on p as a scalar times the identity. Since p is irreducible, it must be one- 
dimensional, and it is uniquely determined by the property that p l ~ e = p  ~. 
Hence, (c) is proved. 

Using the one dimensional ~'e -module p, we can define an isomorphism of 
~r with the group algebra of ~We, as follows. In each summand ~r . . . .  ( w e ~ ,  
we choose as basis element b w the unique element which acts as the identity 
map on the ~r -module p. It is clear that bwb w, must be equal to b~w. so that 
the basis (bw) provides the required isomorphism ~r ~ [ ~ , ] .  This com- 
pletes the proof of the theorem. 
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9.5. Proposition. With the assumptions in 9.1, the local system ~(~2d~(q~! K)[ C in 
(9.4.1) is 4=0, irreducible and the unique ~ e d ~  such that ~tcEa6(~!K)]C 
=o~2de(qS!K)~[C corresponds under 9.2(d) to the sign representation of ~U~l 
= N 6(L)/L. 

We first show that the proposition is a consequence of the following 
statement. 

(9.5.1) For each i, l<=i<=r, we have CiUp,r 
If we assume (9.5.1) then the variety Vin 8.5 (defined for C, C i, P~ instead of 

C, C', P') is empty; hence from (8.5.1) and 8.3 it follows that the restriction of 
to ~4~1 does not contain pi. (Here ~ is any irreducible representation of N,~ 
such that Jfzaa(4)~K!~ ] C4=0.) It follows that ~[,~'~ is a direct sum of copies of 
the representation ~3'. If we identify d , ,  with ~z[~/g~ ] as in 9.2(d) then d~, 
becomes the subalgebra of ~ l [ # ~ ]  spanned by 1 and s i and r i is the one- 
dimensional representation of that subalgebra on which s~ acts as - 1. Hence si 
= -  1 on /3 for any i, 1 _< i<  d. Since ~ is irreducible, it follows that r must be 
the sign representation of ~W~, and, in particular, it is uniquely determined and 
the proposition is proved (assuming (9.5.1). 

We now show that (9.5.1) is a consequence of the following statement: 

(9.5.2) Let P' be a parabolic subgroup of G with Levi subgroup E and let 
u~/2, veUp, be unipotent elements. Then clG(u)~clG(uv ). (Here cla denotes 
conjugacy class in G). 

We take I2=/~, P ' =  pi, ue C i, v~ Up, and assume that u ve C. From (9.5.2) it 
follows that dim cl~(u) < dim C hence dim Za(u) > dim Z a(g ) where ge C 1. From 
9.3, we have dimZG(u)=dimZL~(u)+2dim.Zvp,(U ), and dimZa(g)=dimZL,(g ) 
+2dimZve,(g  ). Moreover, from 9.3 (for /2 instead of G) we have dimZL,(U ) 
=dimZL(g)<dimZL.(g ). It follows that dimZvp,(u)>dimZvp,(g ). The last in- 
equality is impossible for the following reason. Consider the action of /2 on 
Up,, by conjugation. The fixed point set of an element in C ~ has constant 
dimension (=dimZup,(U)); hence the fixed point set of an element in the 
closure C ~ must have dimension >dimZve,(U ). Since g e C  *, we find a con- 
tradiction. Thus, we have proved that (9.5.2) implies (9.5.1). 

It remains to prove (9.5.2). It is easy to see that the action of ~L ~ on Ue, (by 
conjugation) has the property that the closure of any Lr~ contains the 
unit element. It follows that u belongs to the closure of the set {zu v z - ~ [ z ~ ~  
and (9.5.2) follows. This completes the proof of the proposition. 

w 10. Examples in the classical groups 

10.1. We wish to describe the set ,//t~. (Recall (cfi 6.4) that ~G consists of all 
G-conjugacy classes of triples (L, Cl,g;) where L is a Levi subgroup of a 
parabolic subgroup of G, C1 is a unipotent conjugacy class of L and g; is an 
irreducible L-equivariant local system on C~ such that (Cl ,g ; )e  ~L(~ 
description will be in the form of a list of elements of J//G and for each me J//G 



246 G. Lusztig 

we will indicate the number of elements in ~-l(m),  (see 6.4). For this, we can 
reduce ourselves to the ease where G is almost simple and simply connected. 
Indeed, let 7r: G ~ G / ~  ~ be the natural homomorphism. Then g induces a 
bijection between the sets ~ (resp. ~(o) ,  JgG) and the corresponding sets for 
G/~ ~ which is compatible with the map 45. Thus, we are reduced to the case 
where G is semisimple. In that case, let ~: G ~ G  be the simply connected 
covering of G. Then ~ induces a bijection between the sets ~ (resp. alva(~162 
and the subsets of the corresponding sets for G, defined by the condition that 
the kernel of ff acts trivially; this is again compatible with 4~. Thus, we are 
reduced to the case where G is semisimple and simply connected. In that case, 
there is a natural bijection between the sets A~G (resp..Aft~ J~'G) and the product 
of the corresponding sets for the various almost simple factors of G. Thus, we 
are reduced to the case where G is almost simple and simply connected. 

10.2. We shall use the following method. We assume that the set ~ (o )  has 
been already determined for all Levi subgroups L of proper parabolic sub- 
groups of G. Hence we can list all elements of JC/G corresponding to L + G. For 
each such element m=(L, Cx, g~), we know from 9.2 that ~/Ur =N(L)/L and that 
rig1 ~ ~t [ ~ 1 ] '  By 6.5, the set 4)-t(m) has then exactly as many elements as the 
set of irreducible representations of N(L)/L. Taking the sum over m of the 
integers [cb-l(m)[, we get the number of elements in A/s - ~2~o). The number of 
elements in ~ is equal to the sum over a set of representatives g for the 
unipotent classes in G of the numbers of irreducible representations of the 
finite groups ZG(g)/Z~ Hence the number of elements in A ~ can be de- 
termined in each case, (see [18, 16, 12-14]). Therefore the numbers of elements 
in ~ o )  can be determined as the difference between the number of elements in 

and in yVaa-~V6 (~ 

10.3. In this section we shall use the method in 10.2 in the case where G 
=SL,(k). The unipotent classes in G are completely described by the sizes of 
the Jordan blocks of their elements hence correspond to partitions of n. (Thus 
the unit element corresponds to the partition l +  1 + . . . + 1  and a regular 
unipotent element corresponds to the partition n.) If g is a unipotent element 
such that the corresponding partition is al + a2 +- . .  + at = n, then Za(g)/Z~ is 
a cyclic group of order g.c.d. (a t ,a  2 . . . . .  at,n' ) where n' is the part of n prime to 
the characteristic exponent of k. Hence 

IJV'[= ~ g.c.d. (o~1, o~ 2 . . . . .  o% n'). 
0 ~ 1  ~ O ~ 2 ~ , , . ~ t  

0~1 q- ~2 + . . . = n  

It is easy to see that the last expression can be rewritten as follows: 

(10.3.1) I~#[= ~ ch(a)p(n/e) (sum over all divisors e of n') 

where q5 is the Euler function and p(n/oO is the number of partitions of n/cc 
We shall prove by induction on n, that: 

(10.3.2) vV "~~ (for SL,(k)) consists of the pairs (C,N)~ A/~where C is the class of 
a regular unipotent element g and g corresponds to an irreducible representation 
Z~(g)/Z~ = ~(G--*~* whose image has exactly n elements. 
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We may assume that n > l  and that the statement (10.3.2) is known for 
fi<n. Let (L, C~,do~)sJr We may assume that 

L = S ( G L ~ x G L ~ x . . . x G L ~ ) c G ,  0~I +0~2 + ... + 0 ~ t = n .  

Assume also that L + G ,  i.e. that all ~ are strictly less than n. By the induction 
hypothesis, C~ is the class of a regular unipotent element g l e L  and ~1 
corresponds to a representation O : Z L ( g l ) / Z ~  with the following 
property: for each iE[1,t], the restriction of 0 to the image of 
~SL a (k)-'eZL(gl)/ZO(gl) maps that image onto a subgroup of order ~,i of (I)~'. 
N o ~  ZL(gl)/Z~ is a cyclic group of order g.c.d. (al,c(2,...,~t,n)_-<~i. It 
follows that cq =~2 . . . . .  at=c~ where c~ is a divisor of n' and that there are 
exactly qS(c 0 possibilities for 0. It is clear that N(L)/L is naturally isomorphic to 
the symmetric group ~t. Let do~ be the local system 1 ~do~" on ~eL ~ C~. 

From 9.2, it follows that ~r ~ 1 ~ [ ~ , ] ,  hence q) ~(L, C~,do;) consists of p(t) 
= p(n/e) elements, (see 6.5). 

It follows that 
} ~.f~--dV'(~ I = ~ fro(a) p(n/oO, 

sum over all divisors c( of n' such that e4:n. Comparing with (10.3.1) it follows 
that 

[~b(n), if n is invertible in k 
(10.3.3) Iw(O)l \ 

(0, otherwise. 

In particular, JV (~ is empty, unless I~G}=n. Assume now that I~GI =n.  Then n' 
=n.  

Let us consider again the triple (L, C l , g l ) e J / G  where L corresponds, as 
above, to the partition a 1 + 72 + ... + a ,=  n, and al = a2 = . - .  = ~ = ~ is a divisor 
of n, ~ ~ n. The group ~ e  ~ L acts on g; by scalar multiplication on each stalk 
via a character of order a. F rom the definition of q~, it follows that, for any 
( C , g ) ~ - I ( L ,  CI,do~), the group ~ G ~ G  acts on # by scalar multiplication on 
each stalk via a character of order a. Hence, if (C, do) is such that C is the class 
of a regular unipotent element g and d o corresponds to a character of order n 
of ZG(g)/Z~ then (C, do) cannot be in q~-I(L, C1,do~), and therefore 
(C, do) is in JV (~ Moreover, (10.3.3) shows that all elements of ~A/'(o)are 
obtained in this way. This completes the proof of (10.3.2). This proof shows 
also that two elements (C, do), (C ' ,8 ' )  of Y ' a r e  in the same fibre of 4:  X ~ o ~  G 
if and only if ~fG acts on do and on do' via the same character; thus, ~r is in 1 

- 1 correspondence with the set of characters of ~G. 

