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1. Introduction 

In this paper we prove a version of the loop theorem for surfaces in the 
boundary of a 3-dimensional duality space, i.e. a space which resembles a 3- 
manifold only in that it satisfies the appropriate form of Poincar6-Lefschetz 
duality over some field of untwisted coefficients. Our motivation comes from 
the fact that such spaces occur as the infinite cyclic coverings of certain 4- 
manifolds which arise in the study of knot concordance, and as the main 
application of our theorem we show that if a fibred knot in the 3-sphere is a 
ribbon knot, then its monodromy extends over a handlebody. 

We approach the loop theorem via the study of planar coverings of a 
surface, as in the original paper of Papakyriakopoulos [11] and the subsequent 
work of Maskit  [9]. w contains a simple geometric treatment of these matters. 
The main result of w is that a duality space actually satisfies duality with 
(twisted) coefficient module the quotient of the fundamental group ring by any 
power of the augmentation ideal. In w 4, the results of w167 2 and 3, together with 
an algebraic lemma on the intersection of the powers of the augmentation ideal 
of a group ring, are used to prove the loop theorem for 3-dimensional duality 
spaces. (For the reader's convenience a proof of the algebraic temma is includ- 
ed as an appendix.) w contains the application to fibred ribbon knots men- 
tioned above. In w the result of w is used to obtain a limited amount  of 
information on some questions about knots in the boundaries of contractible 
4-manifolds. In w we apply our methods to another aspect of knot  con- 
cordance, and show that for any concordance with a rationally anisotropic 
fibred knot (see [7]) at one end, the inclusion of the complement of the knot  
into the complement  of the concordance induces an injection of fundamental 
groups. For  torus knots, this question was raised by Scharlemann [14]. 
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2. Planar Coverings 

By a surface we shall mean a connected 2-manifold (not necessarily orientable, 
compact, or without boundary). A surface F is planar if it embeds in $2; 
equivalently, the intersection form Hx(F; Z2)x HI(F; Z z ) ~ Z  2 is zero. The free 
homotopy class of a loop u in F determines a conjugacy class in nt(F); we 
denote by [u] any representative of this conjugacy class. 

The following theorem establishes a close connection between planar cover- 
ings of a surface F and simple loops in F. (Compare Papakyriakopoulos 
[11, 12-1, and Maskit [9].) The proof we give is geometric. This approach is by 
now widely known; see for example Scharlemann [15]. 

Theorem 2.1. Let p: F--+F be a regular covering of  a surface F, with/5 planar, 
and let N be a normal subgroup of nl(F ) such that p . n l ( F ) - N  +~. Then there 
exists a simple orientation-preserving loop u in F and an integer n such that 
[u]"ep,nl( /5)-N.  

Proof We may assume without loss of generality that F is compact. (If not, 
choose a loop w in F such that [w]Ep.n l ( /5 ) -N  , and replace F by a compact 
subsurface F o containing w, P by a component of p-l(Fo) , and N by i,1(N), 
where i: Fo---~F is inclusion.) Now choose a Riemannian metric on F with 
respect to which 0F is totally geodesic. Then every non-trivial free homotopy 
class in F has at least one shortest (piecewise-smooth) representative loop, and 
any such is a closed geodesic. Also, for any l, there are only finitely many free 
homotopy classes with representatives of length <l. This is because, in the 
universal covering of F, only finitely many fundamental regions are accessible 
from a given one by paths of length _<__ I. 

Let v be a loop in F such that [v[ (the length of v) is minimal with respect 
to the property [v]~p, nl(/5)--N. 

Let g in t5 be any lift of v. We claim that ~ is simple. For  if not, then we 
could express ~ as the composition ~1"~2 of two non-trivial loops ~1,~2 in /5. 
Writing vi=p(gi), i=1 ,2 ,  this would give v=v l , v2 ,  with [vi-1ep,nl(/5 ) and 
Ivil<lvl, i=1 ,2 .  But [ v ] = [ v l ]  [vz]r  implies [Vx] or [va]r , contradicting 
the definition of v. 

Now let ~' be another lift of v. Since v is a geodesic, the intersections of 
with ~' are transverse. We claim that ~ c ~ ' = 0 .  For if not, then since /5 is 
planar, ~c~ '  contains at least two points, say P and Q. Then ~=auf l ,  ~' 
=7t36,  say, where c~, fl, 7, 6 are arcs joining P and Q. Interchanging ~, ~' if 
necessary, (and lifting the metric on F to /5), we may suppose [a[<lfil, 17[, 161. 
Let v 1 =p(euT) ,  Vz=p(~u6).  Then [vi-1ep.n~(/5), i=  1, 2, and (orienting v~ and 
v 2 appropriately) Iv] = [vi i  [v2]r , giving [vl] or [Vz-1r Also, each v i satis- 
fies Ivil <lv[, and has corners (at p(P) and p(Q)), so by a small homotopy yields 
a loop with length < ]vl. As before, this contradicts the definition of v. 

Since the lifts of v in /5 are disjoint simple loops, it follows that Iv] = [u]" 
for some simple loop u in F and some integer n. 

Finally, u may be chosen to be orientation-preserving (see [9, Lemma 1]). 
For  if it is not, then n must be even, since /5 is orientable, whilst [u] 2 can be 
represented by a simple (orientation-preserving) loop, since a regular neigh- 
bourhood of u in F is a M6bius band. [ ]  
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Maskit's ptanarity theorem [9, Theorem 3] characterizes the regular planar 
coverings of a compact surface F as precisely those corresponding to the 
normal closure (( . . . ))  in tel(F) of a set of powers of disjoint simple orientation- 
preserving loops in F. This follows easily from Theorem 2.1. In fact, for 
completeness, we observe that, suitably stated, this characterization is valid for 
arbitrary F. 

Corollary 2.2. Let p: P--~ F be a regular connected covering of a surface F. Then 
is planar if and only if there exist disjoint annuli A 1 , A  2 . . . .  in in tF  and 

integers nl,n 2 .... such that p,~I(F)=([AL]" ' ,  [A2] "2, ...). 

Proof. The "if" part is straightforward; see [9, Theorem 1]. 
Conversely, suppose that ]0 is planar, and let 91= {A1, A 2 . . . .  } be a maximal 

collection of disjoint, essential, non-parallel annuli in in tF  such that 
[Ai]"'~p,gl(/~) for some non-zero integer n i, i=  1,2 . . . . .  We assume that each 
n i is chosen to be the least such positive integer. Note that 91 is countable, 
since F is separable. 

For notational convenience, given a subspace Y of a path-connected space 
X, we whall write (Y)  for the smallest normal subgroup of rcl(X ) containing 
the conjugacy classes represented by loops in Y. 

