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§ 0. Introduction

Anthony Manning in [M] proved the following

Theorem [Manning]. Suppose that each critical point ¢ of a polynomial f:
C—C satisfies f"(cyoo and that cl(Orbf(c)nJ(f)=0. (c1Orbf(c) denotes
closure of the orbit of c¢ under forward iterations with f. J(f) denotes the Julia
set for f). Then for the maximal measure m (i.e. such that h,(f)=h,,(f)=degf)
the Lyapunov characteristic exponent {log|f'|dm=y,(f) is equal to degf. The
Hausdorff dimension of m is 1.

The Condition clOrb}(c)nJ(f)=0 for every critical point c is equivalent
to the expanding assumption on J(f) (see [F], [J] or [Br]). It means there
exists n>0, such that |(f"Y(z)}{>1 for all z in J(f). Hausdorff dimension of a
probability measure m (or of a set Y) will be denoted HD(m) (respect. by
HD(Y)). It is defined by: HD(m)=inf{HD(Y): m(Y)=1}. h,(f)(h,,(f)) denotes
measure (topological) entropy. The condition f*(c}+>co means that the attrac-
tive basin of oo is a topological discA4 . Also J(f)=FrA4_..

In the present paper I will prove the equality HD(m)=1 in a more general
situation. Consider any open topological discA in the Riemann sphere S% such
that Card(S*\A4)>1. Assume there exists a holomorphic mapf defined on a
neighbourhood of clA such that f(4)=A, f(Frd)=FrA and A is attracted to
a sink aed ie. f(a)=a, f"|A—a (This yields d=deg(f|4)>1, degree means
number of pre-images of any regular value).

1 define and discuss now the measure m which will be under consideration.
I learned this is so-called harmonic measure, see the Note 1 at the end of this
Introduction.

Let R: D*-> A be a Riemann map (conformal homeomorphism) from the

unit discD? such that R(0)=a. Let
d

g@)=z-1]

in2 1 —a;z

zZ—a

i

*  This paper in a preprint form was entitled “On the boundary of an attractive basin of a sink
for a rational map on the Riemann sphere”
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where {a,,...,a;} =R~'(f ~!(a))). Observe that, due to the maximum principle,
[R"'ofoR/g|<1 and |g/R~*ofoR|<1 on D2 Hence, for some real number o,
we have g=exp(ie) R~ o foR. If 0 replace R by Roexp(—ia/l —d). Then

g:R"lofoR,

The length measure h on S'=FrD? is g-invariant (Proof. Let ¢ denote an
arbitrary continuous function on S* and § its harmonic extension to D% [¢dl
=p(0)=3(g(0)=fpogdl. [J). Let R=R on D? and R be defined as the
radial limit of R on a set 2(R) of those points from S' where the non-
tangential limit for R exists. It is known that [(2(R))=1. Clearly R is measur-

able and in our situation Z(R) is g-invariant
g (2((R)=2(R).

Put m:ﬁ*(l), this is an f-invariant measure.
We consider characteristic exponents y,(F)= f{log|F'|dy in this paper, for
functions F and ergodic measures u. We always check log|F’| is p-integrable;
1
then x,(F)=lim ;log](F")’(z)l for p-almost every z and yx,(f) is finite. If

n— oo
supp(g)< € it is no matter we consider F' with respect to the standard
Riemannian metric on S* or the Euclidean one on €. In our cases the same
happens even when suppu¢C.

Theorem. If f, g and m satisfy the above hypotheses then

h(f)=h(8) = 1,(8) =Xl /) 1)
HD(m)=h,,(f)/xm(f)=1, @)
and
lim M =HD(@m)=1  for m-almost zeFrA. (3)
r—0 logr

Property (3) is a weak differentiability property for R and R~!.

Question. Does (3) hold for any Riemann map R of D? to a bounded domain
A < € (without assumptions about existence of any holomorphic dynamics on 4
which extends beyond 4)?

We give two proofs that h;(g)=h,,(f). The first proof is given in §2. We use
there coding by the “tree” of pre-images of a point in A and the ideas from
{Mi-P]. The second proof given in §4 bases on the following theorem about
any Riemann map R (see [Be], (C-L] or [T]):

Theorem [Beurling]. The logarithmic capacity y(S'\Z(R))=0. For every
zeFrA4, y(R~*({z}))=0.
Roughly speaking we prove in §4 that if the sets R~!({z}) are “thin” in the
sense of potential theory then they are “thin” in the sense of ergodic theory.
The both proofs are valid in more general situations. In particular it

happens that
h,(8)=hg,(f)
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for every probability, g-invariant, ergodic measure u, provided only R L) 18
defined, i.e. provided u(ZR)=1.

For example u(2R)=1 if u is a Gibbs measure (equilibrium state) for g|S*
and a Holder continuous function on S' (see [Bo] for the definition). Indeed if
#(S'™\ZR)>0 then for a compact set EcS'\P(R) with u(E)>0 we would
have

h.(g)

u

0=y(E)zHD(E)=

>0. (cf. §4)

The discussion of the both proofs will be continued in §5.2, 3.