10.4. In this section, we assume that G=Spz , (k  ) and that char(k)#2.  Let x, 
be the number of elements in AC. In this case the unipotent classes in G are in 
1 - 1  correspondence with the partitions 2 n = 1 . i ~ + 2 . i 2 + 3 - i 3 + . . .  where 
ia,i2,i 3 . . . .  >=0 and il , i3,i5, ... are even. (i, is the number of Jordan blocks of 
size a of a unipotent element.) The group of components of the centralizer of a 
unipotent element corresponding to such a partition is an elementary abelian 
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2-group of order 2 *{ . . . . .  [ i .>0} .  It follows that 

E Xn tn--~ 2 2#{aevenli~>O}t(lil+2iz+3i3+"')/2 
n>O i j , i2 , . . .>O 

i l , i3 , i s . . . even  

= ( 2  ti~)( 2 t3'~)( ~ t s '~) ' " •  1+ 2 2t'~)( 1+ 2 2t21~) -'" 
i i > o  i~>o  i~>o  i~>1 i S > l  

l + t  l + t  2 
= ( 1 - t ) - ~ ( 1 - t 3 ) - 1  (1 - t s )  -1 ... x 

l-I (1 + t i) 
i > l  

H ( l - t / )  [ I  (1- t2i-1)  
i>__1 i_->1 

1-[ (1 - t ~ )  
1 i_>__l 

[ I  (1- t i )  2 1~ ( 1 - t  2'-1) 
i > 1  i=>1 

1 
I~  (1 - t')  2 g>-_o ~' fl(2+ i)/2 

i > l  

1 - t  1 - t  2 ' "  

the last step being an identity of Gauss [5, Th. 354], (t is an indeterminate). If 
we define Pz(J) by the identity 

1-[ (1--t i) 2=~pz( j ) tJ  
i>l j 

it follows that 

(10.4.1) x , =  ~ pz(n--(1 + 2 +  ... +j)). 
j=>o 

We shall prove by induction on n that 

(10.4.2) yV (~ (for Spz,(k)) has exactly one element, if 2 n = 2 + 4 + . . .  +2j for 
some j > 0 and is empty otherwise. 

We may assume that n > 2  and that the statement (10.4.2) is known for 
~<n. Let (L, Cl,g~)sy/r G be such that L # G .  Then L must be a product GL~t(k ) 
x GL~2(k ) x ... x GL, t(k ) x Spz,(k), ~1 +c~2+ ... +c~,+r=n,  r<n. It follows from 

(10.3.2) that each ~i must be equal to 1 and from the induction hypothesis that 
r = j ( j + l )  for some j > l  and that (Cl,gl)  is uniquely determined by L. The 
group N(L)/L is easily seen to be a Coxeter group of type B,_,. Hence, if ~1 is 
the local system l[]g~ on Lr ~  C 1, it follows from 9.2 that ~'~l~z[~We~] 
=~I(N(L)/L) has exactly p2(n-r)  irreducible representations hence 
�9 -~(L, C 1, g~) consists of p2(n-r)  elements. It follows that 

[ W~-JV'(~ = ~ pz(n-- (1 + 2 + . . .  +j)). 
j_->o 

�89 1) < n 

Comparing with (10.4.1), it follows that 
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1, if n = l + 2 + . . . + j ,  for somej  
I.ar(o)[= 0, otherwise 

and (10.4.2) is proved. 

10.5. In this section, we assume that G=G, is either Spz,(k ) or a simply 
connected group of type B, and that char(k)=2. Note that I ~ ]  is equal to the 
number of unipotent conjugacy classes in the finite group SP2,(Fq) where q is 
any power of 2, hence it is also equal to the number of unipotent repre- 
sentations of SP2,(Fq) (see [10, 9.8]). We find that 

[.r ~ p2(n-Z(l+Z+...+j)). 
j_>_o 

Just as in 10.4, we see that 

1, if n = 2 ( l + 2 + . . . + j )  for some j > 0  
(10.5.1) IJV'(~ = 0, otherwise. 

The elements of -//gG are the triples (L, C 1, ~;) where L is a product 

GLI(k)•215 (n=t+r) 
t factors 

and r=j(j+ 1) for some j > 0 ;  (C 1, g;) is uniquely determined by L. N(L)/L is a 
Coxeter group of type B,_,. The number of elements in # - I (L ,  Cx, g;) is 
p2(n-r). 
10.6. In this section, we assume that G=SOu(k ), (N>I) ,  and that char(k)+2. 
In this case, the unipotent classes in G correspond to partitions N=lil+2i z 
+3 i3+ . . .  where il,i2,i3...>0 and i2 , i4 , i  6 . . . .  are even. (i, is the number of 
Jordan cells of size a of a unipotent element.) This correspondence is 1 - 1  
except that there are two unipotent classes (said to be degenerate) correspond- 
ing to any partition such that ia=i3=is . . . .  =0. The group of components of 
the centralizer of a non-degenerate unipotent element corresponding to the 
partition N = l i l  + 2i2 + 3i3 + . . .  is an elementary abelian 2-group of order 
2#~a~176176 the group of components of the centralizer of a degenerate 
unipotent element is trivial. Let x u be the number of elements in JV of form 
(C,g) with C non-degenerate and let x~ be the number of elements in ~V of 
form (C, g) with C degenerate. If t is an indeterminate, we have 

1+ ~ 2x~v+ tu= E 2*{a~ 3i3+'" 
n > 1 .i 1 , . i z ,  . . .  > 0 

12,14~ ,., @V@ll 

= ( 1 +  ~ 2ti9(1+ ~ 2t319.. .•  ~ t4i~)( Y' tsia)( ~ p2i'~)... 
i1>1 13~1 i ~ O  i~;>O ig>O 

l + t  l + t  3 
- 1 - t  1 - t  3 " ' ' •  

= ~ (1 - - t21 )  - 2 "  I~I (1 + t 2 i - 1 )  2 ~ ( 1 - t  2i) 
i=1 i=1 i=1 

= ( Z  P2(J) tzj) ~ tm2 
j>O m= -oo 
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the last step being an identity of Jacobi [5, 19.90)]. It follows that 

Xt' (N)  (N_m2~  
(10.6.1) 2 ' ' ~N_ XNq- 2 --P2 +2 E P2 , ,,>o \2 2 ] 

(we agree to set pz(j)=p(j)=O i f j  is not an integer >0). Note that 

(10.6.2) 

hence 

(10.6.3) 
2 ,  

We shall prove by induction on N that 

(10.6.4) I f  N >= 3 then A A~ for SON(k ) has exactly one element if N is a square, 
and is empty otherwise. 

For N < 4  this follows from (10.3.2). We now assume that N > 5  and that 
the statement (10.6.4) is known for N < N .  Let (L, Cl,g~)e._g ~ be such that 
L+G.  Then as in the proof of (10.4.2), L must be a product GLI(k ) x ... x GLI(k ) 

t factors 

x SOu_ztwhere N - 2 t  is a square > 4  and (CI,N~) is uniquely determined by 
L, or else L is a maximal torus and again (C1, g~) is uniquely determined by L. 
In the first case, N(L)/L is a Coxeter group of type B,; from 9.2, we see that the 
number of elements in ~b-l(L, Cl,g~) is pz(t). In the second case (L a maximal 
torus), N(L)/L is a Coxeter group of type B~u_ 1)/2 if N is odd and of type DN/2 

if N is even; we see again that ~-*(L,  C , , e ; ) h a s  P2 ( ~ ) - )  elements if X is 

1 ( ( N )  ( N ) )  (N)  
odd and ~ Pz - P  +2p elements if N is even. (The last ex- 

pression is the number of irreducible representations of a Coxeter group of 
type DN/a. ) 

Thus, we get an explicit formula for I X - X ( ~  which when combined with 
(10.6.3), yields (10.6.4). 

10.7. In this section, we assume that G=SOa,(k ), (n>2) and that char(k)=2. 
(Analogous results will hold for the simply connected group of type D, over k, 
since it maps bijectively onto G.) 

In this case, IX] can be computed as in 10.5 and it is given by 

1 n 2 n 

Just as in 10.4, we see that 

+ ~ Pz(n-m2).  
m > 2  
e v e n  

if n is an even square, 

otherwise. 
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The elements of J/c~ are the triples (L, C 1, g~) where L is a product 

GLI(k ) x ... x GLI(k )x SOzm~, (m>2, m even, m2+t=n), 

t factors 

or a maximal torus; (Cl,g~) is uniquely determined by L. N(L)/L is a Coxeter 
group of type B t (if L is not a torus) and D, (if L is a torus). The number of 
elements in the corresponding fibre q~-~(L, C~,8~) is the number of irreducible 
representations of the Coxeter group N(L)/L. 

w 11. Some combinatorics 

1t.1. We now introduce some combinatorial objects which will be used to 
parametrize the set ~ in the case where G is a symplectic or special orthog- 
onal group and char(k)+2. The following discussion was suggested by the 
discussion of symbols in [6, w 3]. 

11.2. The unipotent classes in G=Spz,(k), are in 1 - 1  correspondence with 
the set 

X2 ,=  {partitions 2 n =  1-i x + 2 .  i 2 + 3-i 3 + ... with 

il,i2,i 3 .... >0, ia,is,is .... even}; 

i a is the number of Jordan cells of size a of a unipotent element. 
If u is a unipotent element of G, the group ZG(u)/Z~ (and hence also its 

dual Hom(ZG(u)/Z~ is identified in [18, I2.9] with the Fz-vector space 
with basis indexed by the set Aa={a even l i ,> l}  where 2 is the partition 
attached to u. It follows that we have a natural bijection: 

(11.2.1) JV~--~ LI Fz[Aa]. 
~-~X2n 

Here F2[A~] means: F 2 vector space with basis indexed by Ax. 

