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w O. Introduction 

Anthony Manning in [M] proved the following 

Theorem [Manning].  Suppose that each critical point c of a polynomial f :  
�9 ~ C  satisfies f"(c)+-~ and that cl(Orb~(c))c~J(f)=O. (clOrb)-(c) denotes 
closure of the orbit of c under forward iterations with f J( f )  denotes the Julia 
set for f). Then for the maximal measure m (i.e. such that h,,(f)=htop(f)=degf) 
the Lyapunov characteristic exponent ~log]f ' l  d m=zm(f) is equal to d e g f  The 
Hausdorff dimension of m is 1. 

The Condition clOrbf(c)c~J(f)=O for every critical point c is equivalent 
to the expanding assumption on J(f)  (see I-F], [-J] or [Br]). It means there 
exists n>0 ,  such that I(f")'(z)[> 1 for all z in J(f). Hausdorff  dimension of a 
probability measure m (or of a set Y) will be denoted HD(m) (respect. by 
HD(Y)). It is defined by: HD(m)=inf{HD(Y) :  re(Y)= 1}. h,,(f)(htop(f) ) denotes 
measure (topological) entropy. The condition f"(c)+-~ means that the attrac- 
tive basin of ~ is a topological discA~. Also J( f )=FrA~.  

In the present paper I will prove the equality HD(m)=  1 in a more general 
situation. Consider any open topological discA in the Riemann sphere S z such 
that Card (S2 \A)>  1. Assume there exists a holomorphic m a p f  defined on a 
neighbourhood of clA such that f (A)=A,  f (FrA)=FrA and A is attracted to 
a sink a~A i.e. f(a)=a, f " IA~a  (This yields d=deg(f lA)>l ,  degree means 
number of pre-images of any regular value). 

I define and discuss now the measure m which will be under consideration. 
I learned this is so-called harmonic measure, see the Note 1 at the end of this 
Introduction. 

Let R: D2~A be a Riemann map (conformal homeomorphism) from the 
unit discD z such that R(0)=a.  Let 

d 
Z - -  a i 

g(z) =z'[Ii=2 1-a l z  

* This paper in a preprint form was entitled "On the boundary of an attractive basin of a sink 
for a rational map on the Riemann sphere" 



162 F. P r z y t y c k i  

where {a2,... ,ai} =R- l ( f - l ( a ) ) ) .  Observe that, due to the m a x i m u m  principle, 
IR-  1 ofo R/g[ < 1 and ]g/R- 1 ofo R] < 1 on D 2. Hence, for some real number  ~, 
we have g = exp(i ~ ) R -  1 ofo R. If ~ # 0 replace R by R o exp ( - i c~/1 - d). Then 

g = R  -1 ~  

The length measure  h on S~=FrD 2 is g- invar iant  (Proof Let ~0 denote an 
arbi t rary  cont inuous  function on S 1 and q5 its ha rmonic  extension to D 2. ]q~dl 
=@(0)--@(g(0))=S~0ogdl .  D). Let  / ~ = R  on D 2 and /~ be defined as the 
radial limit of  R on a set ~(/~) of  those points f rom S 1 where the non- 
tangential  limit for R exists. It is known that  /(~(/~))--1.  Clearly /~ is measur-  
able and  in our  s i tuat ion @(/~) is g- invar iant  

g -  ~ ( ~  (R)) = ~ (R). 

Put m =/~.( l ) ,  this is an f - inva r i an t  measure.  
We consider characterist ic  exponents  z , (F)=SloglF' ld# in this paper,  for 

functions F and ergodic measures  #. We always check loglF ' l  is p- integrable;  

then z,(F)=lim~logl(F")'(z)[ for # -a lmos t  every z and )~u(f) is finite. If 
n ~  n 

s u p p ( # ) c ~  it is no ma t t e r  we consider  F '  with respect to the s tandard  
R iemann ian  metr ic  on S 2 or  the Eucl idean one on C. In our  cases the same 
happens  even when supp/ l  r ~ .  

Theorem.  I f  f g and m satisfy the above hypotheses then 

and 

h,,(f) = h,(g) = Zl (g) = zm(f),  

HD(m)  = hm(f)/xm(f) = 1, 

(1) 

(2) 

l im logm(B(z, r)) 
= H D ( m ) = I  for m-almost zeFrA.  (3) 

r~o logr  

Proper ty  (3) is a weak differentiability p roper ty  fo r /~  a n d / ~ - 1 .  

Question. Does  (3) hold for any R iemann  m a p  R of D 2 to a bounded  domain  
A c r (without assumpt ions  about  existence of any ho lomorph ic  dynamics  on A 
which extends beyond  A)? 

We give two proofs tha t  h~(g)=h,,(f). The  first p roof  is given in w 2. We use 
there coding by the " t ree"  of pre- images  of a point  in A and the ideas from 
[Mi-P] .  The  second p roof  given in w bases on the following theorem about  
any R iemann  m a p  R (see [Be],  [C-L]  or [Y]): 

Theorem [Beurling].  7he logarithmic capacity y(SI~(/~))=0. For every 
zeFrA,  7 ( R -  1 ({z})) = 0. 

Roughly  speaking we prove  in w 4 that  if the s e t s / ~ -  1 ({z}) are " th in"  in the 
sense of potent ia l  theory  then they are " th in"  in the sense of ergodic theory. 

The  bo th  proofs are valid in more  general  situations. In par t icular  it 
happens  that  

hu(g)=ht~.~u)(f) 
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for every probability, g-invariant, ergodic measure /~, provided only /~,(/~) is 
defined, i.e. provided # (~ /~ )=  1. 