Let A=p- I (~Ai ) ,  a disjoint union of annuli in _F. Observe that 

([A~] "1, [A2] n2, . . . ) = p , ( A ) .  We claim that this subgroup is in fact the whole 
of p, rcl(F ). For suppose not. Then (A)4rr~(P). Now since P is planar, each 
component of ,4 separates F. Hence (A)  4= nl(/~) implies that for some com- 

ponent Fo of F - / i ,  we have n~(Po)4=(C?Po~SA). Note that Fo=P(/7o)is a 
component of F - U  A i, po=PlPo: Po~ Fo is a regular planar covering, and N O 

=po,(SPoc~SA) is the normal closure in nl(Fo) of {[Cj]%}, where {Cj} is the 
set of components of 8FoC~ ? c?A~, with C icSAij, say. By hypothesis, Po, gl(Po) 

-No#:~b, so by Theorem 2.1 there exists an annulus A c i n t F  o and an integer n 
such that [A]"epo,~l(Po)-N o. By the maximality of 91, A is parallel to A k for 
some Ake91 which meets F o. But then [A]"r o implies that the positive integer 
g.c.d. (n, nk) is strictly less than n k, contradicting the choice of n k. [] 

3. Duality Triads 

Let F be a field, and let (X, SX) be a pair of topological spaces with the 
homotopy type of a pair of C W complexes, such that Hq(X;F) and 
Hq(X, SX;F) are finite-dimensional vector spaces over F for all q. These 
conditions imply that Hq(X; F), Hq(x, 8X; F), Hq(SX; F) and Hq(sx; F) are all 
finite-dimensional, and also that each component of X has a universal cover- 
ing. We call (X, 8X) an F-duality pair of dimension n if there is a fundamental 
class ~eH,(X, 8X; F) such that the bilinear map 

Hr(X; F) x H"-'(X, 8X; F)-~ F 

sending the pair (e, fl) to the Kronecker product (ewfl,  3) is non-singular for 
all r. 
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Similarly, a triad of spaces (X, 0+X, 8 X) is an F-duality triad of dimension 
n if, writing OX=8+XvoO X and Y=a+Xc~O_X, (X, OX), (O+X,Y), and 
(9_ X, Y) are F-duality pairs of dimensions n, n -  1, and n -  1 respectively, with 
fundamental classes 3, 0+ 3, 0 d, say, where ~.~-+(0+ 3, - 9 _  ~) under the map 

0 H.(X, OX;F) ,Hn_I(~X , Y;F)gH,_~(O+X, Y;F)@Hn_I(O_X , Y;F). 

It is also convenient to regard an F-duality pair (X, 0X) as an F-duality 
triad with 9 X = 0. This allows us to work exclusively with triads. 

If (X, 9+ X, 0 X) is a compact manifold triad, (i.e. (X, (?X), (9+ X, Y), and 
(8_X, Y) are compact manifolds with boundary), with an F-orientation, then 
(X, 8+X, g X) is an F-duality triad. Our motivation, however, is provided by 
the following less obvious examples. Let W be the exterior of a concordance in 
S"x I between two knots of S "-2 in Snx O, Snx 1. Then 0W can be naturally 
expressed as O+WwO W, where 0+W, 0 W are homeomorphic to the ex- 
teriors of the corresponding knots, and 8+ W("5 (~_ W._~S n -  2 x S 1. Let 
(12v;, 8+ W,, 9 12v') be the (unique) infinite cyclic covering of (W, 9+ W, 9 W). Then 
by a theorem of Milnor [10], (lvl7,, 0+ l&,,~? l?g) is an F-duality triad of dimen- 
sion n, for all F. 

It will be convenient to work with cap products rather than cup products. 
In this context we have the following lemma (compare Wall [20, p. 225]). 

Lemma 3.1. Let (X,O+X, O X) be an F-duality triad with fundamental class 
~eHn(X , OX ; F). Then there is a skew-commutative diagram 

�9 -.--~ H . . . .  a(X, 0 _ X ; F  ) J 

a~ 

�9 ..--+ Hr+a(X, 8 + X ; F  ) 

~*, H . . . .  '(~+X, Y ; F ) ~  H" '(X, 0X;F) -* . . .  

, H~(0+ X; F) ~*, H~(X; F) --~... 

in which the rows are exact and the vertical maps are isomorphisms. 

Proof The bottom row is the exact sequence of the pair (X, 9+ X), and the top 
row is derived from the exact sequence of the triple (X, 0X, g X) by means of 
the excision isomorphism H*(OX, t ? X ; F ) ~ H * ( O + X ,  Y;F). Skew-commuta- 
tivity is a consequence of the formula 

o(~ a ~)=(~ J a ~ +~ a (a ~). 

That the right-hand and middle vertical maps are isomorphisms follows from 
the hypothesis that (X, 0X) and (8+X, Y) are F-duality pairs, together with the 
relation 

<~ufl, O=<~,flc~O. 

The fact that the left-hand vertical map is an isomorphism now follows from 
the 5-1emma. [] 
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We wish to study the homology of certain coverings of F-duality triads. 
For this we use homology and cohomology with twisted coefficients; our 
notation (summarized below) is similar to that of Wall [20, p. 223]. 

Let X be a space equipped with a regular covering 37 having translation 
group G. In general we do not insist that Jr be the universal covering of X (or 
even that X or )? be connected) unless we specify that G=n~(X). The singular 
chain groups Cq(Jf; F) are naturally regarded as (left) modules over the group 
ring FG. The involution "bar" on FG, defined by 

~'~gg = ~),gg - 1 (gEG, J.gEF), 

enables us to regard any left FG-module A as a right FG-module A by 
defining ar to be ga (a~A, r~FG). 

Let C.(X;A) ,  C*(X;A) be the chain complexes ,4 |  
Homv6(C.(X; F), A), and let H . (X;  A), H*(X;A) denote the homology of these 
complexes. Observe that if G acts trivially on A then H . ( X ; A )  and H*(X;A)  
coincide with the ordinary homology and cohomology groups of X with 
(untwisted) coefficients in A. 

For any subspace Y of X let Y be the covering of Y induced by X, and let 
H.(X,  Y;A), H*(X, Y;A) be the groups obtained in the same way from the 
relative singular chain complex C.(X, Y; F). 

The vector subspace of FG generated by { g - 1 :  g~G} is a 2-sided ideal I 
(the augmentation ideal) such that F G / I g F .  We shall frequently use FG/I k as 
coefficient module; observe that I k is the vector subspace spanned by all 
products ( g l -  1)(g2- 1)... (gk--1) with gi~G. 

Lemma 3.2. I f  X is connected and G=Trl(X ) then Ho(X;A)~-A/IA for any left 
FG-module A, and HI(X; FG/Ik)~--Ik/I k+ 1 for any k. 

Proof Let X be the universal covering of X. Tensoring the exact sequence 

C1(37; F)-~ Co()?; F)--~ F--~0 

with/~ gives Ho(X; A) ~ / ~ |  -- A/1A. 
It follows that the natural map 

Ho(X; F G ) - ,  H0(X; FG/I k) 

is an isomorphism. From the definition, 

HI(X;FG)~H~(X;F)=O.  

The exact sequence 

O - .  I k - ,  F G --~ F G / I k - .  O 

gives rise to an exact homology sequence showing that 3: HI(X; FG/Ik)-,Ho(X; I k) 
is an isomorphism. Since H0(X; Ik)~Ik/l k+l, the lemma is proved. [] 

Since the natural map I k+ l/Ik+2---~Ik/lk+l is zero, the following corollary is 
immediate. 
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Corollary 3.3. I f  G = x ~ (X) then the natural map H l(x ; FG/I k + 1) 
~ H I ( X ;  FG/I  k) is zero for all k. 

Lemma 3.4. I f  G=Trx(X ) and H I ( X ; F  ) is finite-dimensional then lk/I k+l is 
finite-dimensional for all k. 

Proof By Lemma 3.2, I/I2_~ Hi(X;  F ) is finite-dimensional. The formula 

(ra, r 2 . . . .  , r,)~---~ r 1 r2... r, 

defines a k-linear map (I/I2)k--'lk/l k+l whose image generates Ik/I k+l. It fol- 
lows that Ik/I k+~ is finite-dimensional. [ ]  

Remark. Suppose that Ha(X;F)  is finite-dimensional, for some q. Then 
Ha(X; A) is finite-dimensional whenever A is a finite-dimensional vector space 
over F with trivial G-action. In particular, taking G=n~(X) and assuming that 
H~(X; F) is finite-dimensional, it follows from Lemma 3.4 that Hq(X; Ik/I k+~) is 
finite-dimensional for all k. The exact sequence 

0 ~ I*/I k + 1 __~ F G/I k + 1 __. F G/I k--~ 0 

gives rise to an exact homology sequence 

Hq(X ; Ik/I k+ 1) _q, Hq(X ; F G/I k+ 1)__~ Ha(X; F G/lk). 