11.3. The unipotent classes in G=SOu(k ), char(k)4=2, are in 1 - 1  correspon- 
dence (as in 11.2) with the set 

X~={part i t ions N =  1.i 1 + 2 . i  2 + 3 . i  s + . . .  with 

i l ,  i2 ,  i 3 . . . .  ~ 0 ,  i2,  i4 ,  i 6 . . . .  even}, 

except that to any partition in X~ such that i1=i3=i5=.. .=0, there cor- 
respond two (degenerate) unipotent classes in SOu(k ). 

If u is a non-degenerate unipotent element of G, the group ZG(u)/Z~ is 
identified in [18, I2.9] with the subspace of F2[Ax], (Aa={aoddli,>l}) defined 
by the single equation: the sum of coordinates equals 0. Here 2 is the partition 
attached to u. Hence Hom(ZG(u)/Z~ may be canonically identified with 
the quotient ~ of Fz[Aa] by the line spanned by the sum of all vectors in 
the canonical basis. 

If u is degenerate, then Hom(ZG(u)/Z~ has a single element. It may 
be identified with the 0-dimensional F2-vector space F2[Ax] where 2 is the 
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partition in X N corresponding to u. (Such a partition is said to be degenerate; 
the partition corresponding to a non-degenerate unipotent class is said to be 
non-degenerate). Thus, we have a natural bijection 

(11.3.1) JV~G+-* ~,EIT~, F2[A~f'~"~]LI(EL~,N(F2[A;~]LIF2[A~])). 
2non-deg. 2deg. 

(Note that there are two degenerate unipotent classes corresponding to a 
given degenerate partition.) 

11.4. Let ~s, (N even, __>2), be the set of all ordered pairs (A,B) where A is a 
finite subset of {0, 1, 2,...}, B is a finite subset of { 1, 2, 3 . . . .  }, which are subject 
to the following three requirements 

(11.4.1) If i is any integer then {i, i + 1} is not contained in A nor in B. 

(11.4.2) IAI + IBI is odd, (IAl=number of elements in A). 

(11.4.3) ~ a+ ~ b=�89189 
aeA beB 

Let U s be the set of equivalence classes on ~ for the equivalence relation 
generated by 

(11.4.4) (A, B) ~ ({0} w(A + 2), { 1 } w(B + 2)). 

We shall denote the equivalence class of the pair (A,B) under (11.4.4) again 
by (A, B). 

Let ~ ,  (N integer, > 3) be the set of all unordered pairs (A, B) where A, B 
are finite subsets of {0,1,2 . . . .  } which are subject to the requirement (11.4.1) 
and to the requirement 

(11.4.5) ~ a+ ~ b=�89189 + I B I -  1) 2 -1 )  
a~A b~B 

(which implies that IAI + [BI = N(mod 2)). 
Let ~ be the set of equivalence classes on ~ for the equivalence relation 

generated by 

(11.4.6) (A, B) ~ ({0} w(A + 2), {0} w(B + 2)). 

We shall denote the equivalence class of (A,B) under (11.4.6) again by 
(A,B). 

The sets ~PN, ~/J are finite. An element of ~/~ of form (A, A) is said to be 
degenerate; the other elements are said to be non-degenerate. 

11.5. Two elements of %r (or 7J~) are said to be similar if they can be 
represented in the form (A,B), (A',B') with AuB=A'~B', AnB=A'c~B'. In 
each similarity class in ~N (or in 7J/1) there is a unique element which can be 
represented by (A,B) with A = {a 1 < a  2 < . . .  <am,}, B = {b 1 < b  2 < . . .  <bin} such 
that the following holds: m ' = m + l  (for ~N, any N, and for T~, N odd), m'=m 
(for ~ ,  N even), al<bx<a2<b2<...<am<bm, and moreover br,<am+ 1 (for 
~N any N, and for ~r N odd). 
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Such an element is said to be distinguished. 
The set of elements in a fixed similarity class may be organized as an F z- 

vector space, as follows. Let (A,B) be distinguished in our class, (see above); we 
assume that A 4= B, so that C = (A uB) - (A riB) is non-empty. 

A non-empty subset I of C is said to be an interval if it is of the form 
{i, i + 1, i + 2 . . . .  , j} with i - 1 r C, j + 1 $ C and, if moreover (in the case of 7~N), we 
have i4=0. Let J be the set of intervals of C. It is non-empty. We denote by I o 
the set of elements of C which do not belong to any interval. Then I o is empty 
or of the form {0,1,2 . . . . .  h}; the latter possibility can only arise for T m For  
each subset ~ c J ,  set s  J - ~  and we consider 

A~ = ( U  ( /nA))u(  U (InB))w(Ioc~A)w(ac~B) 

B~ = ( U  (Ic~B))c~( U I mA)w(Io~B)w(AnB). 
I ~  I~rL' 

Then (A~,B~) is similar to (A,B) and the map ~--*(A~,B~) is a bijection 
between the set ,~(J)  of subsets of J (resp. ~ ( J )  modulo the equivalence 
relation c~ ~ c() and the set of elements in the similarity class of (A, B), in the 
case of T~ (resp. the case of ~ ) .  Now ~ ( J )  is an Fm-vector space with respect 
to symmetric difference; it has as canonical basis the one-element subsets of ~r 

-~-'--. . . . . .~ d e f 

Hence ~ ( J ) = F 2 [ - J  ] and ~ ( J ) / ( ~ ' ) = F 2 [ J ] = F 2 [ J ] / l i n e  spanned by the 
sum of the standard basis elements. Thus, we have a bijection between the 
elements in the similarity class of (A,B) and the F2-vector space F 2 [ J  ] (in case 

of ~N) and F 2 l -J]  (in case of ~ ) .  

11.6. Start with a partition 2=( l i~+2iz+3i3+. . .  ) in XN, N even. We as- 
sociate to 2 an element in TN as follows. Let 2m be an even integer, 2rn>il+i  2 
+ ..., and let zl <z  2 < ... <z2~ be the sequence containing the number j exactly 
ij times (Vj~I)  and the number  0 exactly 2m-( i~+i2+. . .  ) times. Let 
z'~ < z~ < . . .  < z~m be the sequence defined by z'~ = z~ + ( i -  1). This sequence con- 
tains m even numbers 2y~ < 2y 2 < . . .  < 2y~ and m odd numbers 2y~ + 1 < 2y~ 
+ 1 < . . .  < 2y~ + 1. (This is seen easily by induction on N.) 

Again, by induction on N, we see that 

0 ~ y  1 + 1 =<y'l + 2 < - y  2 + 2 < y  2 +3<--... <- V,,+m<y" +(m+ 1). 

Hence, if we set 

A={O,y'l+2,y'2+3 .... ,y~ ,+(m+l)} ,  B = { y l + l , y z + 2 , . . . , y , , + m  }, 

then (A,B) is a distinguished element of T N. Its similarity class remains un- 
changed when m is increased by 1, hence it depends only on 2, not on m. This 
process can be reversed so that it gives a bijection between X~ and the set of 
similarity classes in T m Let 2, m, A, B be as above. Let C = ( A n B ) - ( A ~ B ) .  We 
have a bijection between the set Az (see 11.2) and the set J a  of intervals of C, 
defined as follows. If we arrange the intervals in J z  in increasing order 
11,11 ..... I I (any element in 11 is smaller than any element in 12, etc.) and if 
we arrange the elements of A z = { a e v e n ] i , ~ l }  in increasing order 
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a l < a E < . . . < a i , ,  then f = f '  and we make I n correspond to a n , ( l < h < f ) ;  we 
have Ilhl = ia.  (This is also checked by induction on N). 

Hence we get an isomorphism F z [ A z ] ~ F z [ J a ] ;  the last space has been 
identified in 11.5 with the set of elements in the similarity class on iv N cor- 
responding to 2. Hence,  we obtain a bijection 

Composing it with the bijection (11.2.1) we obtain a bijection 

(11.6.1) A~G'~--*~P N, where G = S p u ( k  ), c h a r k # 2  

In the following table we describe, as an example, the correspondence 
between similarity classes in ~6 and elements of X 6. 

Elements  o f  ~P6. 

({3}, 0), (0, {3}) 
({0, 4}, {2}), ({0, 2}, {4}), ({0}, {2, 4}), ({0, 2, 4}, 0) 
(( 1, 4}, { 1}),({ 1}, { 1, 4}) 
({0, 3}, {3}) 
({1, 3}, {2}), ({2}, {1, 3}) 
({0, 2, 5}, {2, 4}), ({0, 2, 4}, {2, 5}) 
({ 1, 3, 5}, {1, 3}), ({1, 3}, {1, 3, 5}) 
({0, 2, 4, 6}, {2, 4, 6}) 

E l e m e n t s ~ X  6. 

6 
2 + 4  
1 + 1 + 4  
3 + 3  
2 + 2 + 2  
1 + 1 + 2 + 2  
1 + 1 + 1 + 1 + 2  
1 + 1 + 1 + 1 + 1 + 1  

11.7. We now start with a part i t ion 2 = ( l i  1 + 2 i  2 + . . . )  in X~. We associate to 
2 an element in 7;~; as follows. Let  M be an integer, M > i l + i z + i 3 + . . . , M = N  
(mod2),  and let z l < Z z < . . . < z  M be the sequence containing the number  j 
exactly i i times ( j > l )  and the number  0 exactly M - ( i ~ + i 2 + . . .  ) times. Let  
z' 1 < z  2 < ... <z~/ be the sequence defined by z ' i=z i + ( i - 1 ) .  This sequence con- 
tains [M/2]  even numbers  2y 1 < 2y 2 < . . .  < 2ytM/2 j and [(M + 1)/2] odd number  
2y' 1 + 1 <2y~ + 1 < ... <2yltM+ 1)/2~+ 1. Here  Ix]  denotes the largest integer <x .  
This is seen by induct ion on N;  in the same way we see that 

Y'~ < Yl < Y'2 + 1 < Y2 + 1 < . . .  <_ Y[M/2] + I'M/2] -- 1 < Y[M/2] + [M/23 -- 1, 

and y�89 tM - 1) + �89 (M - 1) - 1 < y~ O4 + 1) + �89 (M + 1) - 1 if m is odd). 
Hence,  if we set 

A = {Y'I, Y~ + 1 . . . . .  YI(M+ 1)/21 + [(M + 1)/23 - 1}, 

B = {Yl ,  Yz + 1 . . . .  , YEM/21 + [M/2]  - 1 } 

then (A ,B)  is a distinguished element of 7J~. Its similarity class remains un- 
changed when M is increased by 2, hence it depends only on 2, not  on M. This 
process can be reversed so that  it gives a bijection between X~ and the set of 
similarity classes in 7~k. 