An easy case of our Theorem is when f is expanding on FrA4. Then R
extends to R continuous on clD?, see [Br]. Also A can be considered as
bounded in € because this expanding property implies S*\clA=+0. Otherwise
f would be rational on S? and A4 would contain the whole set Sing f of critical
points 2-deg f—2=Card(Sing f)=deg(f|A) so A could not be simply connect-
ed.

To prove the equalities

. logmB(z,r) h,(f)
lim =

m = ogr () P

is easy for the expanding case and in the general case they follow from the
papers [Ma, ], [K-S], {Le, ], [Y]. I briefly sketch the proofs in Sect. 3.

The equality h,(g)=1x,(g), is known as Pesin formula, see [Pe].

Section 1 will be devoted to y,,(f)=yx,{g). I use an idea in harmonic func-
tions which I learned from [Hel.

The special case g(z)=z* corresponds to Manning’s polynomial case. Then
h,(f)=7.()=logd. If f|FrA is expanding or if f is rational and degf=d on
S? we have h,(f|Fr A)=logd and m is unique maximal measure (for the expand-
ing case see Lemma 2 or [Ja], for the second case h,,(f)=logd is proved in
[G] uniqueness in [Ljul, [Ma,]). I do not know whether the inequality
hopo(fIFrA)<logd is true in general. (If g is not z% then m is not a maximal
measure since h,,(f)<logd and we always have h,(f|FrA)=logd by Lemma 4
or [Mi-P].)

Note 1. The idea of extending the HD(m)=1 result from the polynomial to the
general case but for the measure m rather than the maximal one belongs to
Manning. On his lecture in Warsaw he suggested to look at J(f) from inside
the attractive basin. Also he raised the Question.

After preparing the preprint version 1 learned from Carleson that the
measure m is so-called harmonic measure at a with respect to A4, see [T]. It
has also the Brownian motion characterization as the probability distribution
of the first hitting of FrA4 for paths starting from a. For the precise definition,
discusion and references for estimating HD(m) in a general situation (without
holomorphic dynamics) see [@].

In the preprint [Ca,] which appeared at the same time as mine Carleson
proved HD(m)<1 in the case FrA has strong self-similarity properties, but not
assuming the existence of f. There is striking similarity between his ideas and
Manning’s and my way.

top
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log?2
log2+1G(c)
osition 4) gives an illustration of Carleson’s inequality HD(m)<1 (harmonic
measure at co and the equilibrium distribution for the logarithmic potential
coincide).

Recently the preprint [Le,] having some common points with my paper
arrived in Warsaw.

My formula HD(m)= for Cantor-like Julia set for z2 +¢ (Prop-

Note 2. The considerations of the present paper are continued in the paper [P].
Very recently my attention was payed to the paper [Mk] which contains a
sketch of the proof that HD(m)< 1 in general.

§1. 3 (g)=tm(S)

Proposition 1. Let R: D*—>A<=C be a Riemann mapping. Let g(z)—zr[ %

sl1—az’
la;|<1. Put f=RogoR~':49 and assume that f' extends continuously to clA
(f" understood in the Riemannian metric from S2.)

Assume also that ' takes the value 0 on a finite set {p,,....p,} <FrA and
that, for some constant a.>0, |f'(z)|>(p(z,p,))* for every i and z from a small
neighbourhood of p; in clA (p is the metric in S). Then

Ilogigldi— § logif'ldm.

FrA

Proof. Assume first that R is continuous, 4 is bounded in €, and f’ has no
zeros on FrA (which corresponds to the expanding case). Clearly g’ and f'oR
have the same zeros in D2 Denote them by b, ....,b,_, and put B(z)

d-1
b
i . Then

=117

floglg’ld! jlog
Sl

FrfAlOglf’Mm jloglig_%ldl log (R'°g)g'(1(3R‘l)’oR)'(O)

ldl logl%l(O)

s1
We used the fact that we are integrating harmonic functions since %, ! ;R
have no zeros in clD? (Derivative in this Proof is considered in the Euclidean
metric in €). In the general case I refer to the following facts [D]:

(a) (see [D] p.50). Let ¢ be a holomorphic function on D? which is
univalent (Schlicht) (ie. z,#z, implies @(z;)*¢(z;) but not necessarily
bounded. Then @eH? for all p<1/2. (This means the integrals jl(p(tz)l" dl(z)
are bounded for t<1 by a common constant.)

(b) (see [D] pp. 17, 22). Let peH? for some p>0. Then the nontangential
limit @ exists l-almost everywhere. log|@} is I-integrable and

[log|@|dl=limsup | log|@(tz)|di(z).
St t—1 St
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If also %EHP then

log|o(tz)|—»log|@(z)l, in the I! sense as t 1.

(To see the importance of the univalency assumption check the example ¢(z)
=exp((1 +2)/(1 —2)), see [D] p. 22)

This applied to ¢=R gives R used for the definition of m in the In-
troduction.. 'R

(b) will immediately prove Proposition 1, if we check f—o—, —é—eH”.
Assume A4 is bounded. B~ f'°R

! 1
Lemma 1. B ?’oRer for some p<5.
R ‘
Proof. B eH® {is bounded). On the other hand
f/OR S i
“Lofzc ([1IR@-pr)
i=1

for every zeclD?, some C>0. But 1/(R(z)—p;)eH*, B <3, as univalent function.