For  example # (~ /~ )=  1 if # is a Gibbs measure (equilibrium state) for g[S 1 
and a H/51der continuous function on S 1 (see [Bo] for the definition). Indeed if 
# ( $ 1 \ ~ / ~ ) > 0  then for a compact set EcSI\@(R) with #(E)>O we would 
have 

0 = ~,(E)> HD(E) > ~ I ~ I  > 0 . _  _ - -  (cf. w 

The discussion of the both proofs will be continued in w 5.2, 3. 
An easy case of our Theorem is when f is expanding on FrA. Then R 

extends to /~ continuous on clD 2, see [Br]. Also A can be considered as 
bounded in G because this expanding property implies S2\clA+O. Otherwise 
f would be rational on S 2 and A would contain the whole set S ing f  of critical 
points 2. d e g f - 2  = Card(Singf)>deg(f[A) so A could not be simply connect- 
ed. 

To prove the equalities 

lim l~ HD(m) 
r~o logr L , ( f )  

is easy for the expanding case and in the general case they follow from the 
papers [Mal] ,  [K-S],  [Lel] ,  [Y~. I briefly sketch the proofs in Sect. 3. 

The equality hl(g)=xt(g), is known as Pesin formula, see [Pe]. 
Section 1 will be devoted to xm(f)=x~(g). I use an idea in harmonic func- 

tions which I learned from [He]. 
The special case g(z)= z d corresponds to Manning's polynomial case. Then 

h,,(f)=L,(f)=logd. If f ] F r A  is expanding or if f is rational and d e g f = d  on 
S z we have htop(flFrA)=logd and m is unique maximal measure (for the expand- 
ing case see Lemma 2 or [Ja], for the second case htop(f)=logd is proved in 
[G]  uniqueness in [Lju], [Ma2] ). I do not know whether the inequality 
htop(fiFrA)<logd is true in general. (If g is not z e then m is not a maximal 
measure since h,,(f)<logd and we always have htop(f[FrA)>logd by Lemma 4 
or [Mi-P].) 

Note I. The idea of extending the HD(m) = 1 result from the polynomial to the 
general case but for the measure m rather than the maximal one belongs to 
Manning. On his lecture in Warsaw he suggested to look at J(f) from inside 
the attractive basin. Also he raised the Question. 

After preparing the preprint version I learned from Carleson that the 
measure m is so-called harmonic measure at a with respect to A,, see IT]. It 
has also the Brownian motion characterization as the probability distribution 
of the first hitting of FrA for paths starting from a. For the precise definition, 
discusion and references for estimating HD(m) in a general situation (without 
holomorphic dynamics) see [0]. 

In the preprint [Caz] which appeared at the same time as mine Carleson 
proved H D ( m ) <  1 in the case FrA has strong self-similarity properties, but not 
assuming the existence of f There is striking similarity between his ideas and 
Manning's and my way. 
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log2 for Cantor-like Julia set for z2+c (Prop- My formula HD (m) = log 2 + �89 G (c) 

osition 4) gives an illustration of Carleson's inequality HD(m)<I  (harmonic 
measure at oo and the equilibrium distribution for the logarithmic potential 
coincide). 

Recently the preprint [Le2] having some common points with my paper 
arrived in Warsaw. 

Note 2. The considerations of the present paper are continued in the paper [P]. 
Very recently my attention was payed to the paper [Mk] which contains a 

sketch of the proof that HD(m)< 1 in general. 

w 1. z,(g) = ~m(f) 
d 

Proposition 1. Let R: D 2 ~ A c I Y  be a Riemann mapping. Let g(z )=zI-  I z - a i  
i = 2  1 - - o f  Z' 

]ai]<l. Put f = R o g o R  -1 : A S  and assume that f '  extends continuously to clA. 
( f '  understood in the Riemannian metric from $2.) 

Assume also that f '  takes the value 0 on a finite set {Pl,...,Ps} c F r A  and 
that, for some constant a>0 ,  [f'(z)[>(p(z, pi)) ~ for every i and z from a small 
neighbourhood of Pi in clA (p is the metric in $2). Then 

Sloglg' ldt= ~ logt f ' Idm.  
S 1 FrA 

Proof. Assume first that /~ is continuous, A is bounded in 112, and f '  has no 
zeros on FrA (which corresponds to the expanding case). Clearly g' and f ' o R  
have the same zeros in D 2. Denote them by b 1 . . . .  ,be_ 1 and put B(z) 

= n f i l  z _ b i  
i= a 1 - 61~" Then 

g' 
log gB (0) ~log[g'[dl s~lOg ~ dl 

S 1 - l .  
l o g l f ' l d m  ~log f ~ d l - l o g  (R '~176 (0) 

FrA S l B 

g' f ' o /~  
We used the fact that we are integrating harmonic functions since ~ ,  - B 

have no zeros in clD 2. (Derivative in this Proof is considered in the Euclidean 
metric in II~). In the general case I refer to the following facts [D]" 

(a) (see [D] p. 50). Let (p be a holomorphic function on D 2 which is 
univalent (Schlicht) (i.e. zx4=z 2 implies q~{zl)4:q)(z2) ) but not necessarily 
bounded. Then (pert p for all p< l /2 .  (This means the integrals 5 Iq)(tz)]Pdl(z) 
are bounded for t < 1 by a common constant.) s, 

(b) (see [D] pp. 17, 22). Let ~0eH ~ for some p>0.  Then the nontangential 
limit ~ exists/-almost everywhere, log l(~l is l-integrable and 

Slog IqS] dl> lim sup ~ log [~(tz)l dl(z). 
S 1 t ~  X S 1 
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If also l e H v  then 
(0 

log[q~(tz)[~log[Co(z)[, in the L 1 sense as tT1 .  

(To see the importance of the univalency assumption check the example ~0(z) 
=exp((1 +z)/(1 -z)) ,  see [D] p. 22.) 

This applied to ~p=R gives /~ used for the definition of rn in the In- 
troduction. 

f ' o R  B 
Assume(b) willA isimmediatelYbounded, prove Proposition 1, if we check B ' f '  o ReHP" 

f ' o R  B 1 
L e m m a l .  B , f ,  oReH p forsomep<~. 

f ' o R  
Proof. ~ - s H  ~176 (is bounded). On the other hand 

Z = > C  z - - p i  ~ 
i_  

for every zeclD 2, some C>0.  But l/(R(z)-pi)eH a, <1 13 ~, as univalent function. 