Let  2, M, A, B be as above. Assume that i l , i 3 , i  ~ ... are not  all zero. Then A 
+B ,  i.e. C = ( A w B ) - ( A c ~ B )  is non-empty.  We have a bijection between Az (see 
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11.3) and the set Ja  of intervals of C, defined in essentially the same way as in 
11.6. Hence we get an isomorphism F2[Ax]~Fz[Jx] carrying the line spanned 
by the sum of the basis elements in F2[Ax] to the analogous line in F / [ J J .  

Taking...._ quotients by these lines, we have an induced isomorphism Fz[Ax] 
~-Fz[Ja]. The last space has been identified in 11.5 with the set of elements in 
the similarity class in ~ corresponding to 2. Hence we obtain a bijection 

(11.7.1) {non degenerate elements in 7~}~--~]JFz[Az] 

(union over all nondegenerate partitions 2 in X}.) 
Our bijection ~P~ (mod ' " " ~ ' bijection slmdanty) X u gives rise to a 

(11.7.2) {degenerate elements in ~P}}--*Iz[Fz[Az] 

(union over all degenerate partitions 2 in X}.) Note that a degenerate element 
in 7~ is alone in its similarity class and Fz[Az] has a single element for 2 
degenerate. 

Combining (11.7.1), (11.7.2) and (11.3.1) we obtain a map 

(11.7.3) A~P/v (G=SON(k), char (k) + 2) 

which is bijective over the set of non-degenerate elements of kg~, and is such 
that for each degenerate element in 7~, its fibre has 2 elements (corresponding 
to degenerate unipotent classes with a constant local system.) 

In the following tables, we describe as an example, the correspondence 
between similarity classes in 7'} and elements in X~ for N = 7 and 8. 

Elements of 7J4 
({3}, O) 
({0,4}, {1}), ({1,4}, {0}) 
({1, 3}, {1}) 
({0, 3}, {2}), ({0, 2}, {3}) 
({0,2,5}, {1,3}), ({1,3,5}, {0,2}) 
({0,2,4}, {1,4}) 
({0, 2, 4, 6}, {1,3,5}) 

Elements ~ X~ 
7 
1 + 1 + 5  
2 + 2 + 3  
1 + 3 + 3  
1 + 1 + 1 + 1 + 3  
1 + 1 + 1 + 2 + 2  
1 + 1 + 1 + 1 + 1 + 1 + 1  

Elements of ~8 
({0}, {4}), ({0, 4}, O) 
({1}, {3}), ({1,3},0) 
({0,2}, {1, 5}), ({0,2, 5}, {1}) 
({2}, {2}) 
({0, 3}, {1, 4}), ({0, 4}, {1, 3}) 
({0, 2}, {2, 4}), ({0, 2, 4}, {2}) 
({0,2,4}, {1, 3,6}), ({0,2,4,6}, {1,3}) 
({1, 3}, {1, 3}) 
({0, 2, 5}, {1,3,5}) 
({0, 2, 4, 6}, {1,3,5,7}) 

Elements ~ X~ 
1+7  
3 + 5  
1 + 1 + 1 + 5  
4 + 4  
1 + 1 + 3 + 3  
1 + 2 + 2 + 3  
1 - 4 - 1 + 1 + 1 + 1 + 3  
2 + 2 + 2 + 2  
1 + 1 + 1 + 1 + 2 + 2  
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1  
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w 12. A generalization of a result of T. Shoji for sympleetic groups 

12.1. In this chapter  (except in 14.5) we assume that  G=Sp(V), where V i s a  
2n-dimensional vector space with a non-singular  symplectic form ( , ) over k of 
odd characteristic. The  set W~ has a natural  part i t ion given by the fibres of 4,  
(see 6.5, 10.4): 

where ~Ara") is the fibre of �9 over  (L, C 1, g~) 6 J//6 with L = L /o f  type GL 1 x . . .  x GL1 
fa/t;rs 

xSpz,_2i. Moreover ,  from 6.5(c) and 9.2(d) we get a canonical bijection 

(12.1.2) ,4rG(i).-* (N (L,)/L,) ~ 

(where ~ denotes the set of isomorphism classes of irreducible representations 
of a finite group). 

Let  W, be the group of  permutat ions of the set {1, 2, ..., n, n', ..., 2', t'} 
which commute  with the involution j~ j ' , j '~ j .  Then we can identify 

(12.1.3) N (L~)/Li ~ W~ 

as follows. Consider a basis e 1 . . . . .  e , ,  e', . . . . .  e' 1 of Vsuch tha t  (el, e'i)= 1 (e'i, e~)= 
- 1  and  all o ther  scalar products  equal  to zero. We assume that L~ is the set of 
gEG which m a p  each of the vectors e~, ..., ei, e' ~ . . . .  , e' 1 into a scalar multiple of 
itself. Then each element of  N(L~)/L~ defines a permuta t ion  of the set of lines 
(e l} ,  ...,(el}, (e'i} . . . .  , (e'l} and  this gives the isomorphism (12.1.3). Combining 
(12.1.1), (12.1.2), (12.1.3) we get a bijection 

v (12.1.4) ~ >~(W,_~j(~+ a)) . 
J= 

12.2. The purpose of  this chapter is to give an explicit (combinatorial)  de- 
scription of the bijection (12.1.4). 

T o  do this, we shall define an explicit bijection 

(12.2.1) 7J2. ~--~ LI(w,_ ~(j+ 1)) v, 

union over all j > 0  such that  �89 1)< n). We define the defect of (A, B)~ 7J2, to 
be d = [A[-[BI; it is an odd integer. We have a part i t ion 

(12.2.2) ~z, = H ~2,,a 
d o d d  

where ~z,,d is the set of elements of  defect d in 7Jz.. 
W e  have a canonical bijection 

~z,', 1 - - ~  7t2,' +a(d- 1),~, (d odd), 

defined by 

(A, B)-~({0, 2, 4 . . . . .  2d-4}w(A+2d-2) ,B) ,  if d=>l 
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and by 

(A,B)~---,(A,{1,3,5 .... , 1 - 2 d } w ( B + 2 - 2 d ) ) ,  if d = < - l .  

This, together with (12.2.2) give us a bijection 

(12.2.3) ~2" ~-+ d I-[odd t/'2"--dte-1)' 1 =j>=[-[O= 7J2,-j(j+ 1,,1" 

(The last equality is given by the change of variable j = d -  1 if d > 1, j = - d  
if d < - 1.). We make here the convention that 7'2,, is empty if n' < 0. 

The bijection (12.2.1) is the composition of (12.2.3) with the bijections 

7'2._j~j+ ~,~,--,(w_~j~j+ 0" ,  (j>__0). 

which are a special case of the bijection 

(12.2.4) 7"2,,, ~--~ W, v 

defined as follows. We parametrize the elements of W, by ordered pairs of 
partitions 0 < ~  1 <~2 < ... <%, ,  0</31 </32... <fl,,,, with ~ i+~ , /3 j=n .  (Such a 
correspondence is described, for example, in I-6, 2.7(i)]; in particular, the unit 
representation corresponds to the pair of partition n, 0. The sign representation 
corresponds to 0, t + 1 + . . .  + 1. The one dimensional representation of W, de- 
fined by Z(W)=(-1)  r~w), where l ' (w)=number of i~{1,2 . . . .  ,n} such that 
w(i)e{n', ..., 2', 1'}, corresponds to the pair of partitions 0,n.) Here m',m" can be 
chosen arbitrarily large, by adding zeros to the parts of our partitions. We 
shall choose them so that m' = m " +  1. We set 

A ={cq <c~ 2 + 2 <  c% + 4 <  ... <~,,, + 2 m ' - 2 } ,  

B={/31+ l </32 + 3<fla + 5<...  <flm,,+ 2m"-  I }. 

Then (A, B)E ~2,, 1 and this gives the required bijection (12.2.4). 
Composing the bijections (12.1.4) and (t2.2.1) we get a bijection 

(12.2.5) zVG ~--~ 7"2,. 

We can now state the main result of this chapter. 

12.3. Theorem. The bijections (12.2.5) and (11.6.1), (with N = 2 n )  coincide. 
Our bijections restrict to bijections JV~")~--~ 7"2,, 1 (here JV~ r is as in 12.1). 
The fact that these restrictions coincide is essentially equivalent to the main 

result of T. Shoji in 1-15]. Note however, that the combinatorics used by Shoji 
is more complicated (in the author's opinion) than the one used here. 