So eHM [

foR

To check that j log|f’|dm does not depend on whether we consider a
FrA
metric from S? or from € we take some k:S*© such that k(Fr4)=C. For

1
example k =——— for some a¢FrA. Now
z—a

| logltkofok™ty ok|d(k,(m))

Frk(A)

= [ log|f'ldm+ [ log|K of|dm— [ log|k'|dm,

FrA Frd Fra

which is | log|f’|dm, provided log|k'| is m-integrable. But

Frd
1 2
—— I
log (R —a) d

[ llog|k'| |dm= {|log|k o R||dI= |
st

Frd st

= —2{|log|R—al|dl< o
S]

by the univalency of R —a.

To finish the proof of Proposition 1 one needs still to prove Lemma 1 for A
unbounded. One can assume ¢ {p,,...,p.f (P1):..-.f (ps)}- Then there are con-
stants C,, C, >0 such that

1
C,|—
1 Zz

S @ILC,|f(@)* forallz
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in a neighbourhood of {oo} uf " 1{{co}). Now use the univalency of R and
finite-valency of foR=Reg. []

Remark. If in Proposition 1, we do not assume anything about zeros of " on
Fr A then still in view of part of (b) log|f’| is m-integrable and

1182 1o ()

§2. h(9)=h,(f)

1 z—a

Proposition 2. Let R: D*—> A be a Riemann mapping and, for g=z- T
i=2 1 —6;2

la;} <1, assume that f=RogoR~! extends to a C'-function f in a neigh-
bourhood U of clA (in S?). Then

hy(8)=hy(f).

Proof. First prove it in the Manning case where g=z? and f|g,, is expanding
(so R is continuous). Choose an arbitrary point z,e 4\ R({0}). Then the points
from f~"(zy) are (n,e¢)-separated for some ¢ depending on z,. Indeed suppose
that f(z,)=f(z,) and z, is close to z, close to FrA (far from R(0)). Then z,
and z, can be joined by an interval yc U and yf’(z)d |z|=0 implies f'(z) is
close to 0 for zey. But this contradicts the assumption f'| Fr A is nowhere 0.

Equidistribute measures ¢, on the points from g~"(R™'(z,)) (ie. o0,({z})
=d~"). Then ¢,—[ in weak*-topology, n—oo, hence by continuity of R,
R,(s,)»m. Since the points from f~"({z,}) are (n,¢)-separated and
Cardf "({w})=d", h, (f)=logd=h(g) (see Misiurewicz’s proof of the varia-
tional principle, for example [Mi]). Of course h,,(f)<h,,(f)<h,,(g8)=logd
since f is a topological factor of g (R is continuous).

In the general case o, converge to the measure with the maximal entropy
rather than to I Nevertheless we shall use the sets f 7"(z,) to make a coding of
the dynamics f. Let us describe it first in the expanding case.

Lemma 2. Assume f|FrA is expanding. Let R, be the factor map of the full
shift (29,6) to (S%,g9) (Z“:H{l,...,d}, o is the left shift), according to the
1

Markov partition of S! into arcs p'p'*! where p' are consecutive preimages of a
fixed point peS'. Then there exists a continuous factor map R, of (Z%0) to
(FrA,f) such that

RoR,=R, and Card(R;'(z)£C

for a constant number C and every zeFrA.

Proof. This lemma is almost Jakobson Theorem, [Ja] Theorem 3: For any ra-
tional function F:S?6 which is expanding on the Julia set J(F), (J(F),F) is an
at most C-to-1 factor of the full shift (2¢¥, g).

1 will repeat Jakobson’s proof to help the reader to understand the more
complicated non-expanding case which will follow and to introduce the coding
notation.
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Describe coding of (S*,g) (this coding itself was known before [Ja] ap-
peared). Fix arbitrary weD?\ | ] g*(Singg). For every sequence a =i, i,,...)eX*
k>0

define a sequence of points (w, (@)} ,, w,eg "(w), by induction: Order points
from g‘l(w) into sequence w,...... ,w join w' with w by a curve 7y,

=D\ U g"(Singg). Let wy(x)=w. After defining w,_,(«) consider the curve

P(w,)= g Zon- Y(y;) where the branch g7~ of g="~" is chosen so that one
end of y(w,} is w,_,. Define w, as the other end of y(w,).

We call such sequences of points (w,)=(w,(a)) admissible. Admissible se-
quences (for g) converge uniformly since g|S' is expanding. Define R, ()
= lim w, (o).

We define similarly admissible sequences z,(a) for f in A using the curves
R(y). z,(o) converge uniformly since R is continuous. We define R (a)
= lim z,().

n—»oo

U U S "(y,) forms a “tree”. This is the graph with vertices z,(x), edges

i=1n=0
7(z,(«)) for aeZ?. Admissible sequences z, are just consecutive vertices along
infinite “branches”. The points z,(c) code cylinders in X? given by the first n
coordinates. It is more comfortable to look at our coding as coding by
admissible sequences of points (z,(«)), than by sequences of integers o.