Hence, by induction on k, Ha(X; FG/P)  is finite-dimensional for all k. 
To study duality we need product operations in twisted homology and 

cohomology. Let X be a regular covering of X with translation group G, and 
let A, B be left FG-modules. Define a Kronecker product pairing 

Ca(X; A) x Cq(X ; B)--* I~| A , 

by (c ,b@a)=b@c( t7) ,  

where ceCa(X;A) ,  b~B and a is a singular q-simplex in X. It is easy to check 
that 

(6c,  b |  ) =(c ,  r174 

so a Kronecker product 

H+(X; A) x n~(x; B)o~| 
is defined, 

It is useful to note that if A = F G / J ,  where J is an ideal such that ] = J ,  
then A| ~A. 

Define the cap product pairing 

cq(x ;  A) • C. (X;  F) -~ C._  a(X; A) 

by c~a=c(c r f ) |  where c~Ca(X; A), a is a singular n-simplex in 2(, and o'i, 
a b are the 'front '  q-face and 'back'  (n-q)-face of a. To see that c ~  is well- 
defined, note that if g~G then 

c m (ga) = c(g @)|  b = gc (ai)| 

= C (~y) g -  l | g ab = C (Crf )| �9 



A Loop Theorem for Duality Spaces and Fibred Ribbon Knots 125 

It may be verified that 

~(cn a)=(3c)(~ ~ + ( - -  1)q c ~((~a), 

so a cap product pairing 

Hq(X ; A) x H , ( X  ; F)-*  H , _ q ( X  ; A) 

is defined. 
For any subspaces I12 c Y1 c X we obtain a Kronecker product 

Hq(x ,  Y~ ; A) x Hq(X, 112; B)-*  I~| 

For any pair of subcomplexes {Y1, Y2} of X, we obtain a cap product 
pairing 

Hq( X,  Yi ; A) • H, (X ,  Yi L) Y2; F ) ~  H,_q(X,  Y2; A). 

Lemma 3.5. Let ( X , O + X , O _ X )  be an F-duality triad with fundamental class 
~ e H , ( X ,  (?X; F), and let G-=El(X ). Then for  any k there is a skew-commutative 
diagram 

. . . .  H . . . .  I ( X , ~  X ; F G / I  k) 4 ~ H  . . . .  t ( P + X , Y ; F G / I k )  - ~ , H" "(X, ?X; FG/Ik)--* ... 

l 
. . . .  Hr+I(X,?+X;FG/Ik ) ~ , Hr(~+X;FG/I~ ) i, , H,(X;FG/Ik ) . . . .  

in which the rows are exact  and the vertical maps are isomorphisms. 

Proof. Exactness and skew-commutativity follow by arguments analogous to 
those in the proof of Lemma 3.1. 

Since (X, 8X) is an F-duality pair, 

c~ 4: H"-~( X,  OX; F)--, Hr(X; F) 

is an isomorphism, by Lemma 3.1. Therefore 

(~ ~: H" - r (X ,  OX;A)--~ H , ( X ; A )  

is an isomorphism whenever A is a finite-dimensional vector space over F with 
trivial G-action. In particular (by Lemma 3.4) 

(~ ~ : H ' -  r (x ,  ~ X ; Ik/I k + ') --* Hr ; Ik/I  k + 1) 

is an isomorphism for all k. 
Now assume inductively that for all r 

c~ ~: H"-~(X,  OX; FG/Ik)--* H , (X ;  F G / I  k) 

is an isomorphism (the induction starts at k = 1). The exact sequence 

0 -+ Ik/I k + 1 _ .  F G/I k + 1 __, F G/Ik--* 0 
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gives rise to a commutative diagram with exact rows 

..---~ H " - ' (X ,  (?X ; lk / l  k+ ') 

. . . .  H , (X ;  I k / p  + 1) 

By the 5-1emma, 

c~ ~: H"-r(X, OX; FG/P + 1)__~ H~(X; FG/I k+ 1) 

is an isomorphism for all r, completing the induction. 
Similarly, 

c~ ~ : H ~ -"(X, 8 _ X; F G/I k) - .  H,(X, 0 + X; F G/P) 

is an isomorphism for all r and k, and a final application of the 5-1emma 
completes the proof. [] 

, H " - ' ( X ,  •X; F G / I  k§ ') , H " - ' ( X ,  (?X; F G / I  k) . . . .  

H , ( X ;  F G / I  k+ ~) ~ H , (X;  F G / I  k) . . . .  

4. A Loop Theorem for Duality Triads 

For any group G define the kth dimension subgroup of G over F by Gk={g~G: 

g - l e I k } ,  and let Go,= ~ G k. The following lemma is easily established; a 
k = l  

proof is included in the appendix. 

Lemma4.1. G k and G~, are characteristic subgroup of G. G/Go, is torsion-free if 
char F - 0 and has only pr-torsion if char F = p 4 = 0. 

Let I'~= (~ I k. We shall need the following lemma. 
k = l  

Lemma 4.2. I ~ is the kernel of the natural map F G~F[G/G~].  

This is equivalent to Remark 2.27 on page 91 of Passi's book [13]. Howev- 
er, we give a direct self-contained proof in the appendix. 

Lemma 4.3. I f  (X, O+X, (?_X) is a 3-dimensional F-duality triad and G=~I(X),  
then the Kronecker product pairing 

HI(~ + X, Y; FEG/G~,]) x HI(O + X; FEG/GJ)--~ FEG/G,J 
is zero. 

Proof. Let eeHI(O+X,Y;F[G/Gj)  and f lsHI(O+X;F[G/GJ) have images 
C~keHI(a+X,Y;FG/I k) and flkeHl(?+X;FG/Ik). The Kronecker product 
(~, fl)eF[G/Go,] has image <C~k, ilk> in FG/I k. By Lemma 4.2 it will suffice to 
prove that <ct k, ilk> = 0  for all k. 

Let p: FG/Ik+'--~FG/I k be projection, and i: O + X ~ X  inclusion. By Corol- 
lary 3.3, 

p , :  H,CX; FG/Ik+t)~,H,(X; FG/I k) 
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is zero, so i , f lk=i ,p,  fi~+~=p,i, flk+~=O. Therefore /~k=Sb for some 
bEHz(X, 0 + X; FG/Ik). By Lemma 3.5, 

(CS~k) C~ d, = i,(~k C~ 0 + ~)=p,i,(C~k+ 1 ~ 0 +  ~_) = 0 .  

Also by Lemma 3.5, c~ ~ is an isomorphism, so 6~k=O. It follows that 

(ek,~k)=(C~k, Sb)=(6C~k,b)=O. [] 

Corollary 4.4. I f  (8+X, Y) is a surface (F, 8F), and 2 is the covering of X with 
nl(J()=G~,, then each component of the induced covering P of F is planar. 