So ~ e H  p/~ [] 
f o R  " 

To check that S log lf ' ldrn does not depend on whether we consider a 
F r A  

metric from S 2 or from C we take some k:S2w such that k (F rA )cC .  For  
1 

example k=  for some aCFrA. Now 
Z - - O  

j log [(k ofo k- t ) 'o  kl d(k,(m)) 
F r k ( A )  

= ~ logif'ldrn+ j logik'ofidrn- ~ loglk'ldrn, 
F r A  F r A  F r A  

which is ~ log [f'[ drn, provided log Ik'] is rn-integrable. But 
F r A  

1o (1 t Iloglk'lldrn=~lloglk'oRlldl=~ ~ ldl 
F r A  S 1 S t 

= - 2  j llog 1/~ -a l ld l  < oo 
$1 

by the univalency of R - a .  
To finish the proof of Proposition 1 one needs still to prove Lemma 1 for A 

unbounded. One can assume oer 1 . . . .  ,Ps,f(Pl) .... ,f(Ps)}. Then there are con- 
stants C 1, C 2 >0  such that 

C 1 ~ <[f'(z)l<=C2[f(z)] 2 for all z 
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in a neighbourhood of {oo}uf- l ({oo}) .  Now use the univalency of R and 
finite-valency of fo /{  =/~ o g. [] 

Remark. If in Proposition 1, we do not assume anything about zeros of f '  on 
FrA then still in view of part of (b) log If'] is m-integrable and 

zt(g)>=Z,,,(f). 

w 2. h,(g) = h, , , (f)  

d 
z - a i 

Proposition 2. Let R: D 2 ~ A  be a Riemann mapping and, for g=z'I]i=2 1 - 8 1 z '  

[ a J < l ,  assume that f = R o g o R  -1 extends to a Ct-function f in a neigh- 
bourhood U of clA (in $2). Then 

h~(g)=h,~(f). 

Proof. First prove it in the Manning case where g = z  a and flFrA is expanding 
(so R is continuous). Choose an arbitrary point z0eA\R({0}). Then the points 
from f -"(Zo)  are (n,e)-separated for some e depending on z o. Indeed suppose 
that f ( z j = f ( z 2 )  and z 1 is close to z 2 close to FrA (far from R(0)). Then z 1 
and z 2 can be joined by an interval 7 c U  and 7f ' (z)dlz[=O implies f ' (z)  is 
close to 0 for ze7. But this contradicts the assumption f ' l  FrA is nowhere 0. 

Equidistribute measures cr on the points from g-"(R-l (zo))  (i.e. cr ({z}_) 
=d-") .  Then a,--+l in weak*-topology, n--.oo, hence by continuity of R, 
R . ( a , ) ~ m .  Since the points from f-"({Zo} ) are (n,e)-separated and 
C a r d f - " ( { w } ) = d  ", hm(f)>logd=h~(g) (see Misiurewicz's proof of the varia- 
tional principle, for example [Mi]). Of course hm(f) <htop(f)_-<htop(g)=logd 
since f is a topological factor of g (/{ is continuous). 

In the general case cr converge to the measure with the maximal entropy 
rather than to I. Nevertheless we shall use the sets f - " (zo )  to make a coding of 
the dynamics f. Let us describe it first in the expanding case. 

Lemma 2. Assume f l F r A  is expanding. Let Rg be the factor map of the full 

shift (Sd, a) to (Sl,g) ( S " : I : ] { I  . . . .  ,d}, a is the left shift}, according to the 
\ 1 / 

Markov partition of S 1 into arcs ffpi+l where pi are consecutive preimages of a 
f ixed point peS  1. Then there exists a continuous factor map R:  of (Xa,~) to 
(FrA,f )  such that 

R o R g : R :  and Card(R] l ( z ) )<C 

for a constant number C and every zeFrA.  

Proof. This lemma is almost Jakobson Theorem, [Ja] Theorem 3: For  any ra- 
tional function F : S 2 ~  which is expanding on the Julia set J(F), (J(F),F) is an 
at most C-to-1 factor of the full shift (S dege, a). 

I will repeat Jakobson's proof to help the reader to understand the more 
complicated non-expanding case which will follow and to introduce the coding 
notation. 
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Describe coding of (Sl,g) (this coding itself was known before [Ja] ap- 
peared). Fix arbitrary wED2\ U gk(Singg) �9 For every sequence c~=(il, i 2 . . . .  ) ~ " /  

k > 0  

define a sequence of points (w,(e))2= 1, w,~g-"(w), by induction: Order points 
from g-l(w) into sequence w 1 . . . . . . .  ,w e join w i with w by a curve 7~ 
cDZ\kU"gk(Singg)'~v Let w0(cQ=w. After defining w,_l(c~ ) consider the curve 

7(w,)=g~-~"-l~(?i.) where the branch g~-(.-a) of g-(.-1) is chosen so that one 
end of 7(w,) is w,_ r Define w, as the other end of ?(w,). 

We call such sequences of points (w,)=(w,(e)) admissible. Admissible se- 
quences (for g) converge uniformly since gIS 1 is expanding. Define Rg(e) 
= lim w.(c 0. 

n ~ c o  

We define similarly admissible sequences z,(e) for f in A using the curves 
R(?~). z,(cQ converge uniformly since /~ is continuous. We define Ry(e ) 
= lim z,(e). 

n~o 
GO 

U Uf-" (? i )  forms a "tree". This is the graph with vertices z,(c~), edges 
i = 1  n = O  

?(z,(~)) for ~e2; a. Admissible sequences z, are just consecutive vertices along 
infinite "branches". The points z.(e) code cylinders in 22 n given by the first n 
coordinates. It is more comfortable to look at our coding as coding by 
admissible sequences of points (z,(c~)), than by sequences of integers ~. 