Since Singf "Fr 4 =9 there exists £¢>0, k>0 such that for every I>k

(i) if v, voef ~1(z,(@)), v, Fv,, then p(v,,v,) e,
(i) p(lim z,(), zl(a»<§.

We show that for every xeFrA, CardR;'(x)<d* Suppose the contrary.
Then there exists s>0 such that Card({z,(a):«eR;"(x)})>d" Then there exist
a, feR; 1 (x) such that z (a)+z,(B) and f*~*(z,())=1°"*(z,(B)). So there exists ],
s>l>k such that f*~ ’(z (@)=/*""z,(B) and f5~' " (z,()F "'~ (z,(B)). This
gives, due to (i), (i) R(*'""a)*R (""" N(B) so Ry (W)*R(p),
contradiction. [

Now we can finish proving Proposition 2 for the expanding case. We have

hi(8) = hy () =hi(]f)

see [A-Ro]. The definition of the relative metric entropy h(g|f) is here:

k(g N =sup{h(g|f, &): & is a finite partition of §},

(glfé)—llmn“H "(é)‘ 1(8) =H,EIE" VR ()

n— o0

where ¢ is partition of Fr A4 into points.

h,(g] f)=0 since the partition R~ !() consists of finite sets (of cardinality at
most C), by Lemma 2.

Now we pass to proving Proposition 2 in the general (maybe nonexpand-
ing) case:
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Lemma 3. Let R,: X°—S" be as in Lemma 2. Put v=(R; ')+ (I). Then there exists
a measurable factor map

Rf: (st v, O')—’(FTA, m’f)
such that Rf=§oRg v-a.e. and
hy(6)—h,(f)=h,(a]f)=0.

To prove this Lemma 3, I need two more lemmas:

Lemma 4. Let AcM be a compact subset of a Riemannian manifold M, with
positive Riemannian measure m, i.e. m(A)>0. Let f: U-»M be a C'-mapping
on U, which is some neighbourhood of A. We say xe A is (f, A, &)-singular value if
there exist y, zeAnf Y (x), y*z and p(y,z)<e.

Then for every [, 0<{<1 there exists e=e(f,{) such that for m-almost every
xeA if (x)i_o is a piece of an f-trajectory, ie. f(x)=x,,, such that x,=x,
x;€A and n is sufficiently large, then

Card{i: x; is (f(4, &)-singular value} <{-n.

Proof. See [Mi-P]. (O

Lemma 5. Let [ be an analytic mapping defined on a neighbourhood of clA,
where A is an open connected domain in S?, f(A)=A, f(Frd)=FrA,
Card(S*\ A)= 3, such that f|FrA is expanding.

Then all admissible sequences (z,) (i.€. built as in the proof of Lemma 2) con-
verge exponentially and uniformly nontangentially to the respective points in
FrA, ie.

dist(z,, Fr A)/dist(z,, lim z,) > Const >0. n
Proof. For a small neighbourhood V of Frd f(A\V)=A\V so f cannot be
isometry in the hyperbolic metric on 4, so it shortens distances (see [Hi]
Th. 15.1.3). So A is attractive domain of a sink a= lim f"| A.

n~ o0

Exponential convergence of z, follows from the expanding property. Now
for some &>0 choose N such that for every admissible sequence
{z,} B(zy,€)3lim z,. Since f is expanding all the branches f,* on B(zy,¢) (with

n— oo

f.7¥(zy)e A) have uniformly bounded distorsions (independently of the choise of
{2}, ) So the ratios in (1) change only by uniformly bounded factors. [J

Now we can give:

Proof of Lemma 3. Since every admissible sequence w, (for g in D?) converges
nontangentially (by Lemma 5) and since R has nontangential limit R l-almost
everywhere we conclude that for v-almost every aeX? the sequence z,(x)
=R(w,(a)) converges (see the notation in Proof of Lemma 2). We define

R (o) =limz, ().

Now we need to prove that
h,(c]f)=0.
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Observe that for every n, >0 there exist a set E; <3¢ with v(Z9\E,)<n
and an integer N, such that if n> N, then for every a€E,

plz,(o). R () <e

Then by the Birkhoff-Khinchin ergodic theorem, for every integer k>0

there exist E, = X? with v(Z\E 2)<]/E and an integer N, such that if n-kz=N,
and aeE, then:

1 for xeE,

_IZXE (6™ () >1—2]/11 where xp (x)= {0 for x¢E.’
1

(Remark that we do not use ergodicity of ¢*)

Take for future an arbitrary k>0, 0<{<1 and e=2%e(f* clA4,() according
to Lemma 4. Assume also N, = k.

Let ¢ be the partition of FrA into points and put9=R;1(§). Let &/" be the
partition of X% into d" cylinders given by the first n coordinates. Denote by IT,,:
>4 {l1,...,d}" the projection to these coordinates and define, for every xeFr4

Sn,x=Hn(Eszj—“— ! (X))

For az0 put i(a)= —a-loga.