The proof is based on Theorem 8.3 and on the following observation of 
Shoji: if n>3 ,  an irreducible representation of IV. is completely determined by 
its restriction to W,, 1- (We regard here IV,_ ~ as the subgroup of W. which 
stabilizes 1~{1 . . . . .  n, n' ..., 1'}.) Assume now that n> 1. Consider the parabolic 
subgroup P ' c  G which is the stabilizer of a line D in V, and let E be a Levi 
subgroup of P'. Then E_~GLt(k)• ). We may assume the theorem 
proved for Spz._z(k ). For  each (C,~')~Jff~, (C',&")~JffL, the multiplicity m~.,,~. 
(see 8.2) can be determined explicity in a geometrical way (see 12.5), by a 
computation which is almost the same as a computation contained in 
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Spaltenstein's work [18, II]. (This multiplicity is 0 or 1.) Using this infor- 
mation, 8.3 (a) and the induction hypothesis, we can check that any element of 
,~G which is mapped by (11.6.1) to an element of ~2,,a (d(d-1)<2n), must be 
also mapped by (12.2.5) to an element of 7J2,,a. We can also check immediately 
that the inverse images of 7Jz.,a under (11.6.1) and (12.2.5) have the same 
number of elements. Hence these inverse images coincide, (if d(d-1)<2n). 
They must also coincide for d(d-1)=2n since d must satisfy d(d-1)<2n. 
Thus, the fibres dVG (i) of ~b: Yl/~G~J//G are identified in a combinatorial way. 
From the knowledge of multiplicities m~.,,e, and from 8.3(b) we see that the 
irreducible representation of W/, (i> 1), corresponding to any element of JV~ i) 
are known after restriction to W~_~. Hence they are known as representations 
of W~, provided that i>3.  When i=2,  this method doesn't quite identify the 
correspondence between ~:~) and the representations of W~ : there are two one- 
dimensional representations of W 2 which restrict to the unit representation of 
W 1 and there are two one-dimensional representations of W 2 which restrict to 
the sign representation of I4:1. However, from 9.5, we know explicitly which 
elements of JVG ~2) correspond to the unit and sign representation of W 2 and this 
provides the missing information. When i=  1, we use again 9.5 which tells us 
which elements of JVb(1)correspond to the unit and sign representation of W 1. 
(These are the only irreducible representations of I4:l.) For i=0, the cor- 
respondence between ~(o)  (if non-empty) and W0 ~ is obvious since both sets 
have just one element. This completes our sketch of proof of Theorem 12.3. 

12.4. Corollary. (a) Two elements of ~:" G are in the same fibre o f ~  (see 6.5) if 
and only if the corresponding elements of ~2, (under (12.2.5)) have the same 
defect. 

(b) JV~~ non-empty if and only if n=�89 for some odd (possibly 
negative) integer d, (see (10.4.2)). If n=�89 (d odd) the unique element of 
JV~ ~ corresponds under (12.2.5) to the element ({0,2,4 . . . . .  2d-2},0)ETJ2,,a, /f 
d>l ,  and to the element (0,{1,3,5 . . . . .  1 - 2 d } ) ~ 2 , , a  if d _ < - l ;  hence this 
element of y o  is of form (C, 8") where g6 C has Jordan blocks of sizes given by 
the partition 2n = 2 + 4 + 6 + .... 

(c) Two elements (C,g'), (C,g') of WG satisfy C=C !f and only if the 
corresponding elements of 7J2, (under (12.2.5)) are similar. 

12.5. Let V be an N-dimensional vector space (N>2) over k (of characteristic 
4:2) with a given non-singular bilinear form ( , ) such that there exist eE{1, - 1} 
with (v, v')=e(v', v) for all v, v'~V. 

Let e, e' be two isotropic vectors in V such that (e, e')= 1 and let V be the 
subspace of vectors in V orthogonal to e, e'. 

The results in this section are concerned with a comparison between uni- 
potent classes in the isometry group ls(V) of V and the corresponding group 
Is(V) for V.. It wilt be however more convenient to formulate them in terms of 
the set Nil(V) of nilpotent elements in the Lie algebra of Is(V), that is, in 
terms of nilpotent maps v: V~Vsuch  that (vv, v')+(v, vv')=0 for all v, v'. (Since 
char(k) 4: 2, one can pass freely between unipotent and nilpotent elements.) 

The results in this section are essentially variations on results of Spalten- 
stein in [18, II.6]. They are needed in the proof of Theorem 12.3. Spaltenstein's 
results have also played a key role in Shoji's proofs in [15]. 

Let ~Ni l (P) .  We denote by cl(~) its conjugacy class under ls(V). We have 
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(see [22, 2.28, 2.25]): 

(12.5.1) dim clff) =~(N1 2 - e N ) - � 8 9  ~ (r~+ r~+ ~ + ...)2 +~e ~ rl 
i__>1 

odd 

where r~ is the number of Jordan cells of size i of ~: V--* V. Note that r~ is even 
if i -  �89 t)(mod 2). 

Let X~ be the variety of all elements v in Nil(V) such that v(e ')=0 and v(v) 
-7,(v)ek. e' for all v~V. (In other words, v induces ~ on (e ' )~ / (e  ' )  = ft.) 

We identify 
{Vxk ,  if e - - - 1  

(12.5.2) Xg~ Vx{0}, if c = l  

by v*--*(x, c ) e 9  x k, v(v+ 2e)=V(v)+ 2x + ( 2 c - ( x ,  v))e' (ve 'C 2ek). 
We have a partition 

where 

X g = X 9  X 1 X ~ 1 o 1 

XO.={veXgle ,  sv i - l (V) ,e ,r  i v ( V ) , ( e , v - "  " e ' ) = 0 }  

X 1 i= {veXgle 'evi- l (V) ,  e'r ', v-(i-~)e')+O}. 9, 

We define a sequence of vector spaces V o, V 1 , V 2 . . . .  by 

Vo =~V, 1/1 =ffff+kerV)/~V, V 2 =(Vff+ kerV2)/ffff+ker~), etc. 

Then dim ~ = r~, and ~ has a natural quadratic form Q~ defined by 

Qi f fa+b)=(b , r  (aeV/,bekerr (i>=1) Qo(~a)=ffa, a). 

If e - - - 1 ,  then QI=Q3 . . . .  =0  and Qo, Q2,Q4-,"" are non-singular. If e.=l,  
then Q0=Q2 =Q4 . . . . .  0 and Q~, Q3, Q5 . . . .  are non-singular. 

In terms of the (x,c) coordinates (12.5.2), X ~ and X 1 ~,i 9,, can be described as 
follows. 

X o 9,1 = fix, c) l x~V if,, Qo(x)= - c} ~ k N- 2 r 
]>1 

X l  = 0  9, 1 

X ~ 1 6 2  image :7 o f x  in ~ -1  

satisfies ~ + O, Qi- 1 (x) = O} 

~ k  N-  L r~+(l-~3/2 x ( B - O )  
j > t -  I 

(12.5.3) where B is the quadric Qi-1 =0 in ff~_l, ( i~2) 

X1 _ _ ' if e=  - 1  
~, 2 -  {(x, c)]x~ff,, Qo(x)# - c }  ~ if e=  1 

X 1 = ~,i {(x,c)[xe-9<V+kerr -2, image ~ o f x  in 

~ - z  satisfies QI_z(X)4=0} 

= / ~ -  Z rj+(l-~;)/z x(U~_2_B) 
j ~ * - 2  

where B is the quadric Qi-2 = 0 in ~_ 2, (i >= 3). 
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The sizes of Jordan cells of an element veX  9 are constant when v runs 
through one of the pieces X ~ X ~ Let r{ be the number of Jordan cells of 9, i ,  9, t 

size i of an element v in one of these pieces. Then rf are given as follows. 

t t t r vEX~ : r i = r i + 2  , r i_x=ri_ l -2 ,  r j -  i , J# i ,  i - - l ,  (i>2). 
t t r v z X ~  r j -  j, ( j ,  1). 

vzX~,i:r~=ri+l ,r~_2=ri_2-1,  r~=r j, ( j# i ,  i - 2 ) ,  (i>3). 

veX~,: : ri=rz + l, rj=r j, 04=2). 

From these formulas, and from (12.5.1), (12.5.3), we see that, for veX  ~ we 
have 

. . . . . . .  [d im( X~ i), if veX~  
�89 1' t 

{dim(Xv,~) +$ri_ ~, if vEX~, i 

where el(v) is the conjugacy class of v under Is(V). 
For the proof of Theorem 12.3 we must compute the multiplicities me. ~., 

(see 8.2) where #" (resp. d ~ is a 1-dimensional local system on el(v) (resp. el(-9)) 
and veXv. This computation is done using the explicit description of the pieces 
X~,i , o  X , 9" given in (12.5.3). We may disregard the pieces X *~,~ for which 
�89 el(v)-  dim cl(~)) > dim X~, i, (v6X~,i), i.e. we must consider only the pieces 
X ~ for which ri_ 1 =0  and the pieces X ~ . for all i. We omit further details. 9, i 9, t 

w 13. A generalization of a result of T. Shoji for special orthogonal groups 

13.1. In this chapter, we assume that G=SO(V) where Vis an N-dimensional 
vector space with a non-singular bilinear form ( , ) over k of odd characteris- 
tic, (N > 3). The set ~ has a natural-partition given by the fibres of  ~ (see 65, 
10.6): 

(13.1.1) A/s = LI JVa(0v-J=)/2) 
j>-o 

j - ~ N ( 2 )  

where JVa(i)is the fibre of �9 over (L, C~, ~ ) ~ J t '  G with L = L  i of type G Llx  .2kx GL~ 
X SON_21 if N > 2 i  and L = L i = m a x i m a l  torus if N=2i .  /factors 

Moreover, from 6.5 (c) and 9.2(d) we get a canonical bijection 

(13.1.2) JV'N(') ~--) ( N ( L~)/ Li) v . 

If N>2i ,  we can identify, just as in (12.1.3), 

(13.1.3) N (Li)/L i'~ W i. 

If N=2i>_2,  we can identify in the same way N(Li)/L i with the Weyl group 
W a of G. This, together with (13.1.1), (13.1.2), (13.1.3) gives rise to a bijection 

(13.1.4) A~--~ Wj  [_[( ~I~ (W(u-j~)/2) v) 

j - = N ( 2 )  
j 2 ~ N  
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13.2. In this chapter we shall give an explicit (combinatorial) description of 
the bijection (13.1.4). To do this we shall define an explicit map 

(13.2.1) Wa ~ LI( j[_I 1 (W(u-:)/2)~)~g~N �9 
j~_ N(2) 
j2 <N 

We define the defect of (A,B)~7~ to be the absolute value of [AI-IBI. It is 
an integer >0,  of the same parity as N. We have a partition 

(13.2.2) ~u~= J~I>0 ~p~,~ 
d ~ / ( 2 )  

where ~u~, a is the set of elements of defect d in ~ .  We have a canonical 
bijection 

7J~, ,~-~ ,+a~_, ,a  , (d> 1), 
defined by 

(A, B)F--~ ({0, 2, 4 . . . . .  2d -4}  w(A + 2 d -  2), B), [AI > IBI. 