Since Singfc~FrA =1~ there exists e>0,  k > 0  such that for every l > k  
(i) if Vl, Vzef-a(zl(cO), v 1 +v2, then p(vl,V2)>e, 

(ii) p(lim z.(c~), zl(~)) < - .  

We show that for every xEFrA ,  CardRS~(x )<d  k. Suppose the contrary. 
Then there exists s > 0  such that Card({z~(e):c~Ril(x)})>d k. Then there exist 
c~, f l eR~l (x )  such that z~(e)4= z,(fl) and f~-k(z~(C~))=f~-k(z~(~)). So there exists l, 
s > l>  k such that f~-l(z~(~))=f~-l(z~(fl)) and f~-~-l(z~(cQ)+f~-l-l(z~(fl)).  This 
gives, due to (i), (ii) Rs(e~-t-l(~))+Rr(cr~-t-1)(fl))  so Ry(cO*Ri(fl) ,  
contradiction. [] 

Now we can finish proving Proposition 2 for the expanding case. We have 

h t (g) -  h,,(f) = h t(g]f) 

see [A-Ro]. The definition of the relative metric entropy h~(glf) is here: 

ht(glf) = sup {h t(g[f ~): ~ is a finite partition of S ~ }, 

h~(glf,~) = limn-~H~ g-~(~) lq-~(~) =H~(~I~- v/~-l(e)) 

where ~ is partition of FrA into points. 
h t (g l f )=0  since the partition/~-~(e) consists of finite sets (of cardinality at 

most C), by Lemma 2. 
Now we pass to proving Proposition 2 in the general (maybe nonexpand- 

ing) case: 



168 F. Przytycki 

Lemma 3. L e t  Rg: Sa---~S 1 be as in Lemma 2. Put v=(Rgl)*(1).  Then there exists 
a measurable factor map 

Re: (2Y, v, a )~(FrA,  re,f) 

such that R f =/~  o Rg v-a.e, and 

hv(a)-hm(f)=h~(al f )=O.  

To prove this Lemma 3, I need two more lemmas: 

Lemma 4. Let A c M be a compact subset of a Riemannian manifold M, with 
positive Riemannian measure m, i.e. m(A)>0. Let f :  U ~ M  be a Cl-mapping 
on U, which is some neighbourhood of A. We say x~A is (f, A, e)-singular value if 
there exist y, z~A n f  - 1 (x), y =l: z and p(y, z) < e. 

Then for every ~, 0 < ~ < 1 there exists e = e(f, ~) such that for m-almost every 
X n x~A if ( i)i=o is a piece of an f-trajectory, i.e. f (x i )=xi+l ,  such that xn=x, 

xi~A and n is sufficiently large, then 

Card {i: x i is ( f  (A, e)-singular value} < ~. n. 

Proof. See [Mi-P]. [] 

Lemma 5. Let f be an analytic mapping defined on a neighbourhood of clA, 
where A is an open connected domain in S 2, f ( A ) = A ,  f ( F r A ) = F r A ,  
Card(SZ\A)> 3, such that f l  FrA is expanding. 

Then all admissible sequences (zn) (i.e. built as in the proof of Lemma 2) con- 
verge exponentially and uniformly nontangentially to the respective points in 
FrA, i.e. 

dist (zn, FrA)/dist(zn, lim z,) > Const > 0. (1) 
n ~ o o  

Proof. For a small neighbourhood V of FrA f ( A \ V ) c A \ V  so f cannot be 
isometry in the hyperbolic metric on A, so it shortens distances (see [Hi] 
Th. 15.1.3). So A is attractive domain of a sink a = limfnlA. 

n ~ a o  

Exponential convergence of z~ follows from the expanding property. Now 
for some e > 0  choose N such that for every admissible sequence 
{z,} B(zN, e)~limz ~. Since f is expanding all the branches f - k  on B(zN, e ) (with 

r l ~ a o  

f~-k(zs)eA) have uniformly bounded distorsions (independently of the choise of 
{Z~}n>N). So the ratios in (1) change only by uniformly bounded factors. [] 

Now we can give: 

Proof of Lemma 3. Since every admissible sequence w, (for g in D 2) converges 
nontangentially (by Lemma 5) and since R has nontangential limit /~ /-almost 
everywhere we conclude that for v-almost every ~E2Y the sequence z~(~) 
=R(wn(~)) converges (see the notation in Proof of Lemma 2). We define 

Rf(~) = lim z~ (~). 
Now we need to prove that 

h~(alf)=O. 
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Observe that for every r/, e > 0  there exist a s e t  E I ~  a with v(Za\E1)<rl 
and an integer N~ such that if n>N~ then for every eeE~ 

p(z,(e), Rr < e. 

Then by the Birkhoff-Khinchin ergodic theorem, for every integer k > 0  

there exist E 2 ~ - x ~  d with v(Sd\E2)<l /~  and an integer N 2 such that if n. k > N  2 
and ~ E  2 then: 

n-1  { 
gl 1 E ik > 1 _ 2 1 / ~  Z~,(x)= 1 for x~E,  - ZE,(a (o0) where 

i=o 0 for xCE t 

(Remark that we do not use ergodicity of ak.) 
Take for future an arbitrary k>0,  0 < ~ < 1  and ~=�88 clA,~) according 

to Lemma 4. Assume also N a > k. 
Let ~ be the partition of FrA into points and put 0 = R f  ~(~). Let sr be the 

partition of X d, into d" cylinders given by the first n coordinates. Denote by H.:  
sd-*{1 . . . . .  d}" the projection to these coordinates and define, for every x e F r A  

S,,~ = H,(E 2 c~ R f 1 (x)). 