We have
h(olf)=limn ' H (/N limn~ VH (/" v {E,, Z"\EZ}/S)
=limn~' [( ¥ i@ Ey/9()+ Y i(v(@\Eo/9(x))dv(x)
n-+ oo yd gegn acd"

<limsup | n~'logCard(S, ,)dm(x)

n—>aoc Fr4

+ limn~* f VIZNE /() +V(ZINE,)/3(x)) n-logd) d v(x)

n— oo

< [ limsupn~'logCard(S, ,)dm(x)+ v(Z*\E,) logd.

Fr4 n—©

So we need to estimate Card(S,,). Call z', z2€A4 (n,e, A, k)-separated for
positive integers n, k, for e>0, 011 if

Card{i:0=i<n,p(f*(").f*(z})ze} zAn.
Observe that for any two elements «, 8 of E,nR;'(x), if n—N; 2 N,, then

—N,
the points z,(«), z,(B) are not (1 + [n X 1], 2¢, 4]/_,k)-separated.

Otherwise there existed I, 0<I< [” —kNl] such, that p(f*(z, (@) [, ()
22¢ and o*(«), a*(B)eE,. But then p(limz,(a*(«)), lim z,(a*(B)Z p(f*' z,(%),

i~ 00 i—

f*z,(B)—2¢&+small positive number >0. Hence

Ry (0" (@) # R ((a*(B)),
hence R ((«)# R /(f), contradiction.
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Fix arbitrary ae Ty (2%) and consider
S,,,x(a)=S,,.ann((HN1of"‘”‘)‘l(a)).

n—N,

Fix now ceS§,  (a). Take arbitrary Dc{O,l,...,[

= [41/5 ([n _kNl] + 1)] and consider

S,.x(@ D)=1{beS, (a): p(f*(z,(BI).S ¥ (z,(c))) = 2¢ implies [ D}.
Consider the “tree” 7 of points: G, ={z,(b): beS, ,(a, D)} G, =f*(G,) for I
=0,..., [n kN ] +1. (7 is a “tree” in a different sense that this in the proof of

]} with CardD

Lemma 2.) We say eeG, branches if Card(f ~*(e)nG,_,)=2.
We have for every zeG,

Card {l:f*(z) branches} <Card D + (- [g] .

This follows from Lemma 4, namely that branchings in J, except of indices in
D+1, can occur only at (f* FrA4, 4¢)-singular values and just 4e=¢(f*, clA4, ).
So by consideration like in [Mi-P]

CardG,=Cards$, .(a, D)<d*Vm+in
s0

Card(S, ,)SdV+-2k.grvn+0,
limsupn~'log Card(S, x)< log2+(4Y/n + ) logd. @)

This is what we need since k can be arbitrarily large and v, { arbitrarily
small. O

L . ~ 1,
Remark 1. (2) implies that Capac1ty (RFM(x)NE, .<.4]/11+C +~ if we consider
in X? the metric p((iy),(j,)= Z d-*li,—j|. Capacity of a set X means here:

s=1

lim (log(mf {Card U,: U, is a covering of X by balls with radius 8})
—loge

e—-0

This implies that there exists a sequence E,(n)<Z? with v(E,(n))/1 such that
for every xeFrA Capacity (R,‘l(x)mEz(n))=0. So there exists Ec X? with v(E)
=1 such that for every xeFr4, HD(R '(x)n E)=0.

(HD is Hausdorff dimension; we use the fact that HD £ Capacity and that

HD U X —supHD(X ).

Smce R, i 1s Holder continuous this implies the following:

There exists EcS' with I{(E)=1 such that for every xeFrA,
HD(R!(x)nE)=0.
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This fact is much weaker than Beurling’s estimate y(R~'(x))=0 but our
proof emphasises the C' property. See §5.3 for further discussion.

Remark 2. R 4 18 continuous at equilibrium states in the following sense:
Let ¢ be a Holder continuous function on S?, 4, be the equilibrium state for
(g, ¢). Extend ¢ to a Holder continuous function on D?. For any wyeclD? such

that w,¢ | ) g'(Singg) let g, ,,, , be a probability measure distributed on g~"(w,)
i=1 n—1

with weight on weg™"(w,), exp Y ¢(g'(w)). From [Bo] it follows that u, .,
i=0

weakly* converges to hu, for n— oo and that there exists a constant C >0 such
that for every w, close to S*, ae2? and n>0

C_IS :u(p,wo,n(wn(a)) S ) (3)

(R I (2) ™
(Recall that the functions w,: 2‘—clD? z,: 244, for fixed wyeclD?, z,€4,
were defined in the proof of Lemma 2, I7,: X% {1,...,d}" is projection to the
first n coordinates, h is a positive Holder continuous function on S!.)