This together with (13.2.2) gives us a bijection 

[ ~N ~'-~ dU11t/N- d2 + 1, 1, (N odd) 
o~d 

(13.2.3) 
[ ~ - - ~  ~ , o  L I ( J ~  tP~-d2+ 1,1), (N even). 

even 

We make here the convention that 7~, is empty if N ' <  0. 
The map (13.2.1) is the composition of (13.2.3) with certain maps 

(13.2.4) (W~N_d2)/2)v ~ ~tN_d2+ 1, 1, (d> 1) 

(13.2.5) W, v ' G ~ ~N, 0, (N even). 

(If N is odd, W~ = W(u - 1/2)). 
The maps (13.2.4) are a special case of the bijection 

(13.2.6) W.V ._~ ~2,+ 1, 1 

defined as follows. We associate to an element of W. v the ordered pair of 
partitions 0 < ~ a < ~2 < . . .  --< ~,,,, 0 < fl 1 </32 < . . .  < tim,, with ~ ~i + ~/3~ = n, (as in 
12.2). We choose m ' = m " + l .  We set 

( 1 3 . 2 . 7 )  { A = { ~ < ~ 2 + 2 < ~ a + 4 < . . . < ~ m , + 2 r n ' - 2 }  

{/31<flz + 2 <f13 +4<.. .  <fl,,,, + 2m"-2}.  

Then (A, B)~ 7~.+ 1,1 and this gives the required bijection (13.2.6). 
The ma~ (13.2.5) is defined as follows. (Recall that we now have N even.) 

We associate to an element of W~ the unordered pair of partitions 
0 < ~ l ~ _ ~ . . . = _ ~ r n ,  , O ~ f l l < ~ f l Z ~ . . . ~ / 3 m , ,  with N/2=~ '~+~f l j ,  as in [6, 2.7(ii)]. 
We choose m' =m". We define A, B by (13.2.7). Then (A, B)e~',, o and this gives 
the required map (13.2.5). 
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Thus, the map (13.2.1) is defined, Composing (13.1.4) and (13.2.1) we get a 
map 

(13.2.8) ~ . - ,  ~u~. 

The following results is a generalization of Shoji's main result in [15] for 
SO N in the same way as 12.3 generalized Shoji's main result in [15] for Sp2 .. 

13.3. Theorem. 7he maps (13.2.8) and (11.7.3) coincide. 

The proof is analogous to that of 12.3. 

13.4. Corollary. (a) Two elements of ~ are in the same fibre of 4~ (see 6.5) if 
and only if their images in ~N under (13.2.8) have the same defect. 

(b) ~ArG(~ non-empty if and onl), if N is a square, (see (10.6.4)). I f  N = d  2, the 
unique element of ,Ar~ ~~ is mapped by (13.2.8) to the element ({0,2,4 . . . .  ,2d 
- 2 } , 0 ) ~ , d ;  hence this element of .Argo)is of form (C,N') where geC has 
Jordan blocks of sizes given by the partition N = 1 + 3 + 5 ... .  

(c) Two elements (C, o~'), (C, o~')e ~ with C, C non-degenerate satisfy C= 
if and only if the corresponding elements in tF} (under (13.2.8)) are similar. 

w 14. Examples in the spin-groups 

14.1. Let Vbe a vector space of dimension N > 3 over k (of characteristic 4: 2) 
with a given non-singular symmetric bilinear form ( , ) .  Let C(V) be the 
corresponding Clifford algebra; it is provided with an imbedding V c  C(V) and 
the product v.v' of two elements in V satisfies v. v '+v' .v=2(v,  v'). Let C+(V) 
be' the subalgebra of C(V) spanned by products of an even number of elements 
in V. The spin-group Spin(V) is the subgroup of the group of units of C+(V) 
consisting of all products v 1 v2... v a (a even) where the vig~V satisfy (vi, vi) = 1. This 
is a closed subgroup of the group of units of C+(V). If x~Spin(V), then v ~ x v x - 1  
leaves V invariant and defines an element /~(x) of SO(V); if x = v  1 v 2 ... v a (as 
above) then/~(x) =/~(v 0/~(v2) ... [3(Va) where ,6(vi) (v) = - v + 2(v, vi) v i is ( - 1) times 
the reflection with respect to v i. Thus we have a homomorphism/~: Spin (V)--, SO(V); 
it is the simply connected covering of SO(V). If N is odd, the centre of Spin(V) 
has order 2; it is generated by ( -  1) times the unit element of C(V). If N is even, 
the centre of Spin(V) has order 4; it is generated by ~ = ( - 1 )  times the unit 
element of C(V) and by ~ = v l v 2 . . . v  N where v 1 . . . .  ,v N is an orthogonal basis 
such that (vi, v~)= 1 for all i. We have CO 2 =l~ N/2 hence the centre of Spin V is 
cyclic of order 4 if N- -2 (mod4)  and it is a product of two cyclic groups of 
order 2 if N = 0 (mod 4). In any case, the kernel of/~ consists of 1, e. 

We shall also denote Spin(V) as G and SO(V) as SON(k ) or as G. 

14.2. We want to describe the sets ~,," X ~~ ~ '  for G. Each of these sets can be 
partitioned into pieces corresponding to the one-dimensional representations 
oZ~--,Q*. This decomposition into pieces is compatible with the map 45. Let us 
denote A~x, A~~ JC/x the pieces corresponding to Z: ~G--'Q*. (For (C,d~ ~ or 
A~x ~ ~ acts on 8 according to )~; for (L, CI,8~)e~/,z., ~e G acts on N~ according 



Intersection cohomology on a reductive group 263 

to Z.) The pieces corresponding to the )~ which are trivial on the kernel of 
/3: G ~ G ,  are essentially the same as the analogous pieces for the special 
or thogonal  group G, (see 10.6). 

We shall therefore concentrate  on the pieces corresponding to the )~ which 
are non-trivial on the kernel of/3: G--*(~, i.e. such that Z(~)= - 1. 

14.3. The unipotent  classes in G and G are in 1 - 1  correspondence by /3. Let  
geG  be a unipotent  element in G, and let ~,=/3(g)eG. Let  i, be the number  of 
Jordan cells of ~ , : V ~ V  of size a, so that N = 1 . i 1 + 2 . i 2 + 3 . i 3 +  .... Then 
i2,  i4, i 6 . . . .  are even. It is well known that Za(~,) is a semidirect product  of a 
unipotent  group and a reductive group isomorphic  to S(O(i 0 xO( i3 )x  O(is) 
x . . . ) x (Sp( i z )x  Sp(i~)x Sp(i6)x ...). (We write O(r) for the or thogonal  group 

O,(k), Sp(2r) for the symplectic group Spz,(k). ) It is clear that  
Za(g)c/3-1(Za(~,)). If g'e/3-1(Za(~,)) then g ' g g ' - ~ = g  or eg. Now ~g is not  
unipotent  and g, gg,-1 is, hence g, g g , - l = g .  Hence  Za(g)=/3-~(Za(~,)). There 
are two possibilities: (a) e, eZ~ and then Z~ and 
Za(g)/Z~ ~ ,Za(f,)/Z~(f,), or (b) eCZ~ and then /3-1(Z~(f,)) has two 
connected components ,  and Z~(g)/Z~ Za(f,)/Z~(gD is a central extension with 
a kernel of order  2. 

Assume first that ia > 2 for some odd a. Then  there exist two ~,-stable non- 
singular subspaces V', V" of V both  of dimension a, which are or thogonal  to 
each other  and an isometry 7: V ' ~  V" commuting  with the restriction of g, to 
V', V". Let  v'l, ..., v', be an or thogonal  basis of V' such that (v'i, v'~)= 1 for all i, 
and let v'~ . . . .  ,v~ be the or thogonal  basis of V" defined by v'j=y(v'~). It is clear 
that for any 2, # e k  such that 22-1-/~ 2 =  1, the vectors 2v'~ +#v'f ,  2v~ +#v'~, ..., 2v', 
+/~v~' form an or thogonal  basis for the subspace Va, . they generate and that  
subspace is ~-stable and non-singular.  Consider the element 

t ! ! t tr  ! t !  t ! 
g~,, =(v~ v2 ... v,,) (,~v~ + ~vO...(~v~ + ~va)(v~ v2 ... v',3 (~v'~ + ~ 0 . . .  

(~v',, + ~v~) ~ Spin(V). 

The image ~,~,u of g~,, in SO(V) commutes  with ~,. Indeed, the product  of the 
reflections with respect to v' a, v' 2 . . . .  , v', is equal to - t  on V' and + 1 on (V') z 
(hence commutes  with ~) and similarly, the product  of  the reflections with 
respect to 2v'l+gv~[ . . . .  ,2v',+t*v~ is equal to - 1  on Vx,, and +1  on (Vx,,) l 
(hence again commutes  with ~,). Hence ga, uefl- lZa(~,)=ZG(g).  The map 
{(2, #)ek x kl22+/22 = 1}-+ZG(g ) defined by 2, #--+ga, u must  have as image an 
irreducible subset of ZG(g ). Since gl,0 = 1, it follows that  ga, ueZ~ for all 2,/~. 
We have go, 1 = -  1 (since a is odd). It follows that  - l e Z ~  hence we are in 
case (a) above. 