Proof. Let ~eH2(F, c~F; F) be a fundamental class for F. Since F is a genuine 
manifold, 

c~ tl: Hi(F, OF; FEG/Go~])~ H t(F ; F[G/G~I)~H t(P ; F) 

is an isomorphism. Let c, c' be closed curves in P and let 
7~H ~(F, OF; F[G/Gj )  be such that [c] = 7 c~ ~/. Then (up to multiplication by a 
non-zero element of F depending on r/) 

<y,[c']>= ~ (gc, c')g, 
geG/G~o 

where (gc, c') is the intersection number of gc and c'. By Lemma4.3, <7, [c']> 
= 0 for all c, c'. Hence (c, c')=0 for all c, c', proving that each component of/~ 
is planar. [] 

The following theorem is analogous to Stallings' version [16] of the loop 
theorem for 3-manifolds. 

Theorem 4.5. Let (X, 8+X,P~_X) be a 3-dimensional F-duality triad such that 
(8 + X, Y) is a surface (F, OF). Let K =ker(nl(F)~r~l(X)/rcl(X)o), and let N be a 
normal subgroup of nl(F ) such that K-N:t=O. Then there exists a simple 
orientation-preserving loop u in F and an integer n such that [u ] "eK-N .  
Furthermore, n may be taken to be 1 /f char F = 0 ,  and of the form p" if char F 
=p=~0. 

Proof. Let p : /~ -~F  be the regular covering of F with p ,n~(F)=K.  By Corol- 
lary 4.4, /~ is planar. The result now follows from Theorem 2.1 and Lem- 
ma 4.1. []  

Remark. We do not know whether or not it is always possible to take n = 1. 
In the same way, Corollary 2.2 yields the following. 

Theorem 4.6. Given the data of Theorem 4.5, there exist disjoint simple orien- 
tation-preserving loops u~,...,u~ in F and integers n~,...,n~ such that K 
= ( l u l l  "~, ..., [U,,]n'). Furthermore, n i may be taken to be 1 /f char F = 0 ,  and of 
the form p'~ if char F =  p 4= 0, i=  1 . . . . .  m. 

5. Fibred Ribbon Knots 

Recall that a knot  K in S 3 is slice if it bounds a smooth disc D in B 4, and 
ribbon if it bounds an immersed disc in S 3 with only "ribbon" singularities; see 
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[4, Problem 25]. It is well-known that any ribbon knot is slice, and in fact 
bounds a smooth disc D in B 4 such that the map ~I (S3-K) - -~ I (B3-D)  
induced by inclusion is onto. It is unknown whether or not all slice knots are 
ribbon. 

More generally, let K be a knot in a homology 3-sphere M. If (M,K) 
=3(V,, D) for some smooth disc in a homology 4-ball V,, we say that K is slice 
in V. If such a pair (V,, D) exists with n l ( M - K ) ~ z c l ( V - D )  onto, we say that K 
is homotopically ribbon (in V). Note that this implies that gl(M)-~7~l(V) is 
onto. In particular, if M is S 3 then V is a homotopy 4-ball (and hence at least 
homeomorphic to B 4, by [5]). 

Recall that if K is a fibred knot, then there is a compact orientable surface 
F with ~F'~S ~, and a diffeomorphism f: F ~ F  with f[OF equal to the identity 
(the monodromy of K), such that F• l / f (=F• 1)--~(fx, 0) for all xeF)) is 

diffeomorphic to M - N ( K ) ,  in such a way that under the natural identification 
of 3FxI / ( f l~F)  with t~F• 1, a loop x o x S  1, Xoe~F, corresponds to a me- 
ridian of K, i.e. the boundary of a meridian disc of N(K). Let f be the closed 
surface FwoB 2, and define f: F--~/~ by f=fwid .  We shall call f the closed 
monodromy of K; it is uniquely determined by K, up to conjugacy and isotopy. 

Finally, by a handlebody we shall mean an orientable 3-manifold which has 
a handle decomposition consisting of one 0-handle and some finite number of 
1-handles. 

Theorem 5.1. A fibred knot in a homology 3-sphere is homotopically ribbon if 
and only if its closed monodromy extends over a handlebody. 

In particular, if a fibred knot in S 3 is a ribbon knot, then its closed 
monodromy extends over a handlebody; this can be used to obtain much 
explicit information about which fibred knots are ribbon. We intend to discuss 
this elsewhere. We also remark that a (practical) algorithm has recently been 
found to decide whether or not a given diffeomorphism of a closed orientable 
surface extends over a handlebody (or indeed any 3-manifold) [3]. 

Generalizing the terminology of [2] to allow surfaces with boundary, define 
a compression body T to be a 3-manifold with a handle decomposition of the 
form F•  where F is a compact orientable surface, 
and where there is a 3-handle for each 2-sphere component of ~ ( F x l w 2 -  
h a n d l e s ) - F x 0 .  Note that ~T=~eTw~Fzlw~iT,  say, where 3eT=F=F• 
and 0F x Ic~OIT=OF x 1 =0(~iT). Also, since T~-OiT• IwO-handlesw 1-handles, 
T is irreducible and 0 i T is incompressible in T. 

Any set of disjoint simple loops in the interior of a compact orientable 
surface F determines a unique compression body, namely that whose 2-handles 
are attached along regular neighbourhoods of the given loops in F • 1. 

The following lemma will be needed in w 7, whilst the special case contained 
in Corollary 5.3 will be used in the proof of Theorem 5.1. 

Lemma 5.2. Let f: F---~F be a diffeomorphism of a compact orientable surface. 
Let u 1 ... . .  u,~ be a set of disjoint simple loops in intF,  and let T be the 
corresponding compression body. Then f extends to a diffeomorphism of T if and 
only if f . (N)=N,  where N = ( [ U l ]  . . . .  , [u,.]) cTrl(F ). 
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Proof. Since N =ker(~rt(F)--~ 7rl(T)) , the necessity of the condition f , ( N ) =  N is 
immediate. 

Conversely, suppose f , ( N ) = N .  Then f , ([ui])sN,  and hence, by Dehn's 
lemma, f(u~)=OD i for some properly embedded disc D i c  T, i=  1 . . . . .  m. By a 
standard innermost circle argument, we may suppose that D 1 . . . . .  D m are pair- 

wise disjoint. Consider a regular neighbourhood R of F w  0 D~ in T. Since T is 
i = 1  

irreducible, any 2-sphere component of ~R bounds a 3-ball in T, enabling us to 
enlarge R to the image of an embedding g: T-* T such that g [F=f .  Since ?~iT 
is incompressible in T, and g, :  ~I(T)---~a(T) is an isomorphism, g(#iT) is 
incompressible in T. Therefore each component of g(OiT ) is parallel to a 
component of ~iT. (The argument, which is almost identical to that given in [2, 
Lemma 2.3] for the case in which F is closed, is as follows. Regard T as 3~T 
x I w0-handlesw 1-handles. Then, using a standard innermost circle argument, 

and the irreducibility of T, we may isotope g(0 iT) (rel 0) off the co-cores of the 
1-handles, so that we may assume g(OzT)cO~T• I. Since Og(O~T)=g(0F x 1) is 
parallel in O F x I  to 0 F x  I=0(O~T), the result is now a consequence of [18, 
Proposition 3.1].) It follows easily that g(~?iT) is parallel to (?iT, and hence that 
there exists a diffeomorphism g': T ~  T such that g ' l F = f  as required. [] 

Corollary 5,3. A diffeomorphism f: F-* F of a closed orientable surface of genus 
n extends over a handlebody ([ and only if there exists a set of disjoint simple 
loops ul, ..., u m in F containing n homologically independent members, such that 
f , ( N )  = N, where g = <[ul], ..., [urn] ) ~ ~l(F). 