Proposition 3. For every z,e A (zo¢.U1f"(Singf|A))

R*(lu(p,R_ 1(20),n)_')1€*(h1u(p)'

Proof. Let F be an arbitrary continuous function on clA. For every o >0 there
exists X c X, a compact set, such that (Rg“l)*(uq,)(Z)gl—é, R,is 1—-1 on Z,
the functions z, converge uniformly to R, on X and R {|Z is continuous. Then
FoR (defined on D? and #, almost everywhere on S°) is continuous on the
compact set

W= ) wa(E)UR ().

Decompose FoR=F,+F, where F, is continuous on clD? F,|W=FoR|W
and |F,| is bounded above by 2-sup|F|. Then

§ FAR, (hu,)=[FoRdhp,=[F dhu,+ [F,dhy,
Fra $ §t 5t

—1lim [F,dp, -

n— o S1

1(zo),n

+ [Fydhy,.
S1
We have | | F,d p,| < dsup|F,|, so we only need to estimate
S1

lim supl j;de”q),R‘ 1(20),""
D

n— o

Let E,=denote {aeX’:II,(x)¢Il,(2)}. Observe that suppF,cw,(E,) and
(R; 1) * (11,)(E,) < 6. So, in view of (3),

| jFZduq),R"(zo),nléé' C-sup|F,|. O
DZ
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§3. HD(m)=h,,(f)/1n(f)

We give a sketch of proof of the so-called volume lemma, ie. that
lim logm(B(x,r))

r—0 logr

the other hand it equals HD(m) by Proposition 2.1 in [Y], use the Besicovitch
Covering Theorem in the proof there, Theorem 1.1 in [Gu].)

We will be brief since this is a general fact about 1-dimensional dynamics
and nothing new in view of [Le,] and [Y]. Besides I was informed that Mafié
can prove this (for the maximal measure on J(f)) before I started to work on
the present paper. See also [Le,].

First recall that we have checked:

exists for almost every xeFrA4 and equals A, (f)/x,.(f). (On

{ |log|f"lldm < co. 1)

Frd

This implies the existence of Lyapunov characteristic exponents almost every-
where, in particular that along the forward trajectory of almost every point
1/1f’| grows subexponentially.

Since dist(z, Sing f)> Const | f'(z), (1) implies:

{ llogdist(z, Sing f)|dm < oo

FrA

(the derivative and distances are in S?).

This implies that the forward trajectory of almost every point approaches
Sing f (the set of critical points) subexponentially.

To have

IA

lim sup 2B
r0 logr

() 1 (f)

one can repeat Mafié’s arguments [Ma,]: Consider a function p=A"" for 4
small (0<A<1) and n(x) the first return time under forward iterations with f
to a “good” set S (this defines p on S, put p=1 outside §). Since logp is
integrable there exists a countable, finite entropy partition ¢ such that
B(x, p(x))= £(x) for almost every x. Here from the Shannon-McMillan-Breiman
Theorem, we have

N

m (B p ) 2  VfO0) Zexp- Nt (1))

for ¢ arbitrarily small, N large.
N
The sets (|f~"B(f"(x), p(f"(x))) “approximate” all small balls with the
n=0

origin x because of the bounded distortion property, (Because of (1) one can

;:x:; - 1‘) The radii are about exp —Ny,,(f).

adequately estimate
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The inequality

Jim inf 8B "1'(()3 te,r)

r—0

2 h(f ) tm(f)

is easier to prove:

Consider a finite partition of ¢l4 with boundaries to which almost every
point approaches at most subexponentially and consider the sets
N

N f"B(f"(x), CA" with 0<Ai<1, ix1. O
n=0

§ 4. Relative entropy and Hausdorff dimension of fibres

I will show in this section how to deduce h,(g)=h,(f) form Beurling’s Theo-
rem.

Denote by ¢ the partition of a space into points (it will always be clear of
what space). Let [(-/R~'(¢)) denote conditional measures on the measurable
partition R~'(e). I[(-/R~*(e)(x)) denotes the mecasure on that set from the
partition which contains x.

We prove that for almost every xeS*:

0(;:) HD(l(/R— 1 (8)()(3))(2111’1'1 mflogl(B(X, r)/R— ! (8)()6)) (g) hl(glf)
r—0 logr %(8)

This yields k(g f)=h,(g)—h,(f)=0.

(i) follows from Beurling’s Theorem since for any compact set E
cR~1(g)(x), 0=7(E), which implies (see [T] Theorem III, 19.) that HD(E)=0
and we can choose sets E such that [(E/R~"(g)(x))—1.

(i) follows from [Y] Proposition 2.1.

So we shall concentrate on (iii). Let ¢ be a finite partition of S! into arcs
and r=exp —n(y,(g)+ o) for small ¢>0. Then

Bx,)<E0="V g @O0, for n=n(x) )

sufficiently large.
So

log[(B(x,7)/R~(¢)(x)) o
logr = n(ylg)+o)

log I(E™ (x)/R ™ (e)(x).

The proof of (iii) will be complete if we prove that

hy(g/R™" () — 0 <lim inf(—log I(£™(x)/R = (e)(x))

n— O

<limsup(—logl(E™ (x)/R~" (e)(x)) S h,(g/R " (&)) @

n— oC

where 6—0 when &7¢ This is a weak version of the Shannon-McMillan-
Breiman Theorem (for ergodic transformation) relative to R~'(g). This would be
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clearly true if g=*(R~!(¢))=R~'(e). The proof is then the same as in the
classical, non-relative case, see for example [Pa].