Next,  assume that  i,_<_l for all odd a. Then  the identity component  of 
S(O(i 0 x 0(i3) x 0(i5) x ...) x (Sp(iz) x Sp(i4) x . . . )  is simply connected. It follows 
that /3-~(Z~(~,)) is disconnected and hence we are in case (b) above. In this 
case, we can describe the group Za(g)/Z~ as follows. Let I =  { a o d d l i a =  l}. 
We can write V = ( @  V,)| V,, (or thogonal  direct sum of g,-stable subspaces, with 

dim V,=a for aeI). Assume that I is non empty. 
For  each aeI  we consider an or thogonal  basis v], v~ . . . . .  v~, of V, such that  

(v" % = 1 for all a, i. Let  x , =  v" 1 v"2.., va, e C(V), and le t /~ be the subgroup of the i ,  V i i  
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group of units of C(V) generated by the x. (aeI). (The generators x. satisfy the 
2-e"~"-1)/2, x.x . ,=ex. ,x~.)  Let F be the subgroup of ff consisting of relations x . -  

elements which are products of an even number of generators x.. Then 
F c S p i n ( V ) = G ;  it is easy to see that F c Z ~ ( g )  and that the natural map F ~  
Zo(g)/Zg(g) is an isomorphism. The central extension ZG(g)/Zg(g)~Za(g)/Z~(F,) 
can then be described as F~F/{1,e} .  Consider the group algebra of F 
modulo the ideal generated by e + l .  It is clear that this algebra is just the 
+pa r t  of the Clifford algebra of the quadratic form ~ ( - 1 )  "~"-1)/2 2 X, in the II[ 

variables X,.  By [N. Bourbaki, Alg6bre, IX w 9 n ~ 4], this algebra is simple if III 
is odd and it has exactly two simple components of equal dimension if [I[ is 
even. It follows that, if [II is odd, F has exactly one irreducible representation 
on which e acts as - 1  (its dimension is 2~111-1)/2); if 111 is even and >0,  then F 
has exactly two irreducible representations on which e acts as - 1  (they both 
have dimension 2 ~IIL- 2)/2). 

If I is empty, then N is divisible by 4 and it is clear that Zo(g)/Z~ is of 
order 2 hence this group has a unique irreducible representation on which e 
acts as - 1 .  In this case, fl(g) is a degenerate unipotent element in G=SO(V).  
Let g' be a unipotent element in G such that fl(g') is degenerate, with the same 
kind of Jordan cells as fl(g), but not conjugate to fl(g). Then g,g' can be 
distinguished as follows. The image of e)~e~ in one of the groups ZG(g)/Z~ 
ZG(g')/Z~ ') is trivial and its image in the other is non-trivial. This follows 
from the fact that there is an outer automophism of G taking the class of g to 
the class of g' and interchanging co and eco. 

The previous arguments give the following result. 

14.4. Proposition. Let G=Spin(V),  d imV=N>=3 and let Z:~G-~Q~ be a 
character such that Z ( e ) = -  1. Then there is a 1 - 1  correspondence between the 
set ~ (see 14.2) and the set of partitions N = l i a  +2i2+ 3i3+.. .  such that 
il, i2, i 3 . . . .  >0 ,  i2, i4, i 6 . . . .  even, ix, i3, i 5 . . . .  ~{0, 1}. The correspondence is ob- 
tained by attaching to (C,6)~ A~x the partition for which i, is the number of 
Jordan cells of  size a of fl(g), (g~ C). I f  N = l i l + 2i 2 + 3i a + . . .  corresponds in this 
way to (C,8)E A~x, then ~ is a local system of dimension 2 ~ on C, where r is 
defined as follows. Let  I = { a  o d d [ i , =  1}. Then 

[([II-1)/2 if III is odd 

r =  ~(11[)-2)/2 if lI[ is even, >0  

t o if II[=0. 

In particular, for a given unipotent class C in G, there is at most one G- 
equivariant irreducible local system 8 on C such that (C, E)~xx. 

14.5. Corollary. 

* Nxx]=Zp2 - . 
t~Z 

(As P2(J) is taken to be zero unless j is an integer =>0, we may as well restrict 
the sum to those t for which N = ( 2 t 2 - t ) ( m o d 4 )  i.e. N=t (mod4) . )  



Intersection cohomology on a reductive group 265 

Proof. For each integer t, we consider the set ~N,t consisting of all partitions of 
N such that 

(a) each odd part appears at most once 
(b) each even part appears an even number of times 
(c) the number of parts equal to 1 (rood 4) minus the number of parts equal 

to 3 (mod 4) is equal to t. 
It is clear that ,~N,t is empty unless t=N(mod4) .  From 14.5, we have IJVxl 

= ~  I~N, tl. It is therefore enough to prove the following result 
t 

we now show that this formula is equivalent to Jacobi's triple product formula 
[5, Th. 3523. 

Let Z 1 , Z  2 be two indeterminates. We have 

(14.5.2) 
Z N t __ I~.,I  z~ z2- ~ Z(l~' + 3~3+ 565+')+ 2(2j2+4Ja+'") Z~2 '-~3+'~5-fi7+''" 

N>0 61,63, ...~10, 1} 
t EZ J2, ja,... >= 0 

=(1 - Z ~ ) -  '(1 -Z~8) - '(1 - - Z 1 2 )  - 1  . . .  (1 q-Z 1 Z2)(1 + Z 3 Z ~  ~) 

�9 ( I + Z ~ Z 2 ) ( I + Z ~ Z ~ ' )  .... 

On the other hand 

Z p: = Z 
N>--O m,t 
t~'Z 

=(~pz(m)Z~ m) V (Z2) t~ (Z ,  ~' 
/ ,  t 

m t~Z \ Z 2  ] 

( 4 i 2 Z 2 \  ( l+Zl---/1-I l+Z'  ' -2zl]  
i_>_1 i>=1 i=1 Z l J i > l  Z 2 ]  

(by Jacobi's formula); this is clearly equal to (14.5.2). Thus, (14.5.1) and hence 
the Corollary are proved. 

We shall prove the following result 

14.6. Proposition. I f  z is as in 14.4, we have 

I1, if N = j ( j + I ) / 2  for some j > 2  
I~~ = 0, otherwise. 

The proof will follow along the same lines as the proofs in w 10. 
The desired result is true for N = 3  or 4, by the known results for SL2(k), 

SL2(k ) x SL2(k ), see (10.3.2). We assume now that N > 5  and that the result is 
already proved for N < N .  Using the known results for smaller groups we 
classify the triples (L, CI,&~)eJ//z with L + G ,  up to conjugacy. (~'x is as in 
14.2.) We see that there are the following possibilities. 
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(a) L corresponds to a diagram 

A 1 x . . .  x A  1 x D m 2 + m G D  n 
�9 ' 4- 

r f a c t o r s  

represented by black dots: 

m2+m m>_3, r>l) where N=2n, n = 2 r + ~ ,  _ 

0 -~ 0...0 ~ 0 "- ~ . . . ~  

2 r  (m 2 + m ) / 4  

(b) L corresponds to exactly one of the following two diagrams 
A~ x A 1 x ... x A 1 c D ,  (where N =2n,  n =2r )  represented by black dots: 

r f a c t o r s  

. _  ~" A_ . . .  0 -" 0 -" 0 ~ 0 --" 

. 0 -.... 0 �9 0 -- ~ - ~ - 

(The diagram which actually appears depends on Z.) 

(c) L corresponds to a diagram A 1 x ... x A i x Bm~ +m- 2 ~ B n 

where N = 2 n +  1, n=2r-t 
v 4 

m 2 + m -  2 r f a c t o r s  ) 
4 , m > 2 ,  r > l  represented by black dots: 

�9 ~ . . .  

2 r  ( m : + m - 2 ) : 4  

(d) L corresponds to a diagram, A 1 x . . .  x A~ c B ,  (where N = 2 n +  1, n = 2 r )  
represented by black dots: r f a c t o r s  

A r ~  A A - -  ~ - -  0 0 ---- ( )  . , ,  ~ 

In each case, (C 1, #s is uniquely determined by L and N(L)/L is a Coxeter 
group of type B,. 

If 81 is the local system 1 1 ~  1" on ~ ~  we have del~l[~tU~l] 
=QI[N(L)/L], (by 9.2), so that cb-l(L, C1,8~) consists of p2(r) elements. It 
follows that 

[/I/x ~ -  ~ (O)l = E P2 -- �9 
m>O 

( m  2 + f r O / <  N 

On the other hand, Corollary 14.5 can be rewritten as 

m>--0 

and the desired formula for I~xxt~ follows. 
It is likely that, if (C,#)~ ~xx t~ and gEC, then the sizes of the Jordan cells 

fl(g)~SO(V) give the partition N = 1 + 5 + 9  + 13 + . . .  or N = 3 + 7 + 11 + 15 + . . .  
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w 15. Examples in the exceptional groups 

15.1. In this section, we assume that G is simply connected, almost simple of 
type E 6. From [12], we see that 

[39, if char(k) + 2, 3 

(15.1.1) ] yVI =~27, if char(k)= 3 
(44, if char(k) = 2. 

We now classify the triples (L, Cl,g~)eJt[ G with L+G (up to conjugacy) using 
the already known results for smaller groups. We see that there are the 
following possibilities: 

a) L=maximal  torus; then (Cl, do~) is uniquely determined by L. 
b) L corresponds to the diagram of type A 2 x A z c E  6 (when char(k)+ 3); 

then L/~~ xSL3(k) modulo a cyclic group of order 3 imbedded diag- 
onally in the centre. Hence, there are two possibilities for (CI, do~) (see 
(10.3.2)); the group ~G (of order 3) acts on one of them by one of its non trivial 
characters and on the other by its other non-trivial character. 

c) L corresponds to the diagram of type D,,cE 6 (when char(k)=2); then 
(Cl,g" 0 is uniquely determined (see 10.7). 

In each case, N(L)/L is a Coxeter group (of type E 6 in (a), of type G 2 in (b), 
of type A 2 in (c)). 