Proof. The compression body corresponding to such a set of loops is a han- 
dlebody with boundary F. [] 

Proof of Theorem 5.1. First, let K be a fibred knot in a homology 3-sphere M, 
with monodromy f: F - , F ,  and suppose that there exists a handlebody T with 
0 T = F  and a diffeomorphism g: T---,T such that gl~?T=~ Let W = T x I / g ,  the 
bundle ever S a with fibre T and monodromy g. Note that OW---F x I/f, which 
is diffeomorphic to the manifold obtained by doing 0-framed surgery on M 
along K. Let V = M  x I w H 2 Wow W,, where H 2 is a 2-handle attached along K 
x 1 ~ M x l, with the 0-framing. One calculates easily that V is a homology 4- 

ball. Also, K c M = M x 0 bounds the disc D = K x I w (core of H 2) in V. Since 
rcl(F)--~rl(T ) is onto, the same is true of 

n l ( M - K ) ~ n 1 ( F  x l/f)---~nl(Tx l /g ) '~Ir l (V-D ). 

Thus K is homotopicatly ribbon. 
Conversely, suppose that (M,K)=~(V,D)  for some smooth disc D is a 

homology 4-ball V, with n ~ ( M - K ) ~ n l ( V - D  ) onto, where K is fibred with 

monodromy f: F-~F. Let W = V - N ( D ) ;  then ~?W~_Fxl/ f  Let I~ be the in- 
finite cyclic covering of W; (I~, 017V) is a 3-dimensional Q-duality pair by [10]. 
Note that (I~,, 3 IYV)is homotopy equivalent to (I~,, F), where F = F  x 0 o F  x R 1 
~ W .  Therefore, by Theorem 4.6, there exist disjoint simple loops u t . . . .  ,urn 
in F such that g=ker(nl(F)-- ,n t ( lTv) /nl (W)~)=([u~] . . . . .  [um]). Now 
rc~(~W)-~r~(W) is onto, since r c ~ ( M - K ) - ~ r ~ ( V - D )  is, by hypothesis. Since 
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7~l(f), 7~I(I/V ) are identified, via the covering projection 17v'---, W,, with the com- 
mutator subgroups of rCl(C~W ), tel(W) respectively, it follows that r t , ( f ) -~ t t (W)  
is onto. Therefore n,(17V)/~I(17V)~,-~Tt,(ff)/N. Hence HI(I~; Q)---HI(F; Q)/U, 
where U is the subspace spanned by the classes of u!, ..., Urn; consequently U is 
the kernel of HI ( f f ;Q) - ,H , (W;Q) .  But since (W,F) is a Q-duality pair, this 
kernel has dimension n=genus if, and hence {u, . . . .  ,u,,,} contains n homologi- 
cally independent loops. 

Let t: IYV~ 17f generate the group of covering translations. Then t l ~ 1~_-__ P 
x R 1 is given by (x,s)~--~(fx, s+ 1). Since ~l([/~lZ)o is a characteristic subgroup of 

r~l(lTf ), t,(Tzl(fff)o~)=rc,(l~)o ,, and hence f , ( N ) = N .  (Regarding basepoints, recall 
that f i e f  is the identity, so we may take some point Xo~?F as base-point for 
F, and noting that t ( x o x R 1 ) = x o x R  1, take x o x R 1 c f f x R ~ - ? I 7 V  as base- 
"point" for 1~.) The fact that f extends over a handlebody now follows from 
Corollary 5.3. [] 

Remark. If K is a fibred knot in a homology 3-sphere M, and (M, K)=c3(V, D) 
with ~ 1 (M - K)---, ~ ~ (V- D) onto, then the commutator subgroup of rt ~ (V-  D) is 
finitely generated. By analogy with Stallings' fibration theorem for 3-manifolds, 
one might ask whether V - N ( D )  necessarily fibres over S ~. The proof of 
Theorem 5.1 yields a partial answer. 

Corollary 5.4. I f  a fibred knot K in a homology 3-sphere M is homotopically 
ribbon in V, then (M,K)=~(V ' ,D)  where V ' - N ( D )  fibres over S' with a han- 
dlebody as fibre. 

(V' is not known to be homeomorphic to V.) 

6. Knots in Contractible 4-manifold Boundaries 

The main motivation of this section is the following question, raised (in a 
special case) by Zeeman [21]. 

Question 6.1. Does every knot in the boundary of a compact contractible 4- 
manifold V bound a P L  disc in V? 

Note that the disc is not assumed to be locally flat. 
If V is B 4, then such a disc may be obtained simply by coning. In [21, 

Conjecture (5)], however, Zeeman conjectures that the answer is "no"  in 
general. 

Being unable to settle this question, we consider it in conjunction with the 
following analogue of the slice implies ribbon question for knots in S 3 

Question 6.2. I f  a knot in the boundary of a compact contractible 4-manifold V 
is slice in V, is it homotopically ribbon in V? 

The curious piece of information which we offer with regard to Ques- 
tions 6.1 and 6.2 is that they cannot both have affirmative answers. In fact, we 
have 
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Theorem 6.3. There exists a knot K in the boundary of a compact contractible 
4-manifold such that 

(1) K is homotopically ribbon in a homology 4-baU, 

(2) K is not homotopically ribbon in any contractible 4-manifold, 

(3) K bounds a PL  disc in a contractible 4-manifold if and only if K is slice 
in a contractible 4-manifold. 

It follows immediately from (2) and (3) that such a K is an example of a 
knot for which the answer to at least one of Questions 6.1 and 6.2 is negative. 

Before describing how such examples may be constructed, we observe that 
(3) follows from (1) and the following lemma. 

Lemma 6.4. Let W be a homology 4-ball such that nl(~?W)---,nI(W ) is onto, and 
let K be a k not in ~W which is slice in W. Then K bounds a PL  disc in a 
contractible 4-manifold if and only if K is slice in a contractible 4-manifold. 

Proof Let V be a contractible 4-manifold and E a P L  disc in V such that 
c~(V, E)g(?~W, K). We may assume that E is locally flat except at a single point 
x6intE,  and that x has a neighbourhood B in V such that (B, Bc~E)~-(B 4, 
cone on J), for some knot J in S 3. By hypothesis, there is a smooth disc D in 
W with ~D=K.  Let N = V u ~ W .  Since V, W are homology 4-balls, N is a 
homology 4-sphere. Moreover, since n~(V)= 1 and r c l ( 0 W ) ~ r t l ( W )  is onto, 
rc l (N)=l  by van Kampen's theorem. Now S = E u g D  is a 2-sphere in N, 

locally fiat except at x, and if (No, S o ) = ( N , S ) - ( B , B ~ E ) ,  then N o is a ho- 
motopy 4-ball, and S o is a locally flat disc in N o with OSo=J. Finally, let 

(V', E') = (V, E ) - ( B ,  Bc~ E) u~(No, So). 

Then V' is contractible, E' is a locally flat disc in V', and O(V',E')=O(V,E). [] 

Remarks. (1) Clearly the assumption that i ,:  ~a(OW)--*nl(W) be onto could be 
weakened to the condition that ~rl(W ) be the normal closure of i, nl(8,W ). 
(2) Since N o is homeomorphic to B 4 by [5], V' is homeomorphic to V. 

Our construction of a knot K as described in Theorem 6.3 will use the 
following lemma. 

Lemma 6.5. Let f: F--* F be a diffeomorphism of a compact orientable surface, 
and let X(t) be the characteristic polynomial of f , :  HI(F;Q) - -~HI (F;Q ). Sup- 
pose 

(a) X(t) is irreducible over Q [t], 

(b) ;((t) does not divide t " - 1 ,  for any n > 1, 

(c) ;((t) is not a polynomial in t n, for any n > 1. 