For a > 0  put i(a)= --a- loga.  
We have 

h~(alf) = lim n 1 Hv(~n/O) ~ lim n-  1 Hv(~n V {E 2, Xe\E2}/O) 

= lim n-1 S ( ~ i(v(a c~ E2/O(x)) ) + Z i(v(a\Ez/O(x)))) d v(x) 
n~oo Zd a~Cn a ~ n  

<l imsup ~ n -1 logCard(S,,x)dm(x) 
n~oc, FrA 

+ lim n-a S (i(v((Sd\Ez)/O(x))) + v((2e\Ez)/O(x)).n.logd) d v(x) 
n ~ o~ 2d 

< S l im sup n-  1 log Card (S,, x) d m (x) + v (Zd\E 2)' log d. 
FrA n~ m 

So we need to estimate Card(S,,~). Call z 1, z2eA (n,e, 2, k)-separated for 
positive integers n, k, for e > 0, 0_< 2_< 1 if 

Card {i: 0 < i < n, p(fik(zl),fik(z2)) > e,} > 2 n. 

Observe that for any two elements ~, fl of Ezc~R]l(x) ,  if n - N I > N 2 ,  then 

( ) the points z,(a), z,(fl) are not 1+ [ k ] ,  2e, 4t /~,k -separated. 

Otherwise there existed l, 0<l__< [ n ~ ]  such, that p(fkl(z,(e)), fkt(z,(fl))) 

>2e  and akl(a), akl(fl)eEr But then p(limzi(akl(e)), limzi(aU(fl)))> p(fklz,(CO, 
i~eo i~oo 

fklz ,( f l))--2e+ small positive number >0. Hence 

R y(a k'(e)) * R r k'(fl)), 

hence Rs(c 0 4: Rs(fl), contradiction. 
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Fix arbitrary a~HN~(Z a) and consider 

S.,~(a) = S,, x n H,,((HN~ o f"-N~)- 1 (a)). 

Fix now c~S,,~,(a). Take arbitrary D = ~ O , I , . . . , ? ~ N 1 ] ~  with CardD 

= [4V/~ ( [ ~ - ]  1)]  and c o n s i d e r n - N ~  + 
( L K j j  

S,,~(a, D)= {b~S,,x(a): p(fkl(z.(b))),fkt(Z,(C)))>-- 2e implies leD}. 

Consider the "tree" ~-- of points: Go={z,(b):beS,,~(a,D)} @=fkl(Go)for  1 

=0  .. . . .  1 ~ 1  +1. (J- is a "tree" in a different sense that this in the proof of 
i . .  f v  ..i 

Lemma 2.) We say eEG l branches if Card(f-k(e)  n G t_ 1)>2. 
We have for every zeG o 

Card {l: fkl(z) branches} < CardD + ~. [k ] . 

This follows from Lemma 4, namely that branchings in J ,  except of indices in 
D + 1, can occur only at (fk, FrA, 4e)-singular values and just 4 e = e ( f  k, clA, 0. 

So by consideration like in [Mi-P] 

Card G O = Card S,,~(a, D) < d 4r +~" 
so  

n 

Card(S.,~) < d N~- 2 g. d n(41/~+g). 

lira sup n-1 log Card (S.,x) < ~ log 2 + (4V~ + ~) log d. (2) 

This is what we need since k can be arbitrarily large and v, ( arbitrarily 
small. []  

(2) implies that Capacity (R~l(x)c~E2)<4]/~+(+ 1 if we consider Remark 1. 

in Z a the metric p((is),(js))= ~ d -s li~-j~]. Capacity of a set X means here: 
S = I  

lira (!og(inf{Card U~: U, is a covering of X by balls with radius e}) 
,~0 \ - l o g e  

This implies that there exists a sequence E2(n)cZ d with v(E2(n))/~ 1 such that 
for every x e Fr A Capacity (R f  1 (x)c~ E z (n)) = 0. So there exists E c Z a with v (E) 
=1 such that for every xeFrA ,  HD(RfI(x)c~E)=O. 

(HD is Hausdorff dimension; we use the fact that H D < C a p a c i t y  and that 

H D  0 X ,=supHD(X. ) ) .  
n ~ ] .  n 

Since Rg is HiSlder continuous this implies the following: 
There exists E c S  1 with / (E)=I  such that for every x~FrA,  

HD(/~-  l(x) n E) =0. 
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This fact is much  weaker  than Beurling's est imate 7 ( /~-1(x) )=0  but  our  
p roof  emphasises the C 1 property.  See w 5.3 for further discussion. 

Remark 2. R. is cont inuous at equil ibrium states in the following sense: 
Let  ~o be a H/51der cont inuous  function on S 1, #~o be the equi l ibr ium state for 

(g,q~). Extend q~ to a H/51der cont inuous  function on D 2. Fo r  any Wo~ClD 2 such 
o0 

that  Woe ~ g~(Singg) let #~,*o,, be a probabi l i ty  measure  distr ibuted on g-"(Wo) 
i = 1  n - - 1  

with weight on w~g-"(w0),  exp ~ ~o(gi(w)). F r o m  [Bo] it follows that  #~ . . . . .  
i = 0  

weakly* converges to h#~ for n--*oc and that  there exists a constant  C > 0  such 
that  for every w o close to S ~, ae2; a and n > 0  

C - 1  < #~, wo . ( w . ( a ) )  _ 
_ " ........... <-- c:. (3) 
- # ~  ( R g / 7 2 , - ~ / 7 .  (a ) )  - -  

(Recall  that  the functions w.: 22d--*clD 2, z.: Za~A, for fixed WoeClD 2, zoeA, 
were defined in the p roof  of L e m m a  2, /7,: 2;d---,{1 . . . .  ,d}" is project ion to the 
first n coordinates,  h is a positive H61der cont inuous function on $1.) 

Proposition 3. For everY zo~A (zoC U= f~(Singf'A)) 

R ,  (#~o, R - ,~z o), ,) --*/~ �9 (h #~). 