Here we have only g~ (R~ (¢)) <R~ !(e).

The crucial computation in the proof of the Shannon-McMillan-Breiman
Theorem looks then as follows:

az('f\_/lg-"(é)/ﬁ*(s)) ZI( © / ( V govR-o))

1n1 o lnl .
-l(@ \_/g’(é)vg (R s)) T, o8

] i+1

%lim; __20(1(5/5- VR (&) og)=h(g| £, ).
Here 1(5n/{)(x)= —logl(n(x)/{(x)) is the information function and
i-1 _
L=1(¢/ Ve @vR-e).
s=1

This proves the Shannon-McMillan-Breiman Theorem in one direction,
1 - . . .
namely lim sup—;logl(&f”(x)/R‘1(8)(x))§h,(g| £,8) and in particular the right

hand inequality in (2).

However to prove (iii) we need an estimate in the other direction. This can
be done by lifting to the inverse limit (natural extension):

Set the notation f, g, R, [ for the corresponding lifts of f, g R, I. Let I, be
projection to the O-coordinate. Then

lim inf —— l(f"‘)(x)/R "(e)(x)

n— a0

=lim inf—% (15 (E™(x)/ 5 (R 1) (x))

n—

>11mmf—lf(17 HEPER™ @) (XN =H:@I 7, 1151 (9)

2 hi(§1f)— 0 =m(8) — hi(f)—0=h/(g)—h(f)— 6 =hy(glf)~0.

(¥e I ' (x) and the computation is for a.e. x, X).
We used the equality f~'(R~'(g))=R~1(¢) and the fact that if £ /¢ than
gy sre. 0O

Remark. The relative volume lemma holds:

Lo, Tim 08 1BO VR1E) _hlelf) o

r—0 logr x(g)

We have proved this except for the opposite inclusion in (1), for r
=exp —n(y,(g)—o). Here that inclusion trivially holds since g is (uniformly)



Hausdorff dimension of harmonic measure 175

expanding. However using Maifi€’s technique, see §3) one can prove (3) assum-
ing only that the dynamics of g is 1-dimensional (real or complex), y,(g) exists
and is positive, as in §3, [ can be an arbitrary g-invariant probability measure.

§ 5. Final remarks

1. The normalized length measure [ on S! is the equilibrium Gibbs state for
the mapping g and the function —log|g'l. Let u be the Gibbs state for g and
—log(f'°R) (in the case R is continuous, f|FrA is expanding). Then R « ()
is the Gibbs state for f and —log|f’| on FrA, since hg ,(f)=h,(g) and
B(—log|f")=F,(—log|f"° R]|) (the latter equality holds since any (n, 8) separat-
ed set for g in S! used in the definition of pressure can be replaced by a set §
where g"(x)=g"(y) for every x, yeS and then R(S) must be (n, &)-separated for
fin FrA, cf. begin of the Proof of Proposition 2).

It is known (see [R]) that the pressure for f, P.(—t-log|f"]), is equal to O for
t=t,=HD(FrA). So if t,>1 we have HD(R, (u))>1, see the McCluskey-
Manning picture [McC-M]:

log d

P&, tf)

P (-telog Ifl)

to
AN |
I HD (Ru()) 2

Meanwhile for m=ﬁ*(l) HD(m)=1. So E*(u) and m are very different. This
is striking since —log|g’| and —log|f' o R| are homologous on the open D2

2. The condition u(ZR)=1 is satisfied by a probability measure u if it has
finite energy i.e.

) log| du(X)du(y)<oo.

S1x St

This follows from y(S'\2R)=0 (Beurling Theorem) and the definition of
logarithmic capacity y. See [T], Theorem I117.

How nondegenerate is the measure E*(u) then? Has it finite energy? Is it
true that

X&,w(f)>0  (in particular > — 00)? )

(The importance of (1) has been explained in §3.
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Under the assumptions of Proposition 3 about f the considerations of §2
prove in fact h,(g)=hg,,(f) for arbitrary probability, g-invariant measure v
such that R, (v) is well defined. So if we assume additionally that u is ergodic
and h,(g)>0 (or equivalently HD(u)>0), then hg ,(/)>0 and, by [Ma,]
Lemma IL3, the inequality (1) is true (and HD(R (1)) >0), cf. also [P].

3. Considerations from §4 prove Proposition 3, (that h,(g)—hg,,,(f)=h,(glf)
=0 for any probability, g-invariant, ergodic u such that u(ZR)=1) with the
assumption that f has a C! extension weakened to the assumption:

g (R™'(E)SR (o).

This latter assumption is even weaker than the assumption that f extends
continuously to clA.

On the other hand this part of the proof of Proposition 2 given in §2 which
shows that the sets R~!(x), R~'(x) are thin, does not make use of the
analiticity of g, R and f. Another observation is that in the presence of
dynamic it is natural instead of the existence of a radial limit to consider the
existence of a limit along admissible sequences (definition at the beginning of
§2). So the following question arises:

Question. Let R: D> A4 be a C' diffeomorphism whose real and imaginary
parts have finite Dirichlet integrals.