Then 

(1) fn is not isotopic to the identity, for any n>= l, 

(2) F has at most one boundary component, and any essential 1-submanifold 
of F which is invariant under a diffeomorphism isotopic to f consists of parallel 
copies of OF. 
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Proof. (1) Since Z (t) is irreducible, it is the minimal polynomial o f f . .  I f f"  were 
isotopic to the identity, we would have f , = l ,  implying that Z(t) divides 
t " -  1. 

(2) Let C be a non-empty essential 1-submanifold of F such that (after an 
isotopy o f f )  f ( C ) =  C. Suppose there exists a component C 1 of C such that 
[ C 1 ] # 0  in H I ( F ; Q  ). Then, for some n > l ,  f , [C1]=[C1] ,  and hence f .  has 
an n-th root of unity as an eigenvalue. This implies (again since z(t) is 
irreducible) that Z(t) divides t " - t .  In particular, since OF is invariant under f, 
we conclude that F has at most one boundary component. 

So suppose that each component of C is null-homologous in F, and 
therefore bounds a subsurface of F. Among the components of F cut along C, 
choose one, Fo, say, with a single boundary component. Let Fr=f~(Fo), and let 

n - - 1  

n be the least positive integer such that F,=F o. Let G = F -  U Ft. We then 
r = 0  

have a decomposition H I ( F ; Q ) ~ - H I ( F o ; Q ) G . . . O H I ( F , _ a ; Q ) O V  , where V 
= i m ( H I ( G ; Q ) ~ H I ( F ; Q )  ), such that the first n summands are cyclically per- 
muted by f .  and V is f.-invariant. It follows that Z(t)=q)(t")~(t), where q~(t), 
~(t) are the characteristic polynomials of (f"lFo) , and f . l V  respectively. Since 
H~(Fo; Q)#0,  and Z(t) is irreducible, we must have Z(t)=q~(t"), which implies 
(by (c)) that n = 1. We must also have V= 0, and therefore (since C is essential), 
OF 4 0, G is a collar of OF, and C consists of parallel copies of ~?F, as claimed. [] 

Let K o be a knot in a homology 3-sphere M 0 which bounds a contractible 
4-manifold Vo, and let ( M , K ) = ( M o ,  K o ) # - ( M o ,  Ko). Then M bounds the 
contractible 4-manifold Vo~-o -V  o. Also, K is homotopically ribbon, in a 
homology 4-ball. To see this, simply choose a trivial ball-pair (B, B n K o )  

c ( M  o, Ko), and consider (W, D)=(Mo, K o ) - ( B  , B n K o )  x I. (An alternative de- 
scription of (W, D) is that it is obtained by spinning (M o, Ko) through an angle 
n.) 

Now suppose that K o is fibred, with monodromy fo: Fo-+Fo, say, and 
suppose also that the characteristic polynomial Z(t) of fo . :  H~(Fo;Q) 
~HI(Fo; Q) (in other words, the Alexander polynomial of Ko) satisfies the hy- 
potheses of Lemma 6.5. To establish assertion (2) of Theorem 6.3, we shall show 
that, under these conditions, if K is homotopically ribbon in a homology 
4-ball V, then there is surjection n~(V)--.n~(Mo). It follows that V cannot be 
contractible if n~(Mo) # 1. 

Let f: f - - .  F be the closed monodromy of K. Note that we may regard f as 
c3(F o x 1), and take f to be (f0 x id)l~(F0 x I). Suppose that K is homotopically 
ribbon, in some homology 4-ball. Then, by Theorem 5.1, there exists a han- 
dlebody T with c~T=F and a diffeomorphism g: T---, T such that g l f - - - f  

Lemma 6.6. Vfith the above data, there exists a homeomorphism h: T--,F o x I 
such that hIF o x0wc~F o x I is the identity. 

Proof. The set /~={F o x0, F o x 1, ~?F o xI} of submanifolds of OT~-O(F o x 1) is a 
(complete) boundary pattern for T in the sense of Johannson [8] (see also 
[19]). Moreover, for i=0  or 1, the kernel of the map HI(F o x i ;Q)-~H~(T;Q)  
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induced by inclusion is an fo,-invariant subspace of dimension at most the 
genus of F o. Since the characteristic polynomial of fo ,  is irreducible, it follows 
that this kernel is zero, so that HI(F o • i; Q)-- ,HI(T;  Q) is an isomorphism, i 
=0,  1. Therefore, ~l(Fo x i ) - ~ l ( T  ) is injective, i=0,  1, by [17, Theorem 7.3]. 
Thus the boundary pattern 13 is useful [8, w [19, p. 27], and hence there 
exists a characteristic submanifold X for (T, 13) [8, Chap. IIl], [19, p. 28]. Note 
that, here, each component of X must be an/-bundle .  

Since g is an automorphism of (T, 13), it can be isotoped, admissibly with 

respect to 13, so that g ( X ) = X  and (gF T - X ) "  is isotopic to the identity for some 
n >  I [8, Corollary I0.9 and Proposition 27.t]. After this isotopy, fo leaves the 
essential 1-submanifold 8(Xc~F o x 0) of F o • 0 invariant, and so, by Lemma 6.5, 
each component of 8(Xc~FoxO ) must be parallel to 8Fox0.  This gives two 
possibilities for X: (a collar of 8F o x 0 in F o x 0) x 1, or T. In the former case, fg 
would be isotopic to the identity, contradicting Lemma 6.5. Therefore X = T, so 
that T is an /-bundle over F o x 0. This is equivalent to the statement of the 
lemma. [] 

Now suppose that K is homotopically ribbon in a homology 4-ball V, so 
that we have (M,K)=8(E  D), with rc l (M-K)-~rc~(V-D ) onto. Let W 

= V - N ( D ) ,  and let W be the infinite cyclic covering of W,, with t: I~--~ 17r a 
generator of the group of covering translations. Let g: T-* T be the diffeomor- 
phism of the handlebody T with 8 T = F  and g t S T = f  guaranteed by Theo- 
rem5.l .  The proof of that theorem shows that there is a surjection 0:  
rcl(W)--,rcl(W)/rCl(W),o~_~l(r ) such that ~3 t ,=g ,0 .  (Take, as base-point for F, 
the point (x0, �89 o x I, say, for some xo~SFo, and take (x o, �89 x R 1 c /~  x R 1 
~c?W as base-"point" for f14.) Therefore (5 induces a surjection (0: ~I(W) 
~ z l ( T  x//g). 

By Lemma 6.6, T x I / g ~ ( F o x l ) x I / h g h  1, which in turn is homotopy 
equivalent to F o x / f r  o (recall that h[F o x 0 = i d ,  and g[F o x 0=fo).  Hence we ob- 
tain a surjection q)': rCl(W)--+~zl(F o x I/fo). Also, observe that if #=[(Xo,�89 S 1] 
E~zl(W), a meridian of D, then (0'(p)= [x o x SX]e~l(Fo x/fro),  a meridian of K o. 
Therefore q)' induces a surjection n 1 ( W ) / ( # ) ~ - ~ z l ( V ) ~ ( F  o • 
~ l ( m o ) .  