Proof. Let F be an arbi t rary  cont inuous  function on clA. Fo r  every a > 0  there 
exists Z c Z  a, a compac t  set, such that  (R~-I) . (#~,)(Z)>_I-6,  Rg is 1 - 1  on Z, 
the functions z. converge uniformly to Rf on 2; and R : I Z  is continuous.  Then 
F o/~ (defined on D 2 and #~ almost  everywhere on S ' )  is cont inuous  on the 
compac t  set 

W= ~ w.(Z)u R,tZ). 
n = l  

D e c o m p o s e  FoK=FI+F 2 where F 1 is cont inuous on clD z, FliW=FoK[W 
and ]Fz] is bounded  above  by 2. sup ]FI. Then 

F d(R.(h#~o))= ~ Vo R dh#~o= ~ F 1 dh#,p + ~ F2dh#, P 
F r A  S 1 S t S t 

= lim ~F 1 d#,p, R l(zo),n+ ~F2dh#, p. 
n ~  oo S1 51 

We have I ~F2d/%[ < 6 sup IF2], so we only need to est imate 
S 1 

lim sup I ~ F2d~,p, R- ,t=o),.I. 
n~o0 D 2 

Let E , = d e n o t e  {aeZa:l-l,(cOr Observe that  suppF2cw,(E.) 
(Rg- 1).  (#o)(E,) < 6. So, in view of (3), 

I~F2d#~,~-,C=o),.l~6' C'suplF21. [] 
D 2  

and 
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w 3. HD(m)--  hm(f)/zm(f) 

We give a sketch of proof of the so-called volume lemma, i.e. that 

lira l~ exists for almost every xeFrA and equals h,,(f)/zm(f). (On 
,~o logr 

the other hand it equals HD(m) by Proposition 2.1 in [Y], use the Besicovitch 
Covering Theorem in the proof there, Theorem 1.1 in [Gu].) 

We will be brief since this is a general fact about 1-dimensional dynamics 
and nothing new in view of [Lel] and [Y]. Besides I was informed that Marl6 
can prove this (for the maximal measure on J(f)) before I started to work on 
the present paper. See also [Le2]. 

First recall that we have checked: 

Iloglf' l ldm< oo. (1) 
FrA 

This implies the existence of Lyapunov characteristic exponents almost every- 
where, in particular that along the forward trajectory of almost every point 
1/]f'l grows subexponentially. 

Since dist(z, Sing f )  > Const-If '(z)l, (1) implies: 

Ilog dist(z, Sing f)] dm< oo 
FrA 

(the derivative and distances are in $2). 
This implies that the forward trajectory of almost every point approaches 

Singf  (the set of critical points) subexponentially. 
To have 

lim sup logm(B(x, r)) < hm(f)/z,,(f) 
,40 logr 

one can repeat Mafi6's arguments [Mal] :  Consider a function p = 2  "(x~ for 2 
small ( 0< 2< 1)  and n(x) the first return time under forward iterations with f, 
to a "good" set S (this defines p on S, put p - 1  outside S). Since log p is 
integrable there exists a countable, finite entropy partition ~ such that 
B(x,p(x))~ ~(x)for almost every x. Here from the Shannon-McMillan-Breiman 
Theorem, we have 

~N=f-"B(f"(x) (f"(x))))= Q=~f-"  ))>_exp-N(hm(f)+a) m ,p >m (~)(x _ 

for o- arbitrarily small, N large. 
N 

The sets Of-"B(f"(x),p(f"(x)))"approximate" all small balls with the 
n=0 - ( 

origin x because of the bounded distortion property, Because of (1) one can 

adequately estimate f '(wl) 1 / The radii are about exp-Nzm(f ) .  
f'(w2) / 
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The inequality 
. .  logm(B(x,r)) 

hm lnf >__ hm(f)/Zm(f) 
~ 0  logr  

is easier to prove" 
Consider a finite part i t ion of r with boundaries  to which almost every 

point  approaches at most  subexponential ly and consider the sets 
N 

- ~ B  ~ x O f  ( f ( ) , C 2 " ) w i t h 0 < 2 < l ,  2 ~ l .  [ ]  
n = 0  

w 4. Relative entropy and Hausdorff dimension of fibres 

I will show in this section how to deduce h~(g)=hm(f) form Beurling's Theo- 
rem. 

Denote  by e the part i t ion of a space into points (it will always be clear of 
what  space). Let  l ( . /R-l(e))  denote  condit ional measures on the measurable 
part i t ion /~-l(e). I(./R-l(e)(x)) denotes the measure on that  set from the 
part i t ion which contains x. 

We prove that  for almost every x e S  1 : 

( i i )  
0 ~ H D (l(-/iq- 1(5)(X)) ~ lim inf log I(B (x, r)/R-1 (5)(x)) ~)  h,(g]f) 

r~o logr  - zt(g) 

This yields h t (g] f )  = h t ( g ) -  hm ( f )  = 0. 

(i) follows from Beurling's Theorem since for any compact  set E 
=R-l(e) (x) ,  0 = 7 ( E  ), which implies (see IT]  Theorem III, 19.) that H D ( E ) = 0  
and we can choose sets E such that  l (E/R- l (e) (x) )~l .  

(ii) follows from [-Y] Proposi t ion 2.1. 

So we shall concentrate  on (iii). Let  ~ be a finite part i t ion of S 1 into arcs 
and r = e x p - n ( z l ( g ) + a  ) for small a > 0 .  Then 

n - - I  

B(x,r)c~(")(x)= ~/ g- i(0(x) ,  for n = n ( x , O  (1) 
i = 0  

sufficiently large. 
So 

log l(B(x, r) /R- 1 (e)(x)) 

logr  

1 > 

n(zl(g ) + a) 
log 1( ~ (") (x) /R- 1 (/3)(X)). 