Let g be a C* expanding map defined on a neighbourhood of S* in clD?,
preserving S, with differential preserving the bundle # normal to S*, such that,
for every xeS?, the expansion along n(x) is not stronger than along TS*(x).

Assume that f=RogoR~! extends C' to a neighbourhood of FrA. Is it
true then, that

(i) There exists a limit R along admissible trajectories on a set & R* with
(SI\ZRY=0?

(ii) The sets on which R® is constant have logarithmic capacity 0?

(iti) For every finite g-invariant measure z on S! with finite energy

hrag () =h,(2)?

1 put finiteness of Dirichlet integrals into the assumptions to have (i) by
analogy to the existence then of the radial limit R on 2R with y(S'\2R)=0,
see [Ca,], Section5, Th.3 (Caution: existence of the radial limit does imply
existence of the nontangential limit in general, see [Ca, ], p.62). The assump-
tions about the strength of expansion g yield admissible sequences converging
to S! non-tangentially.

(i) implies (iii) by considerations from §2.

4. There is an overlap between Manning’s proof of his Theorem (see §0) and
Brolin’s work [Br] §§ 15, 16. I understand the situation as follows:

Let f be a polynomial z¢+a, ,z'~'+..., A be the basin of co and v be an
arbitrary, probability, f-invariant measure on FrA4. Then, if ¢, ..., ¢,_, are the
critical points of f in C, we have
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xv(f)=F§A10g|f’|dV= § logdiz—cyl...|z—c,_,|dv

Fr4
d—1
=logd+ Y | loglz—c¢,ldv.

i=1 Frd
Then conclusion is:

d-1
Xv(f)zlogd_ Z uv(ci)! (1)
i=1

where u,(v)= | log dv denotes the logarithmic potential for v at v.

|z—v]

Equidistribute now the measure ¢, on the points from f ~"(z,), n=1, ... (for
arbitrarily fixed z,e A\{oc}). Then o,—m,,,, which is the unique measure with
the maximal entropy h, _ (f)=logd (see Proposition 3 in the case A is simply
connected and [Lju] in the general case). m,,, is also the equilibrium distribu-
tion on FrA in the sense of potential theory (for the logarithmic potential, see
[Br]).

The Brolin-Manning computation:

—uo,(¢c)=[log|z —cldus,=(og( [] |z—c|))l"

zef " *(z0) d
1
=ﬁlog|f"(c)—zol—r:;»0, for every c¢ A4, (2)
shows that, in the case c;¢A for every i=1,...,d—1, we have u,__(c,)=0,

hence by (1). o (f)=logd

Problem. Understand the connections between Lyapunov characteristic ex-
ponents and potential theory for rational mappings.

5. We continue our discussion from §5.4 for the polynomial f,(z)=z%+c.
Consider the Mandelbrot set M ={ceC: f(0)}+0c0}, when n— o0, see [Md].
The set S\ M is topologically an open disc containing cc (see [Do-Hb] or
[Do]). For every ceC denote by A, the basin of attraction of oo for f,. m
denotes the maximal entropy measure on FrA, =J(f,) (see §5.4).

[

Proposition 4. (i) G(c)= —u,, (c)= —2u,, (0)=2y, —2log2 is the Green’s func-
tion of S*\M with its pole at o,

(ii) y(FrM)=1,

log2

HD(m)=——"—.

() HDm) =1 7160
Sketch of proof. To have (i) in view of the Brolin-Manning computation, § 5.4,
it is enough to check that lim 27"log|f"(c)] is the Green’s function. This is

n—

straightforward and in fact G(c)=log|c|+o(l) if c—c0. So the Robin constant
is 0, hence y(Fr M) (=the mapping radius of FrM, see [T] p.84)=1. (All this
was in fact announced by Douady and Hubbard in [Do-Hu] and [Do].
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(lim (f"(c))*™"): S>\M—D? is their Riemann mapping). (iii) follows from

n— oo h
HD(mc)=X"‘°g“;. O

(Recall the similar properties for each individual c: y(J(f))=1, see [Br] or
(2); —u,, is the Green’s function of 4, with its pole at co, see [T] p.82.)
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Oblatum 25-V-1984

Note added in proof

Question on page 2 in the case of Jordan domains has been recently answered in positive by N.G.
Makarov in the preprint: On the distorsion of boundary sets under conformal mappings. Makarov
proved that m is always absolutely continuous with respect to the Hausdorff measure H, . with

1 1 .
@cty=t-exp <C1/log;logloglog?) with a universal constant C>0. He constructed also an

example with m singular to H,,_ for some ¢>0.

Under the assumptions of my Theorem, if Fr4 is a Jordan curve and f|FrA is expanding it
turns out that either Fr A4 is an analytic curve or m is singular to H,_for some c=¢(f)>0. A proof
will appear in a paper done by M. Urbanski, A. Zdunik and myself.