To complete the proof of Theorem 6.3, we give the following specific 
example of a pair (Mo, Ko) satisfying the necessary hypotheses. Consider Dehn 

1 1 surgery of type { ,5} on the positive Whitehead link in S 3. Using the fact that 
each component is unknotted, one sees easily that the resulting 3-manifold M o 
can be obtained either by Dehn surgery of type 1 on the stevedore's knot, or 
by Dehn surgery of type 1 on the figure eight knot. Since the stevedore's knot 
is slice, the first description shows that M o bounds a contractible 4-manifold 
(see [6, Corollary 3.1.l]), whilst the second description shows that M o contains 
a fibred knot K o whose complement is homeomorphic to that of the figure 
eight knot, and which therefore has Alexander polynomial 1 - 3 t + t  2. Finally, 
M o is not  simply-connected, being in fact the Brieskorn homology sphere (2, 3, 13) 
(see [1, Fig.23]). Hence (M o, Ko) may be used as described above to 
construct a knot  K satisfying the conclusions of Theorem 6.3. 
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7. Injectivity of Anisotropic Fibred Knots 

In [7] is defined the notion of a knot (in S 3, or a homology 3-sphere) being 
rationally anisotropic. For a fibred knot, with monodromy f:  F--+F, this is 
equivalent to the condition that H~(F;Q) have no non-zero f,-invariant sub- 
space on which the intersection form of F is identically zero. Fibred knots in 
S 3 which are rationally anisotropic include the torus knots [14, Proposition 
2.3], [7, Corollary 4.8], and, more generally, all connected sums of coherently 
oriented torus knots [7, Proposition 4.9]. 

In [14, Question 3.1], Scharlemann asks: given a concordance C in S3x I 
with C n S 3 x O = K  a torus knot, is the map n l (S3 -K) - ->n~(S~x I -C)  nec- 
essarily injective? He shows that this is indeed the case under the additional 
hypothesis that S3x I - C  is fibred, and the results of [7] show that it is also 
true if C is a ribbon concordance (in either direction). An affirmative answer to 
Scharlemann's question is contained in the following theorem. 

Theorem 7.1. Let K be a rationally anisotropic fibred knot in a homology 3- 
sphere M, and let C c Q be a concordance in a homology S 3 x I such that (Q, C) 
has (M, K) at one end. Then the map ~ I (M-K) -~TZl (Q-  C) induced by inclusion 
is injective. 

The proof of Theorem 7.1 will be based on Theorem 5.1 and an additional 
lemma concerning certain duality triads, which we now discuss. 

Let ,Y-=(X,O+X,c~ X) be a 3-dimensional F-duality triad with X con- 
nected and Y=0. Thus OX=O+Xaxc~ X, and, in particular, Ht(t?X;F) 
~HI(O+X;F)OHI(~ X ; F  ). Let i: ~X->X be inclusion, L=ker ( i , :  HI(c~X;F ) 
~HI(X;  F)), and L+ =Lc~HI(~+X; F). We are interested in knowing when L 
splits as L+OL_.  Let ~ be a fundamental class for ~,, with corresponding fun- 
damental classes ~+ ~ for •+ X. Let G=nl(X),  and let e: F G/ I2~ F  be the map 
induced by augmentation. Define a(Y)Ecoker(e,:  H2(X;FG/I2)~H2(X;F)) 
to be the image of the class i ,~+~ ( = i , #  ~)~H2(X;F ). 

Lemma 7.2. Let J- be a 3-dimensional F-duality triad as above, such that a(J-) 
=0. Then L=L+ O L  . 

Proof Suppose a = a + + a _ 6 L ,  where ~ + ~ H I ( 0 + X ; F  ). We must show that 
a+ eL. Since / , a = 0 ,  a=Ofl for some fleH2(X , OX; F). By hypothesis, a(~-)=0;  
let o~cH2(X;FG/I 2) be such that e, cn=i ,0+~.  Let ~6HI(X,  OX;FG/I 2) be 
dual to ~o, i .e.  05c~=~o (see Lemma 3.5). Note that the cap product 
05 c~ fl~ H I(X; F G/I 2) satisfies e, (05 c~ fl) = 0 by Corollary 3.3. 

Let ~+~EH~ be dual to 0+~, i.e. 0+~c~c~=0+~. Then ~+.~c~a 
=c~+~c~a+=a+.  Also, since (~ ,05)c~=%c9=i ,c?+~,  we have e, 05=6~+~. 

Hence i ,  ~+ = i,(O+ ~ c~e)=i,(O+ ~ c~c~fl) =(6~+ ~ )~ f l= (e ,  05)c~fi=~,(05c~fi)=0. 
Thus c~+ eL,  as required. [] 

Proof of Theorem 7.1. Let W = Q - N ( C ) ,  and let W be its infinite cyclic 
covering. Then ~3 W ~  F x R ~ w or • g, 0 W,, where F is the fibre of K, and 0 W is 
the infinite cyclic covering of the exterior c~_ W of the knot at the other end of 
(Q,C). By [10], (ITV,,F,c~ W) is a Q-duality triad, where F = F x 0 c d ~  A 
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generator of the group of covering translations defines an automorphism t of 
(17r F, ~3 I,V) such that t lF=f, the monodromy of K. 

Let N=ker(n~(F)-'nl(17V)/nl(ITv)o). By Theorem 4.6, there exist disjoint, 
essential, simple loops u 1 . . . . .  u,, in in tF  such that N = ( [ u l ]  . . . . .  [um] ). Let T 
be the compression body obtained by attaching 2-handles to F • I along 
regular neighbourhoods of ui• 1, i=1 . . . .  ,m, and let x=ITvwvT Since f , (N) 
=N,  f extends to a diffeomorphism g: T-,T, by Lemma5.2, Let t: X - ' X  be 
defined by t = t w g. 

Since K is rationally anisotropic, and (I7r F, c~ W) is a Q-duality triad, a 
standard argument shows that the map HI(F;Q)~HI(ITV;Q) is injective (see 
for example [14, Theorem 2,4] or [7, Lemma 3.3]). Therefore each u i separates 

F. Let F o be the closure of the component of F -  Q) u i which contains 0F, and 
i = 1  

let F~') be the corresponding component of ~?i T, containing OF x 1. Now consider 
the Q-duality triad J = ( X , ~ + X , ~  X), where c~+X=c?~T-F o, and (?_X 
=F~; w ~F • I w ~ .  I~. Note that c?+ X c~ 9 X =0. We claim that a ( J ) = 0 .  

To see this, let G=nl(W),  and H=nl (X)~G/ ( i , [u l ]  .. . .  ,i,[Um] ), where i: 
F--~ lTf is inclusion. Now i,[u~]eG2, (in fact, i,[ui]sG,o ), i= 1 . . . . .  m, and there- 
fore the quotient map G ~ H  induces an isomorphism QG/I2_~QH/I 2, where 
I n denotes the augmentation ideal of QH. Write cokce=coker(e, : H2(17r QG/I 2) 
--*H2(17V;Q)), and cokx=coker(~,:  H2(X;QG/I2)-'~H2(X;Q)). Let cq be the 
class represented by u i in HI(F;Q).  Since i,[~ui]eG 2, c~i=e,~ i for some 
s Since i,[ui]eG 3, i ,~=OeItl(W;QG/I2)-~I2/I  3 (see Lem- 
ma 3.2). Therefore ~z=c~fli for some flIeH2(W,F;QG/I2). An easy Mayer- 
Vietoris argument now shows that inclusion W - ' X  induces an isomorphism 
cok~ ~ cok x. 

Since H2(W;Q)=0, t , - l :  H2(W;Q)- 'H2(W;Q ) is an epimorphism (see 
[103), and hence t , - 1 :  cokg~-* cokr is an epimorphism. This implies that it is 
in fact an isomorphism, since H2(W; Q), and hence coke, is a finitely-generated 
module over the principal ideal domain Q[ t , t -~] .  Therefore t , - l :  cok x 
- ' c o k  x is also an isomorphism. But ~(~•177 X, showing that (~ , -1 )a ( J - )  
=0. Hence o-(,Y-)=0, as claimed. 