The proof  of (iii) will be complete if we prove that  

ht(g/R- 1 (5)) - ~ < lim inf( - log l((~(")(x)/R - 1 (0 (x)) 
n ~ o o  

< lim sup( - log l(~ ~")(x)/R - 1 (e) (x)) < h I (g//~- 1 (5)) (2) 
n ~ o o  

where 3 ~ 0  when ~/~e. This is a weak version of the Shannon-McMillan- 
Breiman Theorem (for ergodic t ransformation) relative t o / ~ - 1 ( 0 .  This would be 
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clearly true if g- ' ( /~-a(e))=/~- ' (e) .  The proof is then the same as in the 
classical, non-relative case, see for example [Pa]. 

Here we have only g-  1 (/~- 1 (e)) < /~-  1 (e). 
The crucial computation in the proof of the Shannon-McMillan-Breiman 

Theorem looks then as follows: 

11 ('-y I \ 1"-1 ( n-'lg-j(~)V~_ )) g - i ( ~ ) / / ~ - l ( / 3 ) ~ - - - ~ - ~  Z I g-i(4)/(j=y+ 1( 5 ) 
H i=  ] i = 0  

--<n ~oI g-~(4) V+,g-q~)vg-~(R-~(~))/} =-  2_ I. ~og~ 
i= J= / /  n i - o  - 

, l im-  ~ (I(~/4- v (e))og')=ht(glf, ~). 
l-a.e. F/ i= 0 

Here I(q/~)(x)= -logl(rl(x)/~(x)) is the information function and 

I j=l  (~/i~llg-S(~)vR-l(e)).  

This proves the Shannon-McMillan-Breiman Theorem in one direction, 

namely lim sup - 1_ log l(4"(x)/R- 1 (e) (x)) < h l(glf, 4) and in particular the right 
n 

hand inequality in (2). 
However to prove (iii) we need an estimate in the other direction. This can 

be done by lifting to the inverse limit (natural extension): 
Set the notation f, ~,/~, [ for the corresponding lifts of f, g,/~, l. Let H o be 

projection to the 0-coordinate. Then 

lim inf - 1  l(~(n)(x)/R-l(g)(x)) 
n~oo n 

= lim inf - 1  [(H o ' (~(")(x))/Ho 1 (R- ' (e)(x))) 
n~ct3 n 

> lim i n f -  1 [(Ho , (4(,) (x))/R -~ (e) (~)) = H~(~ I f, f f / O '  (4)) 
n~c~ n 

> hT(glf)-6=hT(g)-h~(f)-6 =h,(g)-h,(f)-6=h,(glf)-6. 

(~eHol(X)  and the computation is for a.e. x, 2). 
We used the equality f - l ( / ~ - l ( e ) ) = / ~ - l ( e )  and the fact that if 4,"e than 

g"(Ho'(4))/~. [] 
Remark. The relative volume lemma holds: 

l-a.e, lim logl(B(x, r)/R-l(e)) h,(glf) (3) 
,~0 log r z ~ ( g )  ' 

We have proved this except for the opposite inclusion in (1), for r 
=exp-n(x t (g) -a  ). Here that inclusion trivially holds since g is (uniformly) 
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expanding. However using Mafi6's technique, see w 3) one can prove (3) assum- 
ing only that the dynamics of g is 1-dimensional (real or complex), z~(g) exists 
and is positive, as in w 3, 1 can be an arbitrary g-invariant probability measure. 

w 5. Final remarks 

1. The normalized length measure l on S 1 is the equilibrium Gibbs state for 
the mapping g and the function -loglg'[ .  Let # be the Gibbs state for g and 
- l o g ( f  'oR) (in the case /~ is continuous, f I F r A  is expanding). Then /~,(#) 
is the Gibbs state for f and - log l f 'L  on FrA, since hn,~,)(f)=h,(g) and 
Py(- log I f ' l )=P~(- log If 'o R I) (the latter equality holds since any (n, e)-separat- 
ed set for g in S a used in the definition of pressure can be replaced by a set S 
where g"(x)=g"(y) for every x, yeS  and then /~(S) must be (n, e)-separated for 
f in FrA, cf. begin of the Proof of Proposition 2). 

It is known (see [R]) that the pressure for f ,  Py( - t - log  If'l), is equal to 0 for 
t = t o = H D ( F r A  ). So if t o > l  we have HD(R, (#) )>I ,  see the McCluskey- 
Manning picture [McC-M]: 

log d 

hp,, cp)(f) 

L 

1 H D  (R.(~u)) ~ 

Meanwhile for m=/~,(/)  HD(m)= 1. So/~,(#) and m are very different. This 
is striking since - loglg ' l  and - l o g l f ' o / ~ l  are homologous on the open D 2. 

2. The condition #(@/~)=1 is satisfied by a probability measure # if it has 
finite energy i.e. 

1 
~ log d#(x)d#(y)<oo. 

S 1 x S 1 

This follows from 7($1\~ /~)=0  (Beurling Theorem) and the definition of 
logarithmic capacity 7. See IT], Theorem III 7. 

How nondegenerate is the measure /~,(#) then? Has it finite energy? Is it 
true that 

X~,(u)(f) > 0 (in particular > - oo)? (1) 

(The importance of (1) has been explained in w 3. 
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Under the assumptions of Proposition 3 about f the considerations of w 
prove in fact h v ( g ) = h ~ , ( ~ ) ( f )  for arbitrary probability, g-invariant measure v 
such that /~,(v) is well defined. So if we assume additionally that # is ergodic 
and hu(g)>0 (or equivalently HD(/0>0),  then hR,~u)(f)>0 and, by [Ma2] 
Lemma II.3, the inequality (1) is true (and HD(/~,(p))> 0), cf. also [P]. 

3. Considerations from w prove Proposition 3, (that h u ( g ) - h ~ ( u ) ( f ) = h u ( g [ f )  

=0 for any probability, g-invariant, ergodic # such that # ( ~ R ) = I )  with the 
assumption that f has a C ~ extension weakened to the assumption: 

This latter assumption is even weaker than the assumption that f extends 
continuously to clA. 