Hence we can compute the number of elements in the fiber of 4~ over any 
of the elements in a), b), c). (It is the number of irreducible representations of a 
Coxeter group of type E6, G 2 or A2). Hence we can determine I yV-JV(~ We 
find: 

2 5 + 6 + 6 = 3 7 ,  

I A/-'-~:(~ =]25, 
[ 2 5 + 6 + 6 + 3 = 4 0 ,  

Comparing with (15.1.1), it follows that 

(15.1.2) lY(~ = {24: 
if char k 4= 2 
if char k = 2. 

if char(k)+2, 3 

if char(k) = 3 
if char(k) =2. 

In the case where char(k)+2, 3, we denote by (C, do), (C', do') the two elements of 
JV "t~ The centre ~a  (of order 3) acts non trivially on the two local systems 
do, do'. This follows from the fact that A: (for the adjoint group G,d ) has 25 
elements, hence by arguments similar to those above, JV "t~ (for Gad ) is empty. 
By 2.5, (C, do*) is an element of y(o). (do. is the dual of do; it is necessarily 
distinct from d ~ since a non-trivial character of &r e cannot be equal to its 
inverse.) Thus, we have C '=  C, do'=do* and do, do' are non-constant. One can 
show that C is the unique unipotent class of dimension 66. 

15.2. In this section, we assume that G is simply connected, almost simple of 
type E~. From [13], we see that 
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~ 86, if char(k) ~ 2, 3 
(15.2.1) A/'= )92, if char(k)= 3 

t72, if char(k) = 2. 

We now classify the triples (L, C~,8;)e~/G, with L:~G, (up to conjugacy) 
using the already known results for smaller groups. We find the following 
possibilities: 

(a) L=maximal  torus; then (Ct,8~) is uniquely determined by L. 
(b) L corresponds to the following diagram of type A 1 x A  1 x A l c E T ,  

represented by black dots: 

0 0 I @ �9 

(when char(k)4:2). Then L/..~~ modulo the unique 
central subgroup of order 4 which is invariant by all permutations of the three 
factors. In this case (C 1, r is uniquely determined by L, (see (10.3.2)). 

(c) L corresponds to the diagram E 6 c E 7 ,  (when char(k)= 3). In this case, 
there are two possibilities for (C1, N~), (see (15.1.2)). 

(d) L corresponds to the diagram D4CET, (when char(k)=2). In this case, 
(C 1, or is uniquely determined by L, (see 10.7). 

In each case, N(L)/L is a Coxeter group (of type E 7 in (a), of type F 4 in (b), 
of type A 1 in (c), of type B a in (d)). 

Hence we can compute the number of elements in the fibre of ~ over any 
of the elements in (a), (b), (c), (d). (It is the number of irreducible repre- 
sentations of a Coxeter group of type ET, F 4, A~ or B3. ) Hence we can 
determine I J V -  yto~l. We find 

[60 + 25 = 85, if char(k) :t= 2, 3 
yV-jVt~ = ~ 6 0 +  25 + 2  + 2 =  89, if char(k) = 3 

t 6 0 +  10=70, if char(k)=2. 

Comparing with (15.2.1) it follows that 

{ii  if char(k)+2, 3 
(15.2.2) IX(~ = if char(k) = 3 

if char(k) = 2. 

By entirely similar arguments, we see that, if char(k)=~2, 3, then X ~~ (for the 
adjoint group Gaa ) is empty. It follows that 

(15.2.3) If  char(k)~e2, 3, then the unique element (C, 8)EJV (~ is such that ~G (of 
order 2) acts non-trivially on & 

One can show that, if char(k)~2,3,  C in (15.2.3) is the unique unipotent 
class in G of dimension 112, satisfying IZG(g)/ZO(g)I = 12 for ge C. 
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15.3. In this section, we assume that G is simple of type E s. From [13], we 
see that 

(15.3.1) IXl= 

113, if char(k) ~=2, 3, 5 
117, if char(k) = 5 
127, if char(k) = 3 

146, if char(k) = 2. 

We now classify the triples (L, C1,8;)~Jg ~ with L=t=G (up to conjugacy) 
using the already known results for smaller groups. We find the following 
possibilities: 

(a) L=maxima l  torus; then (C1,8[) is uniquely determined by L. 
(b) L corresponds to the diagram E6~E8, (when char(k)=3). In this case, 

there are two possibilities for (C1, ~ ) ,  (see (15.1.2)). 
(c) L corresponds to the diagram E?=E 8, (when char(k)=2). In this case, 

there are two possibilities for (C1, g;), (see (15.2.2)). 
(d) L corresponds to the diagram D4cE8, (when char(k)=2). In this case, 

(C 1, g~) is uniquely determined by L. 

In each case, N(L)/L is a Coxeter group (of type E 8 in case (a), of type G z 
in case (b), of type A~ in case (c), of type F 4 in case (d)). 

Hence we can compute the number of elements in the fibre of �9 over any 
of the elements in (a), (b), (c), (d). (It is the number of irreducible repre- 
sentations of a Coxeter group of type E 8, G2, A 1 or F4. ) Hence we can 
determine I A/'- JV~~ We find 

i12, if char(k)#:2, 3 
IX-W~~ 12+6+6=124 ,  if char(k)=3 

1 2 + 2 5 + 2 + 2 = 1 4 1 ,  if char(k) =2. 

Comparing with (15.3.1), it follows 

From the results in [19] it follows that, 
ment of JV ~~ is (C,~), where C is the 
geG, we have ZG(g)/Zg(g)~5, and 8 

if char(k) + 2, 3, 5 

if char(k)=5 or 2 
if char(k) = 3. 

when char(k) + 2, 3, 5, the unique ele- 
unique unipotent class such that for 
corresponds to the sign character of 

15.4. In this section, we assume that G is simple of type F4. From [14, 16], we 
see that 

[26, if char(k) :t: 2, 3 
/ 

(15.4.1) IJV I =/28,  if char(k) = 3 

(35, if char(k) = 2. 

The triples (L, Cx,~)~,/g ~ with L:t:G can be classified as follows (up to 
conjugacy). 
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(a) L may be a maximal torus; then (Ct,g~) is uniquely determined by L. 
(b) L may correspond to the diagram B2cF  4, (when char(k)=2); then 

(Cl,g~) is uniquely determined by L. 
N(L)/L is a Coxeter group of type F 4 in case (a) and of type B 2 in case (b); the 

fibres of ~b over one of the elements (a), (b) of J/G have a number of elements 
equal to the number of irreducible representations of the corresponding Co- 
xeter group. From this, we get 

and hence 

i ~g,_jV(o) [ = ~25, if char(k) 4= 2 
[30, if char(k) = 2 

1, if char(k) + 2, 3 

IX(~ I = 3, if char(k)= 3 

5, if char(k) = 2. 

From [16] it follows that, if char(k)+2,3,  the unique element of X ~~ is 
(C,g) where C is the unique unipotent class such that for gEC, we have 
Z~(g)/Z~ ~,~ and d ~ corresponds to the sign character of 6 4. 

15.5. In this section, we assume that G is simple of type G 2. It is known that 

7, if char(k) 4:2, 3 

[JV'I = 9, if char(k)= 3 

[8, if char(k) =2. 

There is a unique triple (L, Cl,g~)eJCl ~ with L4=G (up to conjugacy): L is a 
maximal torus and (C 1, g~) is uniquely determined by L. It follows that 

I An_ ~(0j[ = 6 = number of irreducible representations of the Weyl group. 

Hence, 

1, if char(k) 4: 2, 3 

(15.5.1) ]jf '(~ 3, if char(k)=3 

2, if char(k) = 2. 

The elements of ~/-(o)can be described as follows. Let C be the subregular 
unipotent class in G. There is a unique one-dimensional non-constant G- 
equivariant local system 8 on C and we have (C,N)eJV "~~ Let C o be the 
regular unipotent class in G. If char(k)= 3, then (C 0, N)e W-(o~ where N is any of 
the two one-dimensional non-constant G-equivariant local systems on C 0. If 
char(k)=2, then (Co,8)e  .A r(~ where ~ is the unique one-dimensional non- 
constant G-equivariant local system on C 0. 

15.6. Using the results in w 10, 14, 15 and (2.10.1) we obtain a classification of 
all cuspidal pairs (S, d ~ of any simply connected almost simple group G. We 
shall make this explicit in the case where G is of type E 8. In this case there are 
exactly 13 cuspidal pairs for G (in any characteristic). 

In the case where dim(k)4= 2, 3, 5, they can be described in a concise way by 
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the fol lowing d i ag ram:  

2 6 5 4- 3 2 1 

This is in te rpre ted  as follows. Each vertex of the d i a g r a m  corresponds ,  as it 
is well known,  to an isola ted  semis imple  conjugacy class. Only  those vertices 
which are m a r k e d  by a number  will p lay a role. Cons ide r  one of the m a r k e d  
vert ices and  let i be the co r respond ing  mark  (1 < i < 6 ) .  Let  s be a semis imple  
e lement  in the co r re spond ing  con jugacy  class. Then the centre  of  Z6(s) is a 
cyclic g roup  of o rde r  i. Le t  0 be any one d imens iona l  faithful represen ta t ion  of 
the centre  of  Za(s). Given  s, 0, there  is a unique  cuspidal  pair  (S, g)  for G with  
the fol lowing proper t ies :  

(a) g is one d imens iona l  
(b) there is an e lement  g e S  with  semis imple  par t  s 
(c) the centre  of  ZG(s ) acts on the stalk of g at  g by the charac te r  0. 

The  13 = 4)(1) + 2 ~b (2) + q5 (3) + ~b (4) + 4)(5) + 4)(6) cuspida l  pairs  thus ob ta ined  
exhaus t  all cuspida l  pairs of G. (~b is the Euler  function.) 

The  classif icat ion of the  cuspidal  pairs  of the s imply  connected  groups  of  
type ET, E 6 for c h a r k + 2 , 3  can be descr ibed in an entirely s imi lar  way, in 
terms of d ig rams  as above :  

2 6 4- 6 2 3 6 3 6 3 

E 6 " ~  

Thus we have 8 (resp. 14) cuspidal  pairs  for G of  type E 7 (resp. E6). 
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