It now follows from Lemma 7.2 that L = L + @ L ,  where L=ker(H~(~X;Q) 
~H~(X;Q)) and L•177 Since dim L=�89 Q) and 
d imL•  <ld imH~((?+X;Q) ,  L = L + @ L  implies d imL• =�89177 Q). 
Since each u~ separates F, inclusion induces an isomorphism H~(W;Q)-- 
H~(X; Q), and we also have an isomorphism H~(c~+ X; Q)~-H~(F-Fo; Q), under 

which L+ corresponds to ker(H~(F-Fo; Q)~H~(W, Q)). The latter is therefore 
a non-zero f,-invariant selfannihilating subspace of H~(F; Q), contradicting the 
assumption that K is rationally anisotropic. The collection {u~: i = l ,  ...,m} 
must therefore be empty, implying that nl(F)-,n~(lTV) is injective. Hence 
n ~ ( M - K ) ~ n ~ ( Q - C )  is injective, as stated. [] 

Append ix  

Recall that, for an)' group G with group ring FG and augmentation ideal I, Gk= {g~G: g-It/k} 

and G~,= (~ G k. 
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Proof of Lemma 4.1. If g,g'~Gk, then g-lg '-- l=g-l(g ' -- l )--g-l(g--1)~lk,  showing that G k is a 
subgroup of G. It follows that G,o is a subgroup of G; clearly G k and G~, are invariant under 
automorphisms of G. The map g~--,g-1 induces an injective homomorphism from Gk/Gk+ 1 to 
lk/ik+ 1, implying that Gk/Gk+ 1 is torsion-free if char F = 0  and p-torsion if char F=p# :0 .  It follows 
that all torsion elements of G/Go~ have order pr, where p = c h a r  F. [] 

oe 

The rest of this appendix is devoted to a proof of Lemma 4.2, asserting that I '~  1= I k is the 

kernel of the natural map FG--*F[G/G~]. Clearly 1 '~ contains this kernel. To prove the opposite 
inclusion, we shall use the following inductive definition of a polynomial map from a group G to a 
vector space V over F. A map q): G-~ V is polynomial of degree <k if, for each g~G, the map 
x~--,~o(gx)-q)(x) is polynomial of degree < k - 1 .  The zero map is polynomial of degree - 1 .  The 
unique F-linear extension of ~0 over FG will also be denoted by q): FG-~  K Lemma 1 below shows 
that this definition agrees with that of Passi [13, Chap. V]. 

Lemma 1. A map q~: G--~ V is polynomial of degree < k -  1 !f and only if ~llk=0.  

Proof Induction on k, starting with k = 1. 
Given q~ and g~G, define ~O~: G ~  V by ~b~(x)=q2((g-1)x)=q)(gx)-(p(x). Since { ( g - l ) x :  geG, 

x~I k} spans I k+l, (p]I k+~ =0 if and only if, for each geG, ffgllk=0, that is (by inductive hypothesis) 
~kg is polynomial of degree < k -  1. [] 

Lemma 2. I f  G,o={1 } and gl . . . .  ,g ,  are distinct elements of G, then there is a polynomial map (p: 
G-~F such that q)(gl)= 1 and qg(g2) . . . . .  ~o(gn)=0. 

Proof For k sufficiently large, gx, . . . ,g ,  have distinct images in GIG k. Let nk: G ~ F G / I  k be the 
natural map, and let x~=nk(gl); then x 1 . . . .  , x, are distinct. For  i=2,  ..., n there is a linear map ct~: 
FG/lk-~F such that ~i(xi)+~i(x~). Define fit: F G/lk--*F by 

f l ' "  ~ , ( x ) - ~ , ( x , )  

then fli(xl)= 1, fli(xl)=0. Clearly qgi=flink: G--~F is polynomial, of degree < k - 1 .  It follows from 
the inductive definition that the map (p: G ~ F  defined by (p(x)=q)2(x)...q),(x) is polynomial of 
degree < ( n -  1) ( k -  1). By construction, r = 1, q~(g2) . . . . .  ~0(g,) =0. [] 

Completion of proof of Lemma 4.2. First consider the special case in which G~,={1}; we must 
n 

prove that I ~' =0.  Any element of I ~ can be written as ~ ~.ig~ with gt,  ..., g, distinct elements of G. 
i = 1  

By Lemma 1, ~ 2,q~(gi)=0 for all polynomial maps ~o: G--~F. Using the map q) of Lemma2 gives 
i = 1  

21 =0, and similarly 22 . . . . .  2 ,=0 .  
The general case follows by applying the special case to the group G/G~, noting that (G/Go,)~ 

={1}. [] 

References 

1. Akbulut, S., Kirby, R.: Mazur manifolds. Michigan Math. J. 26, 259-284 (1979) 
2. Bonahon, F.: Cobordism of automorphisms of surfaces. Preprint, Orsay, 1981 
3. Casson, AJ. ,  Long, D.D.: Algorithmic compression of surface automorphisms. To appear 
4. Fox, R.H.: Some problems in knot theory, in: (Fort, M.K., Jr. ed.) Topology of 3-Manifolds 

and Related Topics. Englewood Cliffs, N.J.: Prentice-Hall Inc. 1962 
5. Freedman, M.H.: The topology of four-dimensional manifolds. J. Differential Geometry 17, 

357-453 (1982) 
6. Gordon, C.McA: Knots, homology spheres, and contractible 4-manifolds. Topology 14, 151- 

172 (1975) 
7. Gordon, C.McA.: Ribbon concordance of knots in the 3-sphere. Math. Ann. 257, 157-170 

(1981) 



A Loop Theorem for Duality Spaces and Fibred Ribbon Knots 137 

8. Johannson, K.: Homotopy equivalences of 3-manifolds with boundaries. Lecture Notes in 
Mathematics, vol. 761. Berlin-Heidelberg-New York: Springer 1979 

9. Maskit, B.: A theorem on planar covering surfaces with applications to 3-manifolds. Ann. of 
Math. 81,341-355 (1965) 

10. Milnor, J.W.: Infinite cyclic coverings. In: (Hocking, J.G., ed.) Conference on the Topology of 
Manifolds. Boston-London-Sydney: Prindle, Weber and Schmidt 1968 

I I. Papakyriakopoulos, C.D.: On solid tori. Proc. London Math. Soc. 7, 281-299 (1957) 
12. Papakyriakopoulos, C.D.: A reduction of the Poincar6 conjecture to group theoretic conjec- 

tures. Ann. of Math. 77, 250-305 (1963) 
13. Passi, I.B.S.: Group rings and their augmentation ideals. Lecture Notes in Mathematics, vol. 

715. Berlin-Heidelberg-New York: Springer 1979 
14. Scharlemann, M.: The fundamental group of fibered knot cobordisms. Math. Ann. 225, 243- 

251 (1977) 
15. Scharlemann, M.: Essential tori in 4-manifold boundaries. Pacific J. Math. 105, 439-447 (1983) 
16. Stallings, J.: On the loop theorem. Ann. of Math. 72, 12-19 (1960) 
17. Staltings, J.: Homology and central series of groups. J. Algebra 2, 170-181 (1965) 
18. Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. of Math. 87, 56- 

88 (1968) 
19. Waldhausen, F.: Recent results on sufficiently large 3-manifolds. In Proc. Syrup. Pure Math. 32, 

Part 2, AMS, Providence, R.I., 1978 
20. Wall, C.T.C.: Surgery of non-simply-connected manifolds. Ann. of Math. 84, 217-276 (1966) 
21. Zeeman, E.C.: On the dunce hat. Topology 2, 341-358 (1964) 

Oblatum 13-XII-1982 & 20-V-1983 