On the other hand this part of the proof of Proposition 2 given in w 2 which 
shows that the sets /~-l(x), Ry-a(x) are thin, does not make use of the 
analiticity of g, R and f.  Another observation is that in the presence of 
dynamic it is natural instead of the existence of a radial limit to consider the 
existence of a limit along admissible sequences (definition at the beginning of 
w 2). So the following question arises: 

Q u e s t i o n .  Let R: D 2 - * A  be a C 1 diffeomorphism whose real and imaginary 
parts have finite Dirichlet integrals. 

Let g be a C 1 expanding map defined on a neighbourhood of S 1 in clD 2, 
preserving S 1, with differential preserving the bundle t /normal  to S ~, such that, 
for every x s S 1, the expansion along t/(x) is not stronger than along T S  1 (x). 

Assume that f = R o g o R  - ~  extends C 1 to a neighbourhood of FrA. Is it 
true then, that 

(i) There exists a limit R" along admissible trajectories on a set ~R"  with 
7(Sa\~R") =0? 

(ii) The sets on which R a is constant have logarithmic capacity 0? 

(iii) For every finite g-invariant measure p on S 1 with finite energy 

hR2(u)( f )  = h u(g)? 

I put finiteness of Dirichlet integrals into the assumptions to have (i) by 
analogy to the existence then of the radial l imit/~ on ~ /~  with 7($1\~/~)=0,  
see [Cal l ,  Section 5, Th. 3 (Caution: existence of the radial limit does imply 
existence of the nontangential limit in general, see [Cax], p. 62). The assump- 
tions about the strength of expansion g yield admissible sequences converging 
to S ~ non-tangentially. 

(i) implies (iii) by considerations from w 2. 

4. There is an overlap between Manning's proof of his Theorem (see w and 
Brolin's work [Br] w167 15, 16. I understand the situation as follows: 

Let f be a polynomial z a +  o~ a_ l z a -  1 +  . . . .  A be the basin of oc and v be an 
arbitrary, probability, f-invariant measure on FrA. Then, if c 1 . . . .  , c a - 1  are the 
critical points of f in I~, we have 
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z~(f) = ~ loglf'ldv= ~ logdiz-cll...lZ-Cd_,ldv 
F r A  F r A  

d - 1  

= l o g d +  ~ ~ loglz-c~ldv. 
i =  1 F r A  

Then conclusion is: 
d - - 1  

z~(f)=logd - ~ u~(cl), (1) 
i = 1  

1 
where u~(v)-- ~ log ~ dv denotes the logarithmic potential for v at v. 

Equidistribute now the measure 6, on the points from f-'(Zo), n = 1, ... (for 
arbitrarily fixed z o ~ A\{  ~}). Then a,~m . . . .  which is the unique measure with 
the maximal entropy h . . . .  ( f )  =log d (see Proposition 3 in the case A is simply 
connected and [-Lju] in the general case), ram, x is also the equilibrium distribu- 
tion on FrA in the sense of potential theory (for the logarithmic potential, see 
[Br]). 

The Brolin-Manning computation: 

1 
-ua,(c)=~loglz-c[dua,=(log( [I Iz-cl)) d~ 

z e f - U ( z o )  

1 
= d - ~ l o g i f ' ( c ) - z o ] ~ O ,  for every cq~A, (2) 

shows that, in the case ciCA for every i=l . . . .  , d - l ,  we have u . . . .  (cl)=O, 
hence by (1). 

Z . . . .  ( f ) = l o g d .  

Problem. Understand the connections between Lyapunov characteristic ex- 
ponents and potential theory for rational mappings. 

5. We continue our discussion from w for the polynomial fc(z)=z2+c. 
Consider the Mandelbrot set M={ce~:f~"(O)+-,~}, when n ~ ,  see [Md].  
The set  S2\M is topologically an open disc containing ~ (see [Do-Hb]  or 
[-Do]). For  every c e C  denote by Ac the basin of attraction of ~ for fc. mc 
denotes the maximal entropy measure on FrAc=J(fc ) (see w 5.4). 

Proposition4. (i) G(c )=-umo(e )=-2umc(0)=2Z, , c -21og2  is the Green's func- 
tion of S2\M with its pole at ~,  

(ii) y(FrM)--  1, 

log 2 
(iii) HD (me) -- log 2 + �89 G (c)' 

Sketch of proof. To have (i) in view of the Brolin-Manning computation, ~ 5.4, 
it is enough to check that lim 2-"loglf~(c)l  is the Green's function. This is 

straightforward and in fact G(c)=loglcl+o(1) if c ~ .  So the Robin constant 
is 0, hence 7(FrM) ( = the  mapping radius of FrM,  see IT] p. 84)=1. (All this 
was in fact announced by Douady and Hubbard in [Do-Hu]  and [Do]. 



178 F. Przytycki 

( l im(f~"(c) )2-") :  S2\M---~D 2 is their Riemann mapping). (iii) follows from 

HD~m " _ h,.o (L) [] 
( c)--Xmc(fc )" 

(Recall the similar properties for each individual c: 7(J(fc))= 1, see [Br] or 
(2); --Umo is the Green's function of A c with its pole at ~ ,  see [ T ] p .  82.) 
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Oblatum25-V-1984 

Note added in proof 
Question on page 2 in the case of Jordan domains has been recently answered in positive by N,G. 
Makarov in the preprint: On the distorsion of boundary sets under conformal mappings. Makarov 
proved that m is always absolutely continuous with respect to the Hausdorff measure H~c with 

( ] / l o g ~ l o g l o g l o g ~ )  q~c(t)=t.exp C with a universal constant C>0. He constructed also an 

example with m singular to H~o for some e > 0. 
Under the assumptions of my Theorem, if FrA is a Jordan curve and fIFrA is expanding it 

turns out that either FrA is an analytic curve or m is singular to H~o for some c=c(f)>O. A proof 
will appear in a paper done by M. Urbafiski, A. Zdunik and myself. 


